Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux/fpc-iii.git] / arch / cris / arch-v32 / mach-a3 / arbiter.c
blob8b924db71c9a9a7f7eb90b6b6c13a1a387504a0a
1 /*
2 * Memory arbiter functions. Allocates bandwidth through the
3 * arbiter and sets up arbiter breakpoints.
5 * The algorithm first assigns slots to the clients that has specified
6 * bandwidth (e.g. ethernet) and then the remaining slots are divided
7 * on all the active clients.
9 * Copyright (c) 2004-2007 Axis Communications AB.
11 * The artpec-3 has two arbiters. The memory hierarchy looks like this:
14 * CPU DMAs
15 * | |
16 * | |
17 * -------------- ------------------
18 * | foo arbiter|----| Internal memory|
19 * -------------- ------------------
20 * |
21 * --------------
22 * | L2 cache |
23 * --------------
24 * |
25 * h264 etc |
26 * | |
27 * | |
28 * --------------
29 * | bar arbiter|
30 * --------------
31 * |
32 * ---------
33 * | SDRAM |
34 * ---------
38 #include <hwregs/reg_map.h>
39 #include <hwregs/reg_rdwr.h>
40 #include <hwregs/marb_foo_defs.h>
41 #include <hwregs/marb_bar_defs.h>
42 #include <arbiter.h>
43 #include <hwregs/intr_vect.h>
44 #include <linux/interrupt.h>
45 #include <linux/irq.h>
46 #include <linux/signal.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <asm/io.h>
50 #include <asm/irq_regs.h>
52 #define D(x)
54 struct crisv32_watch_entry {
55 unsigned long instance;
56 watch_callback *cb;
57 unsigned long start;
58 unsigned long end;
59 int used;
62 #define NUMBER_OF_BP 4
63 #define SDRAM_BANDWIDTH 400000000
64 #define INTMEM_BANDWIDTH 400000000
65 #define NBR_OF_SLOTS 64
66 #define NBR_OF_REGIONS 2
67 #define NBR_OF_CLIENTS 15
68 #define ARBITERS 2
69 #define UNASSIGNED 100
71 struct arbiter {
72 unsigned long instance;
73 int nbr_regions;
74 int nbr_clients;
75 int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
76 int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
79 static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] =
82 {regi_marb_foo_bp0},
83 {regi_marb_foo_bp1},
84 {regi_marb_foo_bp2},
85 {regi_marb_foo_bp3}
88 {regi_marb_bar_bp0},
89 {regi_marb_bar_bp1},
90 {regi_marb_bar_bp2},
91 {regi_marb_bar_bp3}
95 struct arbiter arbiters[ARBITERS] =
97 { /* L2 cache arbiter */
98 .instance = regi_marb_foo,
99 .nbr_regions = 2,
100 .nbr_clients = 15
102 { /* DDR2 arbiter */
103 .instance = regi_marb_bar,
104 .nbr_regions = 1,
105 .nbr_clients = 9
109 static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};
111 DEFINE_SPINLOCK(arbiter_lock);
113 static irqreturn_t
114 crisv32_foo_arbiter_irq(int irq, void *dev_id);
115 static irqreturn_t
116 crisv32_bar_arbiter_irq(int irq, void *dev_id);
119 * "I'm the arbiter, I know the score.
120 * From square one I'll be watching all 64."
121 * (memory arbiter slots, that is)
123 * Or in other words:
124 * Program the memory arbiter slots for "region" according to what's
125 * in requested_slots[] and active_clients[], while minimizing
126 * latency. A caller may pass a non-zero positive amount for
127 * "unused_slots", which must then be the unallocated, remaining
128 * number of slots, free to hand out to any client.
131 static void crisv32_arbiter_config(int arbiter, int region, int unused_slots)
133 int slot;
134 int client;
135 int interval = 0;
138 * This vector corresponds to the hardware arbiter slots (see
139 * the hardware documentation for semantics). We initialize
140 * each slot with a suitable sentinel value outside the valid
141 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
142 * client indexes. Then it's fed to the hardware.
144 s8 val[NBR_OF_SLOTS];
146 for (slot = 0; slot < NBR_OF_SLOTS; slot++)
147 val[slot] = -1;
149 for (client = 0; client < arbiters[arbiter].nbr_clients; client++) {
150 int pos;
151 /* Allocate the requested non-zero number of slots, but
152 * also give clients with zero-requests one slot each
153 * while stocks last. We do the latter here, in client
154 * order. This makes sure zero-request clients are the
155 * first to get to any spare slots, else those slots
156 * could, when bandwidth is allocated close to the limit,
157 * all be allocated to low-index non-zero-request clients
158 * in the default-fill loop below. Another positive but
159 * secondary effect is a somewhat better spread of the
160 * zero-bandwidth clients in the vector, avoiding some of
161 * the latency that could otherwise be caused by the
162 * partitioning of non-zero-bandwidth clients at low
163 * indexes and zero-bandwidth clients at high
164 * indexes. (Note that this spreading can only affect the
165 * unallocated bandwidth.) All the above only matters for
166 * memory-intensive situations, of course.
168 if (!arbiters[arbiter].requested_slots[region][client]) {
170 * Skip inactive clients. Also skip zero-slot
171 * allocations in this pass when there are no known
172 * free slots.
174 if (!arbiters[arbiter].active_clients[region][client] ||
175 unused_slots <= 0)
176 continue;
178 unused_slots--;
180 /* Only allocate one slot for this client. */
181 interval = NBR_OF_SLOTS;
182 } else
183 interval = NBR_OF_SLOTS /
184 arbiters[arbiter].requested_slots[region][client];
186 pos = 0;
187 while (pos < NBR_OF_SLOTS) {
188 if (val[pos] >= 0)
189 pos++;
190 else {
191 val[pos] = client;
192 pos += interval;
197 client = 0;
198 for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
200 * Allocate remaining slots in round-robin
201 * client-number order for active clients. For this
202 * pass, we ignore requested bandwidth and previous
203 * allocations.
205 if (val[slot] < 0) {
206 int first = client;
207 while (!arbiters[arbiter].active_clients[region][client]) {
208 client = (client + 1) %
209 arbiters[arbiter].nbr_clients;
210 if (client == first)
211 break;
213 val[slot] = client;
214 client = (client + 1) % arbiters[arbiter].nbr_clients;
216 if (arbiter == 0) {
217 if (region == EXT_REGION)
218 REG_WR_INT_VECT(marb_foo, regi_marb_foo,
219 rw_l2_slots, slot, val[slot]);
220 else if (region == INT_REGION)
221 REG_WR_INT_VECT(marb_foo, regi_marb_foo,
222 rw_intm_slots, slot, val[slot]);
223 } else {
224 REG_WR_INT_VECT(marb_bar, regi_marb_bar,
225 rw_ddr2_slots, slot, val[slot]);
230 extern char _stext, _etext;
232 static void crisv32_arbiter_init(void)
234 static int initialized;
236 if (initialized)
237 return;
239 initialized = 1;
242 * CPU caches are always set to active, but with zero
243 * bandwidth allocated. It should be ok to allocate zero
244 * bandwidth for the caches, because DMA for other channels
245 * will supposedly finish, once their programmed amount is
246 * done, and then the caches will get access according to the
247 * "fixed scheme" for unclaimed slots. Though, if for some
248 * use-case somewhere, there's a maximum CPU latency for
249 * e.g. some interrupt, we have to start allocating specific
250 * bandwidth for the CPU caches too.
252 arbiters[0].active_clients[EXT_REGION][11] = 1;
253 arbiters[0].active_clients[EXT_REGION][12] = 1;
254 crisv32_arbiter_config(0, EXT_REGION, 0);
255 crisv32_arbiter_config(0, INT_REGION, 0);
256 crisv32_arbiter_config(1, EXT_REGION, 0);
258 if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq,
259 IRQF_DISABLED, "arbiter", NULL))
260 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
262 if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq,
263 IRQF_DISABLED, "arbiter", NULL))
264 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
266 #ifndef CONFIG_ETRAX_KGDB
267 /* Global watch for writes to kernel text segment. */
268 crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
269 MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients),
270 arbiter_all_write, NULL);
271 #endif
273 /* Set up max burst sizes by default */
274 REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3);
275 REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3);
276 REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3);
277 REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3);
278 REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3);
279 REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3);
280 REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3);
281 REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3);
282 REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3);
285 int crisv32_arbiter_allocate_bandwidth(int client, int region,
286 unsigned long bandwidth)
288 int i;
289 int total_assigned = 0;
290 int total_clients = 0;
291 int req;
292 int arbiter = 0;
294 crisv32_arbiter_init();
296 if (client & 0xffff0000) {
297 arbiter = 1;
298 client >>= 16;
301 for (i = 0; i < arbiters[arbiter].nbr_clients; i++) {
302 total_assigned += arbiters[arbiter].requested_slots[region][i];
303 total_clients += arbiters[arbiter].active_clients[region][i];
306 /* Avoid division by 0 for 0-bandwidth requests. */
307 req = bandwidth == 0
308 ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
311 * We make sure that there are enough slots only for non-zero
312 * requests. Requesting 0 bandwidth *may* allocate slots,
313 * though if all bandwidth is allocated, such a client won't
314 * get any and will have to rely on getting memory access
315 * according to the fixed scheme that's the default when one
316 * of the slot-allocated clients doesn't claim their slot.
318 if (total_assigned + req > NBR_OF_SLOTS)
319 return -ENOMEM;
321 arbiters[arbiter].active_clients[region][client] = 1;
322 arbiters[arbiter].requested_slots[region][client] = req;
323 crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
325 /* Propagate allocation from foo to bar */
326 if (arbiter == 0)
327 crisv32_arbiter_allocate_bandwidth(8 << 16,
328 EXT_REGION, bandwidth);
329 return 0;
333 * Main entry for bandwidth deallocation.
335 * Strictly speaking, for a somewhat constant set of clients where
336 * each client gets a constant bandwidth and is just enabled or
337 * disabled (somewhat dynamically), no action is necessary here to
338 * avoid starvation for non-zero-allocation clients, as the allocated
339 * slots will just be unused. However, handing out those unused slots
340 * to active clients avoids needless latency if the "fixed scheme"
341 * would give unclaimed slots to an eager low-index client.
344 void crisv32_arbiter_deallocate_bandwidth(int client, int region)
346 int i;
347 int total_assigned = 0;
348 int arbiter = 0;
350 if (client & 0xffff0000)
351 arbiter = 1;
353 arbiters[arbiter].requested_slots[region][client] = 0;
354 arbiters[arbiter].active_clients[region][client] = 0;
356 for (i = 0; i < arbiters[arbiter].nbr_clients; i++)
357 total_assigned += arbiters[arbiter].requested_slots[region][i];
359 crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
362 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
363 unsigned long clients, unsigned long accesses,
364 watch_callback *cb)
366 int i;
367 int arbiter;
368 int used[2];
369 int ret = 0;
371 crisv32_arbiter_init();
373 if (start > 0x80000000) {
374 printk(KERN_ERR "Arbiter: %lX doesn't look like a "
375 "physical address", start);
376 return -EFAULT;
379 spin_lock(&arbiter_lock);
381 if (clients & 0xffff)
382 used[0] = 1;
383 if (clients & 0xffff0000)
384 used[1] = 1;
386 for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
387 if (!used[arbiter])
388 continue;
390 for (i = 0; i < NUMBER_OF_BP; i++) {
391 if (!watches[arbiter][i].used) {
392 unsigned intr_mask;
393 if (arbiter)
394 intr_mask = REG_RD_INT(marb_bar,
395 regi_marb_bar, rw_intr_mask);
396 else
397 intr_mask = REG_RD_INT(marb_foo,
398 regi_marb_foo, rw_intr_mask);
400 watches[arbiter][i].used = 1;
401 watches[arbiter][i].start = start;
402 watches[arbiter][i].end = start + size;
403 watches[arbiter][i].cb = cb;
405 ret |= (i + 1) << (arbiter + 8);
406 if (arbiter) {
407 REG_WR_INT(marb_bar_bp,
408 watches[arbiter][i].instance,
409 rw_first_addr,
410 watches[arbiter][i].start);
411 REG_WR_INT(marb_bar_bp,
412 watches[arbiter][i].instance,
413 rw_last_addr,
414 watches[arbiter][i].end);
415 REG_WR_INT(marb_bar_bp,
416 watches[arbiter][i].instance,
417 rw_op, accesses);
418 REG_WR_INT(marb_bar_bp,
419 watches[arbiter][i].instance,
420 rw_clients,
421 clients & 0xffff);
422 } else {
423 REG_WR_INT(marb_foo_bp,
424 watches[arbiter][i].instance,
425 rw_first_addr,
426 watches[arbiter][i].start);
427 REG_WR_INT(marb_foo_bp,
428 watches[arbiter][i].instance,
429 rw_last_addr,
430 watches[arbiter][i].end);
431 REG_WR_INT(marb_foo_bp,
432 watches[arbiter][i].instance,
433 rw_op, accesses);
434 REG_WR_INT(marb_foo_bp,
435 watches[arbiter][i].instance,
436 rw_clients, clients >> 16);
439 if (i == 0)
440 intr_mask |= 1;
441 else if (i == 1)
442 intr_mask |= 2;
443 else if (i == 2)
444 intr_mask |= 4;
445 else if (i == 3)
446 intr_mask |= 8;
448 if (arbiter)
449 REG_WR_INT(marb_bar, regi_marb_bar,
450 rw_intr_mask, intr_mask);
451 else
452 REG_WR_INT(marb_foo, regi_marb_foo,
453 rw_intr_mask, intr_mask);
455 spin_unlock(&arbiter_lock);
457 break;
461 spin_unlock(&arbiter_lock);
462 if (ret)
463 return ret;
464 else
465 return -ENOMEM;
468 int crisv32_arbiter_unwatch(int id)
470 int arbiter;
471 int intr_mask;
473 crisv32_arbiter_init();
475 spin_lock(&arbiter_lock);
477 for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
478 int id2;
480 if (arbiter)
481 intr_mask = REG_RD_INT(marb_bar, regi_marb_bar,
482 rw_intr_mask);
483 else
484 intr_mask = REG_RD_INT(marb_foo, regi_marb_foo,
485 rw_intr_mask);
487 id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8);
488 if (id2 == 0)
489 continue;
490 id2--;
491 if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) {
492 spin_unlock(&arbiter_lock);
493 return -EINVAL;
496 memset(&watches[arbiter][id2], 0,
497 sizeof(struct crisv32_watch_entry));
499 if (id2 == 0)
500 intr_mask &= ~1;
501 else if (id2 == 1)
502 intr_mask &= ~2;
503 else if (id2 == 2)
504 intr_mask &= ~4;
505 else if (id2 == 3)
506 intr_mask &= ~8;
508 if (arbiter)
509 REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask,
510 intr_mask);
511 else
512 REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask,
513 intr_mask);
516 spin_unlock(&arbiter_lock);
517 return 0;
520 extern void show_registers(struct pt_regs *regs);
523 static irqreturn_t
524 crisv32_foo_arbiter_irq(int irq, void *dev_id)
526 reg_marb_foo_r_masked_intr masked_intr =
527 REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
528 reg_marb_foo_bp_r_brk_clients r_clients;
529 reg_marb_foo_bp_r_brk_addr r_addr;
530 reg_marb_foo_bp_r_brk_op r_op;
531 reg_marb_foo_bp_r_brk_first_client r_first;
532 reg_marb_foo_bp_r_brk_size r_size;
533 reg_marb_foo_bp_rw_ack ack = {0};
534 reg_marb_foo_rw_ack_intr ack_intr = {
535 .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
537 struct crisv32_watch_entry *watch;
538 unsigned arbiter = (unsigned)dev_id;
540 masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
542 if (masked_intr.bp0)
543 watch = &watches[arbiter][0];
544 else if (masked_intr.bp1)
545 watch = &watches[arbiter][1];
546 else if (masked_intr.bp2)
547 watch = &watches[arbiter][2];
548 else if (masked_intr.bp3)
549 watch = &watches[arbiter][3];
550 else
551 return IRQ_NONE;
553 /* Retrieve all useful information and print it. */
554 r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients);
555 r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr);
556 r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op);
557 r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client);
558 r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size);
560 printk(KERN_DEBUG "Arbiter IRQ\n");
561 printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
562 REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients),
563 REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr),
564 REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op),
565 REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first),
566 REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size));
568 REG_WR(marb_foo_bp, watch->instance, rw_ack, ack);
569 REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr);
571 printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs());
573 if (watch->cb)
574 watch->cb();
576 return IRQ_HANDLED;
579 static irqreturn_t
580 crisv32_bar_arbiter_irq(int irq, void *dev_id)
582 reg_marb_bar_r_masked_intr masked_intr =
583 REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
584 reg_marb_bar_bp_r_brk_clients r_clients;
585 reg_marb_bar_bp_r_brk_addr r_addr;
586 reg_marb_bar_bp_r_brk_op r_op;
587 reg_marb_bar_bp_r_brk_first_client r_first;
588 reg_marb_bar_bp_r_brk_size r_size;
589 reg_marb_bar_bp_rw_ack ack = {0};
590 reg_marb_bar_rw_ack_intr ack_intr = {
591 .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
593 struct crisv32_watch_entry *watch;
594 unsigned arbiter = (unsigned)dev_id;
596 masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
598 if (masked_intr.bp0)
599 watch = &watches[arbiter][0];
600 else if (masked_intr.bp1)
601 watch = &watches[arbiter][1];
602 else if (masked_intr.bp2)
603 watch = &watches[arbiter][2];
604 else if (masked_intr.bp3)
605 watch = &watches[arbiter][3];
606 else
607 return IRQ_NONE;
609 /* Retrieve all useful information and print it. */
610 r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients);
611 r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr);
612 r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op);
613 r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client);
614 r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size);
616 printk(KERN_DEBUG "Arbiter IRQ\n");
617 printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
618 REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients),
619 REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr),
620 REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op),
621 REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first),
622 REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size));
624 REG_WR(marb_bar_bp, watch->instance, rw_ack, ack);
625 REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr);
627 printk(KERN_DEBUG "IRQ occured at %X\n", (unsigned)get_irq_regs()->erp);
629 if (watch->cb)
630 watch->cb();
632 return IRQ_HANDLED;