Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux/fpc-iii.git] / drivers / ata / libata-core.c
blobddf8e48627878999c17f686fcfb05dce669a2b9c
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
70 #include "libata.h"
73 /* debounce timing parameters in msecs { interval, duration, timeout } */
74 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
75 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
76 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
78 const struct ata_port_operations ata_base_port_ops = {
79 .prereset = ata_std_prereset,
80 .postreset = ata_std_postreset,
81 .error_handler = ata_std_error_handler,
84 const struct ata_port_operations sata_port_ops = {
85 .inherits = &ata_base_port_ops,
87 .qc_defer = ata_std_qc_defer,
88 .hardreset = sata_std_hardreset,
91 static unsigned int ata_dev_init_params(struct ata_device *dev,
92 u16 heads, u16 sectors);
93 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
94 static unsigned int ata_dev_set_feature(struct ata_device *dev,
95 u8 enable, u8 feature);
96 static void ata_dev_xfermask(struct ata_device *dev);
97 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
99 unsigned int ata_print_id = 1;
101 struct workqueue_struct *ata_aux_wq;
103 struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
113 struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
173 static bool ata_sstatus_online(u32 sstatus)
175 return (sstatus & 0xf) == 0x3;
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
184 * LOCKING:
185 * Host lock or EH context.
187 * RETURNS:
188 * Pointer to the next link.
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196 /* NULL link indicates start of iteration */
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
217 return ap->slave_link;
218 /* fall through */
219 case ATA_LITER_EDGE:
220 return NULL;
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
227 /* we were over a PMP link */
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
234 return NULL;
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
243 * LOCKING:
244 * Host lock or EH context.
246 * RETURNS:
247 * Pointer to the next device.
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
298 * LOCKING:
299 * Don't care.
301 * RETURNS:
302 * Pointer to the found physical link.
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306 struct ata_port *ap = dev->link->ap;
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
325 * LOCKING:
326 * EH context.
328 void ata_force_cbl(struct ata_port *ap)
330 int i;
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
341 ap->cbl = fe->param.cbl;
342 ata_port_printk(ap, KERN_NOTICE,
343 "FORCE: cable set to %s\n", fe->param.name);
344 return;
349 * ata_force_link_limits - force link limits according to libata.force
350 * @link: ATA link of interest
352 * Force link flags and SATA spd limit according to libata.force
353 * and whine about it. When only the port part is specified
354 * (e.g. 1:), the limit applies to all links connected to both
355 * the host link and all fan-out ports connected via PMP. If the
356 * device part is specified as 0 (e.g. 1.00:), it specifies the
357 * first fan-out link not the host link. Device number 15 always
358 * points to the host link whether PMP is attached or not. If the
359 * controller has slave link, device number 16 points to it.
361 * LOCKING:
362 * EH context.
364 static void ata_force_link_limits(struct ata_link *link)
366 bool did_spd = false;
367 int linkno = link->pmp;
368 int i;
370 if (ata_is_host_link(link))
371 linkno += 15;
373 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
374 const struct ata_force_ent *fe = &ata_force_tbl[i];
376 if (fe->port != -1 && fe->port != link->ap->print_id)
377 continue;
379 if (fe->device != -1 && fe->device != linkno)
380 continue;
382 /* only honor the first spd limit */
383 if (!did_spd && fe->param.spd_limit) {
384 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
385 ata_link_printk(link, KERN_NOTICE,
386 "FORCE: PHY spd limit set to %s\n",
387 fe->param.name);
388 did_spd = true;
391 /* let lflags stack */
392 if (fe->param.lflags) {
393 link->flags |= fe->param.lflags;
394 ata_link_printk(link, KERN_NOTICE,
395 "FORCE: link flag 0x%x forced -> 0x%x\n",
396 fe->param.lflags, link->flags);
402 * ata_force_xfermask - force xfermask according to libata.force
403 * @dev: ATA device of interest
405 * Force xfer_mask according to libata.force and whine about it.
406 * For consistency with link selection, device number 15 selects
407 * the first device connected to the host link.
409 * LOCKING:
410 * EH context.
412 static void ata_force_xfermask(struct ata_device *dev)
414 int devno = dev->link->pmp + dev->devno;
415 int alt_devno = devno;
416 int i;
418 /* allow n.15/16 for devices attached to host port */
419 if (ata_is_host_link(dev->link))
420 alt_devno += 15;
422 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
423 const struct ata_force_ent *fe = &ata_force_tbl[i];
424 unsigned long pio_mask, mwdma_mask, udma_mask;
426 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
427 continue;
429 if (fe->device != -1 && fe->device != devno &&
430 fe->device != alt_devno)
431 continue;
433 if (!fe->param.xfer_mask)
434 continue;
436 ata_unpack_xfermask(fe->param.xfer_mask,
437 &pio_mask, &mwdma_mask, &udma_mask);
438 if (udma_mask)
439 dev->udma_mask = udma_mask;
440 else if (mwdma_mask) {
441 dev->udma_mask = 0;
442 dev->mwdma_mask = mwdma_mask;
443 } else {
444 dev->udma_mask = 0;
445 dev->mwdma_mask = 0;
446 dev->pio_mask = pio_mask;
449 ata_dev_printk(dev, KERN_NOTICE,
450 "FORCE: xfer_mask set to %s\n", fe->param.name);
451 return;
456 * ata_force_horkage - force horkage according to libata.force
457 * @dev: ATA device of interest
459 * Force horkage according to libata.force and whine about it.
460 * For consistency with link selection, device number 15 selects
461 * the first device connected to the host link.
463 * LOCKING:
464 * EH context.
466 static void ata_force_horkage(struct ata_device *dev)
468 int devno = dev->link->pmp + dev->devno;
469 int alt_devno = devno;
470 int i;
472 /* allow n.15/16 for devices attached to host port */
473 if (ata_is_host_link(dev->link))
474 alt_devno += 15;
476 for (i = 0; i < ata_force_tbl_size; i++) {
477 const struct ata_force_ent *fe = &ata_force_tbl[i];
479 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
480 continue;
482 if (fe->device != -1 && fe->device != devno &&
483 fe->device != alt_devno)
484 continue;
486 if (!(~dev->horkage & fe->param.horkage_on) &&
487 !(dev->horkage & fe->param.horkage_off))
488 continue;
490 dev->horkage |= fe->param.horkage_on;
491 dev->horkage &= ~fe->param.horkage_off;
493 ata_dev_printk(dev, KERN_NOTICE,
494 "FORCE: horkage modified (%s)\n", fe->param.name);
499 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
500 * @opcode: SCSI opcode
502 * Determine ATAPI command type from @opcode.
504 * LOCKING:
505 * None.
507 * RETURNS:
508 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
510 int atapi_cmd_type(u8 opcode)
512 switch (opcode) {
513 case GPCMD_READ_10:
514 case GPCMD_READ_12:
515 return ATAPI_READ;
517 case GPCMD_WRITE_10:
518 case GPCMD_WRITE_12:
519 case GPCMD_WRITE_AND_VERIFY_10:
520 return ATAPI_WRITE;
522 case GPCMD_READ_CD:
523 case GPCMD_READ_CD_MSF:
524 return ATAPI_READ_CD;
526 case ATA_16:
527 case ATA_12:
528 if (atapi_passthru16)
529 return ATAPI_PASS_THRU;
530 /* fall thru */
531 default:
532 return ATAPI_MISC;
537 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
538 * @tf: Taskfile to convert
539 * @pmp: Port multiplier port
540 * @is_cmd: This FIS is for command
541 * @fis: Buffer into which data will output
543 * Converts a standard ATA taskfile to a Serial ATA
544 * FIS structure (Register - Host to Device).
546 * LOCKING:
547 * Inherited from caller.
549 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
551 fis[0] = 0x27; /* Register - Host to Device FIS */
552 fis[1] = pmp & 0xf; /* Port multiplier number*/
553 if (is_cmd)
554 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
556 fis[2] = tf->command;
557 fis[3] = tf->feature;
559 fis[4] = tf->lbal;
560 fis[5] = tf->lbam;
561 fis[6] = tf->lbah;
562 fis[7] = tf->device;
564 fis[8] = tf->hob_lbal;
565 fis[9] = tf->hob_lbam;
566 fis[10] = tf->hob_lbah;
567 fis[11] = tf->hob_feature;
569 fis[12] = tf->nsect;
570 fis[13] = tf->hob_nsect;
571 fis[14] = 0;
572 fis[15] = tf->ctl;
574 fis[16] = 0;
575 fis[17] = 0;
576 fis[18] = 0;
577 fis[19] = 0;
581 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
582 * @fis: Buffer from which data will be input
583 * @tf: Taskfile to output
585 * Converts a serial ATA FIS structure to a standard ATA taskfile.
587 * LOCKING:
588 * Inherited from caller.
591 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
593 tf->command = fis[2]; /* status */
594 tf->feature = fis[3]; /* error */
596 tf->lbal = fis[4];
597 tf->lbam = fis[5];
598 tf->lbah = fis[6];
599 tf->device = fis[7];
601 tf->hob_lbal = fis[8];
602 tf->hob_lbam = fis[9];
603 tf->hob_lbah = fis[10];
605 tf->nsect = fis[12];
606 tf->hob_nsect = fis[13];
609 static const u8 ata_rw_cmds[] = {
610 /* pio multi */
611 ATA_CMD_READ_MULTI,
612 ATA_CMD_WRITE_MULTI,
613 ATA_CMD_READ_MULTI_EXT,
614 ATA_CMD_WRITE_MULTI_EXT,
618 ATA_CMD_WRITE_MULTI_FUA_EXT,
619 /* pio */
620 ATA_CMD_PIO_READ,
621 ATA_CMD_PIO_WRITE,
622 ATA_CMD_PIO_READ_EXT,
623 ATA_CMD_PIO_WRITE_EXT,
628 /* dma */
629 ATA_CMD_READ,
630 ATA_CMD_WRITE,
631 ATA_CMD_READ_EXT,
632 ATA_CMD_WRITE_EXT,
636 ATA_CMD_WRITE_FUA_EXT
640 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
641 * @tf: command to examine and configure
642 * @dev: device tf belongs to
644 * Examine the device configuration and tf->flags to calculate
645 * the proper read/write commands and protocol to use.
647 * LOCKING:
648 * caller.
650 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
652 u8 cmd;
654 int index, fua, lba48, write;
656 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
657 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
658 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
660 if (dev->flags & ATA_DFLAG_PIO) {
661 tf->protocol = ATA_PROT_PIO;
662 index = dev->multi_count ? 0 : 8;
663 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
664 /* Unable to use DMA due to host limitation */
665 tf->protocol = ATA_PROT_PIO;
666 index = dev->multi_count ? 0 : 8;
667 } else {
668 tf->protocol = ATA_PROT_DMA;
669 index = 16;
672 cmd = ata_rw_cmds[index + fua + lba48 + write];
673 if (cmd) {
674 tf->command = cmd;
675 return 0;
677 return -1;
681 * ata_tf_read_block - Read block address from ATA taskfile
682 * @tf: ATA taskfile of interest
683 * @dev: ATA device @tf belongs to
685 * LOCKING:
686 * None.
688 * Read block address from @tf. This function can handle all
689 * three address formats - LBA, LBA48 and CHS. tf->protocol and
690 * flags select the address format to use.
692 * RETURNS:
693 * Block address read from @tf.
695 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
697 u64 block = 0;
699 if (tf->flags & ATA_TFLAG_LBA) {
700 if (tf->flags & ATA_TFLAG_LBA48) {
701 block |= (u64)tf->hob_lbah << 40;
702 block |= (u64)tf->hob_lbam << 32;
703 block |= (u64)tf->hob_lbal << 24;
704 } else
705 block |= (tf->device & 0xf) << 24;
707 block |= tf->lbah << 16;
708 block |= tf->lbam << 8;
709 block |= tf->lbal;
710 } else {
711 u32 cyl, head, sect;
713 cyl = tf->lbam | (tf->lbah << 8);
714 head = tf->device & 0xf;
715 sect = tf->lbal;
717 if (!sect) {
718 ata_dev_printk(dev, KERN_WARNING, "device reported "
719 "invalid CHS sector 0\n");
720 sect = 1; /* oh well */
723 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
726 return block;
730 * ata_build_rw_tf - Build ATA taskfile for given read/write request
731 * @tf: Target ATA taskfile
732 * @dev: ATA device @tf belongs to
733 * @block: Block address
734 * @n_block: Number of blocks
735 * @tf_flags: RW/FUA etc...
736 * @tag: tag
738 * LOCKING:
739 * None.
741 * Build ATA taskfile @tf for read/write request described by
742 * @block, @n_block, @tf_flags and @tag on @dev.
744 * RETURNS:
746 * 0 on success, -ERANGE if the request is too large for @dev,
747 * -EINVAL if the request is invalid.
749 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
750 u64 block, u32 n_block, unsigned int tf_flags,
751 unsigned int tag)
753 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
754 tf->flags |= tf_flags;
756 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
757 /* yay, NCQ */
758 if (!lba_48_ok(block, n_block))
759 return -ERANGE;
761 tf->protocol = ATA_PROT_NCQ;
762 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
764 if (tf->flags & ATA_TFLAG_WRITE)
765 tf->command = ATA_CMD_FPDMA_WRITE;
766 else
767 tf->command = ATA_CMD_FPDMA_READ;
769 tf->nsect = tag << 3;
770 tf->hob_feature = (n_block >> 8) & 0xff;
771 tf->feature = n_block & 0xff;
773 tf->hob_lbah = (block >> 40) & 0xff;
774 tf->hob_lbam = (block >> 32) & 0xff;
775 tf->hob_lbal = (block >> 24) & 0xff;
776 tf->lbah = (block >> 16) & 0xff;
777 tf->lbam = (block >> 8) & 0xff;
778 tf->lbal = block & 0xff;
780 tf->device = 1 << 6;
781 if (tf->flags & ATA_TFLAG_FUA)
782 tf->device |= 1 << 7;
783 } else if (dev->flags & ATA_DFLAG_LBA) {
784 tf->flags |= ATA_TFLAG_LBA;
786 if (lba_28_ok(block, n_block)) {
787 /* use LBA28 */
788 tf->device |= (block >> 24) & 0xf;
789 } else if (lba_48_ok(block, n_block)) {
790 if (!(dev->flags & ATA_DFLAG_LBA48))
791 return -ERANGE;
793 /* use LBA48 */
794 tf->flags |= ATA_TFLAG_LBA48;
796 tf->hob_nsect = (n_block >> 8) & 0xff;
798 tf->hob_lbah = (block >> 40) & 0xff;
799 tf->hob_lbam = (block >> 32) & 0xff;
800 tf->hob_lbal = (block >> 24) & 0xff;
801 } else
802 /* request too large even for LBA48 */
803 return -ERANGE;
805 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
806 return -EINVAL;
808 tf->nsect = n_block & 0xff;
810 tf->lbah = (block >> 16) & 0xff;
811 tf->lbam = (block >> 8) & 0xff;
812 tf->lbal = block & 0xff;
814 tf->device |= ATA_LBA;
815 } else {
816 /* CHS */
817 u32 sect, head, cyl, track;
819 /* The request -may- be too large for CHS addressing. */
820 if (!lba_28_ok(block, n_block))
821 return -ERANGE;
823 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
824 return -EINVAL;
826 /* Convert LBA to CHS */
827 track = (u32)block / dev->sectors;
828 cyl = track / dev->heads;
829 head = track % dev->heads;
830 sect = (u32)block % dev->sectors + 1;
832 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
833 (u32)block, track, cyl, head, sect);
835 /* Check whether the converted CHS can fit.
836 Cylinder: 0-65535
837 Head: 0-15
838 Sector: 1-255*/
839 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
840 return -ERANGE;
842 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
843 tf->lbal = sect;
844 tf->lbam = cyl;
845 tf->lbah = cyl >> 8;
846 tf->device |= head;
849 return 0;
853 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
854 * @pio_mask: pio_mask
855 * @mwdma_mask: mwdma_mask
856 * @udma_mask: udma_mask
858 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
859 * unsigned int xfer_mask.
861 * LOCKING:
862 * None.
864 * RETURNS:
865 * Packed xfer_mask.
867 unsigned long ata_pack_xfermask(unsigned long pio_mask,
868 unsigned long mwdma_mask,
869 unsigned long udma_mask)
871 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
872 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
873 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
877 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
878 * @xfer_mask: xfer_mask to unpack
879 * @pio_mask: resulting pio_mask
880 * @mwdma_mask: resulting mwdma_mask
881 * @udma_mask: resulting udma_mask
883 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
884 * Any NULL distination masks will be ignored.
886 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
887 unsigned long *mwdma_mask, unsigned long *udma_mask)
889 if (pio_mask)
890 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
891 if (mwdma_mask)
892 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
893 if (udma_mask)
894 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
897 static const struct ata_xfer_ent {
898 int shift, bits;
899 u8 base;
900 } ata_xfer_tbl[] = {
901 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
902 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
903 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
904 { -1, },
908 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
909 * @xfer_mask: xfer_mask of interest
911 * Return matching XFER_* value for @xfer_mask. Only the highest
912 * bit of @xfer_mask is considered.
914 * LOCKING:
915 * None.
917 * RETURNS:
918 * Matching XFER_* value, 0xff if no match found.
920 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
922 int highbit = fls(xfer_mask) - 1;
923 const struct ata_xfer_ent *ent;
925 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
926 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
927 return ent->base + highbit - ent->shift;
928 return 0xff;
932 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
933 * @xfer_mode: XFER_* of interest
935 * Return matching xfer_mask for @xfer_mode.
937 * LOCKING:
938 * None.
940 * RETURNS:
941 * Matching xfer_mask, 0 if no match found.
943 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
945 const struct ata_xfer_ent *ent;
947 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
948 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
949 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
950 & ~((1 << ent->shift) - 1);
951 return 0;
955 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
956 * @xfer_mode: XFER_* of interest
958 * Return matching xfer_shift for @xfer_mode.
960 * LOCKING:
961 * None.
963 * RETURNS:
964 * Matching xfer_shift, -1 if no match found.
966 int ata_xfer_mode2shift(unsigned long xfer_mode)
968 const struct ata_xfer_ent *ent;
970 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
971 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
972 return ent->shift;
973 return -1;
977 * ata_mode_string - convert xfer_mask to string
978 * @xfer_mask: mask of bits supported; only highest bit counts.
980 * Determine string which represents the highest speed
981 * (highest bit in @modemask).
983 * LOCKING:
984 * None.
986 * RETURNS:
987 * Constant C string representing highest speed listed in
988 * @mode_mask, or the constant C string "<n/a>".
990 const char *ata_mode_string(unsigned long xfer_mask)
992 static const char * const xfer_mode_str[] = {
993 "PIO0",
994 "PIO1",
995 "PIO2",
996 "PIO3",
997 "PIO4",
998 "PIO5",
999 "PIO6",
1000 "MWDMA0",
1001 "MWDMA1",
1002 "MWDMA2",
1003 "MWDMA3",
1004 "MWDMA4",
1005 "UDMA/16",
1006 "UDMA/25",
1007 "UDMA/33",
1008 "UDMA/44",
1009 "UDMA/66",
1010 "UDMA/100",
1011 "UDMA/133",
1012 "UDMA7",
1014 int highbit;
1016 highbit = fls(xfer_mask) - 1;
1017 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1018 return xfer_mode_str[highbit];
1019 return "<n/a>";
1022 static const char *sata_spd_string(unsigned int spd)
1024 static const char * const spd_str[] = {
1025 "1.5 Gbps",
1026 "3.0 Gbps",
1027 "6.0 Gbps",
1030 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1031 return "<unknown>";
1032 return spd_str[spd - 1];
1035 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1037 struct ata_link *link = dev->link;
1038 struct ata_port *ap = link->ap;
1039 u32 scontrol;
1040 unsigned int err_mask;
1041 int rc;
1044 * disallow DIPM for drivers which haven't set
1045 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1046 * phy ready will be set in the interrupt status on
1047 * state changes, which will cause some drivers to
1048 * think there are errors - additionally drivers will
1049 * need to disable hot plug.
1051 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1052 ap->pm_policy = NOT_AVAILABLE;
1053 return -EINVAL;
1057 * For DIPM, we will only enable it for the
1058 * min_power setting.
1060 * Why? Because Disks are too stupid to know that
1061 * If the host rejects a request to go to SLUMBER
1062 * they should retry at PARTIAL, and instead it
1063 * just would give up. So, for medium_power to
1064 * work at all, we need to only allow HIPM.
1066 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1067 if (rc)
1068 return rc;
1070 switch (policy) {
1071 case MIN_POWER:
1072 /* no restrictions on IPM transitions */
1073 scontrol &= ~(0x3 << 8);
1074 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1075 if (rc)
1076 return rc;
1078 /* enable DIPM */
1079 if (dev->flags & ATA_DFLAG_DIPM)
1080 err_mask = ata_dev_set_feature(dev,
1081 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1082 break;
1083 case MEDIUM_POWER:
1084 /* allow IPM to PARTIAL */
1085 scontrol &= ~(0x1 << 8);
1086 scontrol |= (0x2 << 8);
1087 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1088 if (rc)
1089 return rc;
1092 * we don't have to disable DIPM since IPM flags
1093 * disallow transitions to SLUMBER, which effectively
1094 * disable DIPM if it does not support PARTIAL
1096 break;
1097 case NOT_AVAILABLE:
1098 case MAX_PERFORMANCE:
1099 /* disable all IPM transitions */
1100 scontrol |= (0x3 << 8);
1101 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1102 if (rc)
1103 return rc;
1106 * we don't have to disable DIPM since IPM flags
1107 * disallow all transitions which effectively
1108 * disable DIPM anyway.
1110 break;
1113 /* FIXME: handle SET FEATURES failure */
1114 (void) err_mask;
1116 return 0;
1120 * ata_dev_enable_pm - enable SATA interface power management
1121 * @dev: device to enable power management
1122 * @policy: the link power management policy
1124 * Enable SATA Interface power management. This will enable
1125 * Device Interface Power Management (DIPM) for min_power
1126 * policy, and then call driver specific callbacks for
1127 * enabling Host Initiated Power management.
1129 * Locking: Caller.
1130 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1132 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1134 int rc = 0;
1135 struct ata_port *ap = dev->link->ap;
1137 /* set HIPM first, then DIPM */
1138 if (ap->ops->enable_pm)
1139 rc = ap->ops->enable_pm(ap, policy);
1140 if (rc)
1141 goto enable_pm_out;
1142 rc = ata_dev_set_dipm(dev, policy);
1144 enable_pm_out:
1145 if (rc)
1146 ap->pm_policy = MAX_PERFORMANCE;
1147 else
1148 ap->pm_policy = policy;
1149 return /* rc */; /* hopefully we can use 'rc' eventually */
1152 #ifdef CONFIG_PM
1154 * ata_dev_disable_pm - disable SATA interface power management
1155 * @dev: device to disable power management
1157 * Disable SATA Interface power management. This will disable
1158 * Device Interface Power Management (DIPM) without changing
1159 * policy, call driver specific callbacks for disabling Host
1160 * Initiated Power management.
1162 * Locking: Caller.
1163 * Returns: void
1165 static void ata_dev_disable_pm(struct ata_device *dev)
1167 struct ata_port *ap = dev->link->ap;
1169 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1170 if (ap->ops->disable_pm)
1171 ap->ops->disable_pm(ap);
1173 #endif /* CONFIG_PM */
1175 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1177 ap->pm_policy = policy;
1178 ap->link.eh_info.action |= ATA_EH_LPM;
1179 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1180 ata_port_schedule_eh(ap);
1183 #ifdef CONFIG_PM
1184 static void ata_lpm_enable(struct ata_host *host)
1186 struct ata_link *link;
1187 struct ata_port *ap;
1188 struct ata_device *dev;
1189 int i;
1191 for (i = 0; i < host->n_ports; i++) {
1192 ap = host->ports[i];
1193 ata_for_each_link(link, ap, EDGE) {
1194 ata_for_each_dev(dev, link, ALL)
1195 ata_dev_disable_pm(dev);
1200 static void ata_lpm_disable(struct ata_host *host)
1202 int i;
1204 for (i = 0; i < host->n_ports; i++) {
1205 struct ata_port *ap = host->ports[i];
1206 ata_lpm_schedule(ap, ap->pm_policy);
1209 #endif /* CONFIG_PM */
1212 * ata_dev_classify - determine device type based on ATA-spec signature
1213 * @tf: ATA taskfile register set for device to be identified
1215 * Determine from taskfile register contents whether a device is
1216 * ATA or ATAPI, as per "Signature and persistence" section
1217 * of ATA/PI spec (volume 1, sect 5.14).
1219 * LOCKING:
1220 * None.
1222 * RETURNS:
1223 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1224 * %ATA_DEV_UNKNOWN the event of failure.
1226 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1228 /* Apple's open source Darwin code hints that some devices only
1229 * put a proper signature into the LBA mid/high registers,
1230 * So, we only check those. It's sufficient for uniqueness.
1232 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1233 * signatures for ATA and ATAPI devices attached on SerialATA,
1234 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1235 * spec has never mentioned about using different signatures
1236 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1237 * Multiplier specification began to use 0x69/0x96 to identify
1238 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1239 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1240 * 0x69/0x96 shortly and described them as reserved for
1241 * SerialATA.
1243 * We follow the current spec and consider that 0x69/0x96
1244 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1245 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1246 * SEMB signature. This is worked around in
1247 * ata_dev_read_id().
1249 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1250 DPRINTK("found ATA device by sig\n");
1251 return ATA_DEV_ATA;
1254 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1255 DPRINTK("found ATAPI device by sig\n");
1256 return ATA_DEV_ATAPI;
1259 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1260 DPRINTK("found PMP device by sig\n");
1261 return ATA_DEV_PMP;
1264 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1265 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1266 return ATA_DEV_SEMB;
1269 DPRINTK("unknown device\n");
1270 return ATA_DEV_UNKNOWN;
1274 * ata_id_string - Convert IDENTIFY DEVICE page into string
1275 * @id: IDENTIFY DEVICE results we will examine
1276 * @s: string into which data is output
1277 * @ofs: offset into identify device page
1278 * @len: length of string to return. must be an even number.
1280 * The strings in the IDENTIFY DEVICE page are broken up into
1281 * 16-bit chunks. Run through the string, and output each
1282 * 8-bit chunk linearly, regardless of platform.
1284 * LOCKING:
1285 * caller.
1288 void ata_id_string(const u16 *id, unsigned char *s,
1289 unsigned int ofs, unsigned int len)
1291 unsigned int c;
1293 BUG_ON(len & 1);
1295 while (len > 0) {
1296 c = id[ofs] >> 8;
1297 *s = c;
1298 s++;
1300 c = id[ofs] & 0xff;
1301 *s = c;
1302 s++;
1304 ofs++;
1305 len -= 2;
1310 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1311 * @id: IDENTIFY DEVICE results we will examine
1312 * @s: string into which data is output
1313 * @ofs: offset into identify device page
1314 * @len: length of string to return. must be an odd number.
1316 * This function is identical to ata_id_string except that it
1317 * trims trailing spaces and terminates the resulting string with
1318 * null. @len must be actual maximum length (even number) + 1.
1320 * LOCKING:
1321 * caller.
1323 void ata_id_c_string(const u16 *id, unsigned char *s,
1324 unsigned int ofs, unsigned int len)
1326 unsigned char *p;
1328 ata_id_string(id, s, ofs, len - 1);
1330 p = s + strnlen(s, len - 1);
1331 while (p > s && p[-1] == ' ')
1332 p--;
1333 *p = '\0';
1336 static u64 ata_id_n_sectors(const u16 *id)
1338 if (ata_id_has_lba(id)) {
1339 if (ata_id_has_lba48(id))
1340 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1341 else
1342 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1343 } else {
1344 if (ata_id_current_chs_valid(id))
1345 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1346 id[ATA_ID_CUR_SECTORS];
1347 else
1348 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1349 id[ATA_ID_SECTORS];
1353 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1355 u64 sectors = 0;
1357 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1358 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1359 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1360 sectors |= (tf->lbah & 0xff) << 16;
1361 sectors |= (tf->lbam & 0xff) << 8;
1362 sectors |= (tf->lbal & 0xff);
1364 return sectors;
1367 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1369 u64 sectors = 0;
1371 sectors |= (tf->device & 0x0f) << 24;
1372 sectors |= (tf->lbah & 0xff) << 16;
1373 sectors |= (tf->lbam & 0xff) << 8;
1374 sectors |= (tf->lbal & 0xff);
1376 return sectors;
1380 * ata_read_native_max_address - Read native max address
1381 * @dev: target device
1382 * @max_sectors: out parameter for the result native max address
1384 * Perform an LBA48 or LBA28 native size query upon the device in
1385 * question.
1387 * RETURNS:
1388 * 0 on success, -EACCES if command is aborted by the drive.
1389 * -EIO on other errors.
1391 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1393 unsigned int err_mask;
1394 struct ata_taskfile tf;
1395 int lba48 = ata_id_has_lba48(dev->id);
1397 ata_tf_init(dev, &tf);
1399 /* always clear all address registers */
1400 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1402 if (lba48) {
1403 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1404 tf.flags |= ATA_TFLAG_LBA48;
1405 } else
1406 tf.command = ATA_CMD_READ_NATIVE_MAX;
1408 tf.protocol |= ATA_PROT_NODATA;
1409 tf.device |= ATA_LBA;
1411 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1412 if (err_mask) {
1413 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1414 "max address (err_mask=0x%x)\n", err_mask);
1415 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1416 return -EACCES;
1417 return -EIO;
1420 if (lba48)
1421 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1422 else
1423 *max_sectors = ata_tf_to_lba(&tf) + 1;
1424 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1425 (*max_sectors)--;
1426 return 0;
1430 * ata_set_max_sectors - Set max sectors
1431 * @dev: target device
1432 * @new_sectors: new max sectors value to set for the device
1434 * Set max sectors of @dev to @new_sectors.
1436 * RETURNS:
1437 * 0 on success, -EACCES if command is aborted or denied (due to
1438 * previous non-volatile SET_MAX) by the drive. -EIO on other
1439 * errors.
1441 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1443 unsigned int err_mask;
1444 struct ata_taskfile tf;
1445 int lba48 = ata_id_has_lba48(dev->id);
1447 new_sectors--;
1449 ata_tf_init(dev, &tf);
1451 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1453 if (lba48) {
1454 tf.command = ATA_CMD_SET_MAX_EXT;
1455 tf.flags |= ATA_TFLAG_LBA48;
1457 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1458 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1459 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1460 } else {
1461 tf.command = ATA_CMD_SET_MAX;
1463 tf.device |= (new_sectors >> 24) & 0xf;
1466 tf.protocol |= ATA_PROT_NODATA;
1467 tf.device |= ATA_LBA;
1469 tf.lbal = (new_sectors >> 0) & 0xff;
1470 tf.lbam = (new_sectors >> 8) & 0xff;
1471 tf.lbah = (new_sectors >> 16) & 0xff;
1473 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1474 if (err_mask) {
1475 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1476 "max address (err_mask=0x%x)\n", err_mask);
1477 if (err_mask == AC_ERR_DEV &&
1478 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1479 return -EACCES;
1480 return -EIO;
1483 return 0;
1487 * ata_hpa_resize - Resize a device with an HPA set
1488 * @dev: Device to resize
1490 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1491 * it if required to the full size of the media. The caller must check
1492 * the drive has the HPA feature set enabled.
1494 * RETURNS:
1495 * 0 on success, -errno on failure.
1497 static int ata_hpa_resize(struct ata_device *dev)
1499 struct ata_eh_context *ehc = &dev->link->eh_context;
1500 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1501 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1502 u64 sectors = ata_id_n_sectors(dev->id);
1503 u64 native_sectors;
1504 int rc;
1506 /* do we need to do it? */
1507 if (dev->class != ATA_DEV_ATA ||
1508 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1509 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1510 return 0;
1512 /* read native max address */
1513 rc = ata_read_native_max_address(dev, &native_sectors);
1514 if (rc) {
1515 /* If device aborted the command or HPA isn't going to
1516 * be unlocked, skip HPA resizing.
1518 if (rc == -EACCES || !unlock_hpa) {
1519 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1520 "broken, skipping HPA handling\n");
1521 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1523 /* we can continue if device aborted the command */
1524 if (rc == -EACCES)
1525 rc = 0;
1528 return rc;
1530 dev->n_native_sectors = native_sectors;
1532 /* nothing to do? */
1533 if (native_sectors <= sectors || !unlock_hpa) {
1534 if (!print_info || native_sectors == sectors)
1535 return 0;
1537 if (native_sectors > sectors)
1538 ata_dev_printk(dev, KERN_INFO,
1539 "HPA detected: current %llu, native %llu\n",
1540 (unsigned long long)sectors,
1541 (unsigned long long)native_sectors);
1542 else if (native_sectors < sectors)
1543 ata_dev_printk(dev, KERN_WARNING,
1544 "native sectors (%llu) is smaller than "
1545 "sectors (%llu)\n",
1546 (unsigned long long)native_sectors,
1547 (unsigned long long)sectors);
1548 return 0;
1551 /* let's unlock HPA */
1552 rc = ata_set_max_sectors(dev, native_sectors);
1553 if (rc == -EACCES) {
1554 /* if device aborted the command, skip HPA resizing */
1555 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1556 "(%llu -> %llu), skipping HPA handling\n",
1557 (unsigned long long)sectors,
1558 (unsigned long long)native_sectors);
1559 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1560 return 0;
1561 } else if (rc)
1562 return rc;
1564 /* re-read IDENTIFY data */
1565 rc = ata_dev_reread_id(dev, 0);
1566 if (rc) {
1567 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1568 "data after HPA resizing\n");
1569 return rc;
1572 if (print_info) {
1573 u64 new_sectors = ata_id_n_sectors(dev->id);
1574 ata_dev_printk(dev, KERN_INFO,
1575 "HPA unlocked: %llu -> %llu, native %llu\n",
1576 (unsigned long long)sectors,
1577 (unsigned long long)new_sectors,
1578 (unsigned long long)native_sectors);
1581 return 0;
1585 * ata_dump_id - IDENTIFY DEVICE info debugging output
1586 * @id: IDENTIFY DEVICE page to dump
1588 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1589 * page.
1591 * LOCKING:
1592 * caller.
1595 static inline void ata_dump_id(const u16 *id)
1597 DPRINTK("49==0x%04x "
1598 "53==0x%04x "
1599 "63==0x%04x "
1600 "64==0x%04x "
1601 "75==0x%04x \n",
1602 id[49],
1603 id[53],
1604 id[63],
1605 id[64],
1606 id[75]);
1607 DPRINTK("80==0x%04x "
1608 "81==0x%04x "
1609 "82==0x%04x "
1610 "83==0x%04x "
1611 "84==0x%04x \n",
1612 id[80],
1613 id[81],
1614 id[82],
1615 id[83],
1616 id[84]);
1617 DPRINTK("88==0x%04x "
1618 "93==0x%04x\n",
1619 id[88],
1620 id[93]);
1624 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1625 * @id: IDENTIFY data to compute xfer mask from
1627 * Compute the xfermask for this device. This is not as trivial
1628 * as it seems if we must consider early devices correctly.
1630 * FIXME: pre IDE drive timing (do we care ?).
1632 * LOCKING:
1633 * None.
1635 * RETURNS:
1636 * Computed xfermask
1638 unsigned long ata_id_xfermask(const u16 *id)
1640 unsigned long pio_mask, mwdma_mask, udma_mask;
1642 /* Usual case. Word 53 indicates word 64 is valid */
1643 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1644 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1645 pio_mask <<= 3;
1646 pio_mask |= 0x7;
1647 } else {
1648 /* If word 64 isn't valid then Word 51 high byte holds
1649 * the PIO timing number for the maximum. Turn it into
1650 * a mask.
1652 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1653 if (mode < 5) /* Valid PIO range */
1654 pio_mask = (2 << mode) - 1;
1655 else
1656 pio_mask = 1;
1658 /* But wait.. there's more. Design your standards by
1659 * committee and you too can get a free iordy field to
1660 * process. However its the speeds not the modes that
1661 * are supported... Note drivers using the timing API
1662 * will get this right anyway
1666 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1668 if (ata_id_is_cfa(id)) {
1670 * Process compact flash extended modes
1672 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1673 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1675 if (pio)
1676 pio_mask |= (1 << 5);
1677 if (pio > 1)
1678 pio_mask |= (1 << 6);
1679 if (dma)
1680 mwdma_mask |= (1 << 3);
1681 if (dma > 1)
1682 mwdma_mask |= (1 << 4);
1685 udma_mask = 0;
1686 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1687 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1689 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1692 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1694 struct completion *waiting = qc->private_data;
1696 complete(waiting);
1700 * ata_exec_internal_sg - execute libata internal command
1701 * @dev: Device to which the command is sent
1702 * @tf: Taskfile registers for the command and the result
1703 * @cdb: CDB for packet command
1704 * @dma_dir: Data tranfer direction of the command
1705 * @sgl: sg list for the data buffer of the command
1706 * @n_elem: Number of sg entries
1707 * @timeout: Timeout in msecs (0 for default)
1709 * Executes libata internal command with timeout. @tf contains
1710 * command on entry and result on return. Timeout and error
1711 * conditions are reported via return value. No recovery action
1712 * is taken after a command times out. It's caller's duty to
1713 * clean up after timeout.
1715 * LOCKING:
1716 * None. Should be called with kernel context, might sleep.
1718 * RETURNS:
1719 * Zero on success, AC_ERR_* mask on failure
1721 unsigned ata_exec_internal_sg(struct ata_device *dev,
1722 struct ata_taskfile *tf, const u8 *cdb,
1723 int dma_dir, struct scatterlist *sgl,
1724 unsigned int n_elem, unsigned long timeout)
1726 struct ata_link *link = dev->link;
1727 struct ata_port *ap = link->ap;
1728 u8 command = tf->command;
1729 int auto_timeout = 0;
1730 struct ata_queued_cmd *qc;
1731 unsigned int tag, preempted_tag;
1732 u32 preempted_sactive, preempted_qc_active;
1733 int preempted_nr_active_links;
1734 DECLARE_COMPLETION_ONSTACK(wait);
1735 unsigned long flags;
1736 unsigned int err_mask;
1737 int rc;
1739 spin_lock_irqsave(ap->lock, flags);
1741 /* no internal command while frozen */
1742 if (ap->pflags & ATA_PFLAG_FROZEN) {
1743 spin_unlock_irqrestore(ap->lock, flags);
1744 return AC_ERR_SYSTEM;
1747 /* initialize internal qc */
1749 /* XXX: Tag 0 is used for drivers with legacy EH as some
1750 * drivers choke if any other tag is given. This breaks
1751 * ata_tag_internal() test for those drivers. Don't use new
1752 * EH stuff without converting to it.
1754 if (ap->ops->error_handler)
1755 tag = ATA_TAG_INTERNAL;
1756 else
1757 tag = 0;
1759 if (test_and_set_bit(tag, &ap->qc_allocated))
1760 BUG();
1761 qc = __ata_qc_from_tag(ap, tag);
1763 qc->tag = tag;
1764 qc->scsicmd = NULL;
1765 qc->ap = ap;
1766 qc->dev = dev;
1767 ata_qc_reinit(qc);
1769 preempted_tag = link->active_tag;
1770 preempted_sactive = link->sactive;
1771 preempted_qc_active = ap->qc_active;
1772 preempted_nr_active_links = ap->nr_active_links;
1773 link->active_tag = ATA_TAG_POISON;
1774 link->sactive = 0;
1775 ap->qc_active = 0;
1776 ap->nr_active_links = 0;
1778 /* prepare & issue qc */
1779 qc->tf = *tf;
1780 if (cdb)
1781 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1782 qc->flags |= ATA_QCFLAG_RESULT_TF;
1783 qc->dma_dir = dma_dir;
1784 if (dma_dir != DMA_NONE) {
1785 unsigned int i, buflen = 0;
1786 struct scatterlist *sg;
1788 for_each_sg(sgl, sg, n_elem, i)
1789 buflen += sg->length;
1791 ata_sg_init(qc, sgl, n_elem);
1792 qc->nbytes = buflen;
1795 qc->private_data = &wait;
1796 qc->complete_fn = ata_qc_complete_internal;
1798 ata_qc_issue(qc);
1800 spin_unlock_irqrestore(ap->lock, flags);
1802 if (!timeout) {
1803 if (ata_probe_timeout)
1804 timeout = ata_probe_timeout * 1000;
1805 else {
1806 timeout = ata_internal_cmd_timeout(dev, command);
1807 auto_timeout = 1;
1811 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1813 ata_sff_flush_pio_task(ap);
1815 if (!rc) {
1816 spin_lock_irqsave(ap->lock, flags);
1818 /* We're racing with irq here. If we lose, the
1819 * following test prevents us from completing the qc
1820 * twice. If we win, the port is frozen and will be
1821 * cleaned up by ->post_internal_cmd().
1823 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1824 qc->err_mask |= AC_ERR_TIMEOUT;
1826 if (ap->ops->error_handler)
1827 ata_port_freeze(ap);
1828 else
1829 ata_qc_complete(qc);
1831 if (ata_msg_warn(ap))
1832 ata_dev_printk(dev, KERN_WARNING,
1833 "qc timeout (cmd 0x%x)\n", command);
1836 spin_unlock_irqrestore(ap->lock, flags);
1839 /* do post_internal_cmd */
1840 if (ap->ops->post_internal_cmd)
1841 ap->ops->post_internal_cmd(qc);
1843 /* perform minimal error analysis */
1844 if (qc->flags & ATA_QCFLAG_FAILED) {
1845 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1846 qc->err_mask |= AC_ERR_DEV;
1848 if (!qc->err_mask)
1849 qc->err_mask |= AC_ERR_OTHER;
1851 if (qc->err_mask & ~AC_ERR_OTHER)
1852 qc->err_mask &= ~AC_ERR_OTHER;
1855 /* finish up */
1856 spin_lock_irqsave(ap->lock, flags);
1858 *tf = qc->result_tf;
1859 err_mask = qc->err_mask;
1861 ata_qc_free(qc);
1862 link->active_tag = preempted_tag;
1863 link->sactive = preempted_sactive;
1864 ap->qc_active = preempted_qc_active;
1865 ap->nr_active_links = preempted_nr_active_links;
1867 spin_unlock_irqrestore(ap->lock, flags);
1869 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1870 ata_internal_cmd_timed_out(dev, command);
1872 return err_mask;
1876 * ata_exec_internal - execute libata internal command
1877 * @dev: Device to which the command is sent
1878 * @tf: Taskfile registers for the command and the result
1879 * @cdb: CDB for packet command
1880 * @dma_dir: Data tranfer direction of the command
1881 * @buf: Data buffer of the command
1882 * @buflen: Length of data buffer
1883 * @timeout: Timeout in msecs (0 for default)
1885 * Wrapper around ata_exec_internal_sg() which takes simple
1886 * buffer instead of sg list.
1888 * LOCKING:
1889 * None. Should be called with kernel context, might sleep.
1891 * RETURNS:
1892 * Zero on success, AC_ERR_* mask on failure
1894 unsigned ata_exec_internal(struct ata_device *dev,
1895 struct ata_taskfile *tf, const u8 *cdb,
1896 int dma_dir, void *buf, unsigned int buflen,
1897 unsigned long timeout)
1899 struct scatterlist *psg = NULL, sg;
1900 unsigned int n_elem = 0;
1902 if (dma_dir != DMA_NONE) {
1903 WARN_ON(!buf);
1904 sg_init_one(&sg, buf, buflen);
1905 psg = &sg;
1906 n_elem++;
1909 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1910 timeout);
1914 * ata_do_simple_cmd - execute simple internal command
1915 * @dev: Device to which the command is sent
1916 * @cmd: Opcode to execute
1918 * Execute a 'simple' command, that only consists of the opcode
1919 * 'cmd' itself, without filling any other registers
1921 * LOCKING:
1922 * Kernel thread context (may sleep).
1924 * RETURNS:
1925 * Zero on success, AC_ERR_* mask on failure
1927 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1929 struct ata_taskfile tf;
1931 ata_tf_init(dev, &tf);
1933 tf.command = cmd;
1934 tf.flags |= ATA_TFLAG_DEVICE;
1935 tf.protocol = ATA_PROT_NODATA;
1937 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1941 * ata_pio_need_iordy - check if iordy needed
1942 * @adev: ATA device
1944 * Check if the current speed of the device requires IORDY. Used
1945 * by various controllers for chip configuration.
1947 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1949 /* Don't set IORDY if we're preparing for reset. IORDY may
1950 * lead to controller lock up on certain controllers if the
1951 * port is not occupied. See bko#11703 for details.
1953 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1954 return 0;
1955 /* Controller doesn't support IORDY. Probably a pointless
1956 * check as the caller should know this.
1958 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1959 return 0;
1960 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1961 if (ata_id_is_cfa(adev->id)
1962 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1963 return 0;
1964 /* PIO3 and higher it is mandatory */
1965 if (adev->pio_mode > XFER_PIO_2)
1966 return 1;
1967 /* We turn it on when possible */
1968 if (ata_id_has_iordy(adev->id))
1969 return 1;
1970 return 0;
1974 * ata_pio_mask_no_iordy - Return the non IORDY mask
1975 * @adev: ATA device
1977 * Compute the highest mode possible if we are not using iordy. Return
1978 * -1 if no iordy mode is available.
1980 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1982 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1983 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1984 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1985 /* Is the speed faster than the drive allows non IORDY ? */
1986 if (pio) {
1987 /* This is cycle times not frequency - watch the logic! */
1988 if (pio > 240) /* PIO2 is 240nS per cycle */
1989 return 3 << ATA_SHIFT_PIO;
1990 return 7 << ATA_SHIFT_PIO;
1993 return 3 << ATA_SHIFT_PIO;
1997 * ata_do_dev_read_id - default ID read method
1998 * @dev: device
1999 * @tf: proposed taskfile
2000 * @id: data buffer
2002 * Issue the identify taskfile and hand back the buffer containing
2003 * identify data. For some RAID controllers and for pre ATA devices
2004 * this function is wrapped or replaced by the driver
2006 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2007 struct ata_taskfile *tf, u16 *id)
2009 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2010 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2014 * ata_dev_read_id - Read ID data from the specified device
2015 * @dev: target device
2016 * @p_class: pointer to class of the target device (may be changed)
2017 * @flags: ATA_READID_* flags
2018 * @id: buffer to read IDENTIFY data into
2020 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2021 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2022 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2023 * for pre-ATA4 drives.
2025 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2026 * now we abort if we hit that case.
2028 * LOCKING:
2029 * Kernel thread context (may sleep)
2031 * RETURNS:
2032 * 0 on success, -errno otherwise.
2034 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2035 unsigned int flags, u16 *id)
2037 struct ata_port *ap = dev->link->ap;
2038 unsigned int class = *p_class;
2039 struct ata_taskfile tf;
2040 unsigned int err_mask = 0;
2041 const char *reason;
2042 bool is_semb = class == ATA_DEV_SEMB;
2043 int may_fallback = 1, tried_spinup = 0;
2044 int rc;
2046 if (ata_msg_ctl(ap))
2047 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2049 retry:
2050 ata_tf_init(dev, &tf);
2052 switch (class) {
2053 case ATA_DEV_SEMB:
2054 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2055 case ATA_DEV_ATA:
2056 tf.command = ATA_CMD_ID_ATA;
2057 break;
2058 case ATA_DEV_ATAPI:
2059 tf.command = ATA_CMD_ID_ATAPI;
2060 break;
2061 default:
2062 rc = -ENODEV;
2063 reason = "unsupported class";
2064 goto err_out;
2067 tf.protocol = ATA_PROT_PIO;
2069 /* Some devices choke if TF registers contain garbage. Make
2070 * sure those are properly initialized.
2072 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2074 /* Device presence detection is unreliable on some
2075 * controllers. Always poll IDENTIFY if available.
2077 tf.flags |= ATA_TFLAG_POLLING;
2079 if (ap->ops->read_id)
2080 err_mask = ap->ops->read_id(dev, &tf, id);
2081 else
2082 err_mask = ata_do_dev_read_id(dev, &tf, id);
2084 if (err_mask) {
2085 if (err_mask & AC_ERR_NODEV_HINT) {
2086 ata_dev_printk(dev, KERN_DEBUG,
2087 "NODEV after polling detection\n");
2088 return -ENOENT;
2091 if (is_semb) {
2092 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2093 "device w/ SEMB sig, disabled\n");
2094 /* SEMB is not supported yet */
2095 *p_class = ATA_DEV_SEMB_UNSUP;
2096 return 0;
2099 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2100 /* Device or controller might have reported
2101 * the wrong device class. Give a shot at the
2102 * other IDENTIFY if the current one is
2103 * aborted by the device.
2105 if (may_fallback) {
2106 may_fallback = 0;
2108 if (class == ATA_DEV_ATA)
2109 class = ATA_DEV_ATAPI;
2110 else
2111 class = ATA_DEV_ATA;
2112 goto retry;
2115 /* Control reaches here iff the device aborted
2116 * both flavors of IDENTIFYs which happens
2117 * sometimes with phantom devices.
2119 ata_dev_printk(dev, KERN_DEBUG,
2120 "both IDENTIFYs aborted, assuming NODEV\n");
2121 return -ENOENT;
2124 rc = -EIO;
2125 reason = "I/O error";
2126 goto err_out;
2129 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
2130 ata_dev_printk(dev, KERN_DEBUG, "dumping IDENTIFY data, "
2131 "class=%d may_fallback=%d tried_spinup=%d\n",
2132 class, may_fallback, tried_spinup);
2133 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
2134 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
2137 /* Falling back doesn't make sense if ID data was read
2138 * successfully at least once.
2140 may_fallback = 0;
2142 swap_buf_le16(id, ATA_ID_WORDS);
2144 /* sanity check */
2145 rc = -EINVAL;
2146 reason = "device reports invalid type";
2148 if (class == ATA_DEV_ATA) {
2149 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2150 goto err_out;
2151 } else {
2152 if (ata_id_is_ata(id))
2153 goto err_out;
2156 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2157 tried_spinup = 1;
2159 * Drive powered-up in standby mode, and requires a specific
2160 * SET_FEATURES spin-up subcommand before it will accept
2161 * anything other than the original IDENTIFY command.
2163 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2164 if (err_mask && id[2] != 0x738c) {
2165 rc = -EIO;
2166 reason = "SPINUP failed";
2167 goto err_out;
2170 * If the drive initially returned incomplete IDENTIFY info,
2171 * we now must reissue the IDENTIFY command.
2173 if (id[2] == 0x37c8)
2174 goto retry;
2177 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2179 * The exact sequence expected by certain pre-ATA4 drives is:
2180 * SRST RESET
2181 * IDENTIFY (optional in early ATA)
2182 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2183 * anything else..
2184 * Some drives were very specific about that exact sequence.
2186 * Note that ATA4 says lba is mandatory so the second check
2187 * should never trigger.
2189 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2190 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2191 if (err_mask) {
2192 rc = -EIO;
2193 reason = "INIT_DEV_PARAMS failed";
2194 goto err_out;
2197 /* current CHS translation info (id[53-58]) might be
2198 * changed. reread the identify device info.
2200 flags &= ~ATA_READID_POSTRESET;
2201 goto retry;
2205 *p_class = class;
2207 return 0;
2209 err_out:
2210 if (ata_msg_warn(ap))
2211 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2212 "(%s, err_mask=0x%x)\n", reason, err_mask);
2213 return rc;
2216 static int ata_do_link_spd_horkage(struct ata_device *dev)
2218 struct ata_link *plink = ata_dev_phys_link(dev);
2219 u32 target, target_limit;
2221 if (!sata_scr_valid(plink))
2222 return 0;
2224 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2225 target = 1;
2226 else
2227 return 0;
2229 target_limit = (1 << target) - 1;
2231 /* if already on stricter limit, no need to push further */
2232 if (plink->sata_spd_limit <= target_limit)
2233 return 0;
2235 plink->sata_spd_limit = target_limit;
2237 /* Request another EH round by returning -EAGAIN if link is
2238 * going faster than the target speed. Forward progress is
2239 * guaranteed by setting sata_spd_limit to target_limit above.
2241 if (plink->sata_spd > target) {
2242 ata_dev_printk(dev, KERN_INFO,
2243 "applying link speed limit horkage to %s\n",
2244 sata_spd_string(target));
2245 return -EAGAIN;
2247 return 0;
2250 static inline u8 ata_dev_knobble(struct ata_device *dev)
2252 struct ata_port *ap = dev->link->ap;
2254 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2255 return 0;
2257 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2260 static int ata_dev_config_ncq(struct ata_device *dev,
2261 char *desc, size_t desc_sz)
2263 struct ata_port *ap = dev->link->ap;
2264 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2265 unsigned int err_mask;
2266 char *aa_desc = "";
2268 if (!ata_id_has_ncq(dev->id)) {
2269 desc[0] = '\0';
2270 return 0;
2272 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2273 snprintf(desc, desc_sz, "NCQ (not used)");
2274 return 0;
2276 if (ap->flags & ATA_FLAG_NCQ) {
2277 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2278 dev->flags |= ATA_DFLAG_NCQ;
2281 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2282 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2283 ata_id_has_fpdma_aa(dev->id)) {
2284 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2285 SATA_FPDMA_AA);
2286 if (err_mask) {
2287 ata_dev_printk(dev, KERN_ERR, "failed to enable AA"
2288 "(error_mask=0x%x)\n", err_mask);
2289 if (err_mask != AC_ERR_DEV) {
2290 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2291 return -EIO;
2293 } else
2294 aa_desc = ", AA";
2297 if (hdepth >= ddepth)
2298 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2299 else
2300 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2301 ddepth, aa_desc);
2302 return 0;
2306 * ata_dev_configure - Configure the specified ATA/ATAPI device
2307 * @dev: Target device to configure
2309 * Configure @dev according to @dev->id. Generic and low-level
2310 * driver specific fixups are also applied.
2312 * LOCKING:
2313 * Kernel thread context (may sleep)
2315 * RETURNS:
2316 * 0 on success, -errno otherwise
2318 int ata_dev_configure(struct ata_device *dev)
2320 struct ata_port *ap = dev->link->ap;
2321 struct ata_eh_context *ehc = &dev->link->eh_context;
2322 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2323 const u16 *id = dev->id;
2324 unsigned long xfer_mask;
2325 char revbuf[7]; /* XYZ-99\0 */
2326 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2327 char modelbuf[ATA_ID_PROD_LEN+1];
2328 int rc;
2330 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2331 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2332 __func__);
2333 return 0;
2336 if (ata_msg_probe(ap))
2337 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2339 /* set horkage */
2340 dev->horkage |= ata_dev_blacklisted(dev);
2341 ata_force_horkage(dev);
2343 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2344 ata_dev_printk(dev, KERN_INFO,
2345 "unsupported device, disabling\n");
2346 ata_dev_disable(dev);
2347 return 0;
2350 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2351 dev->class == ATA_DEV_ATAPI) {
2352 ata_dev_printk(dev, KERN_WARNING,
2353 "WARNING: ATAPI is %s, device ignored.\n",
2354 atapi_enabled ? "not supported with this driver"
2355 : "disabled");
2356 ata_dev_disable(dev);
2357 return 0;
2360 rc = ata_do_link_spd_horkage(dev);
2361 if (rc)
2362 return rc;
2364 /* let ACPI work its magic */
2365 rc = ata_acpi_on_devcfg(dev);
2366 if (rc)
2367 return rc;
2369 /* massage HPA, do it early as it might change IDENTIFY data */
2370 rc = ata_hpa_resize(dev);
2371 if (rc)
2372 return rc;
2374 /* print device capabilities */
2375 if (ata_msg_probe(ap))
2376 ata_dev_printk(dev, KERN_DEBUG,
2377 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2378 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2379 __func__,
2380 id[49], id[82], id[83], id[84],
2381 id[85], id[86], id[87], id[88]);
2383 /* initialize to-be-configured parameters */
2384 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2385 dev->max_sectors = 0;
2386 dev->cdb_len = 0;
2387 dev->n_sectors = 0;
2388 dev->cylinders = 0;
2389 dev->heads = 0;
2390 dev->sectors = 0;
2391 dev->multi_count = 0;
2394 * common ATA, ATAPI feature tests
2397 /* find max transfer mode; for printk only */
2398 xfer_mask = ata_id_xfermask(id);
2400 if (ata_msg_probe(ap))
2401 ata_dump_id(id);
2403 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2404 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2405 sizeof(fwrevbuf));
2407 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2408 sizeof(modelbuf));
2410 /* ATA-specific feature tests */
2411 if (dev->class == ATA_DEV_ATA) {
2412 if (ata_id_is_cfa(id)) {
2413 /* CPRM may make this media unusable */
2414 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2415 ata_dev_printk(dev, KERN_WARNING,
2416 "supports DRM functions and may "
2417 "not be fully accessable.\n");
2418 snprintf(revbuf, 7, "CFA");
2419 } else {
2420 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2421 /* Warn the user if the device has TPM extensions */
2422 if (ata_id_has_tpm(id))
2423 ata_dev_printk(dev, KERN_WARNING,
2424 "supports DRM functions and may "
2425 "not be fully accessable.\n");
2428 dev->n_sectors = ata_id_n_sectors(id);
2430 /* get current R/W Multiple count setting */
2431 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2432 unsigned int max = dev->id[47] & 0xff;
2433 unsigned int cnt = dev->id[59] & 0xff;
2434 /* only recognize/allow powers of two here */
2435 if (is_power_of_2(max) && is_power_of_2(cnt))
2436 if (cnt <= max)
2437 dev->multi_count = cnt;
2440 if (ata_id_has_lba(id)) {
2441 const char *lba_desc;
2442 char ncq_desc[24];
2444 lba_desc = "LBA";
2445 dev->flags |= ATA_DFLAG_LBA;
2446 if (ata_id_has_lba48(id)) {
2447 dev->flags |= ATA_DFLAG_LBA48;
2448 lba_desc = "LBA48";
2450 if (dev->n_sectors >= (1UL << 28) &&
2451 ata_id_has_flush_ext(id))
2452 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2455 /* config NCQ */
2456 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2457 if (rc)
2458 return rc;
2460 /* print device info to dmesg */
2461 if (ata_msg_drv(ap) && print_info) {
2462 ata_dev_printk(dev, KERN_INFO,
2463 "%s: %s, %s, max %s\n",
2464 revbuf, modelbuf, fwrevbuf,
2465 ata_mode_string(xfer_mask));
2466 ata_dev_printk(dev, KERN_INFO,
2467 "%Lu sectors, multi %u: %s %s\n",
2468 (unsigned long long)dev->n_sectors,
2469 dev->multi_count, lba_desc, ncq_desc);
2471 } else {
2472 /* CHS */
2474 /* Default translation */
2475 dev->cylinders = id[1];
2476 dev->heads = id[3];
2477 dev->sectors = id[6];
2479 if (ata_id_current_chs_valid(id)) {
2480 /* Current CHS translation is valid. */
2481 dev->cylinders = id[54];
2482 dev->heads = id[55];
2483 dev->sectors = id[56];
2486 /* print device info to dmesg */
2487 if (ata_msg_drv(ap) && print_info) {
2488 ata_dev_printk(dev, KERN_INFO,
2489 "%s: %s, %s, max %s\n",
2490 revbuf, modelbuf, fwrevbuf,
2491 ata_mode_string(xfer_mask));
2492 ata_dev_printk(dev, KERN_INFO,
2493 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2494 (unsigned long long)dev->n_sectors,
2495 dev->multi_count, dev->cylinders,
2496 dev->heads, dev->sectors);
2500 dev->cdb_len = 16;
2503 /* ATAPI-specific feature tests */
2504 else if (dev->class == ATA_DEV_ATAPI) {
2505 const char *cdb_intr_string = "";
2506 const char *atapi_an_string = "";
2507 const char *dma_dir_string = "";
2508 u32 sntf;
2510 rc = atapi_cdb_len(id);
2511 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2512 if (ata_msg_warn(ap))
2513 ata_dev_printk(dev, KERN_WARNING,
2514 "unsupported CDB len\n");
2515 rc = -EINVAL;
2516 goto err_out_nosup;
2518 dev->cdb_len = (unsigned int) rc;
2520 /* Enable ATAPI AN if both the host and device have
2521 * the support. If PMP is attached, SNTF is required
2522 * to enable ATAPI AN to discern between PHY status
2523 * changed notifications and ATAPI ANs.
2525 if (atapi_an &&
2526 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2527 (!sata_pmp_attached(ap) ||
2528 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2529 unsigned int err_mask;
2531 /* issue SET feature command to turn this on */
2532 err_mask = ata_dev_set_feature(dev,
2533 SETFEATURES_SATA_ENABLE, SATA_AN);
2534 if (err_mask)
2535 ata_dev_printk(dev, KERN_ERR,
2536 "failed to enable ATAPI AN "
2537 "(err_mask=0x%x)\n", err_mask);
2538 else {
2539 dev->flags |= ATA_DFLAG_AN;
2540 atapi_an_string = ", ATAPI AN";
2544 if (ata_id_cdb_intr(dev->id)) {
2545 dev->flags |= ATA_DFLAG_CDB_INTR;
2546 cdb_intr_string = ", CDB intr";
2549 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2550 dev->flags |= ATA_DFLAG_DMADIR;
2551 dma_dir_string = ", DMADIR";
2554 /* print device info to dmesg */
2555 if (ata_msg_drv(ap) && print_info)
2556 ata_dev_printk(dev, KERN_INFO,
2557 "ATAPI: %s, %s, max %s%s%s%s\n",
2558 modelbuf, fwrevbuf,
2559 ata_mode_string(xfer_mask),
2560 cdb_intr_string, atapi_an_string,
2561 dma_dir_string);
2564 /* determine max_sectors */
2565 dev->max_sectors = ATA_MAX_SECTORS;
2566 if (dev->flags & ATA_DFLAG_LBA48)
2567 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2569 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2570 if (ata_id_has_hipm(dev->id))
2571 dev->flags |= ATA_DFLAG_HIPM;
2572 if (ata_id_has_dipm(dev->id))
2573 dev->flags |= ATA_DFLAG_DIPM;
2576 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2577 200 sectors */
2578 if (ata_dev_knobble(dev)) {
2579 if (ata_msg_drv(ap) && print_info)
2580 ata_dev_printk(dev, KERN_INFO,
2581 "applying bridge limits\n");
2582 dev->udma_mask &= ATA_UDMA5;
2583 dev->max_sectors = ATA_MAX_SECTORS;
2586 if ((dev->class == ATA_DEV_ATAPI) &&
2587 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2588 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2589 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2592 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2593 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2594 dev->max_sectors);
2596 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2597 dev->horkage |= ATA_HORKAGE_IPM;
2599 /* reset link pm_policy for this port to no pm */
2600 ap->pm_policy = MAX_PERFORMANCE;
2603 if (ap->ops->dev_config)
2604 ap->ops->dev_config(dev);
2606 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2607 /* Let the user know. We don't want to disallow opens for
2608 rescue purposes, or in case the vendor is just a blithering
2609 idiot. Do this after the dev_config call as some controllers
2610 with buggy firmware may want to avoid reporting false device
2611 bugs */
2613 if (print_info) {
2614 ata_dev_printk(dev, KERN_WARNING,
2615 "Drive reports diagnostics failure. This may indicate a drive\n");
2616 ata_dev_printk(dev, KERN_WARNING,
2617 "fault or invalid emulation. Contact drive vendor for information.\n");
2621 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2622 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2623 "firmware update to be fully functional.\n");
2624 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2625 "or visit http://ata.wiki.kernel.org.\n");
2628 return 0;
2630 err_out_nosup:
2631 if (ata_msg_probe(ap))
2632 ata_dev_printk(dev, KERN_DEBUG,
2633 "%s: EXIT, err\n", __func__);
2634 return rc;
2638 * ata_cable_40wire - return 40 wire cable type
2639 * @ap: port
2641 * Helper method for drivers which want to hardwire 40 wire cable
2642 * detection.
2645 int ata_cable_40wire(struct ata_port *ap)
2647 return ATA_CBL_PATA40;
2651 * ata_cable_80wire - return 80 wire cable type
2652 * @ap: port
2654 * Helper method for drivers which want to hardwire 80 wire cable
2655 * detection.
2658 int ata_cable_80wire(struct ata_port *ap)
2660 return ATA_CBL_PATA80;
2664 * ata_cable_unknown - return unknown PATA cable.
2665 * @ap: port
2667 * Helper method for drivers which have no PATA cable detection.
2670 int ata_cable_unknown(struct ata_port *ap)
2672 return ATA_CBL_PATA_UNK;
2676 * ata_cable_ignore - return ignored PATA cable.
2677 * @ap: port
2679 * Helper method for drivers which don't use cable type to limit
2680 * transfer mode.
2682 int ata_cable_ignore(struct ata_port *ap)
2684 return ATA_CBL_PATA_IGN;
2688 * ata_cable_sata - return SATA cable type
2689 * @ap: port
2691 * Helper method for drivers which have SATA cables
2694 int ata_cable_sata(struct ata_port *ap)
2696 return ATA_CBL_SATA;
2700 * ata_bus_probe - Reset and probe ATA bus
2701 * @ap: Bus to probe
2703 * Master ATA bus probing function. Initiates a hardware-dependent
2704 * bus reset, then attempts to identify any devices found on
2705 * the bus.
2707 * LOCKING:
2708 * PCI/etc. bus probe sem.
2710 * RETURNS:
2711 * Zero on success, negative errno otherwise.
2714 int ata_bus_probe(struct ata_port *ap)
2716 unsigned int classes[ATA_MAX_DEVICES];
2717 int tries[ATA_MAX_DEVICES];
2718 int rc;
2719 struct ata_device *dev;
2721 ata_for_each_dev(dev, &ap->link, ALL)
2722 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2724 retry:
2725 ata_for_each_dev(dev, &ap->link, ALL) {
2726 /* If we issue an SRST then an ATA drive (not ATAPI)
2727 * may change configuration and be in PIO0 timing. If
2728 * we do a hard reset (or are coming from power on)
2729 * this is true for ATA or ATAPI. Until we've set a
2730 * suitable controller mode we should not touch the
2731 * bus as we may be talking too fast.
2733 dev->pio_mode = XFER_PIO_0;
2735 /* If the controller has a pio mode setup function
2736 * then use it to set the chipset to rights. Don't
2737 * touch the DMA setup as that will be dealt with when
2738 * configuring devices.
2740 if (ap->ops->set_piomode)
2741 ap->ops->set_piomode(ap, dev);
2744 /* reset and determine device classes */
2745 ap->ops->phy_reset(ap);
2747 ata_for_each_dev(dev, &ap->link, ALL) {
2748 if (dev->class != ATA_DEV_UNKNOWN)
2749 classes[dev->devno] = dev->class;
2750 else
2751 classes[dev->devno] = ATA_DEV_NONE;
2753 dev->class = ATA_DEV_UNKNOWN;
2756 /* read IDENTIFY page and configure devices. We have to do the identify
2757 specific sequence bass-ackwards so that PDIAG- is released by
2758 the slave device */
2760 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2761 if (tries[dev->devno])
2762 dev->class = classes[dev->devno];
2764 if (!ata_dev_enabled(dev))
2765 continue;
2767 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2768 dev->id);
2769 if (rc)
2770 goto fail;
2773 /* Now ask for the cable type as PDIAG- should have been released */
2774 if (ap->ops->cable_detect)
2775 ap->cbl = ap->ops->cable_detect(ap);
2777 /* We may have SATA bridge glue hiding here irrespective of
2778 * the reported cable types and sensed types. When SATA
2779 * drives indicate we have a bridge, we don't know which end
2780 * of the link the bridge is which is a problem.
2782 ata_for_each_dev(dev, &ap->link, ENABLED)
2783 if (ata_id_is_sata(dev->id))
2784 ap->cbl = ATA_CBL_SATA;
2786 /* After the identify sequence we can now set up the devices. We do
2787 this in the normal order so that the user doesn't get confused */
2789 ata_for_each_dev(dev, &ap->link, ENABLED) {
2790 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2791 rc = ata_dev_configure(dev);
2792 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2793 if (rc)
2794 goto fail;
2797 /* configure transfer mode */
2798 rc = ata_set_mode(&ap->link, &dev);
2799 if (rc)
2800 goto fail;
2802 ata_for_each_dev(dev, &ap->link, ENABLED)
2803 return 0;
2805 return -ENODEV;
2807 fail:
2808 tries[dev->devno]--;
2810 switch (rc) {
2811 case -EINVAL:
2812 /* eeek, something went very wrong, give up */
2813 tries[dev->devno] = 0;
2814 break;
2816 case -ENODEV:
2817 /* give it just one more chance */
2818 tries[dev->devno] = min(tries[dev->devno], 1);
2819 case -EIO:
2820 if (tries[dev->devno] == 1) {
2821 /* This is the last chance, better to slow
2822 * down than lose it.
2824 sata_down_spd_limit(&ap->link, 0);
2825 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2829 if (!tries[dev->devno])
2830 ata_dev_disable(dev);
2832 goto retry;
2836 * sata_print_link_status - Print SATA link status
2837 * @link: SATA link to printk link status about
2839 * This function prints link speed and status of a SATA link.
2841 * LOCKING:
2842 * None.
2844 static void sata_print_link_status(struct ata_link *link)
2846 u32 sstatus, scontrol, tmp;
2848 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2849 return;
2850 sata_scr_read(link, SCR_CONTROL, &scontrol);
2852 if (ata_phys_link_online(link)) {
2853 tmp = (sstatus >> 4) & 0xf;
2854 ata_link_printk(link, KERN_INFO,
2855 "SATA link up %s (SStatus %X SControl %X)\n",
2856 sata_spd_string(tmp), sstatus, scontrol);
2857 } else {
2858 ata_link_printk(link, KERN_INFO,
2859 "SATA link down (SStatus %X SControl %X)\n",
2860 sstatus, scontrol);
2865 * ata_dev_pair - return other device on cable
2866 * @adev: device
2868 * Obtain the other device on the same cable, or if none is
2869 * present NULL is returned
2872 struct ata_device *ata_dev_pair(struct ata_device *adev)
2874 struct ata_link *link = adev->link;
2875 struct ata_device *pair = &link->device[1 - adev->devno];
2876 if (!ata_dev_enabled(pair))
2877 return NULL;
2878 return pair;
2882 * sata_down_spd_limit - adjust SATA spd limit downward
2883 * @link: Link to adjust SATA spd limit for
2884 * @spd_limit: Additional limit
2886 * Adjust SATA spd limit of @link downward. Note that this
2887 * function only adjusts the limit. The change must be applied
2888 * using sata_set_spd().
2890 * If @spd_limit is non-zero, the speed is limited to equal to or
2891 * lower than @spd_limit if such speed is supported. If
2892 * @spd_limit is slower than any supported speed, only the lowest
2893 * supported speed is allowed.
2895 * LOCKING:
2896 * Inherited from caller.
2898 * RETURNS:
2899 * 0 on success, negative errno on failure
2901 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2903 u32 sstatus, spd, mask;
2904 int rc, bit;
2906 if (!sata_scr_valid(link))
2907 return -EOPNOTSUPP;
2909 /* If SCR can be read, use it to determine the current SPD.
2910 * If not, use cached value in link->sata_spd.
2912 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2913 if (rc == 0 && ata_sstatus_online(sstatus))
2914 spd = (sstatus >> 4) & 0xf;
2915 else
2916 spd = link->sata_spd;
2918 mask = link->sata_spd_limit;
2919 if (mask <= 1)
2920 return -EINVAL;
2922 /* unconditionally mask off the highest bit */
2923 bit = fls(mask) - 1;
2924 mask &= ~(1 << bit);
2926 /* Mask off all speeds higher than or equal to the current
2927 * one. Force 1.5Gbps if current SPD is not available.
2929 if (spd > 1)
2930 mask &= (1 << (spd - 1)) - 1;
2931 else
2932 mask &= 1;
2934 /* were we already at the bottom? */
2935 if (!mask)
2936 return -EINVAL;
2938 if (spd_limit) {
2939 if (mask & ((1 << spd_limit) - 1))
2940 mask &= (1 << spd_limit) - 1;
2941 else {
2942 bit = ffs(mask) - 1;
2943 mask = 1 << bit;
2947 link->sata_spd_limit = mask;
2949 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
2950 sata_spd_string(fls(mask)));
2952 return 0;
2955 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2957 struct ata_link *host_link = &link->ap->link;
2958 u32 limit, target, spd;
2960 limit = link->sata_spd_limit;
2962 /* Don't configure downstream link faster than upstream link.
2963 * It doesn't speed up anything and some PMPs choke on such
2964 * configuration.
2966 if (!ata_is_host_link(link) && host_link->sata_spd)
2967 limit &= (1 << host_link->sata_spd) - 1;
2969 if (limit == UINT_MAX)
2970 target = 0;
2971 else
2972 target = fls(limit);
2974 spd = (*scontrol >> 4) & 0xf;
2975 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2977 return spd != target;
2981 * sata_set_spd_needed - is SATA spd configuration needed
2982 * @link: Link in question
2984 * Test whether the spd limit in SControl matches
2985 * @link->sata_spd_limit. This function is used to determine
2986 * whether hardreset is necessary to apply SATA spd
2987 * configuration.
2989 * LOCKING:
2990 * Inherited from caller.
2992 * RETURNS:
2993 * 1 if SATA spd configuration is needed, 0 otherwise.
2995 static int sata_set_spd_needed(struct ata_link *link)
2997 u32 scontrol;
2999 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3000 return 1;
3002 return __sata_set_spd_needed(link, &scontrol);
3006 * sata_set_spd - set SATA spd according to spd limit
3007 * @link: Link to set SATA spd for
3009 * Set SATA spd of @link according to sata_spd_limit.
3011 * LOCKING:
3012 * Inherited from caller.
3014 * RETURNS:
3015 * 0 if spd doesn't need to be changed, 1 if spd has been
3016 * changed. Negative errno if SCR registers are inaccessible.
3018 int sata_set_spd(struct ata_link *link)
3020 u32 scontrol;
3021 int rc;
3023 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3024 return rc;
3026 if (!__sata_set_spd_needed(link, &scontrol))
3027 return 0;
3029 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3030 return rc;
3032 return 1;
3036 * This mode timing computation functionality is ported over from
3037 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3040 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3041 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3042 * for UDMA6, which is currently supported only by Maxtor drives.
3044 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3047 static const struct ata_timing ata_timing[] = {
3048 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3049 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3050 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3051 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3052 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3053 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3054 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3055 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3057 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3058 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3059 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3061 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3062 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3063 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3064 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3065 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3067 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3068 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3069 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3070 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3071 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3072 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3073 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3074 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3076 { 0xFF }
3079 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3080 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3082 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3084 q->setup = EZ(t->setup * 1000, T);
3085 q->act8b = EZ(t->act8b * 1000, T);
3086 q->rec8b = EZ(t->rec8b * 1000, T);
3087 q->cyc8b = EZ(t->cyc8b * 1000, T);
3088 q->active = EZ(t->active * 1000, T);
3089 q->recover = EZ(t->recover * 1000, T);
3090 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3091 q->cycle = EZ(t->cycle * 1000, T);
3092 q->udma = EZ(t->udma * 1000, UT);
3095 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3096 struct ata_timing *m, unsigned int what)
3098 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3099 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3100 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3101 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3102 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3103 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3104 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3105 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3106 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3109 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3111 const struct ata_timing *t = ata_timing;
3113 while (xfer_mode > t->mode)
3114 t++;
3116 if (xfer_mode == t->mode)
3117 return t;
3118 return NULL;
3121 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3122 struct ata_timing *t, int T, int UT)
3124 const u16 *id = adev->id;
3125 const struct ata_timing *s;
3126 struct ata_timing p;
3129 * Find the mode.
3132 if (!(s = ata_timing_find_mode(speed)))
3133 return -EINVAL;
3135 memcpy(t, s, sizeof(*s));
3138 * If the drive is an EIDE drive, it can tell us it needs extended
3139 * PIO/MW_DMA cycle timing.
3142 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3143 memset(&p, 0, sizeof(p));
3145 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3146 if (speed <= XFER_PIO_2)
3147 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3148 else if ((speed <= XFER_PIO_4) ||
3149 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3150 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3151 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3152 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3154 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3158 * Convert the timing to bus clock counts.
3161 ata_timing_quantize(t, t, T, UT);
3164 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3165 * S.M.A.R.T * and some other commands. We have to ensure that the
3166 * DMA cycle timing is slower/equal than the fastest PIO timing.
3169 if (speed > XFER_PIO_6) {
3170 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3171 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3175 * Lengthen active & recovery time so that cycle time is correct.
3178 if (t->act8b + t->rec8b < t->cyc8b) {
3179 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3180 t->rec8b = t->cyc8b - t->act8b;
3183 if (t->active + t->recover < t->cycle) {
3184 t->active += (t->cycle - (t->active + t->recover)) / 2;
3185 t->recover = t->cycle - t->active;
3188 /* In a few cases quantisation may produce enough errors to
3189 leave t->cycle too low for the sum of active and recovery
3190 if so we must correct this */
3191 if (t->active + t->recover > t->cycle)
3192 t->cycle = t->active + t->recover;
3194 return 0;
3198 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3199 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3200 * @cycle: cycle duration in ns
3202 * Return matching xfer mode for @cycle. The returned mode is of
3203 * the transfer type specified by @xfer_shift. If @cycle is too
3204 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3205 * than the fastest known mode, the fasted mode is returned.
3207 * LOCKING:
3208 * None.
3210 * RETURNS:
3211 * Matching xfer_mode, 0xff if no match found.
3213 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3215 u8 base_mode = 0xff, last_mode = 0xff;
3216 const struct ata_xfer_ent *ent;
3217 const struct ata_timing *t;
3219 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3220 if (ent->shift == xfer_shift)
3221 base_mode = ent->base;
3223 for (t = ata_timing_find_mode(base_mode);
3224 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3225 unsigned short this_cycle;
3227 switch (xfer_shift) {
3228 case ATA_SHIFT_PIO:
3229 case ATA_SHIFT_MWDMA:
3230 this_cycle = t->cycle;
3231 break;
3232 case ATA_SHIFT_UDMA:
3233 this_cycle = t->udma;
3234 break;
3235 default:
3236 return 0xff;
3239 if (cycle > this_cycle)
3240 break;
3242 last_mode = t->mode;
3245 return last_mode;
3249 * ata_down_xfermask_limit - adjust dev xfer masks downward
3250 * @dev: Device to adjust xfer masks
3251 * @sel: ATA_DNXFER_* selector
3253 * Adjust xfer masks of @dev downward. Note that this function
3254 * does not apply the change. Invoking ata_set_mode() afterwards
3255 * will apply the limit.
3257 * LOCKING:
3258 * Inherited from caller.
3260 * RETURNS:
3261 * 0 on success, negative errno on failure
3263 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3265 char buf[32];
3266 unsigned long orig_mask, xfer_mask;
3267 unsigned long pio_mask, mwdma_mask, udma_mask;
3268 int quiet, highbit;
3270 quiet = !!(sel & ATA_DNXFER_QUIET);
3271 sel &= ~ATA_DNXFER_QUIET;
3273 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3274 dev->mwdma_mask,
3275 dev->udma_mask);
3276 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3278 switch (sel) {
3279 case ATA_DNXFER_PIO:
3280 highbit = fls(pio_mask) - 1;
3281 pio_mask &= ~(1 << highbit);
3282 break;
3284 case ATA_DNXFER_DMA:
3285 if (udma_mask) {
3286 highbit = fls(udma_mask) - 1;
3287 udma_mask &= ~(1 << highbit);
3288 if (!udma_mask)
3289 return -ENOENT;
3290 } else if (mwdma_mask) {
3291 highbit = fls(mwdma_mask) - 1;
3292 mwdma_mask &= ~(1 << highbit);
3293 if (!mwdma_mask)
3294 return -ENOENT;
3296 break;
3298 case ATA_DNXFER_40C:
3299 udma_mask &= ATA_UDMA_MASK_40C;
3300 break;
3302 case ATA_DNXFER_FORCE_PIO0:
3303 pio_mask &= 1;
3304 case ATA_DNXFER_FORCE_PIO:
3305 mwdma_mask = 0;
3306 udma_mask = 0;
3307 break;
3309 default:
3310 BUG();
3313 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3315 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3316 return -ENOENT;
3318 if (!quiet) {
3319 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3320 snprintf(buf, sizeof(buf), "%s:%s",
3321 ata_mode_string(xfer_mask),
3322 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3323 else
3324 snprintf(buf, sizeof(buf), "%s",
3325 ata_mode_string(xfer_mask));
3327 ata_dev_printk(dev, KERN_WARNING,
3328 "limiting speed to %s\n", buf);
3331 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3332 &dev->udma_mask);
3334 return 0;
3337 static int ata_dev_set_mode(struct ata_device *dev)
3339 struct ata_port *ap = dev->link->ap;
3340 struct ata_eh_context *ehc = &dev->link->eh_context;
3341 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3342 const char *dev_err_whine = "";
3343 int ign_dev_err = 0;
3344 unsigned int err_mask = 0;
3345 int rc;
3347 dev->flags &= ~ATA_DFLAG_PIO;
3348 if (dev->xfer_shift == ATA_SHIFT_PIO)
3349 dev->flags |= ATA_DFLAG_PIO;
3351 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3352 dev_err_whine = " (SET_XFERMODE skipped)";
3353 else {
3354 if (nosetxfer)
3355 ata_dev_printk(dev, KERN_WARNING,
3356 "NOSETXFER but PATA detected - can't "
3357 "skip SETXFER, might malfunction\n");
3358 err_mask = ata_dev_set_xfermode(dev);
3361 if (err_mask & ~AC_ERR_DEV)
3362 goto fail;
3364 /* revalidate */
3365 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3366 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3367 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3368 if (rc)
3369 return rc;
3371 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3372 /* Old CFA may refuse this command, which is just fine */
3373 if (ata_id_is_cfa(dev->id))
3374 ign_dev_err = 1;
3375 /* Catch several broken garbage emulations plus some pre
3376 ATA devices */
3377 if (ata_id_major_version(dev->id) == 0 &&
3378 dev->pio_mode <= XFER_PIO_2)
3379 ign_dev_err = 1;
3380 /* Some very old devices and some bad newer ones fail
3381 any kind of SET_XFERMODE request but support PIO0-2
3382 timings and no IORDY */
3383 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3384 ign_dev_err = 1;
3386 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3387 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3388 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3389 dev->dma_mode == XFER_MW_DMA_0 &&
3390 (dev->id[63] >> 8) & 1)
3391 ign_dev_err = 1;
3393 /* if the device is actually configured correctly, ignore dev err */
3394 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3395 ign_dev_err = 1;
3397 if (err_mask & AC_ERR_DEV) {
3398 if (!ign_dev_err)
3399 goto fail;
3400 else
3401 dev_err_whine = " (device error ignored)";
3404 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3405 dev->xfer_shift, (int)dev->xfer_mode);
3407 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3408 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3409 dev_err_whine);
3411 return 0;
3413 fail:
3414 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3415 "(err_mask=0x%x)\n", err_mask);
3416 return -EIO;
3420 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3421 * @link: link on which timings will be programmed
3422 * @r_failed_dev: out parameter for failed device
3424 * Standard implementation of the function used to tune and set
3425 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3426 * ata_dev_set_mode() fails, pointer to the failing device is
3427 * returned in @r_failed_dev.
3429 * LOCKING:
3430 * PCI/etc. bus probe sem.
3432 * RETURNS:
3433 * 0 on success, negative errno otherwise
3436 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3438 struct ata_port *ap = link->ap;
3439 struct ata_device *dev;
3440 int rc = 0, used_dma = 0, found = 0;
3442 /* step 1: calculate xfer_mask */
3443 ata_for_each_dev(dev, link, ENABLED) {
3444 unsigned long pio_mask, dma_mask;
3445 unsigned int mode_mask;
3447 mode_mask = ATA_DMA_MASK_ATA;
3448 if (dev->class == ATA_DEV_ATAPI)
3449 mode_mask = ATA_DMA_MASK_ATAPI;
3450 else if (ata_id_is_cfa(dev->id))
3451 mode_mask = ATA_DMA_MASK_CFA;
3453 ata_dev_xfermask(dev);
3454 ata_force_xfermask(dev);
3456 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3457 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3459 if (libata_dma_mask & mode_mask)
3460 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3461 else
3462 dma_mask = 0;
3464 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3465 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3467 found = 1;
3468 if (ata_dma_enabled(dev))
3469 used_dma = 1;
3471 if (!found)
3472 goto out;
3474 /* step 2: always set host PIO timings */
3475 ata_for_each_dev(dev, link, ENABLED) {
3476 if (dev->pio_mode == 0xff) {
3477 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3478 rc = -EINVAL;
3479 goto out;
3482 dev->xfer_mode = dev->pio_mode;
3483 dev->xfer_shift = ATA_SHIFT_PIO;
3484 if (ap->ops->set_piomode)
3485 ap->ops->set_piomode(ap, dev);
3488 /* step 3: set host DMA timings */
3489 ata_for_each_dev(dev, link, ENABLED) {
3490 if (!ata_dma_enabled(dev))
3491 continue;
3493 dev->xfer_mode = dev->dma_mode;
3494 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3495 if (ap->ops->set_dmamode)
3496 ap->ops->set_dmamode(ap, dev);
3499 /* step 4: update devices' xfer mode */
3500 ata_for_each_dev(dev, link, ENABLED) {
3501 rc = ata_dev_set_mode(dev);
3502 if (rc)
3503 goto out;
3506 /* Record simplex status. If we selected DMA then the other
3507 * host channels are not permitted to do so.
3509 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3510 ap->host->simplex_claimed = ap;
3512 out:
3513 if (rc)
3514 *r_failed_dev = dev;
3515 return rc;
3519 * ata_wait_ready - wait for link to become ready
3520 * @link: link to be waited on
3521 * @deadline: deadline jiffies for the operation
3522 * @check_ready: callback to check link readiness
3524 * Wait for @link to become ready. @check_ready should return
3525 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3526 * link doesn't seem to be occupied, other errno for other error
3527 * conditions.
3529 * Transient -ENODEV conditions are allowed for
3530 * ATA_TMOUT_FF_WAIT.
3532 * LOCKING:
3533 * EH context.
3535 * RETURNS:
3536 * 0 if @linke is ready before @deadline; otherwise, -errno.
3538 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3539 int (*check_ready)(struct ata_link *link))
3541 unsigned long start = jiffies;
3542 unsigned long nodev_deadline;
3543 int warned = 0;
3545 /* choose which 0xff timeout to use, read comment in libata.h */
3546 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3547 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3548 else
3549 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3551 /* Slave readiness can't be tested separately from master. On
3552 * M/S emulation configuration, this function should be called
3553 * only on the master and it will handle both master and slave.
3555 WARN_ON(link == link->ap->slave_link);
3557 if (time_after(nodev_deadline, deadline))
3558 nodev_deadline = deadline;
3560 while (1) {
3561 unsigned long now = jiffies;
3562 int ready, tmp;
3564 ready = tmp = check_ready(link);
3565 if (ready > 0)
3566 return 0;
3569 * -ENODEV could be transient. Ignore -ENODEV if link
3570 * is online. Also, some SATA devices take a long
3571 * time to clear 0xff after reset. Wait for
3572 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3573 * offline.
3575 * Note that some PATA controllers (pata_ali) explode
3576 * if status register is read more than once when
3577 * there's no device attached.
3579 if (ready == -ENODEV) {
3580 if (ata_link_online(link))
3581 ready = 0;
3582 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3583 !ata_link_offline(link) &&
3584 time_before(now, nodev_deadline))
3585 ready = 0;
3588 if (ready)
3589 return ready;
3590 if (time_after(now, deadline))
3591 return -EBUSY;
3593 if (!warned && time_after(now, start + 5 * HZ) &&
3594 (deadline - now > 3 * HZ)) {
3595 ata_link_printk(link, KERN_WARNING,
3596 "link is slow to respond, please be patient "
3597 "(ready=%d)\n", tmp);
3598 warned = 1;
3601 msleep(50);
3606 * ata_wait_after_reset - wait for link to become ready after reset
3607 * @link: link to be waited on
3608 * @deadline: deadline jiffies for the operation
3609 * @check_ready: callback to check link readiness
3611 * Wait for @link to become ready after reset.
3613 * LOCKING:
3614 * EH context.
3616 * RETURNS:
3617 * 0 if @linke is ready before @deadline; otherwise, -errno.
3619 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3620 int (*check_ready)(struct ata_link *link))
3622 msleep(ATA_WAIT_AFTER_RESET);
3624 return ata_wait_ready(link, deadline, check_ready);
3628 * sata_link_debounce - debounce SATA phy status
3629 * @link: ATA link to debounce SATA phy status for
3630 * @params: timing parameters { interval, duratinon, timeout } in msec
3631 * @deadline: deadline jiffies for the operation
3633 * Make sure SStatus of @link reaches stable state, determined by
3634 * holding the same value where DET is not 1 for @duration polled
3635 * every @interval, before @timeout. Timeout constraints the
3636 * beginning of the stable state. Because DET gets stuck at 1 on
3637 * some controllers after hot unplugging, this functions waits
3638 * until timeout then returns 0 if DET is stable at 1.
3640 * @timeout is further limited by @deadline. The sooner of the
3641 * two is used.
3643 * LOCKING:
3644 * Kernel thread context (may sleep)
3646 * RETURNS:
3647 * 0 on success, -errno on failure.
3649 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3650 unsigned long deadline)
3652 unsigned long interval = params[0];
3653 unsigned long duration = params[1];
3654 unsigned long last_jiffies, t;
3655 u32 last, cur;
3656 int rc;
3658 t = ata_deadline(jiffies, params[2]);
3659 if (time_before(t, deadline))
3660 deadline = t;
3662 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3663 return rc;
3664 cur &= 0xf;
3666 last = cur;
3667 last_jiffies = jiffies;
3669 while (1) {
3670 msleep(interval);
3671 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3672 return rc;
3673 cur &= 0xf;
3675 /* DET stable? */
3676 if (cur == last) {
3677 if (cur == 1 && time_before(jiffies, deadline))
3678 continue;
3679 if (time_after(jiffies,
3680 ata_deadline(last_jiffies, duration)))
3681 return 0;
3682 continue;
3685 /* unstable, start over */
3686 last = cur;
3687 last_jiffies = jiffies;
3689 /* Check deadline. If debouncing failed, return
3690 * -EPIPE to tell upper layer to lower link speed.
3692 if (time_after(jiffies, deadline))
3693 return -EPIPE;
3698 * sata_link_resume - resume SATA link
3699 * @link: ATA link to resume SATA
3700 * @params: timing parameters { interval, duratinon, timeout } in msec
3701 * @deadline: deadline jiffies for the operation
3703 * Resume SATA phy @link and debounce it.
3705 * LOCKING:
3706 * Kernel thread context (may sleep)
3708 * RETURNS:
3709 * 0 on success, -errno on failure.
3711 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3712 unsigned long deadline)
3714 int tries = ATA_LINK_RESUME_TRIES;
3715 u32 scontrol, serror;
3716 int rc;
3718 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3719 return rc;
3722 * Writes to SControl sometimes get ignored under certain
3723 * controllers (ata_piix SIDPR). Make sure DET actually is
3724 * cleared.
3726 do {
3727 scontrol = (scontrol & 0x0f0) | 0x300;
3728 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3729 return rc;
3731 * Some PHYs react badly if SStatus is pounded
3732 * immediately after resuming. Delay 200ms before
3733 * debouncing.
3735 msleep(200);
3737 /* is SControl restored correctly? */
3738 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3739 return rc;
3740 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3742 if ((scontrol & 0xf0f) != 0x300) {
3743 ata_link_printk(link, KERN_ERR,
3744 "failed to resume link (SControl %X)\n",
3745 scontrol);
3746 return 0;
3749 if (tries < ATA_LINK_RESUME_TRIES)
3750 ata_link_printk(link, KERN_WARNING,
3751 "link resume succeeded after %d retries\n",
3752 ATA_LINK_RESUME_TRIES - tries);
3754 if ((rc = sata_link_debounce(link, params, deadline)))
3755 return rc;
3757 /* clear SError, some PHYs require this even for SRST to work */
3758 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3759 rc = sata_scr_write(link, SCR_ERROR, serror);
3761 return rc != -EINVAL ? rc : 0;
3765 * ata_std_prereset - prepare for reset
3766 * @link: ATA link to be reset
3767 * @deadline: deadline jiffies for the operation
3769 * @link is about to be reset. Initialize it. Failure from
3770 * prereset makes libata abort whole reset sequence and give up
3771 * that port, so prereset should be best-effort. It does its
3772 * best to prepare for reset sequence but if things go wrong, it
3773 * should just whine, not fail.
3775 * LOCKING:
3776 * Kernel thread context (may sleep)
3778 * RETURNS:
3779 * 0 on success, -errno otherwise.
3781 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3783 struct ata_port *ap = link->ap;
3784 struct ata_eh_context *ehc = &link->eh_context;
3785 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3786 int rc;
3788 /* if we're about to do hardreset, nothing more to do */
3789 if (ehc->i.action & ATA_EH_HARDRESET)
3790 return 0;
3792 /* if SATA, resume link */
3793 if (ap->flags & ATA_FLAG_SATA) {
3794 rc = sata_link_resume(link, timing, deadline);
3795 /* whine about phy resume failure but proceed */
3796 if (rc && rc != -EOPNOTSUPP)
3797 ata_link_printk(link, KERN_WARNING, "failed to resume "
3798 "link for reset (errno=%d)\n", rc);
3801 /* no point in trying softreset on offline link */
3802 if (ata_phys_link_offline(link))
3803 ehc->i.action &= ~ATA_EH_SOFTRESET;
3805 return 0;
3809 * sata_link_hardreset - reset link via SATA phy reset
3810 * @link: link to reset
3811 * @timing: timing parameters { interval, duratinon, timeout } in msec
3812 * @deadline: deadline jiffies for the operation
3813 * @online: optional out parameter indicating link onlineness
3814 * @check_ready: optional callback to check link readiness
3816 * SATA phy-reset @link using DET bits of SControl register.
3817 * After hardreset, link readiness is waited upon using
3818 * ata_wait_ready() if @check_ready is specified. LLDs are
3819 * allowed to not specify @check_ready and wait itself after this
3820 * function returns. Device classification is LLD's
3821 * responsibility.
3823 * *@online is set to one iff reset succeeded and @link is online
3824 * after reset.
3826 * LOCKING:
3827 * Kernel thread context (may sleep)
3829 * RETURNS:
3830 * 0 on success, -errno otherwise.
3832 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3833 unsigned long deadline,
3834 bool *online, int (*check_ready)(struct ata_link *))
3836 u32 scontrol;
3837 int rc;
3839 DPRINTK("ENTER\n");
3841 if (online)
3842 *online = false;
3844 if (sata_set_spd_needed(link)) {
3845 /* SATA spec says nothing about how to reconfigure
3846 * spd. To be on the safe side, turn off phy during
3847 * reconfiguration. This works for at least ICH7 AHCI
3848 * and Sil3124.
3850 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3851 goto out;
3853 scontrol = (scontrol & 0x0f0) | 0x304;
3855 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3856 goto out;
3858 sata_set_spd(link);
3861 /* issue phy wake/reset */
3862 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3863 goto out;
3865 scontrol = (scontrol & 0x0f0) | 0x301;
3867 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3868 goto out;
3870 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3871 * 10.4.2 says at least 1 ms.
3873 msleep(1);
3875 /* bring link back */
3876 rc = sata_link_resume(link, timing, deadline);
3877 if (rc)
3878 goto out;
3879 /* if link is offline nothing more to do */
3880 if (ata_phys_link_offline(link))
3881 goto out;
3883 /* Link is online. From this point, -ENODEV too is an error. */
3884 if (online)
3885 *online = true;
3887 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3888 /* If PMP is supported, we have to do follow-up SRST.
3889 * Some PMPs don't send D2H Reg FIS after hardreset if
3890 * the first port is empty. Wait only for
3891 * ATA_TMOUT_PMP_SRST_WAIT.
3893 if (check_ready) {
3894 unsigned long pmp_deadline;
3896 pmp_deadline = ata_deadline(jiffies,
3897 ATA_TMOUT_PMP_SRST_WAIT);
3898 if (time_after(pmp_deadline, deadline))
3899 pmp_deadline = deadline;
3900 ata_wait_ready(link, pmp_deadline, check_ready);
3902 rc = -EAGAIN;
3903 goto out;
3906 rc = 0;
3907 if (check_ready)
3908 rc = ata_wait_ready(link, deadline, check_ready);
3909 out:
3910 if (rc && rc != -EAGAIN) {
3911 /* online is set iff link is online && reset succeeded */
3912 if (online)
3913 *online = false;
3914 ata_link_printk(link, KERN_ERR,
3915 "COMRESET failed (errno=%d)\n", rc);
3917 DPRINTK("EXIT, rc=%d\n", rc);
3918 return rc;
3922 * sata_std_hardreset - COMRESET w/o waiting or classification
3923 * @link: link to reset
3924 * @class: resulting class of attached device
3925 * @deadline: deadline jiffies for the operation
3927 * Standard SATA COMRESET w/o waiting or classification.
3929 * LOCKING:
3930 * Kernel thread context (may sleep)
3932 * RETURNS:
3933 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3935 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3936 unsigned long deadline)
3938 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3939 bool online;
3940 int rc;
3942 /* do hardreset */
3943 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3944 return online ? -EAGAIN : rc;
3948 * ata_std_postreset - standard postreset callback
3949 * @link: the target ata_link
3950 * @classes: classes of attached devices
3952 * This function is invoked after a successful reset. Note that
3953 * the device might have been reset more than once using
3954 * different reset methods before postreset is invoked.
3956 * LOCKING:
3957 * Kernel thread context (may sleep)
3959 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3961 u32 serror;
3963 DPRINTK("ENTER\n");
3965 /* reset complete, clear SError */
3966 if (!sata_scr_read(link, SCR_ERROR, &serror))
3967 sata_scr_write(link, SCR_ERROR, serror);
3969 /* print link status */
3970 sata_print_link_status(link);
3972 DPRINTK("EXIT\n");
3976 * ata_dev_same_device - Determine whether new ID matches configured device
3977 * @dev: device to compare against
3978 * @new_class: class of the new device
3979 * @new_id: IDENTIFY page of the new device
3981 * Compare @new_class and @new_id against @dev and determine
3982 * whether @dev is the device indicated by @new_class and
3983 * @new_id.
3985 * LOCKING:
3986 * None.
3988 * RETURNS:
3989 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3991 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3992 const u16 *new_id)
3994 const u16 *old_id = dev->id;
3995 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3996 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3998 if (dev->class != new_class) {
3999 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4000 dev->class, new_class);
4001 return 0;
4004 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4005 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4006 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4007 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4009 if (strcmp(model[0], model[1])) {
4010 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4011 "'%s' != '%s'\n", model[0], model[1]);
4012 return 0;
4015 if (strcmp(serial[0], serial[1])) {
4016 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4017 "'%s' != '%s'\n", serial[0], serial[1]);
4018 return 0;
4021 return 1;
4025 * ata_dev_reread_id - Re-read IDENTIFY data
4026 * @dev: target ATA device
4027 * @readid_flags: read ID flags
4029 * Re-read IDENTIFY page and make sure @dev is still attached to
4030 * the port.
4032 * LOCKING:
4033 * Kernel thread context (may sleep)
4035 * RETURNS:
4036 * 0 on success, negative errno otherwise
4038 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4040 unsigned int class = dev->class;
4041 u16 *id = (void *)dev->link->ap->sector_buf;
4042 int rc;
4044 /* read ID data */
4045 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4046 if (rc)
4047 return rc;
4049 /* is the device still there? */
4050 if (!ata_dev_same_device(dev, class, id))
4051 return -ENODEV;
4053 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4054 return 0;
4058 * ata_dev_revalidate - Revalidate ATA device
4059 * @dev: device to revalidate
4060 * @new_class: new class code
4061 * @readid_flags: read ID flags
4063 * Re-read IDENTIFY page, make sure @dev is still attached to the
4064 * port and reconfigure it according to the new IDENTIFY page.
4066 * LOCKING:
4067 * Kernel thread context (may sleep)
4069 * RETURNS:
4070 * 0 on success, negative errno otherwise
4072 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4073 unsigned int readid_flags)
4075 u64 n_sectors = dev->n_sectors;
4076 u64 n_native_sectors = dev->n_native_sectors;
4077 int rc;
4079 if (!ata_dev_enabled(dev))
4080 return -ENODEV;
4082 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4083 if (ata_class_enabled(new_class) &&
4084 new_class != ATA_DEV_ATA &&
4085 new_class != ATA_DEV_ATAPI &&
4086 new_class != ATA_DEV_SEMB) {
4087 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4088 dev->class, new_class);
4089 rc = -ENODEV;
4090 goto fail;
4093 /* re-read ID */
4094 rc = ata_dev_reread_id(dev, readid_flags);
4095 if (rc)
4096 goto fail;
4098 /* configure device according to the new ID */
4099 rc = ata_dev_configure(dev);
4100 if (rc)
4101 goto fail;
4103 /* verify n_sectors hasn't changed */
4104 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4105 dev->n_sectors == n_sectors)
4106 return 0;
4108 /* n_sectors has changed */
4109 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch %llu != %llu\n",
4110 (unsigned long long)n_sectors,
4111 (unsigned long long)dev->n_sectors);
4114 * Something could have caused HPA to be unlocked
4115 * involuntarily. If n_native_sectors hasn't changed and the
4116 * new size matches it, keep the device.
4118 if (dev->n_native_sectors == n_native_sectors &&
4119 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4120 ata_dev_printk(dev, KERN_WARNING,
4121 "new n_sectors matches native, probably "
4122 "late HPA unlock, n_sectors updated\n");
4123 /* use the larger n_sectors */
4124 return 0;
4128 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4129 * unlocking HPA in those cases.
4131 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4133 if (dev->n_native_sectors == n_native_sectors &&
4134 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4135 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4136 ata_dev_printk(dev, KERN_WARNING,
4137 "old n_sectors matches native, probably "
4138 "late HPA lock, will try to unlock HPA\n");
4139 /* try unlocking HPA */
4140 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4141 rc = -EIO;
4142 } else
4143 rc = -ENODEV;
4145 /* restore original n_[native_]sectors and fail */
4146 dev->n_native_sectors = n_native_sectors;
4147 dev->n_sectors = n_sectors;
4148 fail:
4149 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4150 return rc;
4153 struct ata_blacklist_entry {
4154 const char *model_num;
4155 const char *model_rev;
4156 unsigned long horkage;
4159 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4160 /* Devices with DMA related problems under Linux */
4161 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4162 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4163 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4164 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4165 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4166 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4167 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4168 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4169 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4170 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4171 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4172 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4173 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4174 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4175 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4176 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4177 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4178 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4179 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4180 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4181 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4182 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4183 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4184 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4185 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4186 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4187 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4188 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4189 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4190 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4191 /* Odd clown on sil3726/4726 PMPs */
4192 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4194 /* Weird ATAPI devices */
4195 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4196 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4198 /* Devices we expect to fail diagnostics */
4200 /* Devices where NCQ should be avoided */
4201 /* NCQ is slow */
4202 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4203 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4204 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4205 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4206 /* NCQ is broken */
4207 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4208 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4209 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4210 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4211 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4213 /* Seagate NCQ + FLUSH CACHE firmware bug */
4214 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4215 ATA_HORKAGE_FIRMWARE_WARN },
4216 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4217 ATA_HORKAGE_FIRMWARE_WARN },
4218 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4219 ATA_HORKAGE_FIRMWARE_WARN },
4220 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4221 ATA_HORKAGE_FIRMWARE_WARN },
4222 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4223 ATA_HORKAGE_FIRMWARE_WARN },
4225 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4226 ATA_HORKAGE_FIRMWARE_WARN },
4227 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4228 ATA_HORKAGE_FIRMWARE_WARN },
4229 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4234 ATA_HORKAGE_FIRMWARE_WARN },
4236 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4237 ATA_HORKAGE_FIRMWARE_WARN },
4238 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4239 ATA_HORKAGE_FIRMWARE_WARN },
4240 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4241 ATA_HORKAGE_FIRMWARE_WARN },
4242 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4243 ATA_HORKAGE_FIRMWARE_WARN },
4244 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4245 ATA_HORKAGE_FIRMWARE_WARN },
4247 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4248 ATA_HORKAGE_FIRMWARE_WARN },
4249 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4250 ATA_HORKAGE_FIRMWARE_WARN },
4251 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4252 ATA_HORKAGE_FIRMWARE_WARN },
4253 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4254 ATA_HORKAGE_FIRMWARE_WARN },
4255 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4256 ATA_HORKAGE_FIRMWARE_WARN },
4258 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4259 ATA_HORKAGE_FIRMWARE_WARN },
4260 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4261 ATA_HORKAGE_FIRMWARE_WARN },
4262 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4263 ATA_HORKAGE_FIRMWARE_WARN },
4264 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4265 ATA_HORKAGE_FIRMWARE_WARN },
4266 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4267 ATA_HORKAGE_FIRMWARE_WARN },
4269 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4270 ATA_HORKAGE_FIRMWARE_WARN },
4271 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4272 ATA_HORKAGE_FIRMWARE_WARN },
4273 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4274 ATA_HORKAGE_FIRMWARE_WARN },
4275 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4276 ATA_HORKAGE_FIRMWARE_WARN },
4277 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4278 ATA_HORKAGE_FIRMWARE_WARN },
4280 /* Blacklist entries taken from Silicon Image 3124/3132
4281 Windows driver .inf file - also several Linux problem reports */
4282 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4283 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4284 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4286 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4287 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4289 /* devices which puke on READ_NATIVE_MAX */
4290 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4291 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4292 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4293 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4295 /* this one allows HPA unlocking but fails IOs on the area */
4296 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4298 /* Devices which report 1 sector over size HPA */
4299 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4300 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4301 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4303 /* Devices which get the IVB wrong */
4304 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4305 /* Maybe we should just blacklist TSSTcorp... */
4306 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4307 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4308 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4309 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4310 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4311 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4313 /* Devices that do not need bridging limits applied */
4314 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4316 /* Devices which aren't very happy with higher link speeds */
4317 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4320 * Devices which choke on SETXFER. Applies only if both the
4321 * device and controller are SATA.
4323 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4325 /* End Marker */
4329 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4331 const char *p;
4332 int len;
4335 * check for trailing wildcard: *\0
4337 p = strchr(patt, wildchar);
4338 if (p && ((*(p + 1)) == 0))
4339 len = p - patt;
4340 else {
4341 len = strlen(name);
4342 if (!len) {
4343 if (!*patt)
4344 return 0;
4345 return -1;
4349 return strncmp(patt, name, len);
4352 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4354 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4355 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4356 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4358 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4359 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4361 while (ad->model_num) {
4362 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4363 if (ad->model_rev == NULL)
4364 return ad->horkage;
4365 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4366 return ad->horkage;
4368 ad++;
4370 return 0;
4373 static int ata_dma_blacklisted(const struct ata_device *dev)
4375 /* We don't support polling DMA.
4376 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4377 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4379 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4380 (dev->flags & ATA_DFLAG_CDB_INTR))
4381 return 1;
4382 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4386 * ata_is_40wire - check drive side detection
4387 * @dev: device
4389 * Perform drive side detection decoding, allowing for device vendors
4390 * who can't follow the documentation.
4393 static int ata_is_40wire(struct ata_device *dev)
4395 if (dev->horkage & ATA_HORKAGE_IVB)
4396 return ata_drive_40wire_relaxed(dev->id);
4397 return ata_drive_40wire(dev->id);
4401 * cable_is_40wire - 40/80/SATA decider
4402 * @ap: port to consider
4404 * This function encapsulates the policy for speed management
4405 * in one place. At the moment we don't cache the result but
4406 * there is a good case for setting ap->cbl to the result when
4407 * we are called with unknown cables (and figuring out if it
4408 * impacts hotplug at all).
4410 * Return 1 if the cable appears to be 40 wire.
4413 static int cable_is_40wire(struct ata_port *ap)
4415 struct ata_link *link;
4416 struct ata_device *dev;
4418 /* If the controller thinks we are 40 wire, we are. */
4419 if (ap->cbl == ATA_CBL_PATA40)
4420 return 1;
4422 /* If the controller thinks we are 80 wire, we are. */
4423 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4424 return 0;
4426 /* If the system is known to be 40 wire short cable (eg
4427 * laptop), then we allow 80 wire modes even if the drive
4428 * isn't sure.
4430 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4431 return 0;
4433 /* If the controller doesn't know, we scan.
4435 * Note: We look for all 40 wire detects at this point. Any
4436 * 80 wire detect is taken to be 80 wire cable because
4437 * - in many setups only the one drive (slave if present) will
4438 * give a valid detect
4439 * - if you have a non detect capable drive you don't want it
4440 * to colour the choice
4442 ata_for_each_link(link, ap, EDGE) {
4443 ata_for_each_dev(dev, link, ENABLED) {
4444 if (!ata_is_40wire(dev))
4445 return 0;
4448 return 1;
4452 * ata_dev_xfermask - Compute supported xfermask of the given device
4453 * @dev: Device to compute xfermask for
4455 * Compute supported xfermask of @dev and store it in
4456 * dev->*_mask. This function is responsible for applying all
4457 * known limits including host controller limits, device
4458 * blacklist, etc...
4460 * LOCKING:
4461 * None.
4463 static void ata_dev_xfermask(struct ata_device *dev)
4465 struct ata_link *link = dev->link;
4466 struct ata_port *ap = link->ap;
4467 struct ata_host *host = ap->host;
4468 unsigned long xfer_mask;
4470 /* controller modes available */
4471 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4472 ap->mwdma_mask, ap->udma_mask);
4474 /* drive modes available */
4475 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4476 dev->mwdma_mask, dev->udma_mask);
4477 xfer_mask &= ata_id_xfermask(dev->id);
4480 * CFA Advanced TrueIDE timings are not allowed on a shared
4481 * cable
4483 if (ata_dev_pair(dev)) {
4484 /* No PIO5 or PIO6 */
4485 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4486 /* No MWDMA3 or MWDMA 4 */
4487 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4490 if (ata_dma_blacklisted(dev)) {
4491 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4492 ata_dev_printk(dev, KERN_WARNING,
4493 "device is on DMA blacklist, disabling DMA\n");
4496 if ((host->flags & ATA_HOST_SIMPLEX) &&
4497 host->simplex_claimed && host->simplex_claimed != ap) {
4498 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4499 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4500 "other device, disabling DMA\n");
4503 if (ap->flags & ATA_FLAG_NO_IORDY)
4504 xfer_mask &= ata_pio_mask_no_iordy(dev);
4506 if (ap->ops->mode_filter)
4507 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4509 /* Apply cable rule here. Don't apply it early because when
4510 * we handle hot plug the cable type can itself change.
4511 * Check this last so that we know if the transfer rate was
4512 * solely limited by the cable.
4513 * Unknown or 80 wire cables reported host side are checked
4514 * drive side as well. Cases where we know a 40wire cable
4515 * is used safely for 80 are not checked here.
4517 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4518 /* UDMA/44 or higher would be available */
4519 if (cable_is_40wire(ap)) {
4520 ata_dev_printk(dev, KERN_WARNING,
4521 "limited to UDMA/33 due to 40-wire cable\n");
4522 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4525 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4526 &dev->mwdma_mask, &dev->udma_mask);
4530 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4531 * @dev: Device to which command will be sent
4533 * Issue SET FEATURES - XFER MODE command to device @dev
4534 * on port @ap.
4536 * LOCKING:
4537 * PCI/etc. bus probe sem.
4539 * RETURNS:
4540 * 0 on success, AC_ERR_* mask otherwise.
4543 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4545 struct ata_taskfile tf;
4546 unsigned int err_mask;
4548 /* set up set-features taskfile */
4549 DPRINTK("set features - xfer mode\n");
4551 /* Some controllers and ATAPI devices show flaky interrupt
4552 * behavior after setting xfer mode. Use polling instead.
4554 ata_tf_init(dev, &tf);
4555 tf.command = ATA_CMD_SET_FEATURES;
4556 tf.feature = SETFEATURES_XFER;
4557 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4558 tf.protocol = ATA_PROT_NODATA;
4559 /* If we are using IORDY we must send the mode setting command */
4560 if (ata_pio_need_iordy(dev))
4561 tf.nsect = dev->xfer_mode;
4562 /* If the device has IORDY and the controller does not - turn it off */
4563 else if (ata_id_has_iordy(dev->id))
4564 tf.nsect = 0x01;
4565 else /* In the ancient relic department - skip all of this */
4566 return 0;
4568 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4570 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4571 return err_mask;
4574 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4575 * @dev: Device to which command will be sent
4576 * @enable: Whether to enable or disable the feature
4577 * @feature: The sector count represents the feature to set
4579 * Issue SET FEATURES - SATA FEATURES command to device @dev
4580 * on port @ap with sector count
4582 * LOCKING:
4583 * PCI/etc. bus probe sem.
4585 * RETURNS:
4586 * 0 on success, AC_ERR_* mask otherwise.
4588 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4589 u8 feature)
4591 struct ata_taskfile tf;
4592 unsigned int err_mask;
4594 /* set up set-features taskfile */
4595 DPRINTK("set features - SATA features\n");
4597 ata_tf_init(dev, &tf);
4598 tf.command = ATA_CMD_SET_FEATURES;
4599 tf.feature = enable;
4600 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4601 tf.protocol = ATA_PROT_NODATA;
4602 tf.nsect = feature;
4604 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4606 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4607 return err_mask;
4611 * ata_dev_init_params - Issue INIT DEV PARAMS command
4612 * @dev: Device to which command will be sent
4613 * @heads: Number of heads (taskfile parameter)
4614 * @sectors: Number of sectors (taskfile parameter)
4616 * LOCKING:
4617 * Kernel thread context (may sleep)
4619 * RETURNS:
4620 * 0 on success, AC_ERR_* mask otherwise.
4622 static unsigned int ata_dev_init_params(struct ata_device *dev,
4623 u16 heads, u16 sectors)
4625 struct ata_taskfile tf;
4626 unsigned int err_mask;
4628 /* Number of sectors per track 1-255. Number of heads 1-16 */
4629 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4630 return AC_ERR_INVALID;
4632 /* set up init dev params taskfile */
4633 DPRINTK("init dev params \n");
4635 ata_tf_init(dev, &tf);
4636 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4637 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4638 tf.protocol = ATA_PROT_NODATA;
4639 tf.nsect = sectors;
4640 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4642 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4643 /* A clean abort indicates an original or just out of spec drive
4644 and we should continue as we issue the setup based on the
4645 drive reported working geometry */
4646 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4647 err_mask = 0;
4649 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4650 return err_mask;
4654 * ata_sg_clean - Unmap DMA memory associated with command
4655 * @qc: Command containing DMA memory to be released
4657 * Unmap all mapped DMA memory associated with this command.
4659 * LOCKING:
4660 * spin_lock_irqsave(host lock)
4662 void ata_sg_clean(struct ata_queued_cmd *qc)
4664 struct ata_port *ap = qc->ap;
4665 struct scatterlist *sg = qc->sg;
4666 int dir = qc->dma_dir;
4668 WARN_ON_ONCE(sg == NULL);
4670 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4672 if (qc->n_elem)
4673 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4675 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4676 qc->sg = NULL;
4680 * atapi_check_dma - Check whether ATAPI DMA can be supported
4681 * @qc: Metadata associated with taskfile to check
4683 * Allow low-level driver to filter ATA PACKET commands, returning
4684 * a status indicating whether or not it is OK to use DMA for the
4685 * supplied PACKET command.
4687 * LOCKING:
4688 * spin_lock_irqsave(host lock)
4690 * RETURNS: 0 when ATAPI DMA can be used
4691 * nonzero otherwise
4693 int atapi_check_dma(struct ata_queued_cmd *qc)
4695 struct ata_port *ap = qc->ap;
4697 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4698 * few ATAPI devices choke on such DMA requests.
4700 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4701 unlikely(qc->nbytes & 15))
4702 return 1;
4704 if (ap->ops->check_atapi_dma)
4705 return ap->ops->check_atapi_dma(qc);
4707 return 0;
4711 * ata_std_qc_defer - Check whether a qc needs to be deferred
4712 * @qc: ATA command in question
4714 * Non-NCQ commands cannot run with any other command, NCQ or
4715 * not. As upper layer only knows the queue depth, we are
4716 * responsible for maintaining exclusion. This function checks
4717 * whether a new command @qc can be issued.
4719 * LOCKING:
4720 * spin_lock_irqsave(host lock)
4722 * RETURNS:
4723 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4725 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4727 struct ata_link *link = qc->dev->link;
4729 if (qc->tf.protocol == ATA_PROT_NCQ) {
4730 if (!ata_tag_valid(link->active_tag))
4731 return 0;
4732 } else {
4733 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4734 return 0;
4737 return ATA_DEFER_LINK;
4740 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4743 * ata_sg_init - Associate command with scatter-gather table.
4744 * @qc: Command to be associated
4745 * @sg: Scatter-gather table.
4746 * @n_elem: Number of elements in s/g table.
4748 * Initialize the data-related elements of queued_cmd @qc
4749 * to point to a scatter-gather table @sg, containing @n_elem
4750 * elements.
4752 * LOCKING:
4753 * spin_lock_irqsave(host lock)
4755 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4756 unsigned int n_elem)
4758 qc->sg = sg;
4759 qc->n_elem = n_elem;
4760 qc->cursg = qc->sg;
4764 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4765 * @qc: Command with scatter-gather table to be mapped.
4767 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4769 * LOCKING:
4770 * spin_lock_irqsave(host lock)
4772 * RETURNS:
4773 * Zero on success, negative on error.
4776 static int ata_sg_setup(struct ata_queued_cmd *qc)
4778 struct ata_port *ap = qc->ap;
4779 unsigned int n_elem;
4781 VPRINTK("ENTER, ata%u\n", ap->print_id);
4783 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4784 if (n_elem < 1)
4785 return -1;
4787 DPRINTK("%d sg elements mapped\n", n_elem);
4788 qc->orig_n_elem = qc->n_elem;
4789 qc->n_elem = n_elem;
4790 qc->flags |= ATA_QCFLAG_DMAMAP;
4792 return 0;
4796 * swap_buf_le16 - swap halves of 16-bit words in place
4797 * @buf: Buffer to swap
4798 * @buf_words: Number of 16-bit words in buffer.
4800 * Swap halves of 16-bit words if needed to convert from
4801 * little-endian byte order to native cpu byte order, or
4802 * vice-versa.
4804 * LOCKING:
4805 * Inherited from caller.
4807 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4809 #ifdef __BIG_ENDIAN
4810 unsigned int i;
4812 for (i = 0; i < buf_words; i++)
4813 buf[i] = le16_to_cpu(buf[i]);
4814 #endif /* __BIG_ENDIAN */
4818 * ata_qc_new - Request an available ATA command, for queueing
4819 * @ap: target port
4821 * LOCKING:
4822 * None.
4825 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4827 struct ata_queued_cmd *qc = NULL;
4828 unsigned int i;
4830 /* no command while frozen */
4831 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4832 return NULL;
4834 /* the last tag is reserved for internal command. */
4835 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4836 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4837 qc = __ata_qc_from_tag(ap, i);
4838 break;
4841 if (qc)
4842 qc->tag = i;
4844 return qc;
4848 * ata_qc_new_init - Request an available ATA command, and initialize it
4849 * @dev: Device from whom we request an available command structure
4851 * LOCKING:
4852 * None.
4855 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4857 struct ata_port *ap = dev->link->ap;
4858 struct ata_queued_cmd *qc;
4860 qc = ata_qc_new(ap);
4861 if (qc) {
4862 qc->scsicmd = NULL;
4863 qc->ap = ap;
4864 qc->dev = dev;
4866 ata_qc_reinit(qc);
4869 return qc;
4873 * ata_qc_free - free unused ata_queued_cmd
4874 * @qc: Command to complete
4876 * Designed to free unused ata_queued_cmd object
4877 * in case something prevents using it.
4879 * LOCKING:
4880 * spin_lock_irqsave(host lock)
4882 void ata_qc_free(struct ata_queued_cmd *qc)
4884 struct ata_port *ap;
4885 unsigned int tag;
4887 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4888 ap = qc->ap;
4890 qc->flags = 0;
4891 tag = qc->tag;
4892 if (likely(ata_tag_valid(tag))) {
4893 qc->tag = ATA_TAG_POISON;
4894 clear_bit(tag, &ap->qc_allocated);
4898 void __ata_qc_complete(struct ata_queued_cmd *qc)
4900 struct ata_port *ap;
4901 struct ata_link *link;
4903 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4904 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4905 ap = qc->ap;
4906 link = qc->dev->link;
4908 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4909 ata_sg_clean(qc);
4911 /* command should be marked inactive atomically with qc completion */
4912 if (qc->tf.protocol == ATA_PROT_NCQ) {
4913 link->sactive &= ~(1 << qc->tag);
4914 if (!link->sactive)
4915 ap->nr_active_links--;
4916 } else {
4917 link->active_tag = ATA_TAG_POISON;
4918 ap->nr_active_links--;
4921 /* clear exclusive status */
4922 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4923 ap->excl_link == link))
4924 ap->excl_link = NULL;
4926 /* atapi: mark qc as inactive to prevent the interrupt handler
4927 * from completing the command twice later, before the error handler
4928 * is called. (when rc != 0 and atapi request sense is needed)
4930 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4931 ap->qc_active &= ~(1 << qc->tag);
4933 /* call completion callback */
4934 qc->complete_fn(qc);
4937 static void fill_result_tf(struct ata_queued_cmd *qc)
4939 struct ata_port *ap = qc->ap;
4941 qc->result_tf.flags = qc->tf.flags;
4942 ap->ops->qc_fill_rtf(qc);
4945 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4947 struct ata_device *dev = qc->dev;
4949 if (ata_tag_internal(qc->tag))
4950 return;
4952 if (ata_is_nodata(qc->tf.protocol))
4953 return;
4955 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4956 return;
4958 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4962 * ata_qc_complete - Complete an active ATA command
4963 * @qc: Command to complete
4965 * Indicate to the mid and upper layers that an ATA
4966 * command has completed, with either an ok or not-ok status.
4968 * LOCKING:
4969 * spin_lock_irqsave(host lock)
4971 void ata_qc_complete(struct ata_queued_cmd *qc)
4973 struct ata_port *ap = qc->ap;
4975 /* XXX: New EH and old EH use different mechanisms to
4976 * synchronize EH with regular execution path.
4978 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4979 * Normal execution path is responsible for not accessing a
4980 * failed qc. libata core enforces the rule by returning NULL
4981 * from ata_qc_from_tag() for failed qcs.
4983 * Old EH depends on ata_qc_complete() nullifying completion
4984 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4985 * not synchronize with interrupt handler. Only PIO task is
4986 * taken care of.
4988 if (ap->ops->error_handler) {
4989 struct ata_device *dev = qc->dev;
4990 struct ata_eh_info *ehi = &dev->link->eh_info;
4992 if (unlikely(qc->err_mask))
4993 qc->flags |= ATA_QCFLAG_FAILED;
4995 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4996 /* always fill result TF for failed qc */
4997 fill_result_tf(qc);
4999 if (!ata_tag_internal(qc->tag))
5000 ata_qc_schedule_eh(qc);
5001 else
5002 __ata_qc_complete(qc);
5003 return;
5006 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5008 /* read result TF if requested */
5009 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5010 fill_result_tf(qc);
5012 /* Some commands need post-processing after successful
5013 * completion.
5015 switch (qc->tf.command) {
5016 case ATA_CMD_SET_FEATURES:
5017 if (qc->tf.feature != SETFEATURES_WC_ON &&
5018 qc->tf.feature != SETFEATURES_WC_OFF)
5019 break;
5020 /* fall through */
5021 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5022 case ATA_CMD_SET_MULTI: /* multi_count changed */
5023 /* revalidate device */
5024 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5025 ata_port_schedule_eh(ap);
5026 break;
5028 case ATA_CMD_SLEEP:
5029 dev->flags |= ATA_DFLAG_SLEEPING;
5030 break;
5033 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5034 ata_verify_xfer(qc);
5036 __ata_qc_complete(qc);
5037 } else {
5038 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5039 return;
5041 /* read result TF if failed or requested */
5042 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5043 fill_result_tf(qc);
5045 __ata_qc_complete(qc);
5050 * ata_qc_complete_multiple - Complete multiple qcs successfully
5051 * @ap: port in question
5052 * @qc_active: new qc_active mask
5054 * Complete in-flight commands. This functions is meant to be
5055 * called from low-level driver's interrupt routine to complete
5056 * requests normally. ap->qc_active and @qc_active is compared
5057 * and commands are completed accordingly.
5059 * LOCKING:
5060 * spin_lock_irqsave(host lock)
5062 * RETURNS:
5063 * Number of completed commands on success, -errno otherwise.
5065 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5067 int nr_done = 0;
5068 u32 done_mask;
5070 done_mask = ap->qc_active ^ qc_active;
5072 if (unlikely(done_mask & qc_active)) {
5073 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5074 "(%08x->%08x)\n", ap->qc_active, qc_active);
5075 return -EINVAL;
5078 while (done_mask) {
5079 struct ata_queued_cmd *qc;
5080 unsigned int tag = __ffs(done_mask);
5082 qc = ata_qc_from_tag(ap, tag);
5083 if (qc) {
5084 ata_qc_complete(qc);
5085 nr_done++;
5087 done_mask &= ~(1 << tag);
5090 return nr_done;
5094 * ata_qc_issue - issue taskfile to device
5095 * @qc: command to issue to device
5097 * Prepare an ATA command to submission to device.
5098 * This includes mapping the data into a DMA-able
5099 * area, filling in the S/G table, and finally
5100 * writing the taskfile to hardware, starting the command.
5102 * LOCKING:
5103 * spin_lock_irqsave(host lock)
5105 void ata_qc_issue(struct ata_queued_cmd *qc)
5107 struct ata_port *ap = qc->ap;
5108 struct ata_link *link = qc->dev->link;
5109 u8 prot = qc->tf.protocol;
5111 /* Make sure only one non-NCQ command is outstanding. The
5112 * check is skipped for old EH because it reuses active qc to
5113 * request ATAPI sense.
5115 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5117 if (ata_is_ncq(prot)) {
5118 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5120 if (!link->sactive)
5121 ap->nr_active_links++;
5122 link->sactive |= 1 << qc->tag;
5123 } else {
5124 WARN_ON_ONCE(link->sactive);
5126 ap->nr_active_links++;
5127 link->active_tag = qc->tag;
5130 qc->flags |= ATA_QCFLAG_ACTIVE;
5131 ap->qc_active |= 1 << qc->tag;
5133 /* We guarantee to LLDs that they will have at least one
5134 * non-zero sg if the command is a data command.
5136 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5138 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5139 (ap->flags & ATA_FLAG_PIO_DMA)))
5140 if (ata_sg_setup(qc))
5141 goto sg_err;
5143 /* if device is sleeping, schedule reset and abort the link */
5144 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5145 link->eh_info.action |= ATA_EH_RESET;
5146 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5147 ata_link_abort(link);
5148 return;
5151 ap->ops->qc_prep(qc);
5153 qc->err_mask |= ap->ops->qc_issue(qc);
5154 if (unlikely(qc->err_mask))
5155 goto err;
5156 return;
5158 sg_err:
5159 qc->err_mask |= AC_ERR_SYSTEM;
5160 err:
5161 ata_qc_complete(qc);
5165 * sata_scr_valid - test whether SCRs are accessible
5166 * @link: ATA link to test SCR accessibility for
5168 * Test whether SCRs are accessible for @link.
5170 * LOCKING:
5171 * None.
5173 * RETURNS:
5174 * 1 if SCRs are accessible, 0 otherwise.
5176 int sata_scr_valid(struct ata_link *link)
5178 struct ata_port *ap = link->ap;
5180 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5184 * sata_scr_read - read SCR register of the specified port
5185 * @link: ATA link to read SCR for
5186 * @reg: SCR to read
5187 * @val: Place to store read value
5189 * Read SCR register @reg of @link into *@val. This function is
5190 * guaranteed to succeed if @link is ap->link, the cable type of
5191 * the port is SATA and the port implements ->scr_read.
5193 * LOCKING:
5194 * None if @link is ap->link. Kernel thread context otherwise.
5196 * RETURNS:
5197 * 0 on success, negative errno on failure.
5199 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5201 if (ata_is_host_link(link)) {
5202 if (sata_scr_valid(link))
5203 return link->ap->ops->scr_read(link, reg, val);
5204 return -EOPNOTSUPP;
5207 return sata_pmp_scr_read(link, reg, val);
5211 * sata_scr_write - write SCR register of the specified port
5212 * @link: ATA link to write SCR for
5213 * @reg: SCR to write
5214 * @val: value to write
5216 * Write @val to SCR register @reg of @link. This function is
5217 * guaranteed to succeed if @link is ap->link, the cable type of
5218 * the port is SATA and the port implements ->scr_read.
5220 * LOCKING:
5221 * None if @link is ap->link. Kernel thread context otherwise.
5223 * RETURNS:
5224 * 0 on success, negative errno on failure.
5226 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5228 if (ata_is_host_link(link)) {
5229 if (sata_scr_valid(link))
5230 return link->ap->ops->scr_write(link, reg, val);
5231 return -EOPNOTSUPP;
5234 return sata_pmp_scr_write(link, reg, val);
5238 * sata_scr_write_flush - write SCR register of the specified port and flush
5239 * @link: ATA link to write SCR for
5240 * @reg: SCR to write
5241 * @val: value to write
5243 * This function is identical to sata_scr_write() except that this
5244 * function performs flush after writing to the register.
5246 * LOCKING:
5247 * None if @link is ap->link. Kernel thread context otherwise.
5249 * RETURNS:
5250 * 0 on success, negative errno on failure.
5252 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5254 if (ata_is_host_link(link)) {
5255 int rc;
5257 if (sata_scr_valid(link)) {
5258 rc = link->ap->ops->scr_write(link, reg, val);
5259 if (rc == 0)
5260 rc = link->ap->ops->scr_read(link, reg, &val);
5261 return rc;
5263 return -EOPNOTSUPP;
5266 return sata_pmp_scr_write(link, reg, val);
5270 * ata_phys_link_online - test whether the given link is online
5271 * @link: ATA link to test
5273 * Test whether @link is online. Note that this function returns
5274 * 0 if online status of @link cannot be obtained, so
5275 * ata_link_online(link) != !ata_link_offline(link).
5277 * LOCKING:
5278 * None.
5280 * RETURNS:
5281 * True if the port online status is available and online.
5283 bool ata_phys_link_online(struct ata_link *link)
5285 u32 sstatus;
5287 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5288 ata_sstatus_online(sstatus))
5289 return true;
5290 return false;
5294 * ata_phys_link_offline - test whether the given link is offline
5295 * @link: ATA link to test
5297 * Test whether @link is offline. Note that this function
5298 * returns 0 if offline status of @link cannot be obtained, so
5299 * ata_link_online(link) != !ata_link_offline(link).
5301 * LOCKING:
5302 * None.
5304 * RETURNS:
5305 * True if the port offline status is available and offline.
5307 bool ata_phys_link_offline(struct ata_link *link)
5309 u32 sstatus;
5311 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5312 !ata_sstatus_online(sstatus))
5313 return true;
5314 return false;
5318 * ata_link_online - test whether the given link is online
5319 * @link: ATA link to test
5321 * Test whether @link is online. This is identical to
5322 * ata_phys_link_online() when there's no slave link. When
5323 * there's a slave link, this function should only be called on
5324 * the master link and will return true if any of M/S links is
5325 * online.
5327 * LOCKING:
5328 * None.
5330 * RETURNS:
5331 * True if the port online status is available and online.
5333 bool ata_link_online(struct ata_link *link)
5335 struct ata_link *slave = link->ap->slave_link;
5337 WARN_ON(link == slave); /* shouldn't be called on slave link */
5339 return ata_phys_link_online(link) ||
5340 (slave && ata_phys_link_online(slave));
5344 * ata_link_offline - test whether the given link is offline
5345 * @link: ATA link to test
5347 * Test whether @link is offline. This is identical to
5348 * ata_phys_link_offline() when there's no slave link. When
5349 * there's a slave link, this function should only be called on
5350 * the master link and will return true if both M/S links are
5351 * offline.
5353 * LOCKING:
5354 * None.
5356 * RETURNS:
5357 * True if the port offline status is available and offline.
5359 bool ata_link_offline(struct ata_link *link)
5361 struct ata_link *slave = link->ap->slave_link;
5363 WARN_ON(link == slave); /* shouldn't be called on slave link */
5365 return ata_phys_link_offline(link) &&
5366 (!slave || ata_phys_link_offline(slave));
5369 #ifdef CONFIG_PM
5370 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5371 unsigned int action, unsigned int ehi_flags,
5372 int wait)
5374 unsigned long flags;
5375 int i, rc;
5377 for (i = 0; i < host->n_ports; i++) {
5378 struct ata_port *ap = host->ports[i];
5379 struct ata_link *link;
5381 /* Previous resume operation might still be in
5382 * progress. Wait for PM_PENDING to clear.
5384 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5385 ata_port_wait_eh(ap);
5386 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5389 /* request PM ops to EH */
5390 spin_lock_irqsave(ap->lock, flags);
5392 ap->pm_mesg = mesg;
5393 if (wait) {
5394 rc = 0;
5395 ap->pm_result = &rc;
5398 ap->pflags |= ATA_PFLAG_PM_PENDING;
5399 ata_for_each_link(link, ap, HOST_FIRST) {
5400 link->eh_info.action |= action;
5401 link->eh_info.flags |= ehi_flags;
5404 ata_port_schedule_eh(ap);
5406 spin_unlock_irqrestore(ap->lock, flags);
5408 /* wait and check result */
5409 if (wait) {
5410 ata_port_wait_eh(ap);
5411 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5412 if (rc)
5413 return rc;
5417 return 0;
5421 * ata_host_suspend - suspend host
5422 * @host: host to suspend
5423 * @mesg: PM message
5425 * Suspend @host. Actual operation is performed by EH. This
5426 * function requests EH to perform PM operations and waits for EH
5427 * to finish.
5429 * LOCKING:
5430 * Kernel thread context (may sleep).
5432 * RETURNS:
5433 * 0 on success, -errno on failure.
5435 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5437 int rc;
5440 * disable link pm on all ports before requesting
5441 * any pm activity
5443 ata_lpm_enable(host);
5445 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5446 if (rc == 0)
5447 host->dev->power.power_state = mesg;
5448 return rc;
5452 * ata_host_resume - resume host
5453 * @host: host to resume
5455 * Resume @host. Actual operation is performed by EH. This
5456 * function requests EH to perform PM operations and returns.
5457 * Note that all resume operations are performed parallely.
5459 * LOCKING:
5460 * Kernel thread context (may sleep).
5462 void ata_host_resume(struct ata_host *host)
5464 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5465 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5466 host->dev->power.power_state = PMSG_ON;
5468 /* reenable link pm */
5469 ata_lpm_disable(host);
5471 #endif
5474 * ata_dev_init - Initialize an ata_device structure
5475 * @dev: Device structure to initialize
5477 * Initialize @dev in preparation for probing.
5479 * LOCKING:
5480 * Inherited from caller.
5482 void ata_dev_init(struct ata_device *dev)
5484 struct ata_link *link = ata_dev_phys_link(dev);
5485 struct ata_port *ap = link->ap;
5486 unsigned long flags;
5488 /* SATA spd limit is bound to the attached device, reset together */
5489 link->sata_spd_limit = link->hw_sata_spd_limit;
5490 link->sata_spd = 0;
5492 /* High bits of dev->flags are used to record warm plug
5493 * requests which occur asynchronously. Synchronize using
5494 * host lock.
5496 spin_lock_irqsave(ap->lock, flags);
5497 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5498 dev->horkage = 0;
5499 spin_unlock_irqrestore(ap->lock, flags);
5501 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5502 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5503 dev->pio_mask = UINT_MAX;
5504 dev->mwdma_mask = UINT_MAX;
5505 dev->udma_mask = UINT_MAX;
5509 * ata_link_init - Initialize an ata_link structure
5510 * @ap: ATA port link is attached to
5511 * @link: Link structure to initialize
5512 * @pmp: Port multiplier port number
5514 * Initialize @link.
5516 * LOCKING:
5517 * Kernel thread context (may sleep)
5519 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5521 int i;
5523 /* clear everything except for devices */
5524 memset(link, 0, offsetof(struct ata_link, device[0]));
5526 link->ap = ap;
5527 link->pmp = pmp;
5528 link->active_tag = ATA_TAG_POISON;
5529 link->hw_sata_spd_limit = UINT_MAX;
5531 /* can't use iterator, ap isn't initialized yet */
5532 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5533 struct ata_device *dev = &link->device[i];
5535 dev->link = link;
5536 dev->devno = dev - link->device;
5537 #ifdef CONFIG_ATA_ACPI
5538 dev->gtf_filter = ata_acpi_gtf_filter;
5539 #endif
5540 ata_dev_init(dev);
5545 * sata_link_init_spd - Initialize link->sata_spd_limit
5546 * @link: Link to configure sata_spd_limit for
5548 * Initialize @link->[hw_]sata_spd_limit to the currently
5549 * configured value.
5551 * LOCKING:
5552 * Kernel thread context (may sleep).
5554 * RETURNS:
5555 * 0 on success, -errno on failure.
5557 int sata_link_init_spd(struct ata_link *link)
5559 u8 spd;
5560 int rc;
5562 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5563 if (rc)
5564 return rc;
5566 spd = (link->saved_scontrol >> 4) & 0xf;
5567 if (spd)
5568 link->hw_sata_spd_limit &= (1 << spd) - 1;
5570 ata_force_link_limits(link);
5572 link->sata_spd_limit = link->hw_sata_spd_limit;
5574 return 0;
5578 * ata_port_alloc - allocate and initialize basic ATA port resources
5579 * @host: ATA host this allocated port belongs to
5581 * Allocate and initialize basic ATA port resources.
5583 * RETURNS:
5584 * Allocate ATA port on success, NULL on failure.
5586 * LOCKING:
5587 * Inherited from calling layer (may sleep).
5589 struct ata_port *ata_port_alloc(struct ata_host *host)
5591 struct ata_port *ap;
5593 DPRINTK("ENTER\n");
5595 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5596 if (!ap)
5597 return NULL;
5599 ap->pflags |= ATA_PFLAG_INITIALIZING;
5600 ap->lock = &host->lock;
5601 ap->print_id = -1;
5602 ap->host = host;
5603 ap->dev = host->dev;
5605 #if defined(ATA_VERBOSE_DEBUG)
5606 /* turn on all debugging levels */
5607 ap->msg_enable = 0x00FF;
5608 #elif defined(ATA_DEBUG)
5609 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5610 #else
5611 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5612 #endif
5614 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5615 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5616 INIT_LIST_HEAD(&ap->eh_done_q);
5617 init_waitqueue_head(&ap->eh_wait_q);
5618 init_completion(&ap->park_req_pending);
5619 init_timer_deferrable(&ap->fastdrain_timer);
5620 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5621 ap->fastdrain_timer.data = (unsigned long)ap;
5623 ap->cbl = ATA_CBL_NONE;
5625 ata_link_init(ap, &ap->link, 0);
5627 #ifdef ATA_IRQ_TRAP
5628 ap->stats.unhandled_irq = 1;
5629 ap->stats.idle_irq = 1;
5630 #endif
5631 ata_sff_port_init(ap);
5633 return ap;
5636 static void ata_host_release(struct device *gendev, void *res)
5638 struct ata_host *host = dev_get_drvdata(gendev);
5639 int i;
5641 for (i = 0; i < host->n_ports; i++) {
5642 struct ata_port *ap = host->ports[i];
5644 if (!ap)
5645 continue;
5647 if (ap->scsi_host)
5648 scsi_host_put(ap->scsi_host);
5650 kfree(ap->pmp_link);
5651 kfree(ap->slave_link);
5652 kfree(ap);
5653 host->ports[i] = NULL;
5656 dev_set_drvdata(gendev, NULL);
5660 * ata_host_alloc - allocate and init basic ATA host resources
5661 * @dev: generic device this host is associated with
5662 * @max_ports: maximum number of ATA ports associated with this host
5664 * Allocate and initialize basic ATA host resources. LLD calls
5665 * this function to allocate a host, initializes it fully and
5666 * attaches it using ata_host_register().
5668 * @max_ports ports are allocated and host->n_ports is
5669 * initialized to @max_ports. The caller is allowed to decrease
5670 * host->n_ports before calling ata_host_register(). The unused
5671 * ports will be automatically freed on registration.
5673 * RETURNS:
5674 * Allocate ATA host on success, NULL on failure.
5676 * LOCKING:
5677 * Inherited from calling layer (may sleep).
5679 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5681 struct ata_host *host;
5682 size_t sz;
5683 int i;
5685 DPRINTK("ENTER\n");
5687 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5688 return NULL;
5690 /* alloc a container for our list of ATA ports (buses) */
5691 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5692 /* alloc a container for our list of ATA ports (buses) */
5693 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5694 if (!host)
5695 goto err_out;
5697 devres_add(dev, host);
5698 dev_set_drvdata(dev, host);
5700 spin_lock_init(&host->lock);
5701 host->dev = dev;
5702 host->n_ports = max_ports;
5704 /* allocate ports bound to this host */
5705 for (i = 0; i < max_ports; i++) {
5706 struct ata_port *ap;
5708 ap = ata_port_alloc(host);
5709 if (!ap)
5710 goto err_out;
5712 ap->port_no = i;
5713 host->ports[i] = ap;
5716 devres_remove_group(dev, NULL);
5717 return host;
5719 err_out:
5720 devres_release_group(dev, NULL);
5721 return NULL;
5725 * ata_host_alloc_pinfo - alloc host and init with port_info array
5726 * @dev: generic device this host is associated with
5727 * @ppi: array of ATA port_info to initialize host with
5728 * @n_ports: number of ATA ports attached to this host
5730 * Allocate ATA host and initialize with info from @ppi. If NULL
5731 * terminated, @ppi may contain fewer entries than @n_ports. The
5732 * last entry will be used for the remaining ports.
5734 * RETURNS:
5735 * Allocate ATA host on success, NULL on failure.
5737 * LOCKING:
5738 * Inherited from calling layer (may sleep).
5740 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5741 const struct ata_port_info * const * ppi,
5742 int n_ports)
5744 const struct ata_port_info *pi;
5745 struct ata_host *host;
5746 int i, j;
5748 host = ata_host_alloc(dev, n_ports);
5749 if (!host)
5750 return NULL;
5752 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5753 struct ata_port *ap = host->ports[i];
5755 if (ppi[j])
5756 pi = ppi[j++];
5758 ap->pio_mask = pi->pio_mask;
5759 ap->mwdma_mask = pi->mwdma_mask;
5760 ap->udma_mask = pi->udma_mask;
5761 ap->flags |= pi->flags;
5762 ap->link.flags |= pi->link_flags;
5763 ap->ops = pi->port_ops;
5765 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5766 host->ops = pi->port_ops;
5769 return host;
5773 * ata_slave_link_init - initialize slave link
5774 * @ap: port to initialize slave link for
5776 * Create and initialize slave link for @ap. This enables slave
5777 * link handling on the port.
5779 * In libata, a port contains links and a link contains devices.
5780 * There is single host link but if a PMP is attached to it,
5781 * there can be multiple fan-out links. On SATA, there's usually
5782 * a single device connected to a link but PATA and SATA
5783 * controllers emulating TF based interface can have two - master
5784 * and slave.
5786 * However, there are a few controllers which don't fit into this
5787 * abstraction too well - SATA controllers which emulate TF
5788 * interface with both master and slave devices but also have
5789 * separate SCR register sets for each device. These controllers
5790 * need separate links for physical link handling
5791 * (e.g. onlineness, link speed) but should be treated like a
5792 * traditional M/S controller for everything else (e.g. command
5793 * issue, softreset).
5795 * slave_link is libata's way of handling this class of
5796 * controllers without impacting core layer too much. For
5797 * anything other than physical link handling, the default host
5798 * link is used for both master and slave. For physical link
5799 * handling, separate @ap->slave_link is used. All dirty details
5800 * are implemented inside libata core layer. From LLD's POV, the
5801 * only difference is that prereset, hardreset and postreset are
5802 * called once more for the slave link, so the reset sequence
5803 * looks like the following.
5805 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5806 * softreset(M) -> postreset(M) -> postreset(S)
5808 * Note that softreset is called only for the master. Softreset
5809 * resets both M/S by definition, so SRST on master should handle
5810 * both (the standard method will work just fine).
5812 * LOCKING:
5813 * Should be called before host is registered.
5815 * RETURNS:
5816 * 0 on success, -errno on failure.
5818 int ata_slave_link_init(struct ata_port *ap)
5820 struct ata_link *link;
5822 WARN_ON(ap->slave_link);
5823 WARN_ON(ap->flags & ATA_FLAG_PMP);
5825 link = kzalloc(sizeof(*link), GFP_KERNEL);
5826 if (!link)
5827 return -ENOMEM;
5829 ata_link_init(ap, link, 1);
5830 ap->slave_link = link;
5831 return 0;
5834 static void ata_host_stop(struct device *gendev, void *res)
5836 struct ata_host *host = dev_get_drvdata(gendev);
5837 int i;
5839 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5841 for (i = 0; i < host->n_ports; i++) {
5842 struct ata_port *ap = host->ports[i];
5844 if (ap->ops->port_stop)
5845 ap->ops->port_stop(ap);
5848 if (host->ops->host_stop)
5849 host->ops->host_stop(host);
5853 * ata_finalize_port_ops - finalize ata_port_operations
5854 * @ops: ata_port_operations to finalize
5856 * An ata_port_operations can inherit from another ops and that
5857 * ops can again inherit from another. This can go on as many
5858 * times as necessary as long as there is no loop in the
5859 * inheritance chain.
5861 * Ops tables are finalized when the host is started. NULL or
5862 * unspecified entries are inherited from the closet ancestor
5863 * which has the method and the entry is populated with it.
5864 * After finalization, the ops table directly points to all the
5865 * methods and ->inherits is no longer necessary and cleared.
5867 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5869 * LOCKING:
5870 * None.
5872 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5874 static DEFINE_SPINLOCK(lock);
5875 const struct ata_port_operations *cur;
5876 void **begin = (void **)ops;
5877 void **end = (void **)&ops->inherits;
5878 void **pp;
5880 if (!ops || !ops->inherits)
5881 return;
5883 spin_lock(&lock);
5885 for (cur = ops->inherits; cur; cur = cur->inherits) {
5886 void **inherit = (void **)cur;
5888 for (pp = begin; pp < end; pp++, inherit++)
5889 if (!*pp)
5890 *pp = *inherit;
5893 for (pp = begin; pp < end; pp++)
5894 if (IS_ERR(*pp))
5895 *pp = NULL;
5897 ops->inherits = NULL;
5899 spin_unlock(&lock);
5903 * ata_host_start - start and freeze ports of an ATA host
5904 * @host: ATA host to start ports for
5906 * Start and then freeze ports of @host. Started status is
5907 * recorded in host->flags, so this function can be called
5908 * multiple times. Ports are guaranteed to get started only
5909 * once. If host->ops isn't initialized yet, its set to the
5910 * first non-dummy port ops.
5912 * LOCKING:
5913 * Inherited from calling layer (may sleep).
5915 * RETURNS:
5916 * 0 if all ports are started successfully, -errno otherwise.
5918 int ata_host_start(struct ata_host *host)
5920 int have_stop = 0;
5921 void *start_dr = NULL;
5922 int i, rc;
5924 if (host->flags & ATA_HOST_STARTED)
5925 return 0;
5927 ata_finalize_port_ops(host->ops);
5929 for (i = 0; i < host->n_ports; i++) {
5930 struct ata_port *ap = host->ports[i];
5932 ata_finalize_port_ops(ap->ops);
5934 if (!host->ops && !ata_port_is_dummy(ap))
5935 host->ops = ap->ops;
5937 if (ap->ops->port_stop)
5938 have_stop = 1;
5941 if (host->ops->host_stop)
5942 have_stop = 1;
5944 if (have_stop) {
5945 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5946 if (!start_dr)
5947 return -ENOMEM;
5950 for (i = 0; i < host->n_ports; i++) {
5951 struct ata_port *ap = host->ports[i];
5953 if (ap->ops->port_start) {
5954 rc = ap->ops->port_start(ap);
5955 if (rc) {
5956 if (rc != -ENODEV)
5957 dev_printk(KERN_ERR, host->dev,
5958 "failed to start port %d "
5959 "(errno=%d)\n", i, rc);
5960 goto err_out;
5963 ata_eh_freeze_port(ap);
5966 if (start_dr)
5967 devres_add(host->dev, start_dr);
5968 host->flags |= ATA_HOST_STARTED;
5969 return 0;
5971 err_out:
5972 while (--i >= 0) {
5973 struct ata_port *ap = host->ports[i];
5975 if (ap->ops->port_stop)
5976 ap->ops->port_stop(ap);
5978 devres_free(start_dr);
5979 return rc;
5983 * ata_sas_host_init - Initialize a host struct
5984 * @host: host to initialize
5985 * @dev: device host is attached to
5986 * @flags: host flags
5987 * @ops: port_ops
5989 * LOCKING:
5990 * PCI/etc. bus probe sem.
5993 /* KILLME - the only user left is ipr */
5994 void ata_host_init(struct ata_host *host, struct device *dev,
5995 unsigned long flags, struct ata_port_operations *ops)
5997 spin_lock_init(&host->lock);
5998 host->dev = dev;
5999 host->flags = flags;
6000 host->ops = ops;
6004 static void async_port_probe(void *data, async_cookie_t cookie)
6006 int rc;
6007 struct ata_port *ap = data;
6010 * If we're not allowed to scan this host in parallel,
6011 * we need to wait until all previous scans have completed
6012 * before going further.
6013 * Jeff Garzik says this is only within a controller, so we
6014 * don't need to wait for port 0, only for later ports.
6016 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6017 async_synchronize_cookie(cookie);
6019 /* probe */
6020 if (ap->ops->error_handler) {
6021 struct ata_eh_info *ehi = &ap->link.eh_info;
6022 unsigned long flags;
6024 /* kick EH for boot probing */
6025 spin_lock_irqsave(ap->lock, flags);
6027 ehi->probe_mask |= ATA_ALL_DEVICES;
6028 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6029 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6031 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6032 ap->pflags |= ATA_PFLAG_LOADING;
6033 ata_port_schedule_eh(ap);
6035 spin_unlock_irqrestore(ap->lock, flags);
6037 /* wait for EH to finish */
6038 ata_port_wait_eh(ap);
6039 } else {
6040 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6041 rc = ata_bus_probe(ap);
6042 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6044 if (rc) {
6045 /* FIXME: do something useful here?
6046 * Current libata behavior will
6047 * tear down everything when
6048 * the module is removed
6049 * or the h/w is unplugged.
6054 /* in order to keep device order, we need to synchronize at this point */
6055 async_synchronize_cookie(cookie);
6057 ata_scsi_scan_host(ap, 1);
6061 * ata_host_register - register initialized ATA host
6062 * @host: ATA host to register
6063 * @sht: template for SCSI host
6065 * Register initialized ATA host. @host is allocated using
6066 * ata_host_alloc() and fully initialized by LLD. This function
6067 * starts ports, registers @host with ATA and SCSI layers and
6068 * probe registered devices.
6070 * LOCKING:
6071 * Inherited from calling layer (may sleep).
6073 * RETURNS:
6074 * 0 on success, -errno otherwise.
6076 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6078 int i, rc;
6080 /* host must have been started */
6081 if (!(host->flags & ATA_HOST_STARTED)) {
6082 dev_printk(KERN_ERR, host->dev,
6083 "BUG: trying to register unstarted host\n");
6084 WARN_ON(1);
6085 return -EINVAL;
6088 /* Blow away unused ports. This happens when LLD can't
6089 * determine the exact number of ports to allocate at
6090 * allocation time.
6092 for (i = host->n_ports; host->ports[i]; i++)
6093 kfree(host->ports[i]);
6095 /* give ports names and add SCSI hosts */
6096 for (i = 0; i < host->n_ports; i++)
6097 host->ports[i]->print_id = ata_print_id++;
6099 rc = ata_scsi_add_hosts(host, sht);
6100 if (rc)
6101 return rc;
6103 /* associate with ACPI nodes */
6104 ata_acpi_associate(host);
6106 /* set cable, sata_spd_limit and report */
6107 for (i = 0; i < host->n_ports; i++) {
6108 struct ata_port *ap = host->ports[i];
6109 unsigned long xfer_mask;
6111 /* set SATA cable type if still unset */
6112 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6113 ap->cbl = ATA_CBL_SATA;
6115 /* init sata_spd_limit to the current value */
6116 sata_link_init_spd(&ap->link);
6117 if (ap->slave_link)
6118 sata_link_init_spd(ap->slave_link);
6120 /* print per-port info to dmesg */
6121 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6122 ap->udma_mask);
6124 if (!ata_port_is_dummy(ap)) {
6125 ata_port_printk(ap, KERN_INFO,
6126 "%cATA max %s %s\n",
6127 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6128 ata_mode_string(xfer_mask),
6129 ap->link.eh_info.desc);
6130 ata_ehi_clear_desc(&ap->link.eh_info);
6131 } else
6132 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6135 /* perform each probe asynchronously */
6136 for (i = 0; i < host->n_ports; i++) {
6137 struct ata_port *ap = host->ports[i];
6138 async_schedule(async_port_probe, ap);
6141 return 0;
6145 * ata_host_activate - start host, request IRQ and register it
6146 * @host: target ATA host
6147 * @irq: IRQ to request
6148 * @irq_handler: irq_handler used when requesting IRQ
6149 * @irq_flags: irq_flags used when requesting IRQ
6150 * @sht: scsi_host_template to use when registering the host
6152 * After allocating an ATA host and initializing it, most libata
6153 * LLDs perform three steps to activate the host - start host,
6154 * request IRQ and register it. This helper takes necessasry
6155 * arguments and performs the three steps in one go.
6157 * An invalid IRQ skips the IRQ registration and expects the host to
6158 * have set polling mode on the port. In this case, @irq_handler
6159 * should be NULL.
6161 * LOCKING:
6162 * Inherited from calling layer (may sleep).
6164 * RETURNS:
6165 * 0 on success, -errno otherwise.
6167 int ata_host_activate(struct ata_host *host, int irq,
6168 irq_handler_t irq_handler, unsigned long irq_flags,
6169 struct scsi_host_template *sht)
6171 int i, rc;
6173 rc = ata_host_start(host);
6174 if (rc)
6175 return rc;
6177 /* Special case for polling mode */
6178 if (!irq) {
6179 WARN_ON(irq_handler);
6180 return ata_host_register(host, sht);
6183 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6184 dev_driver_string(host->dev), host);
6185 if (rc)
6186 return rc;
6188 for (i = 0; i < host->n_ports; i++)
6189 ata_port_desc(host->ports[i], "irq %d", irq);
6191 rc = ata_host_register(host, sht);
6192 /* if failed, just free the IRQ and leave ports alone */
6193 if (rc)
6194 devm_free_irq(host->dev, irq, host);
6196 return rc;
6200 * ata_port_detach - Detach ATA port in prepration of device removal
6201 * @ap: ATA port to be detached
6203 * Detach all ATA devices and the associated SCSI devices of @ap;
6204 * then, remove the associated SCSI host. @ap is guaranteed to
6205 * be quiescent on return from this function.
6207 * LOCKING:
6208 * Kernel thread context (may sleep).
6210 static void ata_port_detach(struct ata_port *ap)
6212 unsigned long flags;
6214 if (!ap->ops->error_handler)
6215 goto skip_eh;
6217 /* tell EH we're leaving & flush EH */
6218 spin_lock_irqsave(ap->lock, flags);
6219 ap->pflags |= ATA_PFLAG_UNLOADING;
6220 ata_port_schedule_eh(ap);
6221 spin_unlock_irqrestore(ap->lock, flags);
6223 /* wait till EH commits suicide */
6224 ata_port_wait_eh(ap);
6226 /* it better be dead now */
6227 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6229 cancel_rearming_delayed_work(&ap->hotplug_task);
6231 skip_eh:
6232 /* remove the associated SCSI host */
6233 scsi_remove_host(ap->scsi_host);
6237 * ata_host_detach - Detach all ports of an ATA host
6238 * @host: Host to detach
6240 * Detach all ports of @host.
6242 * LOCKING:
6243 * Kernel thread context (may sleep).
6245 void ata_host_detach(struct ata_host *host)
6247 int i;
6249 for (i = 0; i < host->n_ports; i++)
6250 ata_port_detach(host->ports[i]);
6252 /* the host is dead now, dissociate ACPI */
6253 ata_acpi_dissociate(host);
6256 #ifdef CONFIG_PCI
6259 * ata_pci_remove_one - PCI layer callback for device removal
6260 * @pdev: PCI device that was removed
6262 * PCI layer indicates to libata via this hook that hot-unplug or
6263 * module unload event has occurred. Detach all ports. Resource
6264 * release is handled via devres.
6266 * LOCKING:
6267 * Inherited from PCI layer (may sleep).
6269 void ata_pci_remove_one(struct pci_dev *pdev)
6271 struct device *dev = &pdev->dev;
6272 struct ata_host *host = dev_get_drvdata(dev);
6274 ata_host_detach(host);
6277 /* move to PCI subsystem */
6278 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6280 unsigned long tmp = 0;
6282 switch (bits->width) {
6283 case 1: {
6284 u8 tmp8 = 0;
6285 pci_read_config_byte(pdev, bits->reg, &tmp8);
6286 tmp = tmp8;
6287 break;
6289 case 2: {
6290 u16 tmp16 = 0;
6291 pci_read_config_word(pdev, bits->reg, &tmp16);
6292 tmp = tmp16;
6293 break;
6295 case 4: {
6296 u32 tmp32 = 0;
6297 pci_read_config_dword(pdev, bits->reg, &tmp32);
6298 tmp = tmp32;
6299 break;
6302 default:
6303 return -EINVAL;
6306 tmp &= bits->mask;
6308 return (tmp == bits->val) ? 1 : 0;
6311 #ifdef CONFIG_PM
6312 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6314 pci_save_state(pdev);
6315 pci_disable_device(pdev);
6317 if (mesg.event & PM_EVENT_SLEEP)
6318 pci_set_power_state(pdev, PCI_D3hot);
6321 int ata_pci_device_do_resume(struct pci_dev *pdev)
6323 int rc;
6325 pci_set_power_state(pdev, PCI_D0);
6326 pci_restore_state(pdev);
6328 rc = pcim_enable_device(pdev);
6329 if (rc) {
6330 dev_printk(KERN_ERR, &pdev->dev,
6331 "failed to enable device after resume (%d)\n", rc);
6332 return rc;
6335 pci_set_master(pdev);
6336 return 0;
6339 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6341 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6342 int rc = 0;
6344 rc = ata_host_suspend(host, mesg);
6345 if (rc)
6346 return rc;
6348 ata_pci_device_do_suspend(pdev, mesg);
6350 return 0;
6353 int ata_pci_device_resume(struct pci_dev *pdev)
6355 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6356 int rc;
6358 rc = ata_pci_device_do_resume(pdev);
6359 if (rc == 0)
6360 ata_host_resume(host);
6361 return rc;
6363 #endif /* CONFIG_PM */
6365 #endif /* CONFIG_PCI */
6367 static int __init ata_parse_force_one(char **cur,
6368 struct ata_force_ent *force_ent,
6369 const char **reason)
6371 /* FIXME: Currently, there's no way to tag init const data and
6372 * using __initdata causes build failure on some versions of
6373 * gcc. Once __initdataconst is implemented, add const to the
6374 * following structure.
6376 static struct ata_force_param force_tbl[] __initdata = {
6377 { "40c", .cbl = ATA_CBL_PATA40 },
6378 { "80c", .cbl = ATA_CBL_PATA80 },
6379 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6380 { "unk", .cbl = ATA_CBL_PATA_UNK },
6381 { "ign", .cbl = ATA_CBL_PATA_IGN },
6382 { "sata", .cbl = ATA_CBL_SATA },
6383 { "1.5Gbps", .spd_limit = 1 },
6384 { "3.0Gbps", .spd_limit = 2 },
6385 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6386 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6387 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6388 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6389 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6390 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6391 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6392 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6393 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6394 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6395 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6396 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6397 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6398 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6399 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6400 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6401 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6402 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6403 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6404 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6405 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6406 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6407 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6408 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6409 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6410 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6411 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6412 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6413 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6414 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6415 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6416 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6417 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6418 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6419 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6420 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6421 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6422 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6423 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6424 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6426 char *start = *cur, *p = *cur;
6427 char *id, *val, *endp;
6428 const struct ata_force_param *match_fp = NULL;
6429 int nr_matches = 0, i;
6431 /* find where this param ends and update *cur */
6432 while (*p != '\0' && *p != ',')
6433 p++;
6435 if (*p == '\0')
6436 *cur = p;
6437 else
6438 *cur = p + 1;
6440 *p = '\0';
6442 /* parse */
6443 p = strchr(start, ':');
6444 if (!p) {
6445 val = strstrip(start);
6446 goto parse_val;
6448 *p = '\0';
6450 id = strstrip(start);
6451 val = strstrip(p + 1);
6453 /* parse id */
6454 p = strchr(id, '.');
6455 if (p) {
6456 *p++ = '\0';
6457 force_ent->device = simple_strtoul(p, &endp, 10);
6458 if (p == endp || *endp != '\0') {
6459 *reason = "invalid device";
6460 return -EINVAL;
6464 force_ent->port = simple_strtoul(id, &endp, 10);
6465 if (p == endp || *endp != '\0') {
6466 *reason = "invalid port/link";
6467 return -EINVAL;
6470 parse_val:
6471 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6472 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6473 const struct ata_force_param *fp = &force_tbl[i];
6475 if (strncasecmp(val, fp->name, strlen(val)))
6476 continue;
6478 nr_matches++;
6479 match_fp = fp;
6481 if (strcasecmp(val, fp->name) == 0) {
6482 nr_matches = 1;
6483 break;
6487 if (!nr_matches) {
6488 *reason = "unknown value";
6489 return -EINVAL;
6491 if (nr_matches > 1) {
6492 *reason = "ambigious value";
6493 return -EINVAL;
6496 force_ent->param = *match_fp;
6498 return 0;
6501 static void __init ata_parse_force_param(void)
6503 int idx = 0, size = 1;
6504 int last_port = -1, last_device = -1;
6505 char *p, *cur, *next;
6507 /* calculate maximum number of params and allocate force_tbl */
6508 for (p = ata_force_param_buf; *p; p++)
6509 if (*p == ',')
6510 size++;
6512 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6513 if (!ata_force_tbl) {
6514 printk(KERN_WARNING "ata: failed to extend force table, "
6515 "libata.force ignored\n");
6516 return;
6519 /* parse and populate the table */
6520 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6521 const char *reason = "";
6522 struct ata_force_ent te = { .port = -1, .device = -1 };
6524 next = cur;
6525 if (ata_parse_force_one(&next, &te, &reason)) {
6526 printk(KERN_WARNING "ata: failed to parse force "
6527 "parameter \"%s\" (%s)\n",
6528 cur, reason);
6529 continue;
6532 if (te.port == -1) {
6533 te.port = last_port;
6534 te.device = last_device;
6537 ata_force_tbl[idx++] = te;
6539 last_port = te.port;
6540 last_device = te.device;
6543 ata_force_tbl_size = idx;
6546 static int __init ata_init(void)
6548 int rc = -ENOMEM;
6550 ata_parse_force_param();
6552 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6553 if (!ata_aux_wq)
6554 goto fail;
6556 rc = ata_sff_init();
6557 if (rc)
6558 goto fail;
6560 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6561 return 0;
6563 fail:
6564 kfree(ata_force_tbl);
6565 if (ata_aux_wq)
6566 destroy_workqueue(ata_aux_wq);
6567 return rc;
6570 static void __exit ata_exit(void)
6572 ata_sff_exit();
6573 kfree(ata_force_tbl);
6574 destroy_workqueue(ata_aux_wq);
6577 subsys_initcall(ata_init);
6578 module_exit(ata_exit);
6580 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6582 int ata_ratelimit(void)
6584 return __ratelimit(&ratelimit);
6588 * ata_wait_register - wait until register value changes
6589 * @reg: IO-mapped register
6590 * @mask: Mask to apply to read register value
6591 * @val: Wait condition
6592 * @interval: polling interval in milliseconds
6593 * @timeout: timeout in milliseconds
6595 * Waiting for some bits of register to change is a common
6596 * operation for ATA controllers. This function reads 32bit LE
6597 * IO-mapped register @reg and tests for the following condition.
6599 * (*@reg & mask) != val
6601 * If the condition is met, it returns; otherwise, the process is
6602 * repeated after @interval_msec until timeout.
6604 * LOCKING:
6605 * Kernel thread context (may sleep)
6607 * RETURNS:
6608 * The final register value.
6610 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6611 unsigned long interval, unsigned long timeout)
6613 unsigned long deadline;
6614 u32 tmp;
6616 tmp = ioread32(reg);
6618 /* Calculate timeout _after_ the first read to make sure
6619 * preceding writes reach the controller before starting to
6620 * eat away the timeout.
6622 deadline = ata_deadline(jiffies, timeout);
6624 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6625 msleep(interval);
6626 tmp = ioread32(reg);
6629 return tmp;
6633 * Dummy port_ops
6635 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6637 return AC_ERR_SYSTEM;
6640 static void ata_dummy_error_handler(struct ata_port *ap)
6642 /* truly dummy */
6645 struct ata_port_operations ata_dummy_port_ops = {
6646 .qc_prep = ata_noop_qc_prep,
6647 .qc_issue = ata_dummy_qc_issue,
6648 .error_handler = ata_dummy_error_handler,
6651 const struct ata_port_info ata_dummy_port_info = {
6652 .port_ops = &ata_dummy_port_ops,
6656 * libata is essentially a library of internal helper functions for
6657 * low-level ATA host controller drivers. As such, the API/ABI is
6658 * likely to change as new drivers are added and updated.
6659 * Do not depend on ABI/API stability.
6661 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6662 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6663 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6664 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6665 EXPORT_SYMBOL_GPL(sata_port_ops);
6666 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6667 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6668 EXPORT_SYMBOL_GPL(ata_link_next);
6669 EXPORT_SYMBOL_GPL(ata_dev_next);
6670 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6671 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6672 EXPORT_SYMBOL_GPL(ata_host_init);
6673 EXPORT_SYMBOL_GPL(ata_host_alloc);
6674 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6675 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6676 EXPORT_SYMBOL_GPL(ata_host_start);
6677 EXPORT_SYMBOL_GPL(ata_host_register);
6678 EXPORT_SYMBOL_GPL(ata_host_activate);
6679 EXPORT_SYMBOL_GPL(ata_host_detach);
6680 EXPORT_SYMBOL_GPL(ata_sg_init);
6681 EXPORT_SYMBOL_GPL(ata_qc_complete);
6682 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6683 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6684 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6685 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6686 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6687 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6688 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6689 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6690 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6691 EXPORT_SYMBOL_GPL(ata_mode_string);
6692 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6693 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6694 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6695 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6696 EXPORT_SYMBOL_GPL(ata_dev_disable);
6697 EXPORT_SYMBOL_GPL(sata_set_spd);
6698 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6699 EXPORT_SYMBOL_GPL(sata_link_debounce);
6700 EXPORT_SYMBOL_GPL(sata_link_resume);
6701 EXPORT_SYMBOL_GPL(ata_std_prereset);
6702 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6703 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6704 EXPORT_SYMBOL_GPL(ata_std_postreset);
6705 EXPORT_SYMBOL_GPL(ata_dev_classify);
6706 EXPORT_SYMBOL_GPL(ata_dev_pair);
6707 EXPORT_SYMBOL_GPL(ata_ratelimit);
6708 EXPORT_SYMBOL_GPL(ata_wait_register);
6709 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6710 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6711 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6712 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6713 EXPORT_SYMBOL_GPL(sata_scr_valid);
6714 EXPORT_SYMBOL_GPL(sata_scr_read);
6715 EXPORT_SYMBOL_GPL(sata_scr_write);
6716 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6717 EXPORT_SYMBOL_GPL(ata_link_online);
6718 EXPORT_SYMBOL_GPL(ata_link_offline);
6719 #ifdef CONFIG_PM
6720 EXPORT_SYMBOL_GPL(ata_host_suspend);
6721 EXPORT_SYMBOL_GPL(ata_host_resume);
6722 #endif /* CONFIG_PM */
6723 EXPORT_SYMBOL_GPL(ata_id_string);
6724 EXPORT_SYMBOL_GPL(ata_id_c_string);
6725 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6726 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6728 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6729 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6730 EXPORT_SYMBOL_GPL(ata_timing_compute);
6731 EXPORT_SYMBOL_GPL(ata_timing_merge);
6732 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6734 #ifdef CONFIG_PCI
6735 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6736 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6737 #ifdef CONFIG_PM
6738 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6739 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6740 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6741 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6742 #endif /* CONFIG_PM */
6743 #endif /* CONFIG_PCI */
6745 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6746 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6747 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6748 EXPORT_SYMBOL_GPL(ata_port_desc);
6749 #ifdef CONFIG_PCI
6750 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6751 #endif /* CONFIG_PCI */
6752 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6753 EXPORT_SYMBOL_GPL(ata_link_abort);
6754 EXPORT_SYMBOL_GPL(ata_port_abort);
6755 EXPORT_SYMBOL_GPL(ata_port_freeze);
6756 EXPORT_SYMBOL_GPL(sata_async_notification);
6757 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6758 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6759 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6760 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6761 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6762 EXPORT_SYMBOL_GPL(ata_do_eh);
6763 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6765 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6766 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6767 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6768 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6769 EXPORT_SYMBOL_GPL(ata_cable_sata);