Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux/fpc-iii.git] / drivers / ata / sata_mv.c
bloba476cd99b95d42ce666e38c17d2dd767cac4f6db
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008-2009: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Originally written by Brett Russ.
9 * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>.
11 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; version 2 of the License.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
29 * sata_mv TODO list:
31 * --> Develop a low-power-consumption strategy, and implement it.
33 * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds.
35 * --> [Experiment, Marvell value added] Is it possible to use target
36 * mode to cross-connect two Linux boxes with Marvell cards? If so,
37 * creating LibATA target mode support would be very interesting.
39 * Target mode, for those without docs, is the ability to directly
40 * connect two SATA ports.
44 * 80x1-B2 errata PCI#11:
46 * Users of the 6041/6081 Rev.B2 chips (current is C0)
47 * should be careful to insert those cards only onto PCI-X bus #0,
48 * and only in device slots 0..7, not higher. The chips may not
49 * work correctly otherwise (note: this is a pretty rare condition).
52 #include <linux/kernel.h>
53 #include <linux/module.h>
54 #include <linux/pci.h>
55 #include <linux/init.h>
56 #include <linux/blkdev.h>
57 #include <linux/delay.h>
58 #include <linux/interrupt.h>
59 #include <linux/dmapool.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/device.h>
62 #include <linux/clk.h>
63 #include <linux/platform_device.h>
64 #include <linux/ata_platform.h>
65 #include <linux/mbus.h>
66 #include <linux/bitops.h>
67 #include <linux/gfp.h>
68 #include <scsi/scsi_host.h>
69 #include <scsi/scsi_cmnd.h>
70 #include <scsi/scsi_device.h>
71 #include <linux/libata.h>
73 #define DRV_NAME "sata_mv"
74 #define DRV_VERSION "1.28"
77 * module options
80 static int msi;
81 #ifdef CONFIG_PCI
82 module_param(msi, int, S_IRUGO);
83 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
84 #endif
86 static int irq_coalescing_io_count;
87 module_param(irq_coalescing_io_count, int, S_IRUGO);
88 MODULE_PARM_DESC(irq_coalescing_io_count,
89 "IRQ coalescing I/O count threshold (0..255)");
91 static int irq_coalescing_usecs;
92 module_param(irq_coalescing_usecs, int, S_IRUGO);
93 MODULE_PARM_DESC(irq_coalescing_usecs,
94 "IRQ coalescing time threshold in usecs");
96 enum {
97 /* BAR's are enumerated in terms of pci_resource_start() terms */
98 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
99 MV_IO_BAR = 2, /* offset 0x18: IO space */
100 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
102 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
103 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
105 /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */
106 COAL_CLOCKS_PER_USEC = 150, /* for calculating COAL_TIMEs */
107 MAX_COAL_TIME_THRESHOLD = ((1 << 24) - 1), /* internal clocks count */
108 MAX_COAL_IO_COUNT = 255, /* completed I/O count */
110 MV_PCI_REG_BASE = 0,
113 * Per-chip ("all ports") interrupt coalescing feature.
114 * This is only for GEN_II / GEN_IIE hardware.
116 * Coalescing defers the interrupt until either the IO_THRESHOLD
117 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
119 COAL_REG_BASE = 0x18000,
120 IRQ_COAL_CAUSE = (COAL_REG_BASE + 0x08),
121 ALL_PORTS_COAL_IRQ = (1 << 4), /* all ports irq event */
123 IRQ_COAL_IO_THRESHOLD = (COAL_REG_BASE + 0xcc),
124 IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0),
127 * Registers for the (unused here) transaction coalescing feature:
129 TRAN_COAL_CAUSE_LO = (COAL_REG_BASE + 0x88),
130 TRAN_COAL_CAUSE_HI = (COAL_REG_BASE + 0x8c),
132 SATAHC0_REG_BASE = 0x20000,
133 FLASH_CTL = 0x1046c,
134 GPIO_PORT_CTL = 0x104f0,
135 RESET_CFG = 0x180d8,
137 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
138 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
139 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
140 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
142 MV_MAX_Q_DEPTH = 32,
143 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
145 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
146 * CRPB needs alignment on a 256B boundary. Size == 256B
147 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
149 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
150 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
151 MV_MAX_SG_CT = 256,
152 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
154 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
155 MV_PORT_HC_SHIFT = 2,
156 MV_PORTS_PER_HC = (1 << MV_PORT_HC_SHIFT), /* 4 */
157 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
158 MV_PORT_MASK = (MV_PORTS_PER_HC - 1), /* 3 */
160 /* Host Flags */
161 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
163 MV_COMMON_FLAGS = ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
164 ATA_FLAG_MMIO | ATA_FLAG_PIO_POLLING,
166 MV_GEN_I_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI,
168 MV_GEN_II_FLAGS = MV_COMMON_FLAGS | ATA_FLAG_NCQ |
169 ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA,
171 MV_GEN_IIE_FLAGS = MV_GEN_II_FLAGS | ATA_FLAG_AN,
173 CRQB_FLAG_READ = (1 << 0),
174 CRQB_TAG_SHIFT = 1,
175 CRQB_IOID_SHIFT = 6, /* CRQB Gen-II/IIE IO Id shift */
176 CRQB_PMP_SHIFT = 12, /* CRQB Gen-II/IIE PMP shift */
177 CRQB_HOSTQ_SHIFT = 17, /* CRQB Gen-II/IIE HostQueTag shift */
178 CRQB_CMD_ADDR_SHIFT = 8,
179 CRQB_CMD_CS = (0x2 << 11),
180 CRQB_CMD_LAST = (1 << 15),
182 CRPB_FLAG_STATUS_SHIFT = 8,
183 CRPB_IOID_SHIFT_6 = 5, /* CRPB Gen-II IO Id shift */
184 CRPB_IOID_SHIFT_7 = 7, /* CRPB Gen-IIE IO Id shift */
186 EPRD_FLAG_END_OF_TBL = (1 << 31),
188 /* PCI interface registers */
190 MV_PCI_COMMAND = 0xc00,
191 MV_PCI_COMMAND_MWRCOM = (1 << 4), /* PCI Master Write Combining */
192 MV_PCI_COMMAND_MRDTRIG = (1 << 7), /* PCI Master Read Trigger */
194 PCI_MAIN_CMD_STS = 0xd30,
195 STOP_PCI_MASTER = (1 << 2),
196 PCI_MASTER_EMPTY = (1 << 3),
197 GLOB_SFT_RST = (1 << 4),
199 MV_PCI_MODE = 0xd00,
200 MV_PCI_MODE_MASK = 0x30,
202 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
203 MV_PCI_DISC_TIMER = 0xd04,
204 MV_PCI_MSI_TRIGGER = 0xc38,
205 MV_PCI_SERR_MASK = 0xc28,
206 MV_PCI_XBAR_TMOUT = 0x1d04,
207 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
208 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
209 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
210 MV_PCI_ERR_COMMAND = 0x1d50,
212 PCI_IRQ_CAUSE = 0x1d58,
213 PCI_IRQ_MASK = 0x1d5c,
214 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
216 PCIE_IRQ_CAUSE = 0x1900,
217 PCIE_IRQ_MASK = 0x1910,
218 PCIE_UNMASK_ALL_IRQS = 0x40a, /* assorted bits */
220 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
221 PCI_HC_MAIN_IRQ_CAUSE = 0x1d60,
222 PCI_HC_MAIN_IRQ_MASK = 0x1d64,
223 SOC_HC_MAIN_IRQ_CAUSE = 0x20020,
224 SOC_HC_MAIN_IRQ_MASK = 0x20024,
225 ERR_IRQ = (1 << 0), /* shift by (2 * port #) */
226 DONE_IRQ = (1 << 1), /* shift by (2 * port #) */
227 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
228 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
229 DONE_IRQ_0_3 = 0x000000aa, /* DONE_IRQ ports 0,1,2,3 */
230 DONE_IRQ_4_7 = (DONE_IRQ_0_3 << HC_SHIFT), /* 4,5,6,7 */
231 PCI_ERR = (1 << 18),
232 TRAN_COAL_LO_DONE = (1 << 19), /* transaction coalescing */
233 TRAN_COAL_HI_DONE = (1 << 20), /* transaction coalescing */
234 PORTS_0_3_COAL_DONE = (1 << 8), /* HC0 IRQ coalescing */
235 PORTS_4_7_COAL_DONE = (1 << 17), /* HC1 IRQ coalescing */
236 ALL_PORTS_COAL_DONE = (1 << 21), /* GEN_II(E) IRQ coalescing */
237 GPIO_INT = (1 << 22),
238 SELF_INT = (1 << 23),
239 TWSI_INT = (1 << 24),
240 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
241 HC_MAIN_RSVD_5 = (0x1fff << 19), /* bits 31-19 */
242 HC_MAIN_RSVD_SOC = (0x3fffffb << 6), /* bits 31-9, 7-6 */
244 /* SATAHC registers */
245 HC_CFG = 0x00,
247 HC_IRQ_CAUSE = 0x14,
248 DMA_IRQ = (1 << 0), /* shift by port # */
249 HC_COAL_IRQ = (1 << 4), /* IRQ coalescing */
250 DEV_IRQ = (1 << 8), /* shift by port # */
253 * Per-HC (Host-Controller) interrupt coalescing feature.
254 * This is present on all chip generations.
256 * Coalescing defers the interrupt until either the IO_THRESHOLD
257 * (count of completed I/Os) is met, or the TIME_THRESHOLD is met.
259 HC_IRQ_COAL_IO_THRESHOLD = 0x000c,
260 HC_IRQ_COAL_TIME_THRESHOLD = 0x0010,
262 SOC_LED_CTRL = 0x2c,
263 SOC_LED_CTRL_BLINK = (1 << 0), /* Active LED blink */
264 SOC_LED_CTRL_ACT_PRESENCE = (1 << 2), /* Multiplex dev presence */
265 /* with dev activity LED */
267 /* Shadow block registers */
268 SHD_BLK = 0x100,
269 SHD_CTL_AST = 0x20, /* ofs from SHD_BLK */
271 /* SATA registers */
272 SATA_STATUS = 0x300, /* ctrl, err regs follow status */
273 SATA_ACTIVE = 0x350,
274 FIS_IRQ_CAUSE = 0x364,
275 FIS_IRQ_CAUSE_AN = (1 << 9), /* async notification */
277 LTMODE = 0x30c, /* requires read-after-write */
278 LTMODE_BIT8 = (1 << 8), /* unknown, but necessary */
280 PHY_MODE2 = 0x330,
281 PHY_MODE3 = 0x310,
283 PHY_MODE4 = 0x314, /* requires read-after-write */
284 PHY_MODE4_CFG_MASK = 0x00000003, /* phy internal config field */
285 PHY_MODE4_CFG_VALUE = 0x00000001, /* phy internal config field */
286 PHY_MODE4_RSVD_ZEROS = 0x5de3fffa, /* Gen2e always write zeros */
287 PHY_MODE4_RSVD_ONES = 0x00000005, /* Gen2e always write ones */
289 SATA_IFCTL = 0x344,
290 SATA_TESTCTL = 0x348,
291 SATA_IFSTAT = 0x34c,
292 VENDOR_UNIQUE_FIS = 0x35c,
294 FISCFG = 0x360,
295 FISCFG_WAIT_DEV_ERR = (1 << 8), /* wait for host on DevErr */
296 FISCFG_SINGLE_SYNC = (1 << 16), /* SYNC on DMA activation */
298 PHY_MODE9_GEN2 = 0x398,
299 PHY_MODE9_GEN1 = 0x39c,
300 PHYCFG_OFS = 0x3a0, /* only in 65n devices */
302 MV5_PHY_MODE = 0x74,
303 MV5_LTMODE = 0x30,
304 MV5_PHY_CTL = 0x0C,
305 SATA_IFCFG = 0x050,
307 MV_M2_PREAMP_MASK = 0x7e0,
309 /* Port registers */
310 EDMA_CFG = 0,
311 EDMA_CFG_Q_DEPTH = 0x1f, /* max device queue depth */
312 EDMA_CFG_NCQ = (1 << 5), /* for R/W FPDMA queued */
313 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
314 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
315 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
316 EDMA_CFG_EDMA_FBS = (1 << 16), /* EDMA FIS-Based Switching */
317 EDMA_CFG_FBS = (1 << 26), /* FIS-Based Switching */
319 EDMA_ERR_IRQ_CAUSE = 0x8,
320 EDMA_ERR_IRQ_MASK = 0xc,
321 EDMA_ERR_D_PAR = (1 << 0), /* UDMA data parity err */
322 EDMA_ERR_PRD_PAR = (1 << 1), /* UDMA PRD parity err */
323 EDMA_ERR_DEV = (1 << 2), /* device error */
324 EDMA_ERR_DEV_DCON = (1 << 3), /* device disconnect */
325 EDMA_ERR_DEV_CON = (1 << 4), /* device connected */
326 EDMA_ERR_SERR = (1 << 5), /* SError bits [WBDST] raised */
327 EDMA_ERR_SELF_DIS = (1 << 7), /* Gen II/IIE self-disable */
328 EDMA_ERR_SELF_DIS_5 = (1 << 8), /* Gen I self-disable */
329 EDMA_ERR_BIST_ASYNC = (1 << 8), /* BIST FIS or Async Notify */
330 EDMA_ERR_TRANS_IRQ_7 = (1 << 8), /* Gen IIE transprt layer irq */
331 EDMA_ERR_CRQB_PAR = (1 << 9), /* CRQB parity error */
332 EDMA_ERR_CRPB_PAR = (1 << 10), /* CRPB parity error */
333 EDMA_ERR_INTRL_PAR = (1 << 11), /* internal parity error */
334 EDMA_ERR_IORDY = (1 << 12), /* IORdy timeout */
336 EDMA_ERR_LNK_CTRL_RX = (0xf << 13), /* link ctrl rx error */
337 EDMA_ERR_LNK_CTRL_RX_0 = (1 << 13), /* transient: CRC err */
338 EDMA_ERR_LNK_CTRL_RX_1 = (1 << 14), /* transient: FIFO err */
339 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15), /* fatal: caught SYNC */
340 EDMA_ERR_LNK_CTRL_RX_3 = (1 << 16), /* transient: FIS rx err */
342 EDMA_ERR_LNK_DATA_RX = (0xf << 17), /* link data rx error */
344 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21), /* link ctrl tx error */
345 EDMA_ERR_LNK_CTRL_TX_0 = (1 << 21), /* transient: CRC err */
346 EDMA_ERR_LNK_CTRL_TX_1 = (1 << 22), /* transient: FIFO err */
347 EDMA_ERR_LNK_CTRL_TX_2 = (1 << 23), /* transient: caught SYNC */
348 EDMA_ERR_LNK_CTRL_TX_3 = (1 << 24), /* transient: caught DMAT */
349 EDMA_ERR_LNK_CTRL_TX_4 = (1 << 25), /* transient: FIS collision */
351 EDMA_ERR_LNK_DATA_TX = (0x1f << 26), /* link data tx error */
353 EDMA_ERR_TRANS_PROTO = (1 << 31), /* transport protocol error */
354 EDMA_ERR_OVERRUN_5 = (1 << 5),
355 EDMA_ERR_UNDERRUN_5 = (1 << 6),
357 EDMA_ERR_IRQ_TRANSIENT = EDMA_ERR_LNK_CTRL_RX_0 |
358 EDMA_ERR_LNK_CTRL_RX_1 |
359 EDMA_ERR_LNK_CTRL_RX_3 |
360 EDMA_ERR_LNK_CTRL_TX,
362 EDMA_EH_FREEZE = EDMA_ERR_D_PAR |
363 EDMA_ERR_PRD_PAR |
364 EDMA_ERR_DEV_DCON |
365 EDMA_ERR_DEV_CON |
366 EDMA_ERR_SERR |
367 EDMA_ERR_SELF_DIS |
368 EDMA_ERR_CRQB_PAR |
369 EDMA_ERR_CRPB_PAR |
370 EDMA_ERR_INTRL_PAR |
371 EDMA_ERR_IORDY |
372 EDMA_ERR_LNK_CTRL_RX_2 |
373 EDMA_ERR_LNK_DATA_RX |
374 EDMA_ERR_LNK_DATA_TX |
375 EDMA_ERR_TRANS_PROTO,
377 EDMA_EH_FREEZE_5 = EDMA_ERR_D_PAR |
378 EDMA_ERR_PRD_PAR |
379 EDMA_ERR_DEV_DCON |
380 EDMA_ERR_DEV_CON |
381 EDMA_ERR_OVERRUN_5 |
382 EDMA_ERR_UNDERRUN_5 |
383 EDMA_ERR_SELF_DIS_5 |
384 EDMA_ERR_CRQB_PAR |
385 EDMA_ERR_CRPB_PAR |
386 EDMA_ERR_INTRL_PAR |
387 EDMA_ERR_IORDY,
389 EDMA_REQ_Q_BASE_HI = 0x10,
390 EDMA_REQ_Q_IN_PTR = 0x14, /* also contains BASE_LO */
392 EDMA_REQ_Q_OUT_PTR = 0x18,
393 EDMA_REQ_Q_PTR_SHIFT = 5,
395 EDMA_RSP_Q_BASE_HI = 0x1c,
396 EDMA_RSP_Q_IN_PTR = 0x20,
397 EDMA_RSP_Q_OUT_PTR = 0x24, /* also contains BASE_LO */
398 EDMA_RSP_Q_PTR_SHIFT = 3,
400 EDMA_CMD = 0x28, /* EDMA command register */
401 EDMA_EN = (1 << 0), /* enable EDMA */
402 EDMA_DS = (1 << 1), /* disable EDMA; self-negated */
403 EDMA_RESET = (1 << 2), /* reset eng/trans/link/phy */
405 EDMA_STATUS = 0x30, /* EDMA engine status */
406 EDMA_STATUS_CACHE_EMPTY = (1 << 6), /* GenIIe command cache empty */
407 EDMA_STATUS_IDLE = (1 << 7), /* GenIIe EDMA enabled/idle */
409 EDMA_IORDY_TMOUT = 0x34,
410 EDMA_ARB_CFG = 0x38,
412 EDMA_HALTCOND = 0x60, /* GenIIe halt conditions */
413 EDMA_UNKNOWN_RSVD = 0x6C, /* GenIIe unknown/reserved */
415 BMDMA_CMD = 0x224, /* bmdma command register */
416 BMDMA_STATUS = 0x228, /* bmdma status register */
417 BMDMA_PRD_LOW = 0x22c, /* bmdma PRD addr 31:0 */
418 BMDMA_PRD_HIGH = 0x230, /* bmdma PRD addr 63:32 */
420 /* Host private flags (hp_flags) */
421 MV_HP_FLAG_MSI = (1 << 0),
422 MV_HP_ERRATA_50XXB0 = (1 << 1),
423 MV_HP_ERRATA_50XXB2 = (1 << 2),
424 MV_HP_ERRATA_60X1B2 = (1 << 3),
425 MV_HP_ERRATA_60X1C0 = (1 << 4),
426 MV_HP_GEN_I = (1 << 6), /* Generation I: 50xx */
427 MV_HP_GEN_II = (1 << 7), /* Generation II: 60xx */
428 MV_HP_GEN_IIE = (1 << 8), /* Generation IIE: 6042/7042 */
429 MV_HP_PCIE = (1 << 9), /* PCIe bus/regs: 7042 */
430 MV_HP_CUT_THROUGH = (1 << 10), /* can use EDMA cut-through */
431 MV_HP_FLAG_SOC = (1 << 11), /* SystemOnChip, no PCI */
432 MV_HP_QUIRK_LED_BLINK_EN = (1 << 12), /* is led blinking enabled? */
434 /* Port private flags (pp_flags) */
435 MV_PP_FLAG_EDMA_EN = (1 << 0), /* is EDMA engine enabled? */
436 MV_PP_FLAG_NCQ_EN = (1 << 1), /* is EDMA set up for NCQ? */
437 MV_PP_FLAG_FBS_EN = (1 << 2), /* is EDMA set up for FBS? */
438 MV_PP_FLAG_DELAYED_EH = (1 << 3), /* delayed dev err handling */
439 MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4), /* ignore initial ATA_DRDY */
442 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
443 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
444 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
445 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
446 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
448 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
449 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
451 enum {
452 /* DMA boundary 0xffff is required by the s/g splitting
453 * we need on /length/ in mv_fill-sg().
455 MV_DMA_BOUNDARY = 0xffffU,
457 /* mask of register bits containing lower 32 bits
458 * of EDMA request queue DMA address
460 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
462 /* ditto, for response queue */
463 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
466 enum chip_type {
467 chip_504x,
468 chip_508x,
469 chip_5080,
470 chip_604x,
471 chip_608x,
472 chip_6042,
473 chip_7042,
474 chip_soc,
477 /* Command ReQuest Block: 32B */
478 struct mv_crqb {
479 __le32 sg_addr;
480 __le32 sg_addr_hi;
481 __le16 ctrl_flags;
482 __le16 ata_cmd[11];
485 struct mv_crqb_iie {
486 __le32 addr;
487 __le32 addr_hi;
488 __le32 flags;
489 __le32 len;
490 __le32 ata_cmd[4];
493 /* Command ResPonse Block: 8B */
494 struct mv_crpb {
495 __le16 id;
496 __le16 flags;
497 __le32 tmstmp;
500 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
501 struct mv_sg {
502 __le32 addr;
503 __le32 flags_size;
504 __le32 addr_hi;
505 __le32 reserved;
509 * We keep a local cache of a few frequently accessed port
510 * registers here, to avoid having to read them (very slow)
511 * when switching between EDMA and non-EDMA modes.
513 struct mv_cached_regs {
514 u32 fiscfg;
515 u32 ltmode;
516 u32 haltcond;
517 u32 unknown_rsvd;
520 struct mv_port_priv {
521 struct mv_crqb *crqb;
522 dma_addr_t crqb_dma;
523 struct mv_crpb *crpb;
524 dma_addr_t crpb_dma;
525 struct mv_sg *sg_tbl[MV_MAX_Q_DEPTH];
526 dma_addr_t sg_tbl_dma[MV_MAX_Q_DEPTH];
528 unsigned int req_idx;
529 unsigned int resp_idx;
531 u32 pp_flags;
532 struct mv_cached_regs cached;
533 unsigned int delayed_eh_pmp_map;
536 struct mv_port_signal {
537 u32 amps;
538 u32 pre;
541 struct mv_host_priv {
542 u32 hp_flags;
543 unsigned int board_idx;
544 u32 main_irq_mask;
545 struct mv_port_signal signal[8];
546 const struct mv_hw_ops *ops;
547 int n_ports;
548 void __iomem *base;
549 void __iomem *main_irq_cause_addr;
550 void __iomem *main_irq_mask_addr;
551 u32 irq_cause_offset;
552 u32 irq_mask_offset;
553 u32 unmask_all_irqs;
555 #if defined(CONFIG_HAVE_CLK)
556 struct clk *clk;
557 #endif
559 * These consistent DMA memory pools give us guaranteed
560 * alignment for hardware-accessed data structures,
561 * and less memory waste in accomplishing the alignment.
563 struct dma_pool *crqb_pool;
564 struct dma_pool *crpb_pool;
565 struct dma_pool *sg_tbl_pool;
568 struct mv_hw_ops {
569 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
570 unsigned int port);
571 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
572 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
573 void __iomem *mmio);
574 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
575 unsigned int n_hc);
576 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
577 void (*reset_bus)(struct ata_host *host, void __iomem *mmio);
580 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
581 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
582 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val);
583 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val);
584 static int mv_port_start(struct ata_port *ap);
585 static void mv_port_stop(struct ata_port *ap);
586 static int mv_qc_defer(struct ata_queued_cmd *qc);
587 static void mv_qc_prep(struct ata_queued_cmd *qc);
588 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
589 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
590 static int mv_hardreset(struct ata_link *link, unsigned int *class,
591 unsigned long deadline);
592 static void mv_eh_freeze(struct ata_port *ap);
593 static void mv_eh_thaw(struct ata_port *ap);
594 static void mv6_dev_config(struct ata_device *dev);
596 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
597 unsigned int port);
598 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
599 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
600 void __iomem *mmio);
601 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
602 unsigned int n_hc);
603 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
604 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio);
606 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
607 unsigned int port);
608 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
609 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
610 void __iomem *mmio);
611 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
612 unsigned int n_hc);
613 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
614 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
615 void __iomem *mmio);
616 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
617 void __iomem *mmio);
618 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
619 void __iomem *mmio, unsigned int n_hc);
620 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
621 void __iomem *mmio);
622 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio);
623 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
624 void __iomem *mmio, unsigned int port);
625 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio);
626 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
627 unsigned int port_no);
628 static int mv_stop_edma(struct ata_port *ap);
629 static int mv_stop_edma_engine(void __iomem *port_mmio);
630 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma);
632 static void mv_pmp_select(struct ata_port *ap, int pmp);
633 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
634 unsigned long deadline);
635 static int mv_softreset(struct ata_link *link, unsigned int *class,
636 unsigned long deadline);
637 static void mv_pmp_error_handler(struct ata_port *ap);
638 static void mv_process_crpb_entries(struct ata_port *ap,
639 struct mv_port_priv *pp);
641 static void mv_sff_irq_clear(struct ata_port *ap);
642 static int mv_check_atapi_dma(struct ata_queued_cmd *qc);
643 static void mv_bmdma_setup(struct ata_queued_cmd *qc);
644 static void mv_bmdma_start(struct ata_queued_cmd *qc);
645 static void mv_bmdma_stop(struct ata_queued_cmd *qc);
646 static u8 mv_bmdma_status(struct ata_port *ap);
647 static u8 mv_sff_check_status(struct ata_port *ap);
649 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
650 * because we have to allow room for worst case splitting of
651 * PRDs for 64K boundaries in mv_fill_sg().
653 static struct scsi_host_template mv5_sht = {
654 ATA_BASE_SHT(DRV_NAME),
655 .sg_tablesize = MV_MAX_SG_CT / 2,
656 .dma_boundary = MV_DMA_BOUNDARY,
659 static struct scsi_host_template mv6_sht = {
660 ATA_NCQ_SHT(DRV_NAME),
661 .can_queue = MV_MAX_Q_DEPTH - 1,
662 .sg_tablesize = MV_MAX_SG_CT / 2,
663 .dma_boundary = MV_DMA_BOUNDARY,
666 static struct ata_port_operations mv5_ops = {
667 .inherits = &ata_sff_port_ops,
669 .lost_interrupt = ATA_OP_NULL,
671 .qc_defer = mv_qc_defer,
672 .qc_prep = mv_qc_prep,
673 .qc_issue = mv_qc_issue,
675 .freeze = mv_eh_freeze,
676 .thaw = mv_eh_thaw,
677 .hardreset = mv_hardreset,
679 .scr_read = mv5_scr_read,
680 .scr_write = mv5_scr_write,
682 .port_start = mv_port_start,
683 .port_stop = mv_port_stop,
686 static struct ata_port_operations mv6_ops = {
687 .inherits = &ata_bmdma_port_ops,
689 .lost_interrupt = ATA_OP_NULL,
691 .qc_defer = mv_qc_defer,
692 .qc_prep = mv_qc_prep,
693 .qc_issue = mv_qc_issue,
695 .dev_config = mv6_dev_config,
697 .freeze = mv_eh_freeze,
698 .thaw = mv_eh_thaw,
699 .hardreset = mv_hardreset,
700 .softreset = mv_softreset,
701 .pmp_hardreset = mv_pmp_hardreset,
702 .pmp_softreset = mv_softreset,
703 .error_handler = mv_pmp_error_handler,
705 .scr_read = mv_scr_read,
706 .scr_write = mv_scr_write,
708 .sff_check_status = mv_sff_check_status,
709 .sff_irq_clear = mv_sff_irq_clear,
710 .check_atapi_dma = mv_check_atapi_dma,
711 .bmdma_setup = mv_bmdma_setup,
712 .bmdma_start = mv_bmdma_start,
713 .bmdma_stop = mv_bmdma_stop,
714 .bmdma_status = mv_bmdma_status,
716 .port_start = mv_port_start,
717 .port_stop = mv_port_stop,
720 static struct ata_port_operations mv_iie_ops = {
721 .inherits = &mv6_ops,
722 .dev_config = ATA_OP_NULL,
723 .qc_prep = mv_qc_prep_iie,
726 static const struct ata_port_info mv_port_info[] = {
727 { /* chip_504x */
728 .flags = MV_GEN_I_FLAGS,
729 .pio_mask = ATA_PIO4,
730 .udma_mask = ATA_UDMA6,
731 .port_ops = &mv5_ops,
733 { /* chip_508x */
734 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
735 .pio_mask = ATA_PIO4,
736 .udma_mask = ATA_UDMA6,
737 .port_ops = &mv5_ops,
739 { /* chip_5080 */
740 .flags = MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC,
741 .pio_mask = ATA_PIO4,
742 .udma_mask = ATA_UDMA6,
743 .port_ops = &mv5_ops,
745 { /* chip_604x */
746 .flags = MV_GEN_II_FLAGS,
747 .pio_mask = ATA_PIO4,
748 .udma_mask = ATA_UDMA6,
749 .port_ops = &mv6_ops,
751 { /* chip_608x */
752 .flags = MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC,
753 .pio_mask = ATA_PIO4,
754 .udma_mask = ATA_UDMA6,
755 .port_ops = &mv6_ops,
757 { /* chip_6042 */
758 .flags = MV_GEN_IIE_FLAGS,
759 .pio_mask = ATA_PIO4,
760 .udma_mask = ATA_UDMA6,
761 .port_ops = &mv_iie_ops,
763 { /* chip_7042 */
764 .flags = MV_GEN_IIE_FLAGS,
765 .pio_mask = ATA_PIO4,
766 .udma_mask = ATA_UDMA6,
767 .port_ops = &mv_iie_ops,
769 { /* chip_soc */
770 .flags = MV_GEN_IIE_FLAGS,
771 .pio_mask = ATA_PIO4,
772 .udma_mask = ATA_UDMA6,
773 .port_ops = &mv_iie_ops,
777 static const struct pci_device_id mv_pci_tbl[] = {
778 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
779 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
780 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
781 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
782 /* RocketRAID 1720/174x have different identifiers */
783 { PCI_VDEVICE(TTI, 0x1720), chip_6042 },
784 { PCI_VDEVICE(TTI, 0x1740), chip_6042 },
785 { PCI_VDEVICE(TTI, 0x1742), chip_6042 },
787 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
788 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
789 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
790 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
791 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
793 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
795 /* Adaptec 1430SA */
796 { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 },
798 /* Marvell 7042 support */
799 { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 },
801 /* Highpoint RocketRAID PCIe series */
802 { PCI_VDEVICE(TTI, 0x2300), chip_7042 },
803 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
805 { } /* terminate list */
808 static const struct mv_hw_ops mv5xxx_ops = {
809 .phy_errata = mv5_phy_errata,
810 .enable_leds = mv5_enable_leds,
811 .read_preamp = mv5_read_preamp,
812 .reset_hc = mv5_reset_hc,
813 .reset_flash = mv5_reset_flash,
814 .reset_bus = mv5_reset_bus,
817 static const struct mv_hw_ops mv6xxx_ops = {
818 .phy_errata = mv6_phy_errata,
819 .enable_leds = mv6_enable_leds,
820 .read_preamp = mv6_read_preamp,
821 .reset_hc = mv6_reset_hc,
822 .reset_flash = mv6_reset_flash,
823 .reset_bus = mv_reset_pci_bus,
826 static const struct mv_hw_ops mv_soc_ops = {
827 .phy_errata = mv6_phy_errata,
828 .enable_leds = mv_soc_enable_leds,
829 .read_preamp = mv_soc_read_preamp,
830 .reset_hc = mv_soc_reset_hc,
831 .reset_flash = mv_soc_reset_flash,
832 .reset_bus = mv_soc_reset_bus,
835 static const struct mv_hw_ops mv_soc_65n_ops = {
836 .phy_errata = mv_soc_65n_phy_errata,
837 .enable_leds = mv_soc_enable_leds,
838 .reset_hc = mv_soc_reset_hc,
839 .reset_flash = mv_soc_reset_flash,
840 .reset_bus = mv_soc_reset_bus,
844 * Functions
847 static inline void writelfl(unsigned long data, void __iomem *addr)
849 writel(data, addr);
850 (void) readl(addr); /* flush to avoid PCI posted write */
853 static inline unsigned int mv_hc_from_port(unsigned int port)
855 return port >> MV_PORT_HC_SHIFT;
858 static inline unsigned int mv_hardport_from_port(unsigned int port)
860 return port & MV_PORT_MASK;
864 * Consolidate some rather tricky bit shift calculations.
865 * This is hot-path stuff, so not a function.
866 * Simple code, with two return values, so macro rather than inline.
868 * port is the sole input, in range 0..7.
869 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
870 * hardport is the other output, in range 0..3.
872 * Note that port and hardport may be the same variable in some cases.
874 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
876 shift = mv_hc_from_port(port) * HC_SHIFT; \
877 hardport = mv_hardport_from_port(port); \
878 shift += hardport * 2; \
881 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
883 return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
886 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
887 unsigned int port)
889 return mv_hc_base(base, mv_hc_from_port(port));
892 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
894 return mv_hc_base_from_port(base, port) +
895 MV_SATAHC_ARBTR_REG_SZ +
896 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
899 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
901 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
902 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
904 return hc_mmio + ofs;
907 static inline void __iomem *mv_host_base(struct ata_host *host)
909 struct mv_host_priv *hpriv = host->private_data;
910 return hpriv->base;
913 static inline void __iomem *mv_ap_base(struct ata_port *ap)
915 return mv_port_base(mv_host_base(ap->host), ap->port_no);
918 static inline int mv_get_hc_count(unsigned long port_flags)
920 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
924 * mv_save_cached_regs - (re-)initialize cached port registers
925 * @ap: the port whose registers we are caching
927 * Initialize the local cache of port registers,
928 * so that reading them over and over again can
929 * be avoided on the hotter paths of this driver.
930 * This saves a few microseconds each time we switch
931 * to/from EDMA mode to perform (eg.) a drive cache flush.
933 static void mv_save_cached_regs(struct ata_port *ap)
935 void __iomem *port_mmio = mv_ap_base(ap);
936 struct mv_port_priv *pp = ap->private_data;
938 pp->cached.fiscfg = readl(port_mmio + FISCFG);
939 pp->cached.ltmode = readl(port_mmio + LTMODE);
940 pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND);
941 pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD);
945 * mv_write_cached_reg - write to a cached port register
946 * @addr: hardware address of the register
947 * @old: pointer to cached value of the register
948 * @new: new value for the register
950 * Write a new value to a cached register,
951 * but only if the value is different from before.
953 static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new)
955 if (new != *old) {
956 unsigned long laddr;
957 *old = new;
959 * Workaround for 88SX60x1-B2 FEr SATA#13:
960 * Read-after-write is needed to prevent generating 64-bit
961 * write cycles on the PCI bus for SATA interface registers
962 * at offsets ending in 0x4 or 0xc.
964 * Looks like a lot of fuss, but it avoids an unnecessary
965 * +1 usec read-after-write delay for unaffected registers.
967 laddr = (long)addr & 0xffff;
968 if (laddr >= 0x300 && laddr <= 0x33c) {
969 laddr &= 0x000f;
970 if (laddr == 0x4 || laddr == 0xc) {
971 writelfl(new, addr); /* read after write */
972 return;
975 writel(new, addr); /* unaffected by the errata */
979 static void mv_set_edma_ptrs(void __iomem *port_mmio,
980 struct mv_host_priv *hpriv,
981 struct mv_port_priv *pp)
983 u32 index;
986 * initialize request queue
988 pp->req_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
989 index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
991 WARN_ON(pp->crqb_dma & 0x3ff);
992 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI);
993 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index,
994 port_mmio + EDMA_REQ_Q_IN_PTR);
995 writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR);
998 * initialize response queue
1000 pp->resp_idx &= MV_MAX_Q_DEPTH_MASK; /* paranoia */
1001 index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT;
1003 WARN_ON(pp->crpb_dma & 0xff);
1004 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI);
1005 writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR);
1006 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index,
1007 port_mmio + EDMA_RSP_Q_OUT_PTR);
1010 static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv)
1013 * When writing to the main_irq_mask in hardware,
1014 * we must ensure exclusivity between the interrupt coalescing bits
1015 * and the corresponding individual port DONE_IRQ bits.
1017 * Note that this register is really an "IRQ enable" register,
1018 * not an "IRQ mask" register as Marvell's naming might suggest.
1020 if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE))
1021 mask &= ~DONE_IRQ_0_3;
1022 if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE))
1023 mask &= ~DONE_IRQ_4_7;
1024 writelfl(mask, hpriv->main_irq_mask_addr);
1027 static void mv_set_main_irq_mask(struct ata_host *host,
1028 u32 disable_bits, u32 enable_bits)
1030 struct mv_host_priv *hpriv = host->private_data;
1031 u32 old_mask, new_mask;
1033 old_mask = hpriv->main_irq_mask;
1034 new_mask = (old_mask & ~disable_bits) | enable_bits;
1035 if (new_mask != old_mask) {
1036 hpriv->main_irq_mask = new_mask;
1037 mv_write_main_irq_mask(new_mask, hpriv);
1041 static void mv_enable_port_irqs(struct ata_port *ap,
1042 unsigned int port_bits)
1044 unsigned int shift, hardport, port = ap->port_no;
1045 u32 disable_bits, enable_bits;
1047 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
1049 disable_bits = (DONE_IRQ | ERR_IRQ) << shift;
1050 enable_bits = port_bits << shift;
1051 mv_set_main_irq_mask(ap->host, disable_bits, enable_bits);
1054 static void mv_clear_and_enable_port_irqs(struct ata_port *ap,
1055 void __iomem *port_mmio,
1056 unsigned int port_irqs)
1058 struct mv_host_priv *hpriv = ap->host->private_data;
1059 int hardport = mv_hardport_from_port(ap->port_no);
1060 void __iomem *hc_mmio = mv_hc_base_from_port(
1061 mv_host_base(ap->host), ap->port_no);
1062 u32 hc_irq_cause;
1064 /* clear EDMA event indicators, if any */
1065 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
1067 /* clear pending irq events */
1068 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
1069 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
1071 /* clear FIS IRQ Cause */
1072 if (IS_GEN_IIE(hpriv))
1073 writelfl(0, port_mmio + FIS_IRQ_CAUSE);
1075 mv_enable_port_irqs(ap, port_irqs);
1078 static void mv_set_irq_coalescing(struct ata_host *host,
1079 unsigned int count, unsigned int usecs)
1081 struct mv_host_priv *hpriv = host->private_data;
1082 void __iomem *mmio = hpriv->base, *hc_mmio;
1083 u32 coal_enable = 0;
1084 unsigned long flags;
1085 unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC;
1086 const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE |
1087 ALL_PORTS_COAL_DONE;
1089 /* Disable IRQ coalescing if either threshold is zero */
1090 if (!usecs || !count) {
1091 clks = count = 0;
1092 } else {
1093 /* Respect maximum limits of the hardware */
1094 clks = usecs * COAL_CLOCKS_PER_USEC;
1095 if (clks > MAX_COAL_TIME_THRESHOLD)
1096 clks = MAX_COAL_TIME_THRESHOLD;
1097 if (count > MAX_COAL_IO_COUNT)
1098 count = MAX_COAL_IO_COUNT;
1101 spin_lock_irqsave(&host->lock, flags);
1102 mv_set_main_irq_mask(host, coal_disable, 0);
1104 if (is_dual_hc && !IS_GEN_I(hpriv)) {
1106 * GEN_II/GEN_IIE with dual host controllers:
1107 * one set of global thresholds for the entire chip.
1109 writel(clks, mmio + IRQ_COAL_TIME_THRESHOLD);
1110 writel(count, mmio + IRQ_COAL_IO_THRESHOLD);
1111 /* clear leftover coal IRQ bit */
1112 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
1113 if (count)
1114 coal_enable = ALL_PORTS_COAL_DONE;
1115 clks = count = 0; /* force clearing of regular regs below */
1119 * All chips: independent thresholds for each HC on the chip.
1121 hc_mmio = mv_hc_base_from_port(mmio, 0);
1122 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1123 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1124 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1125 if (count)
1126 coal_enable |= PORTS_0_3_COAL_DONE;
1127 if (is_dual_hc) {
1128 hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC);
1129 writel(clks, hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD);
1130 writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD);
1131 writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE);
1132 if (count)
1133 coal_enable |= PORTS_4_7_COAL_DONE;
1136 mv_set_main_irq_mask(host, 0, coal_enable);
1137 spin_unlock_irqrestore(&host->lock, flags);
1141 * mv_start_edma - Enable eDMA engine
1142 * @base: port base address
1143 * @pp: port private data
1145 * Verify the local cache of the eDMA state is accurate with a
1146 * WARN_ON.
1148 * LOCKING:
1149 * Inherited from caller.
1151 static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio,
1152 struct mv_port_priv *pp, u8 protocol)
1154 int want_ncq = (protocol == ATA_PROT_NCQ);
1156 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1157 int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0);
1158 if (want_ncq != using_ncq)
1159 mv_stop_edma(ap);
1161 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) {
1162 struct mv_host_priv *hpriv = ap->host->private_data;
1164 mv_edma_cfg(ap, want_ncq, 1);
1166 mv_set_edma_ptrs(port_mmio, hpriv, pp);
1167 mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ);
1169 writelfl(EDMA_EN, port_mmio + EDMA_CMD);
1170 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
1174 static void mv_wait_for_edma_empty_idle(struct ata_port *ap)
1176 void __iomem *port_mmio = mv_ap_base(ap);
1177 const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE);
1178 const int per_loop = 5, timeout = (15 * 1000 / per_loop);
1179 int i;
1182 * Wait for the EDMA engine to finish transactions in progress.
1183 * No idea what a good "timeout" value might be, but measurements
1184 * indicate that it often requires hundreds of microseconds
1185 * with two drives in-use. So we use the 15msec value above
1186 * as a rough guess at what even more drives might require.
1188 for (i = 0; i < timeout; ++i) {
1189 u32 edma_stat = readl(port_mmio + EDMA_STATUS);
1190 if ((edma_stat & empty_idle) == empty_idle)
1191 break;
1192 udelay(per_loop);
1194 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
1198 * mv_stop_edma_engine - Disable eDMA engine
1199 * @port_mmio: io base address
1201 * LOCKING:
1202 * Inherited from caller.
1204 static int mv_stop_edma_engine(void __iomem *port_mmio)
1206 int i;
1208 /* Disable eDMA. The disable bit auto clears. */
1209 writelfl(EDMA_DS, port_mmio + EDMA_CMD);
1211 /* Wait for the chip to confirm eDMA is off. */
1212 for (i = 10000; i > 0; i--) {
1213 u32 reg = readl(port_mmio + EDMA_CMD);
1214 if (!(reg & EDMA_EN))
1215 return 0;
1216 udelay(10);
1218 return -EIO;
1221 static int mv_stop_edma(struct ata_port *ap)
1223 void __iomem *port_mmio = mv_ap_base(ap);
1224 struct mv_port_priv *pp = ap->private_data;
1225 int err = 0;
1227 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
1228 return 0;
1229 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1230 mv_wait_for_edma_empty_idle(ap);
1231 if (mv_stop_edma_engine(port_mmio)) {
1232 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
1233 err = -EIO;
1235 mv_edma_cfg(ap, 0, 0);
1236 return err;
1239 #ifdef ATA_DEBUG
1240 static void mv_dump_mem(void __iomem *start, unsigned bytes)
1242 int b, w;
1243 for (b = 0; b < bytes; ) {
1244 DPRINTK("%p: ", start + b);
1245 for (w = 0; b < bytes && w < 4; w++) {
1246 printk("%08x ", readl(start + b));
1247 b += sizeof(u32);
1249 printk("\n");
1252 #endif
1254 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
1256 #ifdef ATA_DEBUG
1257 int b, w;
1258 u32 dw;
1259 for (b = 0; b < bytes; ) {
1260 DPRINTK("%02x: ", b);
1261 for (w = 0; b < bytes && w < 4; w++) {
1262 (void) pci_read_config_dword(pdev, b, &dw);
1263 printk("%08x ", dw);
1264 b += sizeof(u32);
1266 printk("\n");
1268 #endif
1270 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
1271 struct pci_dev *pdev)
1273 #ifdef ATA_DEBUG
1274 void __iomem *hc_base = mv_hc_base(mmio_base,
1275 port >> MV_PORT_HC_SHIFT);
1276 void __iomem *port_base;
1277 int start_port, num_ports, p, start_hc, num_hcs, hc;
1279 if (0 > port) {
1280 start_hc = start_port = 0;
1281 num_ports = 8; /* shld be benign for 4 port devs */
1282 num_hcs = 2;
1283 } else {
1284 start_hc = port >> MV_PORT_HC_SHIFT;
1285 start_port = port;
1286 num_ports = num_hcs = 1;
1288 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
1289 num_ports > 1 ? num_ports - 1 : start_port);
1291 if (NULL != pdev) {
1292 DPRINTK("PCI config space regs:\n");
1293 mv_dump_pci_cfg(pdev, 0x68);
1295 DPRINTK("PCI regs:\n");
1296 mv_dump_mem(mmio_base+0xc00, 0x3c);
1297 mv_dump_mem(mmio_base+0xd00, 0x34);
1298 mv_dump_mem(mmio_base+0xf00, 0x4);
1299 mv_dump_mem(mmio_base+0x1d00, 0x6c);
1300 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
1301 hc_base = mv_hc_base(mmio_base, hc);
1302 DPRINTK("HC regs (HC %i):\n", hc);
1303 mv_dump_mem(hc_base, 0x1c);
1305 for (p = start_port; p < start_port + num_ports; p++) {
1306 port_base = mv_port_base(mmio_base, p);
1307 DPRINTK("EDMA regs (port %i):\n", p);
1308 mv_dump_mem(port_base, 0x54);
1309 DPRINTK("SATA regs (port %i):\n", p);
1310 mv_dump_mem(port_base+0x300, 0x60);
1312 #endif
1315 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
1317 unsigned int ofs;
1319 switch (sc_reg_in) {
1320 case SCR_STATUS:
1321 case SCR_CONTROL:
1322 case SCR_ERROR:
1323 ofs = SATA_STATUS + (sc_reg_in * sizeof(u32));
1324 break;
1325 case SCR_ACTIVE:
1326 ofs = SATA_ACTIVE; /* active is not with the others */
1327 break;
1328 default:
1329 ofs = 0xffffffffU;
1330 break;
1332 return ofs;
1335 static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
1337 unsigned int ofs = mv_scr_offset(sc_reg_in);
1339 if (ofs != 0xffffffffU) {
1340 *val = readl(mv_ap_base(link->ap) + ofs);
1341 return 0;
1342 } else
1343 return -EINVAL;
1346 static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
1348 unsigned int ofs = mv_scr_offset(sc_reg_in);
1350 if (ofs != 0xffffffffU) {
1351 void __iomem *addr = mv_ap_base(link->ap) + ofs;
1352 if (sc_reg_in == SCR_CONTROL) {
1354 * Workaround for 88SX60x1 FEr SATA#26:
1356 * COMRESETs have to take care not to accidently
1357 * put the drive to sleep when writing SCR_CONTROL.
1358 * Setting bits 12..15 prevents this problem.
1360 * So if we see an outbound COMMRESET, set those bits.
1361 * Ditto for the followup write that clears the reset.
1363 * The proprietary driver does this for
1364 * all chip versions, and so do we.
1366 if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1)
1367 val |= 0xf000;
1369 writelfl(val, addr);
1370 return 0;
1371 } else
1372 return -EINVAL;
1375 static void mv6_dev_config(struct ata_device *adev)
1378 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1380 * Gen-II does not support NCQ over a port multiplier
1381 * (no FIS-based switching).
1383 if (adev->flags & ATA_DFLAG_NCQ) {
1384 if (sata_pmp_attached(adev->link->ap)) {
1385 adev->flags &= ~ATA_DFLAG_NCQ;
1386 ata_dev_printk(adev, KERN_INFO,
1387 "NCQ disabled for command-based switching\n");
1392 static int mv_qc_defer(struct ata_queued_cmd *qc)
1394 struct ata_link *link = qc->dev->link;
1395 struct ata_port *ap = link->ap;
1396 struct mv_port_priv *pp = ap->private_data;
1399 * Don't allow new commands if we're in a delayed EH state
1400 * for NCQ and/or FIS-based switching.
1402 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
1403 return ATA_DEFER_PORT;
1405 /* PIO commands need exclusive link: no other commands [DMA or PIO]
1406 * can run concurrently.
1407 * set excl_link when we want to send a PIO command in DMA mode
1408 * or a non-NCQ command in NCQ mode.
1409 * When we receive a command from that link, and there are no
1410 * outstanding commands, mark a flag to clear excl_link and let
1411 * the command go through.
1413 if (unlikely(ap->excl_link)) {
1414 if (link == ap->excl_link) {
1415 if (ap->nr_active_links)
1416 return ATA_DEFER_PORT;
1417 qc->flags |= ATA_QCFLAG_CLEAR_EXCL;
1418 return 0;
1419 } else
1420 return ATA_DEFER_PORT;
1424 * If the port is completely idle, then allow the new qc.
1426 if (ap->nr_active_links == 0)
1427 return 0;
1430 * The port is operating in host queuing mode (EDMA) with NCQ
1431 * enabled, allow multiple NCQ commands. EDMA also allows
1432 * queueing multiple DMA commands but libata core currently
1433 * doesn't allow it.
1435 if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) &&
1436 (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) {
1437 if (ata_is_ncq(qc->tf.protocol))
1438 return 0;
1439 else {
1440 ap->excl_link = link;
1441 return ATA_DEFER_PORT;
1445 return ATA_DEFER_PORT;
1448 static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs)
1450 struct mv_port_priv *pp = ap->private_data;
1451 void __iomem *port_mmio;
1453 u32 fiscfg, *old_fiscfg = &pp->cached.fiscfg;
1454 u32 ltmode, *old_ltmode = &pp->cached.ltmode;
1455 u32 haltcond, *old_haltcond = &pp->cached.haltcond;
1457 ltmode = *old_ltmode & ~LTMODE_BIT8;
1458 haltcond = *old_haltcond | EDMA_ERR_DEV;
1460 if (want_fbs) {
1461 fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC;
1462 ltmode = *old_ltmode | LTMODE_BIT8;
1463 if (want_ncq)
1464 haltcond &= ~EDMA_ERR_DEV;
1465 else
1466 fiscfg |= FISCFG_WAIT_DEV_ERR;
1467 } else {
1468 fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR);
1471 port_mmio = mv_ap_base(ap);
1472 mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg);
1473 mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode);
1474 mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond);
1477 static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq)
1479 struct mv_host_priv *hpriv = ap->host->private_data;
1480 u32 old, new;
1482 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1483 old = readl(hpriv->base + GPIO_PORT_CTL);
1484 if (want_ncq)
1485 new = old | (1 << 22);
1486 else
1487 new = old & ~(1 << 22);
1488 if (new != old)
1489 writel(new, hpriv->base + GPIO_PORT_CTL);
1493 * mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma
1494 * @ap: Port being initialized
1496 * There are two DMA modes on these chips: basic DMA, and EDMA.
1498 * Bit-0 of the "EDMA RESERVED" register enables/disables use
1499 * of basic DMA on the GEN_IIE versions of the chips.
1501 * This bit survives EDMA resets, and must be set for basic DMA
1502 * to function, and should be cleared when EDMA is active.
1504 static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma)
1506 struct mv_port_priv *pp = ap->private_data;
1507 u32 new, *old = &pp->cached.unknown_rsvd;
1509 if (enable_bmdma)
1510 new = *old | 1;
1511 else
1512 new = *old & ~1;
1513 mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new);
1517 * SOC chips have an issue whereby the HDD LEDs don't always blink
1518 * during I/O when NCQ is enabled. Enabling a special "LED blink" mode
1519 * of the SOC takes care of it, generating a steady blink rate when
1520 * any drive on the chip is active.
1522 * Unfortunately, the blink mode is a global hardware setting for the SOC,
1523 * so we must use it whenever at least one port on the SOC has NCQ enabled.
1525 * We turn "LED blink" off when NCQ is not in use anywhere, because the normal
1526 * LED operation works then, and provides better (more accurate) feedback.
1528 * Note that this code assumes that an SOC never has more than one HC onboard.
1530 static void mv_soc_led_blink_enable(struct ata_port *ap)
1532 struct ata_host *host = ap->host;
1533 struct mv_host_priv *hpriv = host->private_data;
1534 void __iomem *hc_mmio;
1535 u32 led_ctrl;
1537 if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)
1538 return;
1539 hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN;
1540 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1541 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1542 writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1545 static void mv_soc_led_blink_disable(struct ata_port *ap)
1547 struct ata_host *host = ap->host;
1548 struct mv_host_priv *hpriv = host->private_data;
1549 void __iomem *hc_mmio;
1550 u32 led_ctrl;
1551 unsigned int port;
1553 if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN))
1554 return;
1556 /* disable led-blink only if no ports are using NCQ */
1557 for (port = 0; port < hpriv->n_ports; port++) {
1558 struct ata_port *this_ap = host->ports[port];
1559 struct mv_port_priv *pp = this_ap->private_data;
1561 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
1562 return;
1565 hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN;
1566 hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no);
1567 led_ctrl = readl(hc_mmio + SOC_LED_CTRL);
1568 writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL);
1571 static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma)
1573 u32 cfg;
1574 struct mv_port_priv *pp = ap->private_data;
1575 struct mv_host_priv *hpriv = ap->host->private_data;
1576 void __iomem *port_mmio = mv_ap_base(ap);
1578 /* set up non-NCQ EDMA configuration */
1579 cfg = EDMA_CFG_Q_DEPTH; /* always 0x1f for *all* chips */
1580 pp->pp_flags &=
1581 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
1583 if (IS_GEN_I(hpriv))
1584 cfg |= (1 << 8); /* enab config burst size mask */
1586 else if (IS_GEN_II(hpriv)) {
1587 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
1588 mv_60x1_errata_sata25(ap, want_ncq);
1590 } else if (IS_GEN_IIE(hpriv)) {
1591 int want_fbs = sata_pmp_attached(ap);
1593 * Possible future enhancement:
1595 * The chip can use FBS with non-NCQ, if we allow it,
1596 * But first we need to have the error handling in place
1597 * for this mode (datasheet section 7.3.15.4.2.3).
1598 * So disallow non-NCQ FBS for now.
1600 want_fbs &= want_ncq;
1602 mv_config_fbs(ap, want_ncq, want_fbs);
1604 if (want_fbs) {
1605 pp->pp_flags |= MV_PP_FLAG_FBS_EN;
1606 cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */
1609 cfg |= (1 << 23); /* do not mask PM field in rx'd FIS */
1610 if (want_edma) {
1611 cfg |= (1 << 22); /* enab 4-entry host queue cache */
1612 if (!IS_SOC(hpriv))
1613 cfg |= (1 << 18); /* enab early completion */
1615 if (hpriv->hp_flags & MV_HP_CUT_THROUGH)
1616 cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1617 mv_bmdma_enable_iie(ap, !want_edma);
1619 if (IS_SOC(hpriv)) {
1620 if (want_ncq)
1621 mv_soc_led_blink_enable(ap);
1622 else
1623 mv_soc_led_blink_disable(ap);
1627 if (want_ncq) {
1628 cfg |= EDMA_CFG_NCQ;
1629 pp->pp_flags |= MV_PP_FLAG_NCQ_EN;
1632 writelfl(cfg, port_mmio + EDMA_CFG);
1635 static void mv_port_free_dma_mem(struct ata_port *ap)
1637 struct mv_host_priv *hpriv = ap->host->private_data;
1638 struct mv_port_priv *pp = ap->private_data;
1639 int tag;
1641 if (pp->crqb) {
1642 dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma);
1643 pp->crqb = NULL;
1645 if (pp->crpb) {
1646 dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma);
1647 pp->crpb = NULL;
1650 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1651 * For later hardware, we have one unique sg_tbl per NCQ tag.
1653 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1654 if (pp->sg_tbl[tag]) {
1655 if (tag == 0 || !IS_GEN_I(hpriv))
1656 dma_pool_free(hpriv->sg_tbl_pool,
1657 pp->sg_tbl[tag],
1658 pp->sg_tbl_dma[tag]);
1659 pp->sg_tbl[tag] = NULL;
1665 * mv_port_start - Port specific init/start routine.
1666 * @ap: ATA channel to manipulate
1668 * Allocate and point to DMA memory, init port private memory,
1669 * zero indices.
1671 * LOCKING:
1672 * Inherited from caller.
1674 static int mv_port_start(struct ata_port *ap)
1676 struct device *dev = ap->host->dev;
1677 struct mv_host_priv *hpriv = ap->host->private_data;
1678 struct mv_port_priv *pp;
1679 unsigned long flags;
1680 int tag;
1682 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
1683 if (!pp)
1684 return -ENOMEM;
1685 ap->private_data = pp;
1687 pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma);
1688 if (!pp->crqb)
1689 return -ENOMEM;
1690 memset(pp->crqb, 0, MV_CRQB_Q_SZ);
1692 pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma);
1693 if (!pp->crpb)
1694 goto out_port_free_dma_mem;
1695 memset(pp->crpb, 0, MV_CRPB_Q_SZ);
1697 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1698 if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0)
1699 ap->flags |= ATA_FLAG_AN;
1701 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1702 * For later hardware, we need one unique sg_tbl per NCQ tag.
1704 for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) {
1705 if (tag == 0 || !IS_GEN_I(hpriv)) {
1706 pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool,
1707 GFP_KERNEL, &pp->sg_tbl_dma[tag]);
1708 if (!pp->sg_tbl[tag])
1709 goto out_port_free_dma_mem;
1710 } else {
1711 pp->sg_tbl[tag] = pp->sg_tbl[0];
1712 pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0];
1716 spin_lock_irqsave(ap->lock, flags);
1717 mv_save_cached_regs(ap);
1718 mv_edma_cfg(ap, 0, 0);
1719 spin_unlock_irqrestore(ap->lock, flags);
1721 return 0;
1723 out_port_free_dma_mem:
1724 mv_port_free_dma_mem(ap);
1725 return -ENOMEM;
1729 * mv_port_stop - Port specific cleanup/stop routine.
1730 * @ap: ATA channel to manipulate
1732 * Stop DMA, cleanup port memory.
1734 * LOCKING:
1735 * This routine uses the host lock to protect the DMA stop.
1737 static void mv_port_stop(struct ata_port *ap)
1739 unsigned long flags;
1741 spin_lock_irqsave(ap->lock, flags);
1742 mv_stop_edma(ap);
1743 mv_enable_port_irqs(ap, 0);
1744 spin_unlock_irqrestore(ap->lock, flags);
1745 mv_port_free_dma_mem(ap);
1749 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1750 * @qc: queued command whose SG list to source from
1752 * Populate the SG list and mark the last entry.
1754 * LOCKING:
1755 * Inherited from caller.
1757 static void mv_fill_sg(struct ata_queued_cmd *qc)
1759 struct mv_port_priv *pp = qc->ap->private_data;
1760 struct scatterlist *sg;
1761 struct mv_sg *mv_sg, *last_sg = NULL;
1762 unsigned int si;
1764 mv_sg = pp->sg_tbl[qc->tag];
1765 for_each_sg(qc->sg, sg, qc->n_elem, si) {
1766 dma_addr_t addr = sg_dma_address(sg);
1767 u32 sg_len = sg_dma_len(sg);
1769 while (sg_len) {
1770 u32 offset = addr & 0xffff;
1771 u32 len = sg_len;
1773 if (offset + len > 0x10000)
1774 len = 0x10000 - offset;
1776 mv_sg->addr = cpu_to_le32(addr & 0xffffffff);
1777 mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16);
1778 mv_sg->flags_size = cpu_to_le32(len & 0xffff);
1779 mv_sg->reserved = 0;
1781 sg_len -= len;
1782 addr += len;
1784 last_sg = mv_sg;
1785 mv_sg++;
1789 if (likely(last_sg))
1790 last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1791 mb(); /* ensure data structure is visible to the chipset */
1794 static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1796 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1797 (last ? CRQB_CMD_LAST : 0);
1798 *cmdw = cpu_to_le16(tmp);
1802 * mv_sff_irq_clear - Clear hardware interrupt after DMA.
1803 * @ap: Port associated with this ATA transaction.
1805 * We need this only for ATAPI bmdma transactions,
1806 * as otherwise we experience spurious interrupts
1807 * after libata-sff handles the bmdma interrupts.
1809 static void mv_sff_irq_clear(struct ata_port *ap)
1811 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ);
1815 * mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA.
1816 * @qc: queued command to check for chipset/DMA compatibility.
1818 * The bmdma engines cannot handle speculative data sizes
1819 * (bytecount under/over flow). So only allow DMA for
1820 * data transfer commands with known data sizes.
1822 * LOCKING:
1823 * Inherited from caller.
1825 static int mv_check_atapi_dma(struct ata_queued_cmd *qc)
1827 struct scsi_cmnd *scmd = qc->scsicmd;
1829 if (scmd) {
1830 switch (scmd->cmnd[0]) {
1831 case READ_6:
1832 case READ_10:
1833 case READ_12:
1834 case WRITE_6:
1835 case WRITE_10:
1836 case WRITE_12:
1837 case GPCMD_READ_CD:
1838 case GPCMD_SEND_DVD_STRUCTURE:
1839 case GPCMD_SEND_CUE_SHEET:
1840 return 0; /* DMA is safe */
1843 return -EOPNOTSUPP; /* use PIO instead */
1847 * mv_bmdma_setup - Set up BMDMA transaction
1848 * @qc: queued command to prepare DMA for.
1850 * LOCKING:
1851 * Inherited from caller.
1853 static void mv_bmdma_setup(struct ata_queued_cmd *qc)
1855 struct ata_port *ap = qc->ap;
1856 void __iomem *port_mmio = mv_ap_base(ap);
1857 struct mv_port_priv *pp = ap->private_data;
1859 mv_fill_sg(qc);
1861 /* clear all DMA cmd bits */
1862 writel(0, port_mmio + BMDMA_CMD);
1864 /* load PRD table addr. */
1865 writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16,
1866 port_mmio + BMDMA_PRD_HIGH);
1867 writelfl(pp->sg_tbl_dma[qc->tag],
1868 port_mmio + BMDMA_PRD_LOW);
1870 /* issue r/w command */
1871 ap->ops->sff_exec_command(ap, &qc->tf);
1875 * mv_bmdma_start - Start a BMDMA transaction
1876 * @qc: queued command to start DMA on.
1878 * LOCKING:
1879 * Inherited from caller.
1881 static void mv_bmdma_start(struct ata_queued_cmd *qc)
1883 struct ata_port *ap = qc->ap;
1884 void __iomem *port_mmio = mv_ap_base(ap);
1885 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
1886 u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START;
1888 /* start host DMA transaction */
1889 writelfl(cmd, port_mmio + BMDMA_CMD);
1893 * mv_bmdma_stop - Stop BMDMA transfer
1894 * @qc: queued command to stop DMA on.
1896 * Clears the ATA_DMA_START flag in the bmdma control register
1898 * LOCKING:
1899 * Inherited from caller.
1901 static void mv_bmdma_stop(struct ata_queued_cmd *qc)
1903 struct ata_port *ap = qc->ap;
1904 void __iomem *port_mmio = mv_ap_base(ap);
1905 u32 cmd;
1907 /* clear start/stop bit */
1908 cmd = readl(port_mmio + BMDMA_CMD);
1909 cmd &= ~ATA_DMA_START;
1910 writelfl(cmd, port_mmio + BMDMA_CMD);
1912 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
1913 ata_sff_dma_pause(ap);
1917 * mv_bmdma_status - Read BMDMA status
1918 * @ap: port for which to retrieve DMA status.
1920 * Read and return equivalent of the sff BMDMA status register.
1922 * LOCKING:
1923 * Inherited from caller.
1925 static u8 mv_bmdma_status(struct ata_port *ap)
1927 void __iomem *port_mmio = mv_ap_base(ap);
1928 u32 reg, status;
1931 * Other bits are valid only if ATA_DMA_ACTIVE==0,
1932 * and the ATA_DMA_INTR bit doesn't exist.
1934 reg = readl(port_mmio + BMDMA_STATUS);
1935 if (reg & ATA_DMA_ACTIVE)
1936 status = ATA_DMA_ACTIVE;
1937 else
1938 status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR;
1939 return status;
1942 static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc)
1944 struct ata_taskfile *tf = &qc->tf;
1946 * Workaround for 88SX60x1 FEr SATA#24.
1948 * Chip may corrupt WRITEs if multi_count >= 4kB.
1949 * Note that READs are unaffected.
1951 * It's not clear if this errata really means "4K bytes",
1952 * or if it always happens for multi_count > 7
1953 * regardless of device sector_size.
1955 * So, for safety, any write with multi_count > 7
1956 * gets converted here into a regular PIO write instead:
1958 if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) {
1959 if (qc->dev->multi_count > 7) {
1960 switch (tf->command) {
1961 case ATA_CMD_WRITE_MULTI:
1962 tf->command = ATA_CMD_PIO_WRITE;
1963 break;
1964 case ATA_CMD_WRITE_MULTI_FUA_EXT:
1965 tf->flags &= ~ATA_TFLAG_FUA; /* ugh */
1966 /* fall through */
1967 case ATA_CMD_WRITE_MULTI_EXT:
1968 tf->command = ATA_CMD_PIO_WRITE_EXT;
1969 break;
1976 * mv_qc_prep - Host specific command preparation.
1977 * @qc: queued command to prepare
1979 * This routine simply redirects to the general purpose routine
1980 * if command is not DMA. Else, it handles prep of the CRQB
1981 * (command request block), does some sanity checking, and calls
1982 * the SG load routine.
1984 * LOCKING:
1985 * Inherited from caller.
1987 static void mv_qc_prep(struct ata_queued_cmd *qc)
1989 struct ata_port *ap = qc->ap;
1990 struct mv_port_priv *pp = ap->private_data;
1991 __le16 *cw;
1992 struct ata_taskfile *tf = &qc->tf;
1993 u16 flags = 0;
1994 unsigned in_index;
1996 switch (tf->protocol) {
1997 case ATA_PROT_DMA:
1998 case ATA_PROT_NCQ:
1999 break; /* continue below */
2000 case ATA_PROT_PIO:
2001 mv_rw_multi_errata_sata24(qc);
2002 return;
2003 default:
2004 return;
2007 /* Fill in command request block
2009 if (!(tf->flags & ATA_TFLAG_WRITE))
2010 flags |= CRQB_FLAG_READ;
2011 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2012 flags |= qc->tag << CRQB_TAG_SHIFT;
2013 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2015 /* get current queue index from software */
2016 in_index = pp->req_idx;
2018 pp->crqb[in_index].sg_addr =
2019 cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2020 pp->crqb[in_index].sg_addr_hi =
2021 cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2022 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
2024 cw = &pp->crqb[in_index].ata_cmd[0];
2026 /* Sadly, the CRQB cannot accomodate all registers--there are
2027 * only 11 bytes...so we must pick and choose required
2028 * registers based on the command. So, we drop feature and
2029 * hob_feature for [RW] DMA commands, but they are needed for
2030 * NCQ. NCQ will drop hob_nsect, which is not needed there
2031 * (nsect is used only for the tag; feat/hob_feat hold true nsect).
2033 switch (tf->command) {
2034 case ATA_CMD_READ:
2035 case ATA_CMD_READ_EXT:
2036 case ATA_CMD_WRITE:
2037 case ATA_CMD_WRITE_EXT:
2038 case ATA_CMD_WRITE_FUA_EXT:
2039 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
2040 break;
2041 case ATA_CMD_FPDMA_READ:
2042 case ATA_CMD_FPDMA_WRITE:
2043 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
2044 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
2045 break;
2046 default:
2047 /* The only other commands EDMA supports in non-queued and
2048 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
2049 * of which are defined/used by Linux. If we get here, this
2050 * driver needs work.
2052 * FIXME: modify libata to give qc_prep a return value and
2053 * return error here.
2055 BUG_ON(tf->command);
2056 break;
2058 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
2059 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
2060 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
2061 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
2062 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
2063 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
2064 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
2065 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
2066 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
2068 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2069 return;
2070 mv_fill_sg(qc);
2074 * mv_qc_prep_iie - Host specific command preparation.
2075 * @qc: queued command to prepare
2077 * This routine simply redirects to the general purpose routine
2078 * if command is not DMA. Else, it handles prep of the CRQB
2079 * (command request block), does some sanity checking, and calls
2080 * the SG load routine.
2082 * LOCKING:
2083 * Inherited from caller.
2085 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
2087 struct ata_port *ap = qc->ap;
2088 struct mv_port_priv *pp = ap->private_data;
2089 struct mv_crqb_iie *crqb;
2090 struct ata_taskfile *tf = &qc->tf;
2091 unsigned in_index;
2092 u32 flags = 0;
2094 if ((tf->protocol != ATA_PROT_DMA) &&
2095 (tf->protocol != ATA_PROT_NCQ))
2096 return;
2098 /* Fill in Gen IIE command request block */
2099 if (!(tf->flags & ATA_TFLAG_WRITE))
2100 flags |= CRQB_FLAG_READ;
2102 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
2103 flags |= qc->tag << CRQB_TAG_SHIFT;
2104 flags |= qc->tag << CRQB_HOSTQ_SHIFT;
2105 flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT;
2107 /* get current queue index from software */
2108 in_index = pp->req_idx;
2110 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
2111 crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff);
2112 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16);
2113 crqb->flags = cpu_to_le32(flags);
2115 crqb->ata_cmd[0] = cpu_to_le32(
2116 (tf->command << 16) |
2117 (tf->feature << 24)
2119 crqb->ata_cmd[1] = cpu_to_le32(
2120 (tf->lbal << 0) |
2121 (tf->lbam << 8) |
2122 (tf->lbah << 16) |
2123 (tf->device << 24)
2125 crqb->ata_cmd[2] = cpu_to_le32(
2126 (tf->hob_lbal << 0) |
2127 (tf->hob_lbam << 8) |
2128 (tf->hob_lbah << 16) |
2129 (tf->hob_feature << 24)
2131 crqb->ata_cmd[3] = cpu_to_le32(
2132 (tf->nsect << 0) |
2133 (tf->hob_nsect << 8)
2136 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2137 return;
2138 mv_fill_sg(qc);
2142 * mv_sff_check_status - fetch device status, if valid
2143 * @ap: ATA port to fetch status from
2145 * When using command issue via mv_qc_issue_fis(),
2146 * the initial ATA_BUSY state does not show up in the
2147 * ATA status (shadow) register. This can confuse libata!
2149 * So we have a hook here to fake ATA_BUSY for that situation,
2150 * until the first time a BUSY, DRQ, or ERR bit is seen.
2152 * The rest of the time, it simply returns the ATA status register.
2154 static u8 mv_sff_check_status(struct ata_port *ap)
2156 u8 stat = ioread8(ap->ioaddr.status_addr);
2157 struct mv_port_priv *pp = ap->private_data;
2159 if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) {
2160 if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR))
2161 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY;
2162 else
2163 stat = ATA_BUSY;
2165 return stat;
2169 * mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register
2170 * @fis: fis to be sent
2171 * @nwords: number of 32-bit words in the fis
2173 static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords)
2175 void __iomem *port_mmio = mv_ap_base(ap);
2176 u32 ifctl, old_ifctl, ifstat;
2177 int i, timeout = 200, final_word = nwords - 1;
2179 /* Initiate FIS transmission mode */
2180 old_ifctl = readl(port_mmio + SATA_IFCTL);
2181 ifctl = 0x100 | (old_ifctl & 0xf);
2182 writelfl(ifctl, port_mmio + SATA_IFCTL);
2184 /* Send all words of the FIS except for the final word */
2185 for (i = 0; i < final_word; ++i)
2186 writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS);
2188 /* Flag end-of-transmission, and then send the final word */
2189 writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL);
2190 writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS);
2193 * Wait for FIS transmission to complete.
2194 * This typically takes just a single iteration.
2196 do {
2197 ifstat = readl(port_mmio + SATA_IFSTAT);
2198 } while (!(ifstat & 0x1000) && --timeout);
2200 /* Restore original port configuration */
2201 writelfl(old_ifctl, port_mmio + SATA_IFCTL);
2203 /* See if it worked */
2204 if ((ifstat & 0x3000) != 0x1000) {
2205 ata_port_printk(ap, KERN_WARNING,
2206 "%s transmission error, ifstat=%08x\n",
2207 __func__, ifstat);
2208 return AC_ERR_OTHER;
2210 return 0;
2214 * mv_qc_issue_fis - Issue a command directly as a FIS
2215 * @qc: queued command to start
2217 * Note that the ATA shadow registers are not updated
2218 * after command issue, so the device will appear "READY"
2219 * if polled, even while it is BUSY processing the command.
2221 * So we use a status hook to fake ATA_BUSY until the drive changes state.
2223 * Note: we don't get updated shadow regs on *completion*
2224 * of non-data commands. So avoid sending them via this function,
2225 * as they will appear to have completed immediately.
2227 * GEN_IIE has special registers that we could get the result tf from,
2228 * but earlier chipsets do not. For now, we ignore those registers.
2230 static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc)
2232 struct ata_port *ap = qc->ap;
2233 struct mv_port_priv *pp = ap->private_data;
2234 struct ata_link *link = qc->dev->link;
2235 u32 fis[5];
2236 int err = 0;
2238 ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis);
2239 err = mv_send_fis(ap, fis, ARRAY_SIZE(fis));
2240 if (err)
2241 return err;
2243 switch (qc->tf.protocol) {
2244 case ATAPI_PROT_PIO:
2245 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2246 /* fall through */
2247 case ATAPI_PROT_NODATA:
2248 ap->hsm_task_state = HSM_ST_FIRST;
2249 break;
2250 case ATA_PROT_PIO:
2251 pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY;
2252 if (qc->tf.flags & ATA_TFLAG_WRITE)
2253 ap->hsm_task_state = HSM_ST_FIRST;
2254 else
2255 ap->hsm_task_state = HSM_ST;
2256 break;
2257 default:
2258 ap->hsm_task_state = HSM_ST_LAST;
2259 break;
2262 if (qc->tf.flags & ATA_TFLAG_POLLING)
2263 ata_sff_queue_pio_task(ap, 0);
2264 return 0;
2268 * mv_qc_issue - Initiate a command to the host
2269 * @qc: queued command to start
2271 * This routine simply redirects to the general purpose routine
2272 * if command is not DMA. Else, it sanity checks our local
2273 * caches of the request producer/consumer indices then enables
2274 * DMA and bumps the request producer index.
2276 * LOCKING:
2277 * Inherited from caller.
2279 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
2281 static int limit_warnings = 10;
2282 struct ata_port *ap = qc->ap;
2283 void __iomem *port_mmio = mv_ap_base(ap);
2284 struct mv_port_priv *pp = ap->private_data;
2285 u32 in_index;
2286 unsigned int port_irqs;
2288 pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */
2290 switch (qc->tf.protocol) {
2291 case ATA_PROT_DMA:
2292 case ATA_PROT_NCQ:
2293 mv_start_edma(ap, port_mmio, pp, qc->tf.protocol);
2294 pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2295 in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT;
2297 /* Write the request in pointer to kick the EDMA to life */
2298 writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index,
2299 port_mmio + EDMA_REQ_Q_IN_PTR);
2300 return 0;
2302 case ATA_PROT_PIO:
2304 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
2306 * Someday, we might implement special polling workarounds
2307 * for these, but it all seems rather unnecessary since we
2308 * normally use only DMA for commands which transfer more
2309 * than a single block of data.
2311 * Much of the time, this could just work regardless.
2312 * So for now, just log the incident, and allow the attempt.
2314 if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) {
2315 --limit_warnings;
2316 ata_link_printk(qc->dev->link, KERN_WARNING, DRV_NAME
2317 ": attempting PIO w/multiple DRQ: "
2318 "this may fail due to h/w errata\n");
2320 /* drop through */
2321 case ATA_PROT_NODATA:
2322 case ATAPI_PROT_PIO:
2323 case ATAPI_PROT_NODATA:
2324 if (ap->flags & ATA_FLAG_PIO_POLLING)
2325 qc->tf.flags |= ATA_TFLAG_POLLING;
2326 break;
2329 if (qc->tf.flags & ATA_TFLAG_POLLING)
2330 port_irqs = ERR_IRQ; /* mask device interrupt when polling */
2331 else
2332 port_irqs = ERR_IRQ | DONE_IRQ; /* unmask all interrupts */
2335 * We're about to send a non-EDMA capable command to the
2336 * port. Turn off EDMA so there won't be problems accessing
2337 * shadow block, etc registers.
2339 mv_stop_edma(ap);
2340 mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs);
2341 mv_pmp_select(ap, qc->dev->link->pmp);
2343 if (qc->tf.command == ATA_CMD_READ_LOG_EXT) {
2344 struct mv_host_priv *hpriv = ap->host->private_data;
2346 * Workaround for 88SX60x1 FEr SATA#25 (part 2).
2348 * After any NCQ error, the READ_LOG_EXT command
2349 * from libata-eh *must* use mv_qc_issue_fis().
2350 * Otherwise it might fail, due to chip errata.
2352 * Rather than special-case it, we'll just *always*
2353 * use this method here for READ_LOG_EXT, making for
2354 * easier testing.
2356 if (IS_GEN_II(hpriv))
2357 return mv_qc_issue_fis(qc);
2359 return ata_bmdma_qc_issue(qc);
2362 static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap)
2364 struct mv_port_priv *pp = ap->private_data;
2365 struct ata_queued_cmd *qc;
2367 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN)
2368 return NULL;
2369 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2370 if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
2371 return qc;
2372 return NULL;
2375 static void mv_pmp_error_handler(struct ata_port *ap)
2377 unsigned int pmp, pmp_map;
2378 struct mv_port_priv *pp = ap->private_data;
2380 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) {
2382 * Perform NCQ error analysis on failed PMPs
2383 * before we freeze the port entirely.
2385 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
2387 pmp_map = pp->delayed_eh_pmp_map;
2388 pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH;
2389 for (pmp = 0; pmp_map != 0; pmp++) {
2390 unsigned int this_pmp = (1 << pmp);
2391 if (pmp_map & this_pmp) {
2392 struct ata_link *link = &ap->pmp_link[pmp];
2393 pmp_map &= ~this_pmp;
2394 ata_eh_analyze_ncq_error(link);
2397 ata_port_freeze(ap);
2399 sata_pmp_error_handler(ap);
2402 static unsigned int mv_get_err_pmp_map(struct ata_port *ap)
2404 void __iomem *port_mmio = mv_ap_base(ap);
2406 return readl(port_mmio + SATA_TESTCTL) >> 16;
2409 static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map)
2411 struct ata_eh_info *ehi;
2412 unsigned int pmp;
2415 * Initialize EH info for PMPs which saw device errors
2417 ehi = &ap->link.eh_info;
2418 for (pmp = 0; pmp_map != 0; pmp++) {
2419 unsigned int this_pmp = (1 << pmp);
2420 if (pmp_map & this_pmp) {
2421 struct ata_link *link = &ap->pmp_link[pmp];
2423 pmp_map &= ~this_pmp;
2424 ehi = &link->eh_info;
2425 ata_ehi_clear_desc(ehi);
2426 ata_ehi_push_desc(ehi, "dev err");
2427 ehi->err_mask |= AC_ERR_DEV;
2428 ehi->action |= ATA_EH_RESET;
2429 ata_link_abort(link);
2434 static int mv_req_q_empty(struct ata_port *ap)
2436 void __iomem *port_mmio = mv_ap_base(ap);
2437 u32 in_ptr, out_ptr;
2439 in_ptr = (readl(port_mmio + EDMA_REQ_Q_IN_PTR)
2440 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2441 out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR)
2442 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2443 return (in_ptr == out_ptr); /* 1 == queue_is_empty */
2446 static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap)
2448 struct mv_port_priv *pp = ap->private_data;
2449 int failed_links;
2450 unsigned int old_map, new_map;
2453 * Device error during FBS+NCQ operation:
2455 * Set a port flag to prevent further I/O being enqueued.
2456 * Leave the EDMA running to drain outstanding commands from this port.
2457 * Perform the post-mortem/EH only when all responses are complete.
2458 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
2460 if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) {
2461 pp->pp_flags |= MV_PP_FLAG_DELAYED_EH;
2462 pp->delayed_eh_pmp_map = 0;
2464 old_map = pp->delayed_eh_pmp_map;
2465 new_map = old_map | mv_get_err_pmp_map(ap);
2467 if (old_map != new_map) {
2468 pp->delayed_eh_pmp_map = new_map;
2469 mv_pmp_eh_prep(ap, new_map & ~old_map);
2471 failed_links = hweight16(new_map);
2473 ata_port_printk(ap, KERN_INFO, "%s: pmp_map=%04x qc_map=%04x "
2474 "failed_links=%d nr_active_links=%d\n",
2475 __func__, pp->delayed_eh_pmp_map,
2476 ap->qc_active, failed_links,
2477 ap->nr_active_links);
2479 if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) {
2480 mv_process_crpb_entries(ap, pp);
2481 mv_stop_edma(ap);
2482 mv_eh_freeze(ap);
2483 ata_port_printk(ap, KERN_INFO, "%s: done\n", __func__);
2484 return 1; /* handled */
2486 ata_port_printk(ap, KERN_INFO, "%s: waiting\n", __func__);
2487 return 1; /* handled */
2490 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap)
2493 * Possible future enhancement:
2495 * FBS+non-NCQ operation is not yet implemented.
2496 * See related notes in mv_edma_cfg().
2498 * Device error during FBS+non-NCQ operation:
2500 * We need to snapshot the shadow registers for each failed command.
2501 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
2503 return 0; /* not handled */
2506 static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause)
2508 struct mv_port_priv *pp = ap->private_data;
2510 if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN))
2511 return 0; /* EDMA was not active: not handled */
2512 if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN))
2513 return 0; /* FBS was not active: not handled */
2515 if (!(edma_err_cause & EDMA_ERR_DEV))
2516 return 0; /* non DEV error: not handled */
2517 edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT;
2518 if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS))
2519 return 0; /* other problems: not handled */
2521 if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) {
2523 * EDMA should NOT have self-disabled for this case.
2524 * If it did, then something is wrong elsewhere,
2525 * and we cannot handle it here.
2527 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2528 ata_port_printk(ap, KERN_WARNING,
2529 "%s: err_cause=0x%x pp_flags=0x%x\n",
2530 __func__, edma_err_cause, pp->pp_flags);
2531 return 0; /* not handled */
2533 return mv_handle_fbs_ncq_dev_err(ap);
2534 } else {
2536 * EDMA should have self-disabled for this case.
2537 * If it did not, then something is wrong elsewhere,
2538 * and we cannot handle it here.
2540 if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) {
2541 ata_port_printk(ap, KERN_WARNING,
2542 "%s: err_cause=0x%x pp_flags=0x%x\n",
2543 __func__, edma_err_cause, pp->pp_flags);
2544 return 0; /* not handled */
2546 return mv_handle_fbs_non_ncq_dev_err(ap);
2548 return 0; /* not handled */
2551 static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled)
2553 struct ata_eh_info *ehi = &ap->link.eh_info;
2554 char *when = "idle";
2556 ata_ehi_clear_desc(ehi);
2557 if (edma_was_enabled) {
2558 when = "EDMA enabled";
2559 } else {
2560 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag);
2561 if (qc && (qc->tf.flags & ATA_TFLAG_POLLING))
2562 when = "polling";
2564 ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when);
2565 ehi->err_mask |= AC_ERR_OTHER;
2566 ehi->action |= ATA_EH_RESET;
2567 ata_port_freeze(ap);
2571 * mv_err_intr - Handle error interrupts on the port
2572 * @ap: ATA channel to manipulate
2574 * Most cases require a full reset of the chip's state machine,
2575 * which also performs a COMRESET.
2576 * Also, if the port disabled DMA, update our cached copy to match.
2578 * LOCKING:
2579 * Inherited from caller.
2581 static void mv_err_intr(struct ata_port *ap)
2583 void __iomem *port_mmio = mv_ap_base(ap);
2584 u32 edma_err_cause, eh_freeze_mask, serr = 0;
2585 u32 fis_cause = 0;
2586 struct mv_port_priv *pp = ap->private_data;
2587 struct mv_host_priv *hpriv = ap->host->private_data;
2588 unsigned int action = 0, err_mask = 0;
2589 struct ata_eh_info *ehi = &ap->link.eh_info;
2590 struct ata_queued_cmd *qc;
2591 int abort = 0;
2594 * Read and clear the SError and err_cause bits.
2595 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
2596 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
2598 sata_scr_read(&ap->link, SCR_ERROR, &serr);
2599 sata_scr_write_flush(&ap->link, SCR_ERROR, serr);
2601 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE);
2602 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2603 fis_cause = readl(port_mmio + FIS_IRQ_CAUSE);
2604 writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE);
2606 writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE);
2608 if (edma_err_cause & EDMA_ERR_DEV) {
2610 * Device errors during FIS-based switching operation
2611 * require special handling.
2613 if (mv_handle_dev_err(ap, edma_err_cause))
2614 return;
2617 qc = mv_get_active_qc(ap);
2618 ata_ehi_clear_desc(ehi);
2619 ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x",
2620 edma_err_cause, pp->pp_flags);
2622 if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) {
2623 ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause);
2624 if (fis_cause & FIS_IRQ_CAUSE_AN) {
2625 u32 ec = edma_err_cause &
2626 ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT);
2627 sata_async_notification(ap);
2628 if (!ec)
2629 return; /* Just an AN; no need for the nukes */
2630 ata_ehi_push_desc(ehi, "SDB notify");
2634 * All generations share these EDMA error cause bits:
2636 if (edma_err_cause & EDMA_ERR_DEV) {
2637 err_mask |= AC_ERR_DEV;
2638 action |= ATA_EH_RESET;
2639 ata_ehi_push_desc(ehi, "dev error");
2641 if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
2642 EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR |
2643 EDMA_ERR_INTRL_PAR)) {
2644 err_mask |= AC_ERR_ATA_BUS;
2645 action |= ATA_EH_RESET;
2646 ata_ehi_push_desc(ehi, "parity error");
2648 if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) {
2649 ata_ehi_hotplugged(ehi);
2650 ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ?
2651 "dev disconnect" : "dev connect");
2652 action |= ATA_EH_RESET;
2656 * Gen-I has a different SELF_DIS bit,
2657 * different FREEZE bits, and no SERR bit:
2659 if (IS_GEN_I(hpriv)) {
2660 eh_freeze_mask = EDMA_EH_FREEZE_5;
2661 if (edma_err_cause & EDMA_ERR_SELF_DIS_5) {
2662 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2663 ata_ehi_push_desc(ehi, "EDMA self-disable");
2665 } else {
2666 eh_freeze_mask = EDMA_EH_FREEZE;
2667 if (edma_err_cause & EDMA_ERR_SELF_DIS) {
2668 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2669 ata_ehi_push_desc(ehi, "EDMA self-disable");
2671 if (edma_err_cause & EDMA_ERR_SERR) {
2672 ata_ehi_push_desc(ehi, "SError=%08x", serr);
2673 err_mask |= AC_ERR_ATA_BUS;
2674 action |= ATA_EH_RESET;
2678 if (!err_mask) {
2679 err_mask = AC_ERR_OTHER;
2680 action |= ATA_EH_RESET;
2683 ehi->serror |= serr;
2684 ehi->action |= action;
2686 if (qc)
2687 qc->err_mask |= err_mask;
2688 else
2689 ehi->err_mask |= err_mask;
2691 if (err_mask == AC_ERR_DEV) {
2693 * Cannot do ata_port_freeze() here,
2694 * because it would kill PIO access,
2695 * which is needed for further diagnosis.
2697 mv_eh_freeze(ap);
2698 abort = 1;
2699 } else if (edma_err_cause & eh_freeze_mask) {
2701 * Note to self: ata_port_freeze() calls ata_port_abort()
2703 ata_port_freeze(ap);
2704 } else {
2705 abort = 1;
2708 if (abort) {
2709 if (qc)
2710 ata_link_abort(qc->dev->link);
2711 else
2712 ata_port_abort(ap);
2716 static void mv_process_crpb_response(struct ata_port *ap,
2717 struct mv_crpb *response, unsigned int tag, int ncq_enabled)
2719 struct ata_queued_cmd *qc = ata_qc_from_tag(ap, tag);
2721 if (qc) {
2722 u8 ata_status;
2723 u16 edma_status = le16_to_cpu(response->flags);
2725 * edma_status from a response queue entry:
2726 * LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only).
2727 * MSB is saved ATA status from command completion.
2729 if (!ncq_enabled) {
2730 u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV;
2731 if (err_cause) {
2733 * Error will be seen/handled by mv_err_intr().
2734 * So do nothing at all here.
2736 return;
2739 ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT;
2740 if (!ac_err_mask(ata_status))
2741 ata_qc_complete(qc);
2742 /* else: leave it for mv_err_intr() */
2743 } else {
2744 ata_port_printk(ap, KERN_ERR, "%s: no qc for tag=%d\n",
2745 __func__, tag);
2749 static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp)
2751 void __iomem *port_mmio = mv_ap_base(ap);
2752 struct mv_host_priv *hpriv = ap->host->private_data;
2753 u32 in_index;
2754 bool work_done = false;
2755 int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN);
2757 /* Get the hardware queue position index */
2758 in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR)
2759 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
2761 /* Process new responses from since the last time we looked */
2762 while (in_index != pp->resp_idx) {
2763 unsigned int tag;
2764 struct mv_crpb *response = &pp->crpb[pp->resp_idx];
2766 pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK;
2768 if (IS_GEN_I(hpriv)) {
2769 /* 50xx: no NCQ, only one command active at a time */
2770 tag = ap->link.active_tag;
2771 } else {
2772 /* Gen II/IIE: get command tag from CRPB entry */
2773 tag = le16_to_cpu(response->id) & 0x1f;
2775 mv_process_crpb_response(ap, response, tag, ncq_enabled);
2776 work_done = true;
2779 /* Update the software queue position index in hardware */
2780 if (work_done)
2781 writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) |
2782 (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT),
2783 port_mmio + EDMA_RSP_Q_OUT_PTR);
2786 static void mv_port_intr(struct ata_port *ap, u32 port_cause)
2788 struct mv_port_priv *pp;
2789 int edma_was_enabled;
2792 * Grab a snapshot of the EDMA_EN flag setting,
2793 * so that we have a consistent view for this port,
2794 * even if something we call of our routines changes it.
2796 pp = ap->private_data;
2797 edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN);
2799 * Process completed CRPB response(s) before other events.
2801 if (edma_was_enabled && (port_cause & DONE_IRQ)) {
2802 mv_process_crpb_entries(ap, pp);
2803 if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH)
2804 mv_handle_fbs_ncq_dev_err(ap);
2807 * Handle chip-reported errors, or continue on to handle PIO.
2809 if (unlikely(port_cause & ERR_IRQ)) {
2810 mv_err_intr(ap);
2811 } else if (!edma_was_enabled) {
2812 struct ata_queued_cmd *qc = mv_get_active_qc(ap);
2813 if (qc)
2814 ata_bmdma_port_intr(ap, qc);
2815 else
2816 mv_unexpected_intr(ap, edma_was_enabled);
2821 * mv_host_intr - Handle all interrupts on the given host controller
2822 * @host: host specific structure
2823 * @main_irq_cause: Main interrupt cause register for the chip.
2825 * LOCKING:
2826 * Inherited from caller.
2828 static int mv_host_intr(struct ata_host *host, u32 main_irq_cause)
2830 struct mv_host_priv *hpriv = host->private_data;
2831 void __iomem *mmio = hpriv->base, *hc_mmio;
2832 unsigned int handled = 0, port;
2834 /* If asserted, clear the "all ports" IRQ coalescing bit */
2835 if (main_irq_cause & ALL_PORTS_COAL_DONE)
2836 writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE);
2838 for (port = 0; port < hpriv->n_ports; port++) {
2839 struct ata_port *ap = host->ports[port];
2840 unsigned int p, shift, hardport, port_cause;
2842 MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport);
2844 * Each hc within the host has its own hc_irq_cause register,
2845 * where the interrupting ports bits get ack'd.
2847 if (hardport == 0) { /* first port on this hc ? */
2848 u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND;
2849 u32 port_mask, ack_irqs;
2851 * Skip this entire hc if nothing pending for any ports
2853 if (!hc_cause) {
2854 port += MV_PORTS_PER_HC - 1;
2855 continue;
2858 * We don't need/want to read the hc_irq_cause register,
2859 * because doing so hurts performance, and
2860 * main_irq_cause already gives us everything we need.
2862 * But we do have to *write* to the hc_irq_cause to ack
2863 * the ports that we are handling this time through.
2865 * This requires that we create a bitmap for those
2866 * ports which interrupted us, and use that bitmap
2867 * to ack (only) those ports via hc_irq_cause.
2869 ack_irqs = 0;
2870 if (hc_cause & PORTS_0_3_COAL_DONE)
2871 ack_irqs = HC_COAL_IRQ;
2872 for (p = 0; p < MV_PORTS_PER_HC; ++p) {
2873 if ((port + p) >= hpriv->n_ports)
2874 break;
2875 port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2);
2876 if (hc_cause & port_mask)
2877 ack_irqs |= (DMA_IRQ | DEV_IRQ) << p;
2879 hc_mmio = mv_hc_base_from_port(mmio, port);
2880 writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE);
2881 handled = 1;
2884 * Handle interrupts signalled for this port:
2886 port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ);
2887 if (port_cause)
2888 mv_port_intr(ap, port_cause);
2890 return handled;
2893 static int mv_pci_error(struct ata_host *host, void __iomem *mmio)
2895 struct mv_host_priv *hpriv = host->private_data;
2896 struct ata_port *ap;
2897 struct ata_queued_cmd *qc;
2898 struct ata_eh_info *ehi;
2899 unsigned int i, err_mask, printed = 0;
2900 u32 err_cause;
2902 err_cause = readl(mmio + hpriv->irq_cause_offset);
2904 dev_printk(KERN_ERR, host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2905 err_cause);
2907 DPRINTK("All regs @ PCI error\n");
2908 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
2910 writelfl(0, mmio + hpriv->irq_cause_offset);
2912 for (i = 0; i < host->n_ports; i++) {
2913 ap = host->ports[i];
2914 if (!ata_link_offline(&ap->link)) {
2915 ehi = &ap->link.eh_info;
2916 ata_ehi_clear_desc(ehi);
2917 if (!printed++)
2918 ata_ehi_push_desc(ehi,
2919 "PCI err cause 0x%08x", err_cause);
2920 err_mask = AC_ERR_HOST_BUS;
2921 ehi->action = ATA_EH_RESET;
2922 qc = ata_qc_from_tag(ap, ap->link.active_tag);
2923 if (qc)
2924 qc->err_mask |= err_mask;
2925 else
2926 ehi->err_mask |= err_mask;
2928 ata_port_freeze(ap);
2931 return 1; /* handled */
2935 * mv_interrupt - Main interrupt event handler
2936 * @irq: unused
2937 * @dev_instance: private data; in this case the host structure
2939 * Read the read only register to determine if any host
2940 * controllers have pending interrupts. If so, call lower level
2941 * routine to handle. Also check for PCI errors which are only
2942 * reported here.
2944 * LOCKING:
2945 * This routine holds the host lock while processing pending
2946 * interrupts.
2948 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
2950 struct ata_host *host = dev_instance;
2951 struct mv_host_priv *hpriv = host->private_data;
2952 unsigned int handled = 0;
2953 int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI;
2954 u32 main_irq_cause, pending_irqs;
2956 spin_lock(&host->lock);
2958 /* for MSI: block new interrupts while in here */
2959 if (using_msi)
2960 mv_write_main_irq_mask(0, hpriv);
2962 main_irq_cause = readl(hpriv->main_irq_cause_addr);
2963 pending_irqs = main_irq_cause & hpriv->main_irq_mask;
2965 * Deal with cases where we either have nothing pending, or have read
2966 * a bogus register value which can indicate HW removal or PCI fault.
2968 if (pending_irqs && main_irq_cause != 0xffffffffU) {
2969 if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv)))
2970 handled = mv_pci_error(host, hpriv->base);
2971 else
2972 handled = mv_host_intr(host, pending_irqs);
2975 /* for MSI: unmask; interrupt cause bits will retrigger now */
2976 if (using_msi)
2977 mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv);
2979 spin_unlock(&host->lock);
2981 return IRQ_RETVAL(handled);
2984 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
2986 unsigned int ofs;
2988 switch (sc_reg_in) {
2989 case SCR_STATUS:
2990 case SCR_ERROR:
2991 case SCR_CONTROL:
2992 ofs = sc_reg_in * sizeof(u32);
2993 break;
2994 default:
2995 ofs = 0xffffffffU;
2996 break;
2998 return ofs;
3001 static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val)
3003 struct mv_host_priv *hpriv = link->ap->host->private_data;
3004 void __iomem *mmio = hpriv->base;
3005 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3006 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3008 if (ofs != 0xffffffffU) {
3009 *val = readl(addr + ofs);
3010 return 0;
3011 } else
3012 return -EINVAL;
3015 static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val)
3017 struct mv_host_priv *hpriv = link->ap->host->private_data;
3018 void __iomem *mmio = hpriv->base;
3019 void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no);
3020 unsigned int ofs = mv5_scr_offset(sc_reg_in);
3022 if (ofs != 0xffffffffU) {
3023 writelfl(val, addr + ofs);
3024 return 0;
3025 } else
3026 return -EINVAL;
3029 static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio)
3031 struct pci_dev *pdev = to_pci_dev(host->dev);
3032 int early_5080;
3034 early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0);
3036 if (!early_5080) {
3037 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3038 tmp |= (1 << 0);
3039 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3042 mv_reset_pci_bus(host, mmio);
3045 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3047 writel(0x0fcfffff, mmio + FLASH_CTL);
3050 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
3051 void __iomem *mmio)
3053 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
3054 u32 tmp;
3056 tmp = readl(phy_mmio + MV5_PHY_MODE);
3058 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
3059 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
3062 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3064 u32 tmp;
3066 writel(0, mmio + GPIO_PORT_CTL);
3068 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
3070 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
3071 tmp |= ~(1 << 0);
3072 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
3075 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3076 unsigned int port)
3078 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
3079 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
3080 u32 tmp;
3081 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
3083 if (fix_apm_sq) {
3084 tmp = readl(phy_mmio + MV5_LTMODE);
3085 tmp |= (1 << 19);
3086 writel(tmp, phy_mmio + MV5_LTMODE);
3088 tmp = readl(phy_mmio + MV5_PHY_CTL);
3089 tmp &= ~0x3;
3090 tmp |= 0x1;
3091 writel(tmp, phy_mmio + MV5_PHY_CTL);
3094 tmp = readl(phy_mmio + MV5_PHY_MODE);
3095 tmp &= ~mask;
3096 tmp |= hpriv->signal[port].pre;
3097 tmp |= hpriv->signal[port].amps;
3098 writel(tmp, phy_mmio + MV5_PHY_MODE);
3102 #undef ZERO
3103 #define ZERO(reg) writel(0, port_mmio + (reg))
3104 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
3105 unsigned int port)
3107 void __iomem *port_mmio = mv_port_base(mmio, port);
3109 mv_reset_channel(hpriv, mmio, port);
3111 ZERO(0x028); /* command */
3112 writel(0x11f, port_mmio + EDMA_CFG);
3113 ZERO(0x004); /* timer */
3114 ZERO(0x008); /* irq err cause */
3115 ZERO(0x00c); /* irq err mask */
3116 ZERO(0x010); /* rq bah */
3117 ZERO(0x014); /* rq inp */
3118 ZERO(0x018); /* rq outp */
3119 ZERO(0x01c); /* respq bah */
3120 ZERO(0x024); /* respq outp */
3121 ZERO(0x020); /* respq inp */
3122 ZERO(0x02c); /* test control */
3123 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
3125 #undef ZERO
3127 #define ZERO(reg) writel(0, hc_mmio + (reg))
3128 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3129 unsigned int hc)
3131 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3132 u32 tmp;
3134 ZERO(0x00c);
3135 ZERO(0x010);
3136 ZERO(0x014);
3137 ZERO(0x018);
3139 tmp = readl(hc_mmio + 0x20);
3140 tmp &= 0x1c1c1c1c;
3141 tmp |= 0x03030303;
3142 writel(tmp, hc_mmio + 0x20);
3144 #undef ZERO
3146 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3147 unsigned int n_hc)
3149 unsigned int hc, port;
3151 for (hc = 0; hc < n_hc; hc++) {
3152 for (port = 0; port < MV_PORTS_PER_HC; port++)
3153 mv5_reset_hc_port(hpriv, mmio,
3154 (hc * MV_PORTS_PER_HC) + port);
3156 mv5_reset_one_hc(hpriv, mmio, hc);
3159 return 0;
3162 #undef ZERO
3163 #define ZERO(reg) writel(0, mmio + (reg))
3164 static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio)
3166 struct mv_host_priv *hpriv = host->private_data;
3167 u32 tmp;
3169 tmp = readl(mmio + MV_PCI_MODE);
3170 tmp &= 0xff00ffff;
3171 writel(tmp, mmio + MV_PCI_MODE);
3173 ZERO(MV_PCI_DISC_TIMER);
3174 ZERO(MV_PCI_MSI_TRIGGER);
3175 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
3176 ZERO(MV_PCI_SERR_MASK);
3177 ZERO(hpriv->irq_cause_offset);
3178 ZERO(hpriv->irq_mask_offset);
3179 ZERO(MV_PCI_ERR_LOW_ADDRESS);
3180 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
3181 ZERO(MV_PCI_ERR_ATTRIBUTE);
3182 ZERO(MV_PCI_ERR_COMMAND);
3184 #undef ZERO
3186 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
3188 u32 tmp;
3190 mv5_reset_flash(hpriv, mmio);
3192 tmp = readl(mmio + GPIO_PORT_CTL);
3193 tmp &= 0x3;
3194 tmp |= (1 << 5) | (1 << 6);
3195 writel(tmp, mmio + GPIO_PORT_CTL);
3199 * mv6_reset_hc - Perform the 6xxx global soft reset
3200 * @mmio: base address of the HBA
3202 * This routine only applies to 6xxx parts.
3204 * LOCKING:
3205 * Inherited from caller.
3207 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
3208 unsigned int n_hc)
3210 void __iomem *reg = mmio + PCI_MAIN_CMD_STS;
3211 int i, rc = 0;
3212 u32 t;
3214 /* Following procedure defined in PCI "main command and status
3215 * register" table.
3217 t = readl(reg);
3218 writel(t | STOP_PCI_MASTER, reg);
3220 for (i = 0; i < 1000; i++) {
3221 udelay(1);
3222 t = readl(reg);
3223 if (PCI_MASTER_EMPTY & t)
3224 break;
3226 if (!(PCI_MASTER_EMPTY & t)) {
3227 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
3228 rc = 1;
3229 goto done;
3232 /* set reset */
3233 i = 5;
3234 do {
3235 writel(t | GLOB_SFT_RST, reg);
3236 t = readl(reg);
3237 udelay(1);
3238 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
3240 if (!(GLOB_SFT_RST & t)) {
3241 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
3242 rc = 1;
3243 goto done;
3246 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
3247 i = 5;
3248 do {
3249 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
3250 t = readl(reg);
3251 udelay(1);
3252 } while ((GLOB_SFT_RST & t) && (i-- > 0));
3254 if (GLOB_SFT_RST & t) {
3255 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
3256 rc = 1;
3258 done:
3259 return rc;
3262 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
3263 void __iomem *mmio)
3265 void __iomem *port_mmio;
3266 u32 tmp;
3268 tmp = readl(mmio + RESET_CFG);
3269 if ((tmp & (1 << 0)) == 0) {
3270 hpriv->signal[idx].amps = 0x7 << 8;
3271 hpriv->signal[idx].pre = 0x1 << 5;
3272 return;
3275 port_mmio = mv_port_base(mmio, idx);
3276 tmp = readl(port_mmio + PHY_MODE2);
3278 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3279 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3282 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
3284 writel(0x00000060, mmio + GPIO_PORT_CTL);
3287 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
3288 unsigned int port)
3290 void __iomem *port_mmio = mv_port_base(mmio, port);
3292 u32 hp_flags = hpriv->hp_flags;
3293 int fix_phy_mode2 =
3294 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3295 int fix_phy_mode4 =
3296 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
3297 u32 m2, m3;
3299 if (fix_phy_mode2) {
3300 m2 = readl(port_mmio + PHY_MODE2);
3301 m2 &= ~(1 << 16);
3302 m2 |= (1 << 31);
3303 writel(m2, port_mmio + PHY_MODE2);
3305 udelay(200);
3307 m2 = readl(port_mmio + PHY_MODE2);
3308 m2 &= ~((1 << 16) | (1 << 31));
3309 writel(m2, port_mmio + PHY_MODE2);
3311 udelay(200);
3315 * Gen-II/IIe PHY_MODE3 errata RM#2:
3316 * Achieves better receiver noise performance than the h/w default:
3318 m3 = readl(port_mmio + PHY_MODE3);
3319 m3 = (m3 & 0x1f) | (0x5555601 << 5);
3321 /* Guideline 88F5182 (GL# SATA-S11) */
3322 if (IS_SOC(hpriv))
3323 m3 &= ~0x1c;
3325 if (fix_phy_mode4) {
3326 u32 m4 = readl(port_mmio + PHY_MODE4);
3328 * Enforce reserved-bit restrictions on GenIIe devices only.
3329 * For earlier chipsets, force only the internal config field
3330 * (workaround for errata FEr SATA#10 part 1).
3332 if (IS_GEN_IIE(hpriv))
3333 m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES;
3334 else
3335 m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE;
3336 writel(m4, port_mmio + PHY_MODE4);
3339 * Workaround for 60x1-B2 errata SATA#13:
3340 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
3341 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
3342 * Or ensure we use writelfl() when writing PHY_MODE4.
3344 writel(m3, port_mmio + PHY_MODE3);
3346 /* Revert values of pre-emphasis and signal amps to the saved ones */
3347 m2 = readl(port_mmio + PHY_MODE2);
3349 m2 &= ~MV_M2_PREAMP_MASK;
3350 m2 |= hpriv->signal[port].amps;
3351 m2 |= hpriv->signal[port].pre;
3352 m2 &= ~(1 << 16);
3354 /* according to mvSata 3.6.1, some IIE values are fixed */
3355 if (IS_GEN_IIE(hpriv)) {
3356 m2 &= ~0xC30FF01F;
3357 m2 |= 0x0000900F;
3360 writel(m2, port_mmio + PHY_MODE2);
3363 /* TODO: use the generic LED interface to configure the SATA Presence */
3364 /* & Acitivy LEDs on the board */
3365 static void mv_soc_enable_leds(struct mv_host_priv *hpriv,
3366 void __iomem *mmio)
3368 return;
3371 static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx,
3372 void __iomem *mmio)
3374 void __iomem *port_mmio;
3375 u32 tmp;
3377 port_mmio = mv_port_base(mmio, idx);
3378 tmp = readl(port_mmio + PHY_MODE2);
3380 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
3381 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
3384 #undef ZERO
3385 #define ZERO(reg) writel(0, port_mmio + (reg))
3386 static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv,
3387 void __iomem *mmio, unsigned int port)
3389 void __iomem *port_mmio = mv_port_base(mmio, port);
3391 mv_reset_channel(hpriv, mmio, port);
3393 ZERO(0x028); /* command */
3394 writel(0x101f, port_mmio + EDMA_CFG);
3395 ZERO(0x004); /* timer */
3396 ZERO(0x008); /* irq err cause */
3397 ZERO(0x00c); /* irq err mask */
3398 ZERO(0x010); /* rq bah */
3399 ZERO(0x014); /* rq inp */
3400 ZERO(0x018); /* rq outp */
3401 ZERO(0x01c); /* respq bah */
3402 ZERO(0x024); /* respq outp */
3403 ZERO(0x020); /* respq inp */
3404 ZERO(0x02c); /* test control */
3405 writel(0x800, port_mmio + EDMA_IORDY_TMOUT);
3408 #undef ZERO
3410 #define ZERO(reg) writel(0, hc_mmio + (reg))
3411 static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv,
3412 void __iomem *mmio)
3414 void __iomem *hc_mmio = mv_hc_base(mmio, 0);
3416 ZERO(0x00c);
3417 ZERO(0x010);
3418 ZERO(0x014);
3422 #undef ZERO
3424 static int mv_soc_reset_hc(struct mv_host_priv *hpriv,
3425 void __iomem *mmio, unsigned int n_hc)
3427 unsigned int port;
3429 for (port = 0; port < hpriv->n_ports; port++)
3430 mv_soc_reset_hc_port(hpriv, mmio, port);
3432 mv_soc_reset_one_hc(hpriv, mmio);
3434 return 0;
3437 static void mv_soc_reset_flash(struct mv_host_priv *hpriv,
3438 void __iomem *mmio)
3440 return;
3443 static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio)
3445 return;
3448 static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv,
3449 void __iomem *mmio, unsigned int port)
3451 void __iomem *port_mmio = mv_port_base(mmio, port);
3452 u32 reg;
3454 reg = readl(port_mmio + PHY_MODE3);
3455 reg &= ~(0x3 << 27); /* SELMUPF (bits 28:27) to 1 */
3456 reg |= (0x1 << 27);
3457 reg &= ~(0x3 << 29); /* SELMUPI (bits 30:29) to 1 */
3458 reg |= (0x1 << 29);
3459 writel(reg, port_mmio + PHY_MODE3);
3461 reg = readl(port_mmio + PHY_MODE4);
3462 reg &= ~0x1; /* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */
3463 reg |= (0x1 << 16);
3464 writel(reg, port_mmio + PHY_MODE4);
3466 reg = readl(port_mmio + PHY_MODE9_GEN2);
3467 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3468 reg |= 0x8;
3469 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3470 writel(reg, port_mmio + PHY_MODE9_GEN2);
3472 reg = readl(port_mmio + PHY_MODE9_GEN1);
3473 reg &= ~0xf; /* TXAMP[3:0] (bits 3:0) to 8 */
3474 reg |= 0x8;
3475 reg &= ~(0x1 << 14); /* TXAMP[4] (bit 14) to 0 */
3476 writel(reg, port_mmio + PHY_MODE9_GEN1);
3480 * soc_is_65 - check if the soc is 65 nano device
3482 * Detect the type of the SoC, this is done by reading the PHYCFG_OFS
3483 * register, this register should contain non-zero value and it exists only
3484 * in the 65 nano devices, when reading it from older devices we get 0.
3486 static bool soc_is_65n(struct mv_host_priv *hpriv)
3488 void __iomem *port0_mmio = mv_port_base(hpriv->base, 0);
3490 if (readl(port0_mmio + PHYCFG_OFS))
3491 return true;
3492 return false;
3495 static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i)
3497 u32 ifcfg = readl(port_mmio + SATA_IFCFG);
3499 ifcfg = (ifcfg & 0xf7f) | 0x9b1000; /* from chip spec */
3500 if (want_gen2i)
3501 ifcfg |= (1 << 7); /* enable gen2i speed */
3502 writelfl(ifcfg, port_mmio + SATA_IFCFG);
3505 static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio,
3506 unsigned int port_no)
3508 void __iomem *port_mmio = mv_port_base(mmio, port_no);
3511 * The datasheet warns against setting EDMA_RESET when EDMA is active
3512 * (but doesn't say what the problem might be). So we first try
3513 * to disable the EDMA engine before doing the EDMA_RESET operation.
3515 mv_stop_edma_engine(port_mmio);
3516 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3518 if (!IS_GEN_I(hpriv)) {
3519 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
3520 mv_setup_ifcfg(port_mmio, 1);
3523 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
3524 * link, and physical layers. It resets all SATA interface registers
3525 * (except for SATA_IFCFG), and issues a COMRESET to the dev.
3527 writelfl(EDMA_RESET, port_mmio + EDMA_CMD);
3528 udelay(25); /* allow reset propagation */
3529 writelfl(0, port_mmio + EDMA_CMD);
3531 hpriv->ops->phy_errata(hpriv, mmio, port_no);
3533 if (IS_GEN_I(hpriv))
3534 mdelay(1);
3537 static void mv_pmp_select(struct ata_port *ap, int pmp)
3539 if (sata_pmp_supported(ap)) {
3540 void __iomem *port_mmio = mv_ap_base(ap);
3541 u32 reg = readl(port_mmio + SATA_IFCTL);
3542 int old = reg & 0xf;
3544 if (old != pmp) {
3545 reg = (reg & ~0xf) | pmp;
3546 writelfl(reg, port_mmio + SATA_IFCTL);
3551 static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class,
3552 unsigned long deadline)
3554 mv_pmp_select(link->ap, sata_srst_pmp(link));
3555 return sata_std_hardreset(link, class, deadline);
3558 static int mv_softreset(struct ata_link *link, unsigned int *class,
3559 unsigned long deadline)
3561 mv_pmp_select(link->ap, sata_srst_pmp(link));
3562 return ata_sff_softreset(link, class, deadline);
3565 static int mv_hardreset(struct ata_link *link, unsigned int *class,
3566 unsigned long deadline)
3568 struct ata_port *ap = link->ap;
3569 struct mv_host_priv *hpriv = ap->host->private_data;
3570 struct mv_port_priv *pp = ap->private_data;
3571 void __iomem *mmio = hpriv->base;
3572 int rc, attempts = 0, extra = 0;
3573 u32 sstatus;
3574 bool online;
3576 mv_reset_channel(hpriv, mmio, ap->port_no);
3577 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
3578 pp->pp_flags &=
3579 ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY);
3581 /* Workaround for errata FEr SATA#10 (part 2) */
3582 do {
3583 const unsigned long *timing =
3584 sata_ehc_deb_timing(&link->eh_context);
3586 rc = sata_link_hardreset(link, timing, deadline + extra,
3587 &online, NULL);
3588 rc = online ? -EAGAIN : rc;
3589 if (rc)
3590 return rc;
3591 sata_scr_read(link, SCR_STATUS, &sstatus);
3592 if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) {
3593 /* Force 1.5gb/s link speed and try again */
3594 mv_setup_ifcfg(mv_ap_base(ap), 0);
3595 if (time_after(jiffies + HZ, deadline))
3596 extra = HZ; /* only extend it once, max */
3598 } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123);
3599 mv_save_cached_regs(ap);
3600 mv_edma_cfg(ap, 0, 0);
3602 return rc;
3605 static void mv_eh_freeze(struct ata_port *ap)
3607 mv_stop_edma(ap);
3608 mv_enable_port_irqs(ap, 0);
3611 static void mv_eh_thaw(struct ata_port *ap)
3613 struct mv_host_priv *hpriv = ap->host->private_data;
3614 unsigned int port = ap->port_no;
3615 unsigned int hardport = mv_hardport_from_port(port);
3616 void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port);
3617 void __iomem *port_mmio = mv_ap_base(ap);
3618 u32 hc_irq_cause;
3620 /* clear EDMA errors on this port */
3621 writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3623 /* clear pending irq events */
3624 hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport);
3625 writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE);
3627 mv_enable_port_irqs(ap, ERR_IRQ);
3631 * mv_port_init - Perform some early initialization on a single port.
3632 * @port: libata data structure storing shadow register addresses
3633 * @port_mmio: base address of the port
3635 * Initialize shadow register mmio addresses, clear outstanding
3636 * interrupts on the port, and unmask interrupts for the future
3637 * start of the port.
3639 * LOCKING:
3640 * Inherited from caller.
3642 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
3644 void __iomem *serr, *shd_base = port_mmio + SHD_BLK;
3646 /* PIO related setup
3648 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
3649 port->error_addr =
3650 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
3651 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
3652 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
3653 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
3654 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
3655 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
3656 port->status_addr =
3657 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
3658 /* special case: control/altstatus doesn't have ATA_REG_ address */
3659 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST;
3661 /* Clear any currently outstanding port interrupt conditions */
3662 serr = port_mmio + mv_scr_offset(SCR_ERROR);
3663 writelfl(readl(serr), serr);
3664 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE);
3666 /* unmask all non-transient EDMA error interrupts */
3667 writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK);
3669 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
3670 readl(port_mmio + EDMA_CFG),
3671 readl(port_mmio + EDMA_ERR_IRQ_CAUSE),
3672 readl(port_mmio + EDMA_ERR_IRQ_MASK));
3675 static unsigned int mv_in_pcix_mode(struct ata_host *host)
3677 struct mv_host_priv *hpriv = host->private_data;
3678 void __iomem *mmio = hpriv->base;
3679 u32 reg;
3681 if (IS_SOC(hpriv) || !IS_PCIE(hpriv))
3682 return 0; /* not PCI-X capable */
3683 reg = readl(mmio + MV_PCI_MODE);
3684 if ((reg & MV_PCI_MODE_MASK) == 0)
3685 return 0; /* conventional PCI mode */
3686 return 1; /* chip is in PCI-X mode */
3689 static int mv_pci_cut_through_okay(struct ata_host *host)
3691 struct mv_host_priv *hpriv = host->private_data;
3692 void __iomem *mmio = hpriv->base;
3693 u32 reg;
3695 if (!mv_in_pcix_mode(host)) {
3696 reg = readl(mmio + MV_PCI_COMMAND);
3697 if (reg & MV_PCI_COMMAND_MRDTRIG)
3698 return 0; /* not okay */
3700 return 1; /* okay */
3703 static void mv_60x1b2_errata_pci7(struct ata_host *host)
3705 struct mv_host_priv *hpriv = host->private_data;
3706 void __iomem *mmio = hpriv->base;
3708 /* workaround for 60x1-B2 errata PCI#7 */
3709 if (mv_in_pcix_mode(host)) {
3710 u32 reg = readl(mmio + MV_PCI_COMMAND);
3711 writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND);
3715 static int mv_chip_id(struct ata_host *host, unsigned int board_idx)
3717 struct pci_dev *pdev = to_pci_dev(host->dev);
3718 struct mv_host_priv *hpriv = host->private_data;
3719 u32 hp_flags = hpriv->hp_flags;
3721 switch (board_idx) {
3722 case chip_5080:
3723 hpriv->ops = &mv5xxx_ops;
3724 hp_flags |= MV_HP_GEN_I;
3726 switch (pdev->revision) {
3727 case 0x1:
3728 hp_flags |= MV_HP_ERRATA_50XXB0;
3729 break;
3730 case 0x3:
3731 hp_flags |= MV_HP_ERRATA_50XXB2;
3732 break;
3733 default:
3734 dev_printk(KERN_WARNING, &pdev->dev,
3735 "Applying 50XXB2 workarounds to unknown rev\n");
3736 hp_flags |= MV_HP_ERRATA_50XXB2;
3737 break;
3739 break;
3741 case chip_504x:
3742 case chip_508x:
3743 hpriv->ops = &mv5xxx_ops;
3744 hp_flags |= MV_HP_GEN_I;
3746 switch (pdev->revision) {
3747 case 0x0:
3748 hp_flags |= MV_HP_ERRATA_50XXB0;
3749 break;
3750 case 0x3:
3751 hp_flags |= MV_HP_ERRATA_50XXB2;
3752 break;
3753 default:
3754 dev_printk(KERN_WARNING, &pdev->dev,
3755 "Applying B2 workarounds to unknown rev\n");
3756 hp_flags |= MV_HP_ERRATA_50XXB2;
3757 break;
3759 break;
3761 case chip_604x:
3762 case chip_608x:
3763 hpriv->ops = &mv6xxx_ops;
3764 hp_flags |= MV_HP_GEN_II;
3766 switch (pdev->revision) {
3767 case 0x7:
3768 mv_60x1b2_errata_pci7(host);
3769 hp_flags |= MV_HP_ERRATA_60X1B2;
3770 break;
3771 case 0x9:
3772 hp_flags |= MV_HP_ERRATA_60X1C0;
3773 break;
3774 default:
3775 dev_printk(KERN_WARNING, &pdev->dev,
3776 "Applying B2 workarounds to unknown rev\n");
3777 hp_flags |= MV_HP_ERRATA_60X1B2;
3778 break;
3780 break;
3782 case chip_7042:
3783 hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH;
3784 if (pdev->vendor == PCI_VENDOR_ID_TTI &&
3785 (pdev->device == 0x2300 || pdev->device == 0x2310))
3788 * Highpoint RocketRAID PCIe 23xx series cards:
3790 * Unconfigured drives are treated as "Legacy"
3791 * by the BIOS, and it overwrites sector 8 with
3792 * a "Lgcy" metadata block prior to Linux boot.
3794 * Configured drives (RAID or JBOD) leave sector 8
3795 * alone, but instead overwrite a high numbered
3796 * sector for the RAID metadata. This sector can
3797 * be determined exactly, by truncating the physical
3798 * drive capacity to a nice even GB value.
3800 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
3802 * Warn the user, lest they think we're just buggy.
3804 printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID"
3805 " BIOS CORRUPTS DATA on all attached drives,"
3806 " regardless of if/how they are configured."
3807 " BEWARE!\n");
3808 printk(KERN_WARNING DRV_NAME ": For data safety, do not"
3809 " use sectors 8-9 on \"Legacy\" drives,"
3810 " and avoid the final two gigabytes on"
3811 " all RocketRAID BIOS initialized drives.\n");
3813 /* drop through */
3814 case chip_6042:
3815 hpriv->ops = &mv6xxx_ops;
3816 hp_flags |= MV_HP_GEN_IIE;
3817 if (board_idx == chip_6042 && mv_pci_cut_through_okay(host))
3818 hp_flags |= MV_HP_CUT_THROUGH;
3820 switch (pdev->revision) {
3821 case 0x2: /* Rev.B0: the first/only public release */
3822 hp_flags |= MV_HP_ERRATA_60X1C0;
3823 break;
3824 default:
3825 dev_printk(KERN_WARNING, &pdev->dev,
3826 "Applying 60X1C0 workarounds to unknown rev\n");
3827 hp_flags |= MV_HP_ERRATA_60X1C0;
3828 break;
3830 break;
3831 case chip_soc:
3832 if (soc_is_65n(hpriv))
3833 hpriv->ops = &mv_soc_65n_ops;
3834 else
3835 hpriv->ops = &mv_soc_ops;
3836 hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE |
3837 MV_HP_ERRATA_60X1C0;
3838 break;
3840 default:
3841 dev_printk(KERN_ERR, host->dev,
3842 "BUG: invalid board index %u\n", board_idx);
3843 return 1;
3846 hpriv->hp_flags = hp_flags;
3847 if (hp_flags & MV_HP_PCIE) {
3848 hpriv->irq_cause_offset = PCIE_IRQ_CAUSE;
3849 hpriv->irq_mask_offset = PCIE_IRQ_MASK;
3850 hpriv->unmask_all_irqs = PCIE_UNMASK_ALL_IRQS;
3851 } else {
3852 hpriv->irq_cause_offset = PCI_IRQ_CAUSE;
3853 hpriv->irq_mask_offset = PCI_IRQ_MASK;
3854 hpriv->unmask_all_irqs = PCI_UNMASK_ALL_IRQS;
3857 return 0;
3861 * mv_init_host - Perform some early initialization of the host.
3862 * @host: ATA host to initialize
3864 * If possible, do an early global reset of the host. Then do
3865 * our port init and clear/unmask all/relevant host interrupts.
3867 * LOCKING:
3868 * Inherited from caller.
3870 static int mv_init_host(struct ata_host *host)
3872 int rc = 0, n_hc, port, hc;
3873 struct mv_host_priv *hpriv = host->private_data;
3874 void __iomem *mmio = hpriv->base;
3876 rc = mv_chip_id(host, hpriv->board_idx);
3877 if (rc)
3878 goto done;
3880 if (IS_SOC(hpriv)) {
3881 hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE;
3882 hpriv->main_irq_mask_addr = mmio + SOC_HC_MAIN_IRQ_MASK;
3883 } else {
3884 hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE;
3885 hpriv->main_irq_mask_addr = mmio + PCI_HC_MAIN_IRQ_MASK;
3888 /* initialize shadow irq mask with register's value */
3889 hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr);
3891 /* global interrupt mask: 0 == mask everything */
3892 mv_set_main_irq_mask(host, ~0, 0);
3894 n_hc = mv_get_hc_count(host->ports[0]->flags);
3896 for (port = 0; port < host->n_ports; port++)
3897 if (hpriv->ops->read_preamp)
3898 hpriv->ops->read_preamp(hpriv, port, mmio);
3900 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
3901 if (rc)
3902 goto done;
3904 hpriv->ops->reset_flash(hpriv, mmio);
3905 hpriv->ops->reset_bus(host, mmio);
3906 hpriv->ops->enable_leds(hpriv, mmio);
3908 for (port = 0; port < host->n_ports; port++) {
3909 struct ata_port *ap = host->ports[port];
3910 void __iomem *port_mmio = mv_port_base(mmio, port);
3912 mv_port_init(&ap->ioaddr, port_mmio);
3915 for (hc = 0; hc < n_hc; hc++) {
3916 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
3918 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3919 "(before clear)=0x%08x\n", hc,
3920 readl(hc_mmio + HC_CFG),
3921 readl(hc_mmio + HC_IRQ_CAUSE));
3923 /* Clear any currently outstanding hc interrupt conditions */
3924 writelfl(0, hc_mmio + HC_IRQ_CAUSE);
3927 if (!IS_SOC(hpriv)) {
3928 /* Clear any currently outstanding host interrupt conditions */
3929 writelfl(0, mmio + hpriv->irq_cause_offset);
3931 /* and unmask interrupt generation for host regs */
3932 writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset);
3936 * enable only global host interrupts for now.
3937 * The per-port interrupts get done later as ports are set up.
3939 mv_set_main_irq_mask(host, 0, PCI_ERR);
3940 mv_set_irq_coalescing(host, irq_coalescing_io_count,
3941 irq_coalescing_usecs);
3942 done:
3943 return rc;
3946 static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev)
3948 hpriv->crqb_pool = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ,
3949 MV_CRQB_Q_SZ, 0);
3950 if (!hpriv->crqb_pool)
3951 return -ENOMEM;
3953 hpriv->crpb_pool = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ,
3954 MV_CRPB_Q_SZ, 0);
3955 if (!hpriv->crpb_pool)
3956 return -ENOMEM;
3958 hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ,
3959 MV_SG_TBL_SZ, 0);
3960 if (!hpriv->sg_tbl_pool)
3961 return -ENOMEM;
3963 return 0;
3966 static void mv_conf_mbus_windows(struct mv_host_priv *hpriv,
3967 struct mbus_dram_target_info *dram)
3969 int i;
3971 for (i = 0; i < 4; i++) {
3972 writel(0, hpriv->base + WINDOW_CTRL(i));
3973 writel(0, hpriv->base + WINDOW_BASE(i));
3976 for (i = 0; i < dram->num_cs; i++) {
3977 struct mbus_dram_window *cs = dram->cs + i;
3979 writel(((cs->size - 1) & 0xffff0000) |
3980 (cs->mbus_attr << 8) |
3981 (dram->mbus_dram_target_id << 4) | 1,
3982 hpriv->base + WINDOW_CTRL(i));
3983 writel(cs->base, hpriv->base + WINDOW_BASE(i));
3988 * mv_platform_probe - handle a positive probe of an soc Marvell
3989 * host
3990 * @pdev: platform device found
3992 * LOCKING:
3993 * Inherited from caller.
3995 static int mv_platform_probe(struct platform_device *pdev)
3997 static int printed_version;
3998 const struct mv_sata_platform_data *mv_platform_data;
3999 const struct ata_port_info *ppi[] =
4000 { &mv_port_info[chip_soc], NULL };
4001 struct ata_host *host;
4002 struct mv_host_priv *hpriv;
4003 struct resource *res;
4004 int n_ports, rc;
4006 if (!printed_version++)
4007 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4010 * Simple resource validation ..
4012 if (unlikely(pdev->num_resources != 2)) {
4013 dev_err(&pdev->dev, "invalid number of resources\n");
4014 return -EINVAL;
4018 * Get the register base first
4020 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4021 if (res == NULL)
4022 return -EINVAL;
4024 /* allocate host */
4025 mv_platform_data = pdev->dev.platform_data;
4026 n_ports = mv_platform_data->n_ports;
4028 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4029 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4031 if (!host || !hpriv)
4032 return -ENOMEM;
4033 host->private_data = hpriv;
4034 hpriv->n_ports = n_ports;
4035 hpriv->board_idx = chip_soc;
4037 host->iomap = NULL;
4038 hpriv->base = devm_ioremap(&pdev->dev, res->start,
4039 resource_size(res));
4040 hpriv->base -= SATAHC0_REG_BASE;
4042 #if defined(CONFIG_HAVE_CLK)
4043 hpriv->clk = clk_get(&pdev->dev, NULL);
4044 if (IS_ERR(hpriv->clk))
4045 dev_notice(&pdev->dev, "cannot get clkdev\n");
4046 else
4047 clk_enable(hpriv->clk);
4048 #endif
4051 * (Re-)program MBUS remapping windows if we are asked to.
4053 if (mv_platform_data->dram != NULL)
4054 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4056 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4057 if (rc)
4058 goto err;
4060 /* initialize adapter */
4061 rc = mv_init_host(host);
4062 if (rc)
4063 goto err;
4065 dev_printk(KERN_INFO, &pdev->dev,
4066 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH,
4067 host->n_ports);
4069 return ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt,
4070 IRQF_SHARED, &mv6_sht);
4071 err:
4072 #if defined(CONFIG_HAVE_CLK)
4073 if (!IS_ERR(hpriv->clk)) {
4074 clk_disable(hpriv->clk);
4075 clk_put(hpriv->clk);
4077 #endif
4079 return rc;
4084 * mv_platform_remove - unplug a platform interface
4085 * @pdev: platform device
4087 * A platform bus SATA device has been unplugged. Perform the needed
4088 * cleanup. Also called on module unload for any active devices.
4090 static int __devexit mv_platform_remove(struct platform_device *pdev)
4092 struct device *dev = &pdev->dev;
4093 struct ata_host *host = dev_get_drvdata(dev);
4094 #if defined(CONFIG_HAVE_CLK)
4095 struct mv_host_priv *hpriv = host->private_data;
4096 #endif
4097 ata_host_detach(host);
4099 #if defined(CONFIG_HAVE_CLK)
4100 if (!IS_ERR(hpriv->clk)) {
4101 clk_disable(hpriv->clk);
4102 clk_put(hpriv->clk);
4104 #endif
4105 return 0;
4108 #ifdef CONFIG_PM
4109 static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state)
4111 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4112 if (host)
4113 return ata_host_suspend(host, state);
4114 else
4115 return 0;
4118 static int mv_platform_resume(struct platform_device *pdev)
4120 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4121 int ret;
4123 if (host) {
4124 struct mv_host_priv *hpriv = host->private_data;
4125 const struct mv_sata_platform_data *mv_platform_data = \
4126 pdev->dev.platform_data;
4128 * (Re-)program MBUS remapping windows if we are asked to.
4130 if (mv_platform_data->dram != NULL)
4131 mv_conf_mbus_windows(hpriv, mv_platform_data->dram);
4133 /* initialize adapter */
4134 ret = mv_init_host(host);
4135 if (ret) {
4136 printk(KERN_ERR DRV_NAME ": Error during HW init\n");
4137 return ret;
4139 ata_host_resume(host);
4142 return 0;
4144 #else
4145 #define mv_platform_suspend NULL
4146 #define mv_platform_resume NULL
4147 #endif
4149 static struct platform_driver mv_platform_driver = {
4150 .probe = mv_platform_probe,
4151 .remove = __devexit_p(mv_platform_remove),
4152 .suspend = mv_platform_suspend,
4153 .resume = mv_platform_resume,
4154 .driver = {
4155 .name = DRV_NAME,
4156 .owner = THIS_MODULE,
4161 #ifdef CONFIG_PCI
4162 static int mv_pci_init_one(struct pci_dev *pdev,
4163 const struct pci_device_id *ent);
4164 #ifdef CONFIG_PM
4165 static int mv_pci_device_resume(struct pci_dev *pdev);
4166 #endif
4169 static struct pci_driver mv_pci_driver = {
4170 .name = DRV_NAME,
4171 .id_table = mv_pci_tbl,
4172 .probe = mv_pci_init_one,
4173 .remove = ata_pci_remove_one,
4174 #ifdef CONFIG_PM
4175 .suspend = ata_pci_device_suspend,
4176 .resume = mv_pci_device_resume,
4177 #endif
4181 /* move to PCI layer or libata core? */
4182 static int pci_go_64(struct pci_dev *pdev)
4184 int rc;
4186 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4187 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4188 if (rc) {
4189 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4190 if (rc) {
4191 dev_printk(KERN_ERR, &pdev->dev,
4192 "64-bit DMA enable failed\n");
4193 return rc;
4196 } else {
4197 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4198 if (rc) {
4199 dev_printk(KERN_ERR, &pdev->dev,
4200 "32-bit DMA enable failed\n");
4201 return rc;
4203 rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
4204 if (rc) {
4205 dev_printk(KERN_ERR, &pdev->dev,
4206 "32-bit consistent DMA enable failed\n");
4207 return rc;
4211 return rc;
4215 * mv_print_info - Dump key info to kernel log for perusal.
4216 * @host: ATA host to print info about
4218 * FIXME: complete this.
4220 * LOCKING:
4221 * Inherited from caller.
4223 static void mv_print_info(struct ata_host *host)
4225 struct pci_dev *pdev = to_pci_dev(host->dev);
4226 struct mv_host_priv *hpriv = host->private_data;
4227 u8 scc;
4228 const char *scc_s, *gen;
4230 /* Use this to determine the HW stepping of the chip so we know
4231 * what errata to workaround
4233 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
4234 if (scc == 0)
4235 scc_s = "SCSI";
4236 else if (scc == 0x01)
4237 scc_s = "RAID";
4238 else
4239 scc_s = "?";
4241 if (IS_GEN_I(hpriv))
4242 gen = "I";
4243 else if (IS_GEN_II(hpriv))
4244 gen = "II";
4245 else if (IS_GEN_IIE(hpriv))
4246 gen = "IIE";
4247 else
4248 gen = "?";
4250 dev_printk(KERN_INFO, &pdev->dev,
4251 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
4252 gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports,
4253 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
4257 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
4258 * @pdev: PCI device found
4259 * @ent: PCI device ID entry for the matched host
4261 * LOCKING:
4262 * Inherited from caller.
4264 static int mv_pci_init_one(struct pci_dev *pdev,
4265 const struct pci_device_id *ent)
4267 static int printed_version;
4268 unsigned int board_idx = (unsigned int)ent->driver_data;
4269 const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL };
4270 struct ata_host *host;
4271 struct mv_host_priv *hpriv;
4272 int n_ports, port, rc;
4274 if (!printed_version++)
4275 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
4277 /* allocate host */
4278 n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC;
4280 host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports);
4281 hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL);
4282 if (!host || !hpriv)
4283 return -ENOMEM;
4284 host->private_data = hpriv;
4285 hpriv->n_ports = n_ports;
4286 hpriv->board_idx = board_idx;
4288 /* acquire resources */
4289 rc = pcim_enable_device(pdev);
4290 if (rc)
4291 return rc;
4293 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
4294 if (rc == -EBUSY)
4295 pcim_pin_device(pdev);
4296 if (rc)
4297 return rc;
4298 host->iomap = pcim_iomap_table(pdev);
4299 hpriv->base = host->iomap[MV_PRIMARY_BAR];
4301 rc = pci_go_64(pdev);
4302 if (rc)
4303 return rc;
4305 rc = mv_create_dma_pools(hpriv, &pdev->dev);
4306 if (rc)
4307 return rc;
4309 for (port = 0; port < host->n_ports; port++) {
4310 struct ata_port *ap = host->ports[port];
4311 void __iomem *port_mmio = mv_port_base(hpriv->base, port);
4312 unsigned int offset = port_mmio - hpriv->base;
4314 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio");
4315 ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port");
4318 /* initialize adapter */
4319 rc = mv_init_host(host);
4320 if (rc)
4321 return rc;
4323 /* Enable message-switched interrupts, if requested */
4324 if (msi && pci_enable_msi(pdev) == 0)
4325 hpriv->hp_flags |= MV_HP_FLAG_MSI;
4327 mv_dump_pci_cfg(pdev, 0x68);
4328 mv_print_info(host);
4330 pci_set_master(pdev);
4331 pci_try_set_mwi(pdev);
4332 return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED,
4333 IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht);
4336 #ifdef CONFIG_PM
4337 static int mv_pci_device_resume(struct pci_dev *pdev)
4339 struct ata_host *host = dev_get_drvdata(&pdev->dev);
4340 int rc;
4342 rc = ata_pci_device_do_resume(pdev);
4343 if (rc)
4344 return rc;
4346 /* initialize adapter */
4347 rc = mv_init_host(host);
4348 if (rc)
4349 return rc;
4351 ata_host_resume(host);
4353 return 0;
4355 #endif
4356 #endif
4358 static int mv_platform_probe(struct platform_device *pdev);
4359 static int __devexit mv_platform_remove(struct platform_device *pdev);
4361 static int __init mv_init(void)
4363 int rc = -ENODEV;
4364 #ifdef CONFIG_PCI
4365 rc = pci_register_driver(&mv_pci_driver);
4366 if (rc < 0)
4367 return rc;
4368 #endif
4369 rc = platform_driver_register(&mv_platform_driver);
4371 #ifdef CONFIG_PCI
4372 if (rc < 0)
4373 pci_unregister_driver(&mv_pci_driver);
4374 #endif
4375 return rc;
4378 static void __exit mv_exit(void)
4380 #ifdef CONFIG_PCI
4381 pci_unregister_driver(&mv_pci_driver);
4382 #endif
4383 platform_driver_unregister(&mv_platform_driver);
4386 MODULE_AUTHOR("Brett Russ");
4387 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
4388 MODULE_LICENSE("GPL");
4389 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
4390 MODULE_VERSION(DRV_VERSION);
4391 MODULE_ALIAS("platform:" DRV_NAME);
4393 module_init(mv_init);
4394 module_exit(mv_exit);