2 * drivers/i2c/chips/lm8323.c
4 * Copyright (C) 2007-2009 Nokia Corporation
6 * Written by Daniel Stone <daniel.stone@nokia.com>
7 * Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
9 * Updated by Felipe Balbi <felipe.balbi@nokia.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation (version 2 of the License only).
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 #include <linux/module.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/input.h>
32 #include <linux/leds.h>
33 #include <linux/i2c/lm8323.h>
34 #include <linux/slab.h>
36 /* Commands to send to the chip. */
37 #define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
38 #define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
39 #define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
40 #define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
41 #define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
42 #define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
43 #define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
44 #define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
45 #define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
46 #define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
47 #define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
48 #define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
49 #define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
50 #define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
51 #define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
52 #define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
53 #define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
54 #define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
55 #define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
56 #define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
57 #define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
58 #define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
60 /* Interrupt status. */
61 #define INT_KEYPAD 0x01 /* Key event. */
62 #define INT_ROTATOR 0x02 /* Rotator event. */
63 #define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
64 #define INT_NOINIT 0x10 /* Lost configuration. */
65 #define INT_PWM1 0x20 /* PWM1 stopped. */
66 #define INT_PWM2 0x40 /* PWM2 stopped. */
67 #define INT_PWM3 0x80 /* PWM3 stopped. */
69 /* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
70 #define ERR_BADPAR 0x01 /* Bad parameter. */
71 #define ERR_CMDUNK 0x02 /* Unknown command. */
72 #define ERR_KEYOVR 0x04 /* Too many keys pressed. */
73 #define ERR_FIFOOVER 0x40 /* FIFO overflow. */
75 /* Configuration keys (CMD_{WRITE,READ}_CFG). */
76 #define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
77 #define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
78 #define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
79 #define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
80 #define CFG_PSIZE 0x20 /* Package size (must be 0). */
81 #define CFG_ROTEN 0x40 /* Enable rotator. */
83 /* Clock settings (CMD_{WRITE,READ}_CLOCK). */
84 #define CLK_RCPWM_INTERNAL 0x00
85 #define CLK_RCPWM_EXTERNAL 0x03
86 #define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
87 #define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
89 /* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
90 #define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
91 #define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
92 #define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
93 #define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
95 /* Key event fifo length */
96 #define LM8323_FIFO_LEN 15
98 /* Commands for PWM engine; feed in with PWM_WRITE. */
99 /* Load ramp counter from duty cycle field (range 0 - 0xff). */
100 #define PWM_SET(v) (0x4000 | ((v) & 0xff))
101 /* Go to start of script. */
102 #define PWM_GOTOSTART 0x0000
104 * Stop engine (generates interrupt). If reset is 1, clear the program
105 * counter, else leave it.
107 #define PWM_END(reset) (0xc000 | (!!(reset) << 11))
109 * Ramp. If s is 1, divide clock by 512, else divide clock by 16.
110 * Take t clock scales (up to 63) per step, for n steps (up to 126).
111 * If u is set, ramp up, else ramp down.
113 #define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
114 ((n) & 0x7f) | ((u) ? 0 : 0x80))
116 * Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
117 * If cnt is zero, execute until PWM_END is encountered.
119 #define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
122 * Wait for trigger. Argument is a mask of channels, shifted by the channel
123 * number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
126 #define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
127 /* Send trigger. Argument is same as PWM_WAIT_TRIG. */
128 #define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
134 int desired_brightness
;
139 struct work_struct work
;
140 struct led_classdev cdev
;
141 struct lm8323_chip
*chip
;
147 struct i2c_client
*client
;
148 struct work_struct work
;
149 struct input_dev
*idev
;
154 unsigned short keymap
[LM8323_KEYMAP_SIZE
];
159 struct lm8323_pwm pwm
[LM8323_NUM_PWMS
];
162 #define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
163 #define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
164 #define work_to_lm8323(w) container_of(w, struct lm8323_chip, work)
165 #define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
166 #define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
168 #define LM8323_MAX_DATA 8
171 * To write, we just access the chip's address in write mode, and dump the
172 * command and data out on the bus. The command byte and data are taken as
173 * sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
175 static int lm8323_write(struct lm8323_chip
*lm
, int len
, ...)
179 u8 data
[LM8323_MAX_DATA
];
183 if (unlikely(len
> LM8323_MAX_DATA
)) {
184 dev_err(&lm
->client
->dev
, "tried to send %d bytes\n", len
);
189 for (i
= 0; i
< len
; i
++)
190 data
[i
] = va_arg(ap
, int);
195 * If the host is asleep while we send the data, we can get a NACK
196 * back while it wakes up, so try again, once.
198 ret
= i2c_master_send(lm
->client
, data
, len
);
199 if (unlikely(ret
== -EREMOTEIO
))
200 ret
= i2c_master_send(lm
->client
, data
, len
);
201 if (unlikely(ret
!= len
))
202 dev_err(&lm
->client
->dev
, "sent %d bytes of %d total\n",
209 * To read, we first send the command byte to the chip and end the transaction,
210 * then access the chip in read mode, at which point it will send the data.
212 static int lm8323_read(struct lm8323_chip
*lm
, u8 cmd
, u8
*buf
, int len
)
217 * If the host is asleep while we send the byte, we can get a NACK
218 * back while it wakes up, so try again, once.
220 ret
= i2c_master_send(lm
->client
, &cmd
, 1);
221 if (unlikely(ret
== -EREMOTEIO
))
222 ret
= i2c_master_send(lm
->client
, &cmd
, 1);
223 if (unlikely(ret
!= 1)) {
224 dev_err(&lm
->client
->dev
, "sending read cmd 0x%02x failed\n",
229 ret
= i2c_master_recv(lm
->client
, buf
, len
);
230 if (unlikely(ret
!= len
))
231 dev_err(&lm
->client
->dev
, "wanted %d bytes, got %d\n",
238 * Set the chip active time (idle time before it enters halt).
240 static void lm8323_set_active_time(struct lm8323_chip
*lm
, int time
)
242 lm8323_write(lm
, 2, LM8323_CMD_SET_ACTIVE
, time
>> 2);
246 * The signals are AT-style: the low 7 bits are the keycode, and the top
247 * bit indicates the state (1 for down, 0 for up).
249 static inline u8
lm8323_whichkey(u8 event
)
254 static inline int lm8323_ispress(u8 event
)
256 return (event
& 0x80) ? 1 : 0;
259 static void process_keys(struct lm8323_chip
*lm
)
262 u8 key_fifo
[LM8323_FIFO_LEN
+ 1];
263 int old_keys_down
= lm
->keys_down
;
268 * Read all key events from the FIFO at once. Next READ_FIFO clears the
269 * FIFO even if we didn't read all events previously.
271 ret
= lm8323_read(lm
, LM8323_CMD_READ_FIFO
, key_fifo
, LM8323_FIFO_LEN
);
274 dev_err(&lm
->client
->dev
, "Failed reading fifo \n");
279 while ((event
= key_fifo
[i
++])) {
280 u8 key
= lm8323_whichkey(event
);
281 int isdown
= lm8323_ispress(event
);
282 unsigned short keycode
= lm
->keymap
[key
];
284 dev_vdbg(&lm
->client
->dev
, "key 0x%02x %s\n",
285 key
, isdown
? "down" : "up");
287 if (lm
->kp_enabled
) {
288 input_event(lm
->idev
, EV_MSC
, MSC_SCAN
, key
);
289 input_report_key(lm
->idev
, keycode
, isdown
);
290 input_sync(lm
->idev
);
300 * Errata: We need to ensure that the chip never enters halt mode
301 * during a keypress, so set active time to 0. When it's released,
302 * we can enter halt again, so set the active time back to normal.
304 if (!old_keys_down
&& lm
->keys_down
)
305 lm8323_set_active_time(lm
, 0);
306 if (old_keys_down
&& !lm
->keys_down
)
307 lm8323_set_active_time(lm
, lm
->active_time
);
310 static void lm8323_process_error(struct lm8323_chip
*lm
)
314 if (lm8323_read(lm
, LM8323_CMD_READ_ERR
, &error
, 1) == 1) {
315 if (error
& ERR_FIFOOVER
)
316 dev_vdbg(&lm
->client
->dev
, "fifo overflow!\n");
317 if (error
& ERR_KEYOVR
)
318 dev_vdbg(&lm
->client
->dev
,
319 "more than two keys pressed\n");
320 if (error
& ERR_CMDUNK
)
321 dev_vdbg(&lm
->client
->dev
,
322 "unknown command submitted\n");
323 if (error
& ERR_BADPAR
)
324 dev_vdbg(&lm
->client
->dev
, "bad command parameter\n");
328 static void lm8323_reset(struct lm8323_chip
*lm
)
330 /* The docs say we must pass 0xAA as the data byte. */
331 lm8323_write(lm
, 2, LM8323_CMD_RESET
, 0xAA);
334 static int lm8323_configure(struct lm8323_chip
*lm
)
336 int keysize
= (lm
->size_x
<< 4) | lm
->size_y
;
337 int clock
= (CLK_SLOWCLKEN
| CLK_RCPWM_EXTERNAL
);
338 int debounce
= lm
->debounce_time
>> 2;
339 int active
= lm
->active_time
>> 2;
342 * Active time must be greater than the debounce time: if it's
343 * a close-run thing, give ourselves a 12ms buffer.
345 if (debounce
>= active
)
346 active
= debounce
+ 3;
348 lm8323_write(lm
, 2, LM8323_CMD_WRITE_CFG
, 0);
349 lm8323_write(lm
, 2, LM8323_CMD_WRITE_CLOCK
, clock
);
350 lm8323_write(lm
, 2, LM8323_CMD_SET_KEY_SIZE
, keysize
);
351 lm8323_set_active_time(lm
, lm
->active_time
);
352 lm8323_write(lm
, 2, LM8323_CMD_SET_DEBOUNCE
, debounce
);
353 lm8323_write(lm
, 3, LM8323_CMD_WRITE_PORT_STATE
, 0xff, 0xff);
354 lm8323_write(lm
, 3, LM8323_CMD_WRITE_PORT_SEL
, 0, 0);
357 * Not much we can do about errors at this point, so just hope
364 static void pwm_done(struct lm8323_pwm
*pwm
)
366 mutex_lock(&pwm
->lock
);
367 pwm
->running
= false;
368 if (pwm
->desired_brightness
!= pwm
->brightness
)
369 schedule_work(&pwm
->work
);
370 mutex_unlock(&pwm
->lock
);
374 * Bottom half: handle the interrupt by posting key events, or dealing with
375 * errors appropriately.
377 static void lm8323_work(struct work_struct
*work
)
379 struct lm8323_chip
*lm
= work_to_lm8323(work
);
383 mutex_lock(&lm
->lock
);
385 while ((lm8323_read(lm
, LM8323_CMD_READ_INT
, &ints
, 1) == 1) && ints
) {
386 if (likely(ints
& INT_KEYPAD
))
388 if (ints
& INT_ROTATOR
) {
389 /* We don't currently support the rotator. */
390 dev_vdbg(&lm
->client
->dev
, "rotator fired\n");
392 if (ints
& INT_ERROR
) {
393 dev_vdbg(&lm
->client
->dev
, "error!\n");
394 lm8323_process_error(lm
);
396 if (ints
& INT_NOINIT
) {
397 dev_err(&lm
->client
->dev
, "chip lost config; "
399 lm8323_configure(lm
);
401 for (i
= 0; i
< LM8323_NUM_PWMS
; i
++) {
402 if (ints
& (1 << (INT_PWM1
+ i
))) {
403 dev_vdbg(&lm
->client
->dev
,
404 "pwm%d engine completed\n", i
);
405 pwm_done(&lm
->pwm
[i
]);
410 mutex_unlock(&lm
->lock
);
414 * We cannot use I2C in interrupt context, so we just schedule work.
416 static irqreturn_t
lm8323_irq(int irq
, void *data
)
418 struct lm8323_chip
*lm
= data
;
420 schedule_work(&lm
->work
);
428 static int lm8323_read_id(struct lm8323_chip
*lm
, u8
*buf
)
432 bytes
= lm8323_read(lm
, LM8323_CMD_READ_ID
, buf
, 2);
433 if (unlikely(bytes
!= 2))
439 static void lm8323_write_pwm_one(struct lm8323_pwm
*pwm
, int pos
, u16 cmd
)
441 lm8323_write(pwm
->chip
, 4, LM8323_CMD_PWM_WRITE
, (pos
<< 2) | pwm
->id
,
442 (cmd
& 0xff00) >> 8, cmd
& 0x00ff);
446 * Write a script into a given PWM engine, concluding with PWM_END.
447 * If 'kill' is nonzero, the engine will be shut down at the end
448 * of the script, producing a zero output. Otherwise the engine
449 * will be kept running at the final PWM level indefinitely.
451 static void lm8323_write_pwm(struct lm8323_pwm
*pwm
, int kill
,
452 int len
, const u16
*cmds
)
456 for (i
= 0; i
< len
; i
++)
457 lm8323_write_pwm_one(pwm
, i
, cmds
[i
]);
459 lm8323_write_pwm_one(pwm
, i
++, PWM_END(kill
));
460 lm8323_write(pwm
->chip
, 2, LM8323_CMD_START_PWM
, pwm
->id
);
464 static void lm8323_pwm_work(struct work_struct
*work
)
466 struct lm8323_pwm
*pwm
= work_to_pwm(work
);
467 int div512
, perstep
, steps
, hz
, up
, kill
;
471 mutex_lock(&pwm
->lock
);
474 * Do nothing if we're already at the requested level,
475 * or previous setting is not yet complete. In the latter
476 * case we will be called again when the previous PWM script
479 if (pwm
->running
|| pwm
->desired_brightness
== pwm
->brightness
)
482 kill
= (pwm
->desired_brightness
== 0);
483 up
= (pwm
->desired_brightness
> pwm
->brightness
);
484 steps
= abs(pwm
->desired_brightness
- pwm
->brightness
);
487 * Convert time (in ms) into a divisor (512 or 16 on a refclk of
488 * 32768Hz), and number of ticks per step.
490 if ((pwm
->fade_time
/ steps
) > (32768 / 512)) {
498 perstep
= (hz
* pwm
->fade_time
) / (steps
* 1000);
502 else if (perstep
> 63)
509 pwm_cmds
[num_cmds
++] = PWM_RAMP(div512
, perstep
, s
, up
);
513 lm8323_write_pwm(pwm
, kill
, num_cmds
, pwm_cmds
);
514 pwm
->brightness
= pwm
->desired_brightness
;
517 mutex_unlock(&pwm
->lock
);
520 static void lm8323_pwm_set_brightness(struct led_classdev
*led_cdev
,
521 enum led_brightness brightness
)
523 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
524 struct lm8323_chip
*lm
= pwm
->chip
;
526 mutex_lock(&pwm
->lock
);
527 pwm
->desired_brightness
= brightness
;
528 mutex_unlock(&pwm
->lock
);
530 if (in_interrupt()) {
531 schedule_work(&pwm
->work
);
534 * Schedule PWM work as usual unless we are going into suspend
536 mutex_lock(&lm
->lock
);
537 if (likely(!lm
->pm_suspend
))
538 schedule_work(&pwm
->work
);
540 lm8323_pwm_work(&pwm
->work
);
541 mutex_unlock(&lm
->lock
);
545 static ssize_t
lm8323_pwm_show_time(struct device
*dev
,
546 struct device_attribute
*attr
, char *buf
)
548 struct led_classdev
*led_cdev
= dev_get_drvdata(dev
);
549 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
551 return sprintf(buf
, "%d\n", pwm
->fade_time
);
554 static ssize_t
lm8323_pwm_store_time(struct device
*dev
,
555 struct device_attribute
*attr
, const char *buf
, size_t len
)
557 struct led_classdev
*led_cdev
= dev_get_drvdata(dev
);
558 struct lm8323_pwm
*pwm
= cdev_to_pwm(led_cdev
);
562 ret
= strict_strtoul(buf
, 10, &time
);
563 /* Numbers only, please. */
567 pwm
->fade_time
= time
;
571 static DEVICE_ATTR(time
, 0644, lm8323_pwm_show_time
, lm8323_pwm_store_time
);
573 static int init_pwm(struct lm8323_chip
*lm
, int id
, struct device
*dev
,
576 struct lm8323_pwm
*pwm
;
580 pwm
= &lm
->pwm
[id
- 1];
585 pwm
->desired_brightness
= 0;
586 pwm
->running
= false;
587 pwm
->enabled
= false;
588 INIT_WORK(&pwm
->work
, lm8323_pwm_work
);
589 mutex_init(&pwm
->lock
);
593 pwm
->cdev
.name
= name
;
594 pwm
->cdev
.brightness_set
= lm8323_pwm_set_brightness
;
595 if (led_classdev_register(dev
, &pwm
->cdev
) < 0) {
596 dev_err(dev
, "couldn't register PWM %d\n", id
);
599 if (device_create_file(pwm
->cdev
.dev
,
600 &dev_attr_time
) < 0) {
601 dev_err(dev
, "couldn't register time attribute\n");
602 led_classdev_unregister(&pwm
->cdev
);
611 static struct i2c_driver lm8323_i2c_driver
;
613 static ssize_t
lm8323_show_disable(struct device
*dev
,
614 struct device_attribute
*attr
, char *buf
)
616 struct lm8323_chip
*lm
= dev_get_drvdata(dev
);
618 return sprintf(buf
, "%u\n", !lm
->kp_enabled
);
621 static ssize_t
lm8323_set_disable(struct device
*dev
,
622 struct device_attribute
*attr
,
623 const char *buf
, size_t count
)
625 struct lm8323_chip
*lm
= dev_get_drvdata(dev
);
629 ret
= strict_strtoul(buf
, 10, &i
);
631 mutex_lock(&lm
->lock
);
633 mutex_unlock(&lm
->lock
);
637 static DEVICE_ATTR(disable_kp
, 0644, lm8323_show_disable
, lm8323_set_disable
);
639 static int __devinit
lm8323_probe(struct i2c_client
*client
,
640 const struct i2c_device_id
*id
)
642 struct lm8323_platform_data
*pdata
= client
->dev
.platform_data
;
643 struct input_dev
*idev
;
644 struct lm8323_chip
*lm
;
649 if (!pdata
|| !pdata
->size_x
|| !pdata
->size_y
) {
650 dev_err(&client
->dev
, "missing platform_data\n");
654 if (pdata
->size_x
> 8) {
655 dev_err(&client
->dev
, "invalid x size %d specified\n",
660 if (pdata
->size_y
> 12) {
661 dev_err(&client
->dev
, "invalid y size %d specified\n",
666 lm
= kzalloc(sizeof *lm
, GFP_KERNEL
);
667 idev
= input_allocate_device();
675 mutex_init(&lm
->lock
);
676 INIT_WORK(&lm
->work
, lm8323_work
);
678 lm
->size_x
= pdata
->size_x
;
679 lm
->size_y
= pdata
->size_y
;
680 dev_vdbg(&client
->dev
, "Keypad size: %d x %d\n",
681 lm
->size_x
, lm
->size_y
);
683 lm
->debounce_time
= pdata
->debounce_time
;
684 lm
->active_time
= pdata
->active_time
;
688 /* Nothing's set up to service the IRQ yet, so just spin for max.
689 * 100ms until we can configure. */
690 tmo
= jiffies
+ msecs_to_jiffies(100);
691 while (lm8323_read(lm
, LM8323_CMD_READ_INT
, data
, 1) == 1) {
692 if (data
[0] & INT_NOINIT
)
695 if (time_after(jiffies
, tmo
)) {
696 dev_err(&client
->dev
,
697 "timeout waiting for initialisation\n");
704 lm8323_configure(lm
);
706 /* If a true probe check the device */
707 if (lm8323_read_id(lm
, data
) != 0) {
708 dev_err(&client
->dev
, "device not found\n");
713 for (i
= 0; i
< LM8323_NUM_PWMS
; i
++) {
714 err
= init_pwm(lm
, i
+ 1, &client
->dev
, pdata
->pwm_names
[i
]);
719 lm
->kp_enabled
= true;
720 err
= device_create_file(&client
->dev
, &dev_attr_disable_kp
);
724 idev
->name
= pdata
->name
? : "LM8323 keypad";
725 snprintf(lm
->phys
, sizeof(lm
->phys
),
726 "%s/input-kp", dev_name(&client
->dev
));
727 idev
->phys
= lm
->phys
;
729 idev
->evbit
[0] = BIT(EV_KEY
) | BIT(EV_MSC
);
730 __set_bit(MSC_SCAN
, idev
->mscbit
);
731 for (i
= 0; i
< LM8323_KEYMAP_SIZE
; i
++) {
732 __set_bit(pdata
->keymap
[i
], idev
->keybit
);
733 lm
->keymap
[i
] = pdata
->keymap
[i
];
735 __clear_bit(KEY_RESERVED
, idev
->keybit
);
738 __set_bit(EV_REP
, idev
->evbit
);
740 err
= input_register_device(idev
);
742 dev_dbg(&client
->dev
, "error registering input device\n");
746 err
= request_irq(client
->irq
, lm8323_irq
,
747 IRQF_TRIGGER_FALLING
| IRQF_DISABLED
,
750 dev_err(&client
->dev
, "could not get IRQ %d\n", client
->irq
);
754 i2c_set_clientdata(client
, lm
);
756 device_init_wakeup(&client
->dev
, 1);
757 enable_irq_wake(client
->irq
);
762 input_unregister_device(idev
);
765 device_remove_file(&client
->dev
, &dev_attr_disable_kp
);
768 if (lm
->pwm
[i
].enabled
)
769 led_classdev_unregister(&lm
->pwm
[i
].cdev
);
771 input_free_device(idev
);
776 static int __devexit
lm8323_remove(struct i2c_client
*client
)
778 struct lm8323_chip
*lm
= i2c_get_clientdata(client
);
781 disable_irq_wake(client
->irq
);
782 free_irq(client
->irq
, lm
);
783 cancel_work_sync(&lm
->work
);
785 input_unregister_device(lm
->idev
);
787 device_remove_file(&lm
->client
->dev
, &dev_attr_disable_kp
);
789 for (i
= 0; i
< 3; i
++)
790 if (lm
->pwm
[i
].enabled
)
791 led_classdev_unregister(&lm
->pwm
[i
].cdev
);
800 * We don't need to explicitly suspend the chip, as it already switches off
801 * when there's no activity.
803 static int lm8323_suspend(struct i2c_client
*client
, pm_message_t mesg
)
805 struct lm8323_chip
*lm
= i2c_get_clientdata(client
);
808 set_irq_wake(client
->irq
, 0);
809 disable_irq(client
->irq
);
811 mutex_lock(&lm
->lock
);
812 lm
->pm_suspend
= true;
813 mutex_unlock(&lm
->lock
);
815 for (i
= 0; i
< 3; i
++)
816 if (lm
->pwm
[i
].enabled
)
817 led_classdev_suspend(&lm
->pwm
[i
].cdev
);
822 static int lm8323_resume(struct i2c_client
*client
)
824 struct lm8323_chip
*lm
= i2c_get_clientdata(client
);
827 mutex_lock(&lm
->lock
);
828 lm
->pm_suspend
= false;
829 mutex_unlock(&lm
->lock
);
831 for (i
= 0; i
< 3; i
++)
832 if (lm
->pwm
[i
].enabled
)
833 led_classdev_resume(&lm
->pwm
[i
].cdev
);
835 enable_irq(client
->irq
);
836 set_irq_wake(client
->irq
, 1);
841 #define lm8323_suspend NULL
842 #define lm8323_resume NULL
845 static const struct i2c_device_id lm8323_id
[] = {
850 static struct i2c_driver lm8323_i2c_driver
= {
854 .probe
= lm8323_probe
,
855 .remove
= __devexit_p(lm8323_remove
),
856 .suspend
= lm8323_suspend
,
857 .resume
= lm8323_resume
,
858 .id_table
= lm8323_id
,
860 MODULE_DEVICE_TABLE(i2c
, lm8323_id
);
862 static int __init
lm8323_init(void)
864 return i2c_add_driver(&lm8323_i2c_driver
);
866 module_init(lm8323_init
);
868 static void __exit
lm8323_exit(void)
870 i2c_del_driver(&lm8323_i2c_driver
);
872 module_exit(lm8323_exit
);
874 MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
875 MODULE_AUTHOR("Daniel Stone");
876 MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
877 MODULE_DESCRIPTION("LM8323 keypad driver");
878 MODULE_LICENSE("GPL");