2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
7 * Kyungmin Park <kyungmin.park@samsung.com>
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
15 * Amul Kumar Saha <amul.saha at samsung.com>
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/init.h>
28 #include <linux/sched.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/jiffies.h>
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/onenand.h>
34 #include <linux/mtd/partitions.h>
39 * Multiblock erase if number of blocks to erase is 2 or more.
40 * Maximum number of blocks for simultaneous erase is 64.
42 #define MB_ERASE_MIN_BLK_COUNT 2
43 #define MB_ERASE_MAX_BLK_COUNT 64
45 /* Default Flex-OneNAND boundary and lock respectively */
46 static int flex_bdry
[MAX_DIES
* 2] = { -1, 0, -1, 0 };
48 module_param_array(flex_bdry
, int, NULL
, 0400);
49 MODULE_PARM_DESC(flex_bdry
, "SLC Boundary information for Flex-OneNAND"
50 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
51 "DIE_BDRY: SLC boundary of the die"
52 "LOCK: Locking information for SLC boundary"
53 " : 0->Set boundary in unlocked status"
54 " : 1->Set boundary in locked status");
56 /* Default OneNAND/Flex-OneNAND OTP options*/
59 module_param(otp
, int, 0400);
60 MODULE_PARM_DESC(otp
, "Corresponding behaviour of OneNAND in OTP"
61 "Syntax : otp=LOCK_TYPE"
62 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
63 " : 0 -> Default (No Blocks Locked)"
64 " : 1 -> OTP Block lock"
65 " : 2 -> 1st Block lock"
66 " : 3 -> BOTH OTP Block and 1st Block lock");
69 * onenand_oob_128 - oob info for Flex-Onenand with 4KB page
70 * For now, we expose only 64 out of 80 ecc bytes
72 static struct nand_ecclayout onenand_oob_128
= {
75 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
76 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
77 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
78 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
79 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
80 86, 87, 88, 89, 90, 91, 92, 93, 94, 95,
84 {2, 4}, {18, 4}, {34, 4}, {50, 4},
85 {66, 4}, {82, 4}, {98, 4}, {114, 4}
90 * onenand_oob_64 - oob info for large (2KB) page
92 static struct nand_ecclayout onenand_oob_64
= {
101 {2, 3}, {14, 2}, {18, 3}, {30, 2},
102 {34, 3}, {46, 2}, {50, 3}, {62, 2}
107 * onenand_oob_32 - oob info for middle (1KB) page
109 static struct nand_ecclayout onenand_oob_32
= {
115 .oobfree
= { {2, 3}, {14, 2}, {18, 3}, {30, 2} }
118 static const unsigned char ffchars
[] = {
119 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
120 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
121 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
122 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
123 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
124 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
125 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
126 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
127 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
128 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
129 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
130 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
131 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
132 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
133 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
134 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
138 * onenand_readw - [OneNAND Interface] Read OneNAND register
139 * @param addr address to read
141 * Read OneNAND register
143 static unsigned short onenand_readw(void __iomem
*addr
)
149 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
150 * @param value value to write
151 * @param addr address to write
153 * Write OneNAND register with value
155 static void onenand_writew(unsigned short value
, void __iomem
*addr
)
161 * onenand_block_address - [DEFAULT] Get block address
162 * @param this onenand chip data structure
163 * @param block the block
164 * @return translated block address if DDP, otherwise same
166 * Setup Start Address 1 Register (F100h)
168 static int onenand_block_address(struct onenand_chip
*this, int block
)
170 /* Device Flash Core select, NAND Flash Block Address */
171 if (block
& this->density_mask
)
172 return ONENAND_DDP_CHIP1
| (block
^ this->density_mask
);
178 * onenand_bufferram_address - [DEFAULT] Get bufferram address
179 * @param this onenand chip data structure
180 * @param block the block
181 * @return set DBS value if DDP, otherwise 0
183 * Setup Start Address 2 Register (F101h) for DDP
185 static int onenand_bufferram_address(struct onenand_chip
*this, int block
)
187 /* Device BufferRAM Select */
188 if (block
& this->density_mask
)
189 return ONENAND_DDP_CHIP1
;
191 return ONENAND_DDP_CHIP0
;
195 * onenand_page_address - [DEFAULT] Get page address
196 * @param page the page address
197 * @param sector the sector address
198 * @return combined page and sector address
200 * Setup Start Address 8 Register (F107h)
202 static int onenand_page_address(int page
, int sector
)
204 /* Flash Page Address, Flash Sector Address */
207 fpa
= page
& ONENAND_FPA_MASK
;
208 fsa
= sector
& ONENAND_FSA_MASK
;
210 return ((fpa
<< ONENAND_FPA_SHIFT
) | fsa
);
214 * onenand_buffer_address - [DEFAULT] Get buffer address
215 * @param dataram1 DataRAM index
216 * @param sectors the sector address
217 * @param count the number of sectors
218 * @return the start buffer value
220 * Setup Start Buffer Register (F200h)
222 static int onenand_buffer_address(int dataram1
, int sectors
, int count
)
226 /* BufferRAM Sector Address */
227 bsa
= sectors
& ONENAND_BSA_MASK
;
230 bsa
|= ONENAND_BSA_DATARAM1
; /* DataRAM1 */
232 bsa
|= ONENAND_BSA_DATARAM0
; /* DataRAM0 */
234 /* BufferRAM Sector Count */
235 bsc
= count
& ONENAND_BSC_MASK
;
237 return ((bsa
<< ONENAND_BSA_SHIFT
) | bsc
);
241 * flexonenand_block- For given address return block number
242 * @param this - OneNAND device structure
243 * @param addr - Address for which block number is needed
245 static unsigned flexonenand_block(struct onenand_chip
*this, loff_t addr
)
247 unsigned boundary
, blk
, die
= 0;
249 if (ONENAND_IS_DDP(this) && addr
>= this->diesize
[0]) {
251 addr
-= this->diesize
[0];
254 boundary
= this->boundary
[die
];
256 blk
= addr
>> (this->erase_shift
- 1);
258 blk
= (blk
+ boundary
+ 1) >> 1;
260 blk
+= die
? this->density_mask
: 0;
264 inline unsigned onenand_block(struct onenand_chip
*this, loff_t addr
)
266 if (!FLEXONENAND(this))
267 return addr
>> this->erase_shift
;
268 return flexonenand_block(this, addr
);
272 * flexonenand_addr - Return address of the block
273 * @this: OneNAND device structure
274 * @block: Block number on Flex-OneNAND
276 * Return address of the block
278 static loff_t
flexonenand_addr(struct onenand_chip
*this, int block
)
281 int die
= 0, boundary
;
283 if (ONENAND_IS_DDP(this) && block
>= this->density_mask
) {
284 block
-= this->density_mask
;
286 ofs
= this->diesize
[0];
289 boundary
= this->boundary
[die
];
290 ofs
+= (loff_t
)block
<< (this->erase_shift
- 1);
291 if (block
> (boundary
+ 1))
292 ofs
+= (loff_t
)(block
- boundary
- 1) << (this->erase_shift
- 1);
296 loff_t
onenand_addr(struct onenand_chip
*this, int block
)
298 if (!FLEXONENAND(this))
299 return (loff_t
)block
<< this->erase_shift
;
300 return flexonenand_addr(this, block
);
302 EXPORT_SYMBOL(onenand_addr
);
305 * onenand_get_density - [DEFAULT] Get OneNAND density
306 * @param dev_id OneNAND device ID
308 * Get OneNAND density from device ID
310 static inline int onenand_get_density(int dev_id
)
312 int density
= dev_id
>> ONENAND_DEVICE_DENSITY_SHIFT
;
313 return (density
& ONENAND_DEVICE_DENSITY_MASK
);
317 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
318 * @param mtd MTD device structure
319 * @param addr address whose erase region needs to be identified
321 int flexonenand_region(struct mtd_info
*mtd
, loff_t addr
)
325 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
326 if (addr
< mtd
->eraseregions
[i
].offset
)
330 EXPORT_SYMBOL(flexonenand_region
);
333 * onenand_command - [DEFAULT] Send command to OneNAND device
334 * @param mtd MTD device structure
335 * @param cmd the command to be sent
336 * @param addr offset to read from or write to
337 * @param len number of bytes to read or write
339 * Send command to OneNAND device. This function is used for middle/large page
340 * devices (1KB/2KB Bytes per page)
342 static int onenand_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
, size_t len
)
344 struct onenand_chip
*this = mtd
->priv
;
345 int value
, block
, page
;
347 /* Address translation */
349 case ONENAND_CMD_UNLOCK
:
350 case ONENAND_CMD_LOCK
:
351 case ONENAND_CMD_LOCK_TIGHT
:
352 case ONENAND_CMD_UNLOCK_ALL
:
357 case FLEXONENAND_CMD_PI_ACCESS
:
358 /* addr contains die index */
359 block
= addr
* this->density_mask
;
363 case ONENAND_CMD_ERASE
:
364 case ONENAND_CMD_MULTIBLOCK_ERASE
:
365 case ONENAND_CMD_ERASE_VERIFY
:
366 case ONENAND_CMD_BUFFERRAM
:
367 case ONENAND_CMD_OTP_ACCESS
:
368 block
= onenand_block(this, addr
);
372 case FLEXONENAND_CMD_READ_PI
:
373 cmd
= ONENAND_CMD_READ
;
374 block
= addr
* this->density_mask
;
379 block
= onenand_block(this, addr
);
380 page
= (int) (addr
- onenand_addr(this, block
)) >> this->page_shift
;
382 if (ONENAND_IS_2PLANE(this)) {
383 /* Make the even block number */
385 /* Is it the odd plane? */
386 if (addr
& this->writesize
)
390 page
&= this->page_mask
;
394 /* NOTE: The setting order of the registers is very important! */
395 if (cmd
== ONENAND_CMD_BUFFERRAM
) {
396 /* Select DataRAM for DDP */
397 value
= onenand_bufferram_address(this, block
);
398 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
400 if (ONENAND_IS_MLC(this) || ONENAND_IS_2PLANE(this) ||
401 ONENAND_IS_4KB_PAGE(this))
402 /* It is always BufferRAM0 */
403 ONENAND_SET_BUFFERRAM0(this);
405 /* Switch to the next data buffer */
406 ONENAND_SET_NEXT_BUFFERRAM(this);
412 /* Write 'DFS, FBA' of Flash */
413 value
= onenand_block_address(this, block
);
414 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
416 /* Select DataRAM for DDP */
417 value
= onenand_bufferram_address(this, block
);
418 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
422 /* Now we use page size operation */
423 int sectors
= 0, count
= 0;
427 case FLEXONENAND_CMD_RECOVER_LSB
:
428 case ONENAND_CMD_READ
:
429 case ONENAND_CMD_READOOB
:
430 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
431 /* It is always BufferRAM0 */
432 dataram
= ONENAND_SET_BUFFERRAM0(this);
434 dataram
= ONENAND_SET_NEXT_BUFFERRAM(this);
438 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
439 cmd
= ONENAND_CMD_2X_PROG
;
440 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
444 /* Write 'FPA, FSA' of Flash */
445 value
= onenand_page_address(page
, sectors
);
446 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS8
);
448 /* Write 'BSA, BSC' of DataRAM */
449 value
= onenand_buffer_address(dataram
, sectors
, count
);
450 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
453 /* Interrupt clear */
454 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
457 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
463 * onenand_read_ecc - return ecc status
464 * @param this onenand chip structure
466 static inline int onenand_read_ecc(struct onenand_chip
*this)
468 int ecc
, i
, result
= 0;
470 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
471 return this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
);
473 for (i
= 0; i
< 4; i
++) {
474 ecc
= this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
+ i
*2);
477 if (ecc
& FLEXONENAND_UNCORRECTABLE_ERROR
)
478 return ONENAND_ECC_2BIT_ALL
;
480 result
= ONENAND_ECC_1BIT_ALL
;
487 * onenand_wait - [DEFAULT] wait until the command is done
488 * @param mtd MTD device structure
489 * @param state state to select the max. timeout value
491 * Wait for command done. This applies to all OneNAND command
492 * Read can take up to 30us, erase up to 2ms and program up to 350us
493 * according to general OneNAND specs
495 static int onenand_wait(struct mtd_info
*mtd
, int state
)
497 struct onenand_chip
* this = mtd
->priv
;
498 unsigned long timeout
;
499 unsigned int flags
= ONENAND_INT_MASTER
;
500 unsigned int interrupt
= 0;
503 /* The 20 msec is enough */
504 timeout
= jiffies
+ msecs_to_jiffies(20);
505 while (time_before(jiffies
, timeout
)) {
506 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
508 if (interrupt
& flags
)
511 if (state
!= FL_READING
&& state
!= FL_PREPARING_ERASE
)
514 /* To get correct interrupt status in timeout case */
515 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
517 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
520 * In the Spec. it checks the controller status first
521 * However if you get the correct information in case of
522 * power off recovery (POR) test, it should read ECC status first
524 if (interrupt
& ONENAND_INT_READ
) {
525 int ecc
= onenand_read_ecc(this);
527 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
528 printk(KERN_ERR
"%s: ECC error = 0x%04x\n",
530 mtd
->ecc_stats
.failed
++;
532 } else if (ecc
& ONENAND_ECC_1BIT_ALL
) {
533 printk(KERN_DEBUG
"%s: correctable ECC error = 0x%04x\n",
535 mtd
->ecc_stats
.corrected
++;
538 } else if (state
== FL_READING
) {
539 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
540 __func__
, ctrl
, interrupt
);
544 if (state
== FL_PREPARING_ERASE
&& !(interrupt
& ONENAND_INT_ERASE
)) {
545 printk(KERN_ERR
"%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
546 __func__
, ctrl
, interrupt
);
550 if (!(interrupt
& ONENAND_INT_MASTER
)) {
551 printk(KERN_ERR
"%s: timeout! ctrl=0x%04x intr=0x%04x\n",
552 __func__
, ctrl
, interrupt
);
556 /* If there's controller error, it's a real error */
557 if (ctrl
& ONENAND_CTRL_ERROR
) {
558 printk(KERN_ERR
"%s: controller error = 0x%04x\n",
560 if (ctrl
& ONENAND_CTRL_LOCK
)
561 printk(KERN_ERR
"%s: it's locked error.\n", __func__
);
569 * onenand_interrupt - [DEFAULT] onenand interrupt handler
570 * @param irq onenand interrupt number
571 * @param dev_id interrupt data
575 static irqreturn_t
onenand_interrupt(int irq
, void *data
)
577 struct onenand_chip
*this = data
;
579 /* To handle shared interrupt */
580 if (!this->complete
.done
)
581 complete(&this->complete
);
587 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
588 * @param mtd MTD device structure
589 * @param state state to select the max. timeout value
591 * Wait for command done.
593 static int onenand_interrupt_wait(struct mtd_info
*mtd
, int state
)
595 struct onenand_chip
*this = mtd
->priv
;
597 wait_for_completion(&this->complete
);
599 return onenand_wait(mtd
, state
);
603 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
604 * @param mtd MTD device structure
605 * @param state state to select the max. timeout value
607 * Try interrupt based wait (It is used one-time)
609 static int onenand_try_interrupt_wait(struct mtd_info
*mtd
, int state
)
611 struct onenand_chip
*this = mtd
->priv
;
612 unsigned long remain
, timeout
;
614 /* We use interrupt wait first */
615 this->wait
= onenand_interrupt_wait
;
617 timeout
= msecs_to_jiffies(100);
618 remain
= wait_for_completion_timeout(&this->complete
, timeout
);
620 printk(KERN_INFO
"OneNAND: There's no interrupt. "
621 "We use the normal wait\n");
623 /* Release the irq */
624 free_irq(this->irq
, this);
626 this->wait
= onenand_wait
;
629 return onenand_wait(mtd
, state
);
633 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
634 * @param mtd MTD device structure
636 * There's two method to wait onenand work
637 * 1. polling - read interrupt status register
638 * 2. interrupt - use the kernel interrupt method
640 static void onenand_setup_wait(struct mtd_info
*mtd
)
642 struct onenand_chip
*this = mtd
->priv
;
645 init_completion(&this->complete
);
647 if (this->irq
<= 0) {
648 this->wait
= onenand_wait
;
652 if (request_irq(this->irq
, &onenand_interrupt
,
653 IRQF_SHARED
, "onenand", this)) {
654 /* If we can't get irq, use the normal wait */
655 this->wait
= onenand_wait
;
659 /* Enable interrupt */
660 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
661 syscfg
|= ONENAND_SYS_CFG1_IOBE
;
662 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
664 this->wait
= onenand_try_interrupt_wait
;
668 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
669 * @param mtd MTD data structure
670 * @param area BufferRAM area
671 * @return offset given area
673 * Return BufferRAM offset given area
675 static inline int onenand_bufferram_offset(struct mtd_info
*mtd
, int area
)
677 struct onenand_chip
*this = mtd
->priv
;
679 if (ONENAND_CURRENT_BUFFERRAM(this)) {
680 /* Note: the 'this->writesize' is a real page size */
681 if (area
== ONENAND_DATARAM
)
682 return this->writesize
;
683 if (area
== ONENAND_SPARERAM
)
691 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
692 * @param mtd MTD data structure
693 * @param area BufferRAM area
694 * @param buffer the databuffer to put/get data
695 * @param offset offset to read from or write to
696 * @param count number of bytes to read/write
698 * Read the BufferRAM area
700 static int onenand_read_bufferram(struct mtd_info
*mtd
, int area
,
701 unsigned char *buffer
, int offset
, size_t count
)
703 struct onenand_chip
*this = mtd
->priv
;
704 void __iomem
*bufferram
;
706 bufferram
= this->base
+ area
;
708 bufferram
+= onenand_bufferram_offset(mtd
, area
);
710 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
713 /* Align with word(16-bit) size */
716 /* Read word and save byte */
717 word
= this->read_word(bufferram
+ offset
+ count
);
718 buffer
[count
] = (word
& 0xff);
721 memcpy(buffer
, bufferram
+ offset
, count
);
727 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
728 * @param mtd MTD data structure
729 * @param area BufferRAM area
730 * @param buffer the databuffer to put/get data
731 * @param offset offset to read from or write to
732 * @param count number of bytes to read/write
734 * Read the BufferRAM area with Sync. Burst Mode
736 static int onenand_sync_read_bufferram(struct mtd_info
*mtd
, int area
,
737 unsigned char *buffer
, int offset
, size_t count
)
739 struct onenand_chip
*this = mtd
->priv
;
740 void __iomem
*bufferram
;
742 bufferram
= this->base
+ area
;
744 bufferram
+= onenand_bufferram_offset(mtd
, area
);
746 this->mmcontrol(mtd
, ONENAND_SYS_CFG1_SYNC_READ
);
748 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
751 /* Align with word(16-bit) size */
754 /* Read word and save byte */
755 word
= this->read_word(bufferram
+ offset
+ count
);
756 buffer
[count
] = (word
& 0xff);
759 memcpy(buffer
, bufferram
+ offset
, count
);
761 this->mmcontrol(mtd
, 0);
767 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
768 * @param mtd MTD data structure
769 * @param area BufferRAM area
770 * @param buffer the databuffer to put/get data
771 * @param offset offset to read from or write to
772 * @param count number of bytes to read/write
774 * Write the BufferRAM area
776 static int onenand_write_bufferram(struct mtd_info
*mtd
, int area
,
777 const unsigned char *buffer
, int offset
, size_t count
)
779 struct onenand_chip
*this = mtd
->priv
;
780 void __iomem
*bufferram
;
782 bufferram
= this->base
+ area
;
784 bufferram
+= onenand_bufferram_offset(mtd
, area
);
786 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
790 /* Align with word(16-bit) size */
793 /* Calculate byte access offset */
794 byte_offset
= offset
+ count
;
796 /* Read word and save byte */
797 word
= this->read_word(bufferram
+ byte_offset
);
798 word
= (word
& ~0xff) | buffer
[count
];
799 this->write_word(word
, bufferram
+ byte_offset
);
802 memcpy(bufferram
+ offset
, buffer
, count
);
808 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
809 * @param mtd MTD data structure
810 * @param addr address to check
811 * @return blockpage address
813 * Get blockpage address at 2x program mode
815 static int onenand_get_2x_blockpage(struct mtd_info
*mtd
, loff_t addr
)
817 struct onenand_chip
*this = mtd
->priv
;
818 int blockpage
, block
, page
;
820 /* Calculate the even block number */
821 block
= (int) (addr
>> this->erase_shift
) & ~1;
822 /* Is it the odd plane? */
823 if (addr
& this->writesize
)
825 page
= (int) (addr
>> (this->page_shift
+ 1)) & this->page_mask
;
826 blockpage
= (block
<< 7) | page
;
832 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
833 * @param mtd MTD data structure
834 * @param addr address to check
835 * @return 1 if there are valid data, otherwise 0
837 * Check bufferram if there is data we required
839 static int onenand_check_bufferram(struct mtd_info
*mtd
, loff_t addr
)
841 struct onenand_chip
*this = mtd
->priv
;
842 int blockpage
, found
= 0;
845 if (ONENAND_IS_2PLANE(this))
846 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
848 blockpage
= (int) (addr
>> this->page_shift
);
850 /* Is there valid data? */
851 i
= ONENAND_CURRENT_BUFFERRAM(this);
852 if (this->bufferram
[i
].blockpage
== blockpage
)
855 /* Check another BufferRAM */
856 i
= ONENAND_NEXT_BUFFERRAM(this);
857 if (this->bufferram
[i
].blockpage
== blockpage
) {
858 ONENAND_SET_NEXT_BUFFERRAM(this);
863 if (found
&& ONENAND_IS_DDP(this)) {
864 /* Select DataRAM for DDP */
865 int block
= onenand_block(this, addr
);
866 int value
= onenand_bufferram_address(this, block
);
867 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
874 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
875 * @param mtd MTD data structure
876 * @param addr address to update
877 * @param valid valid flag
879 * Update BufferRAM information
881 static void onenand_update_bufferram(struct mtd_info
*mtd
, loff_t addr
,
884 struct onenand_chip
*this = mtd
->priv
;
888 if (ONENAND_IS_2PLANE(this))
889 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
891 blockpage
= (int) (addr
>> this->page_shift
);
893 /* Invalidate another BufferRAM */
894 i
= ONENAND_NEXT_BUFFERRAM(this);
895 if (this->bufferram
[i
].blockpage
== blockpage
)
896 this->bufferram
[i
].blockpage
= -1;
898 /* Update BufferRAM */
899 i
= ONENAND_CURRENT_BUFFERRAM(this);
901 this->bufferram
[i
].blockpage
= blockpage
;
903 this->bufferram
[i
].blockpage
= -1;
907 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
908 * @param mtd MTD data structure
909 * @param addr start address to invalidate
910 * @param len length to invalidate
912 * Invalidate BufferRAM information
914 static void onenand_invalidate_bufferram(struct mtd_info
*mtd
, loff_t addr
,
917 struct onenand_chip
*this = mtd
->priv
;
919 loff_t end_addr
= addr
+ len
;
921 /* Invalidate BufferRAM */
922 for (i
= 0; i
< MAX_BUFFERRAM
; i
++) {
923 loff_t buf_addr
= this->bufferram
[i
].blockpage
<< this->page_shift
;
924 if (buf_addr
>= addr
&& buf_addr
< end_addr
)
925 this->bufferram
[i
].blockpage
= -1;
930 * onenand_get_device - [GENERIC] Get chip for selected access
931 * @param mtd MTD device structure
932 * @param new_state the state which is requested
934 * Get the device and lock it for exclusive access
936 static int onenand_get_device(struct mtd_info
*mtd
, int new_state
)
938 struct onenand_chip
*this = mtd
->priv
;
939 DECLARE_WAITQUEUE(wait
, current
);
942 * Grab the lock and see if the device is available
945 spin_lock(&this->chip_lock
);
946 if (this->state
== FL_READY
) {
947 this->state
= new_state
;
948 spin_unlock(&this->chip_lock
);
951 if (new_state
== FL_PM_SUSPENDED
) {
952 spin_unlock(&this->chip_lock
);
953 return (this->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
955 set_current_state(TASK_UNINTERRUPTIBLE
);
956 add_wait_queue(&this->wq
, &wait
);
957 spin_unlock(&this->chip_lock
);
959 remove_wait_queue(&this->wq
, &wait
);
966 * onenand_release_device - [GENERIC] release chip
967 * @param mtd MTD device structure
969 * Deselect, release chip lock and wake up anyone waiting on the device
971 static void onenand_release_device(struct mtd_info
*mtd
)
973 struct onenand_chip
*this = mtd
->priv
;
975 /* Release the chip */
976 spin_lock(&this->chip_lock
);
977 this->state
= FL_READY
;
979 spin_unlock(&this->chip_lock
);
983 * onenand_transfer_auto_oob - [Internal] oob auto-placement transfer
984 * @param mtd MTD device structure
985 * @param buf destination address
986 * @param column oob offset to read from
987 * @param thislen oob length to read
989 static int onenand_transfer_auto_oob(struct mtd_info
*mtd
, uint8_t *buf
, int column
,
992 struct onenand_chip
*this = mtd
->priv
;
993 struct nand_oobfree
*free
;
994 int readcol
= column
;
995 int readend
= column
+ thislen
;
998 uint8_t *oob_buf
= this->oob_buf
;
1000 free
= this->ecclayout
->oobfree
;
1001 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&& free
->length
; i
++, free
++) {
1002 if (readcol
>= lastgap
)
1003 readcol
+= free
->offset
- lastgap
;
1004 if (readend
>= lastgap
)
1005 readend
+= free
->offset
- lastgap
;
1006 lastgap
= free
->offset
+ free
->length
;
1008 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1009 free
= this->ecclayout
->oobfree
;
1010 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&& free
->length
; i
++, free
++) {
1011 int free_end
= free
->offset
+ free
->length
;
1012 if (free
->offset
< readend
&& free_end
> readcol
) {
1013 int st
= max_t(int,free
->offset
,readcol
);
1014 int ed
= min_t(int,free_end
,readend
);
1016 memcpy(buf
, oob_buf
+ st
, n
);
1018 } else if (column
== 0)
1025 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1026 * @param mtd MTD device structure
1027 * @param addr address to recover
1028 * @param status return value from onenand_wait / onenand_bbt_wait
1030 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1031 * lower page address and MSB page has higher page address in paired pages.
1032 * If power off occurs during MSB page program, the paired LSB page data can
1033 * become corrupt. LSB page recovery read is a way to read LSB page though page
1034 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1035 * read after power up, issue LSB page recovery read.
1037 static int onenand_recover_lsb(struct mtd_info
*mtd
, loff_t addr
, int status
)
1039 struct onenand_chip
*this = mtd
->priv
;
1042 /* Recovery is only for Flex-OneNAND */
1043 if (!FLEXONENAND(this))
1046 /* check if we failed due to uncorrectable error */
1047 if (status
!= -EBADMSG
&& status
!= ONENAND_BBT_READ_ECC_ERROR
)
1050 /* check if address lies in MLC region */
1051 i
= flexonenand_region(mtd
, addr
);
1052 if (mtd
->eraseregions
[i
].erasesize
< (1 << this->erase_shift
))
1055 /* We are attempting to reread, so decrement stats.failed
1056 * which was incremented by onenand_wait due to read failure
1058 printk(KERN_INFO
"%s: Attempting to recover from uncorrectable read\n",
1060 mtd
->ecc_stats
.failed
--;
1062 /* Issue the LSB page recovery command */
1063 this->command(mtd
, FLEXONENAND_CMD_RECOVER_LSB
, addr
, this->writesize
);
1064 return this->wait(mtd
, FL_READING
);
1068 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1069 * @param mtd MTD device structure
1070 * @param from offset to read from
1071 * @param ops: oob operation description structure
1073 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1074 * So, read-while-load is not present.
1076 static int onenand_mlc_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1077 struct mtd_oob_ops
*ops
)
1079 struct onenand_chip
*this = mtd
->priv
;
1080 struct mtd_ecc_stats stats
;
1081 size_t len
= ops
->len
;
1082 size_t ooblen
= ops
->ooblen
;
1083 u_char
*buf
= ops
->datbuf
;
1084 u_char
*oobbuf
= ops
->oobbuf
;
1085 int read
= 0, column
, thislen
;
1086 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1088 int writesize
= this->writesize
;
1090 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08x, len = %i\n",
1091 __func__
, (unsigned int) from
, (int) len
);
1093 if (ops
->mode
== MTD_OOB_AUTO
)
1094 oobsize
= this->ecclayout
->oobavail
;
1096 oobsize
= mtd
->oobsize
;
1098 oobcolumn
= from
& (mtd
->oobsize
- 1);
1100 /* Do not allow reads past end of device */
1101 if (from
+ len
> mtd
->size
) {
1102 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1109 stats
= mtd
->ecc_stats
;
1111 while (read
< len
) {
1114 thislen
= min_t(int, writesize
, len
- read
);
1116 column
= from
& (writesize
- 1);
1117 if (column
+ thislen
> writesize
)
1118 thislen
= writesize
- column
;
1120 if (!onenand_check_bufferram(mtd
, from
)) {
1121 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1123 ret
= this->wait(mtd
, FL_READING
);
1125 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1126 onenand_update_bufferram(mtd
, from
, !ret
);
1127 if (ret
== -EBADMSG
)
1131 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1133 thisooblen
= oobsize
- oobcolumn
;
1134 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1136 if (ops
->mode
== MTD_OOB_AUTO
)
1137 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1139 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1140 oobread
+= thisooblen
;
1141 oobbuf
+= thisooblen
;
1154 * Return success, if no ECC failures, else -EBADMSG
1155 * fs driver will take care of that, because
1156 * retlen == desired len and result == -EBADMSG
1159 ops
->oobretlen
= oobread
;
1164 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1167 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1171 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1172 * @param mtd MTD device structure
1173 * @param from offset to read from
1174 * @param ops: oob operation description structure
1176 * OneNAND read main and/or out-of-band data
1178 static int onenand_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1179 struct mtd_oob_ops
*ops
)
1181 struct onenand_chip
*this = mtd
->priv
;
1182 struct mtd_ecc_stats stats
;
1183 size_t len
= ops
->len
;
1184 size_t ooblen
= ops
->ooblen
;
1185 u_char
*buf
= ops
->datbuf
;
1186 u_char
*oobbuf
= ops
->oobbuf
;
1187 int read
= 0, column
, thislen
;
1188 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1189 int ret
= 0, boundary
= 0;
1190 int writesize
= this->writesize
;
1192 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08x, len = %i\n",
1193 __func__
, (unsigned int) from
, (int) len
);
1195 if (ops
->mode
== MTD_OOB_AUTO
)
1196 oobsize
= this->ecclayout
->oobavail
;
1198 oobsize
= mtd
->oobsize
;
1200 oobcolumn
= from
& (mtd
->oobsize
- 1);
1202 /* Do not allow reads past end of device */
1203 if ((from
+ len
) > mtd
->size
) {
1204 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1211 stats
= mtd
->ecc_stats
;
1213 /* Read-while-load method */
1215 /* Do first load to bufferRAM */
1217 if (!onenand_check_bufferram(mtd
, from
)) {
1218 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1219 ret
= this->wait(mtd
, FL_READING
);
1220 onenand_update_bufferram(mtd
, from
, !ret
);
1221 if (ret
== -EBADMSG
)
1226 thislen
= min_t(int, writesize
, len
- read
);
1227 column
= from
& (writesize
- 1);
1228 if (column
+ thislen
> writesize
)
1229 thislen
= writesize
- column
;
1232 /* If there is more to load then start next load */
1234 if (read
+ thislen
< len
) {
1235 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1237 * Chip boundary handling in DDP
1238 * Now we issued chip 1 read and pointed chip 1
1239 * bufferram so we have to point chip 0 bufferram.
1241 if (ONENAND_IS_DDP(this) &&
1242 unlikely(from
== (this->chipsize
>> 1))) {
1243 this->write_word(ONENAND_DDP_CHIP0
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1247 ONENAND_SET_PREV_BUFFERRAM(this);
1249 /* While load is going, read from last bufferRAM */
1250 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1252 /* Read oob area if needed */
1254 thisooblen
= oobsize
- oobcolumn
;
1255 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1257 if (ops
->mode
== MTD_OOB_AUTO
)
1258 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1260 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1261 oobread
+= thisooblen
;
1262 oobbuf
+= thisooblen
;
1266 /* See if we are done */
1270 /* Set up for next read from bufferRAM */
1271 if (unlikely(boundary
))
1272 this->write_word(ONENAND_DDP_CHIP1
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1273 ONENAND_SET_NEXT_BUFFERRAM(this);
1275 thislen
= min_t(int, writesize
, len
- read
);
1278 /* Now wait for load */
1279 ret
= this->wait(mtd
, FL_READING
);
1280 onenand_update_bufferram(mtd
, from
, !ret
);
1281 if (ret
== -EBADMSG
)
1286 * Return success, if no ECC failures, else -EBADMSG
1287 * fs driver will take care of that, because
1288 * retlen == desired len and result == -EBADMSG
1291 ops
->oobretlen
= oobread
;
1296 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1299 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1303 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1304 * @param mtd MTD device structure
1305 * @param from offset to read from
1306 * @param ops: oob operation description structure
1308 * OneNAND read out-of-band data from the spare area
1310 static int onenand_read_oob_nolock(struct mtd_info
*mtd
, loff_t from
,
1311 struct mtd_oob_ops
*ops
)
1313 struct onenand_chip
*this = mtd
->priv
;
1314 struct mtd_ecc_stats stats
;
1315 int read
= 0, thislen
, column
, oobsize
;
1316 size_t len
= ops
->ooblen
;
1317 mtd_oob_mode_t mode
= ops
->mode
;
1318 u_char
*buf
= ops
->oobbuf
;
1319 int ret
= 0, readcmd
;
1321 from
+= ops
->ooboffs
;
1323 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08x, len = %i\n",
1324 __func__
, (unsigned int) from
, (int) len
);
1326 /* Initialize return length value */
1329 if (mode
== MTD_OOB_AUTO
)
1330 oobsize
= this->ecclayout
->oobavail
;
1332 oobsize
= mtd
->oobsize
;
1334 column
= from
& (mtd
->oobsize
- 1);
1336 if (unlikely(column
>= oobsize
)) {
1337 printk(KERN_ERR
"%s: Attempted to start read outside oob\n",
1342 /* Do not allow reads past end of device */
1343 if (unlikely(from
>= mtd
->size
||
1344 column
+ len
> ((mtd
->size
>> this->page_shift
) -
1345 (from
>> this->page_shift
)) * oobsize
)) {
1346 printk(KERN_ERR
"%s: Attempted to read beyond end of device\n",
1351 stats
= mtd
->ecc_stats
;
1353 readcmd
= ONENAND_IS_MLC(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1355 while (read
< len
) {
1358 thislen
= oobsize
- column
;
1359 thislen
= min_t(int, thislen
, len
);
1361 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1363 onenand_update_bufferram(mtd
, from
, 0);
1365 ret
= this->wait(mtd
, FL_READING
);
1367 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1369 if (ret
&& ret
!= -EBADMSG
) {
1370 printk(KERN_ERR
"%s: read failed = 0x%x\n",
1375 if (mode
== MTD_OOB_AUTO
)
1376 onenand_transfer_auto_oob(mtd
, buf
, column
, thislen
);
1378 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1390 from
+= mtd
->writesize
;
1395 ops
->oobretlen
= read
;
1400 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1407 * onenand_read - [MTD Interface] Read data from flash
1408 * @param mtd MTD device structure
1409 * @param from offset to read from
1410 * @param len number of bytes to read
1411 * @param retlen pointer to variable to store the number of read bytes
1412 * @param buf the databuffer to put data
1416 static int onenand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1417 size_t *retlen
, u_char
*buf
)
1419 struct onenand_chip
*this = mtd
->priv
;
1420 struct mtd_oob_ops ops
= {
1428 onenand_get_device(mtd
, FL_READING
);
1429 ret
= ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
1430 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
1431 onenand_read_ops_nolock(mtd
, from
, &ops
);
1432 onenand_release_device(mtd
);
1434 *retlen
= ops
.retlen
;
1439 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1440 * @param mtd: MTD device structure
1441 * @param from: offset to read from
1442 * @param ops: oob operation description structure
1444 * Read main and/or out-of-band
1446 static int onenand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1447 struct mtd_oob_ops
*ops
)
1449 struct onenand_chip
*this = mtd
->priv
;
1452 switch (ops
->mode
) {
1457 /* Not implemented yet */
1462 onenand_get_device(mtd
, FL_READING
);
1464 ret
= ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
1465 onenand_mlc_read_ops_nolock(mtd
, from
, ops
) :
1466 onenand_read_ops_nolock(mtd
, from
, ops
);
1468 ret
= onenand_read_oob_nolock(mtd
, from
, ops
);
1469 onenand_release_device(mtd
);
1475 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1476 * @param mtd MTD device structure
1477 * @param state state to select the max. timeout value
1479 * Wait for command done.
1481 static int onenand_bbt_wait(struct mtd_info
*mtd
, int state
)
1483 struct onenand_chip
*this = mtd
->priv
;
1484 unsigned long timeout
;
1485 unsigned int interrupt
;
1488 /* The 20 msec is enough */
1489 timeout
= jiffies
+ msecs_to_jiffies(20);
1490 while (time_before(jiffies
, timeout
)) {
1491 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1492 if (interrupt
& ONENAND_INT_MASTER
)
1495 /* To get correct interrupt status in timeout case */
1496 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1497 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
1499 if (interrupt
& ONENAND_INT_READ
) {
1500 int ecc
= onenand_read_ecc(this);
1501 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
1502 printk(KERN_WARNING
"%s: ecc error = 0x%04x, "
1503 "controller error 0x%04x\n",
1504 __func__
, ecc
, ctrl
);
1505 return ONENAND_BBT_READ_ECC_ERROR
;
1508 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
1509 __func__
, ctrl
, interrupt
);
1510 return ONENAND_BBT_READ_FATAL_ERROR
;
1513 /* Initial bad block case: 0x2400 or 0x0400 */
1514 if (ctrl
& ONENAND_CTRL_ERROR
) {
1515 printk(KERN_DEBUG
"%s: controller error = 0x%04x\n",
1517 return ONENAND_BBT_READ_ERROR
;
1524 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1525 * @param mtd MTD device structure
1526 * @param from offset to read from
1527 * @param ops oob operation description structure
1529 * OneNAND read out-of-band data from the spare area for bbt scan
1531 int onenand_bbt_read_oob(struct mtd_info
*mtd
, loff_t from
,
1532 struct mtd_oob_ops
*ops
)
1534 struct onenand_chip
*this = mtd
->priv
;
1535 int read
= 0, thislen
, column
;
1536 int ret
= 0, readcmd
;
1537 size_t len
= ops
->ooblen
;
1538 u_char
*buf
= ops
->oobbuf
;
1540 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08x, len = %zi\n",
1541 __func__
, (unsigned int) from
, len
);
1543 /* Initialize return value */
1546 /* Do not allow reads past end of device */
1547 if (unlikely((from
+ len
) > mtd
->size
)) {
1548 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1550 return ONENAND_BBT_READ_FATAL_ERROR
;
1553 /* Grab the lock and see if the device is available */
1554 onenand_get_device(mtd
, FL_READING
);
1556 column
= from
& (mtd
->oobsize
- 1);
1558 readcmd
= ONENAND_IS_MLC(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1560 while (read
< len
) {
1563 thislen
= mtd
->oobsize
- column
;
1564 thislen
= min_t(int, thislen
, len
);
1566 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1568 onenand_update_bufferram(mtd
, from
, 0);
1570 ret
= this->bbt_wait(mtd
, FL_READING
);
1572 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1577 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1586 /* Update Page size */
1587 from
+= this->writesize
;
1592 /* Deselect and wake up anyone waiting on the device */
1593 onenand_release_device(mtd
);
1595 ops
->oobretlen
= read
;
1599 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1601 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1602 * @param mtd MTD device structure
1603 * @param buf the databuffer to verify
1604 * @param to offset to read from
1606 static int onenand_verify_oob(struct mtd_info
*mtd
, const u_char
*buf
, loff_t to
)
1608 struct onenand_chip
*this = mtd
->priv
;
1609 u_char
*oob_buf
= this->oob_buf
;
1610 int status
, i
, readcmd
;
1612 readcmd
= ONENAND_IS_MLC(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1614 this->command(mtd
, readcmd
, to
, mtd
->oobsize
);
1615 onenand_update_bufferram(mtd
, to
, 0);
1616 status
= this->wait(mtd
, FL_READING
);
1620 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1621 for (i
= 0; i
< mtd
->oobsize
; i
++)
1622 if (buf
[i
] != 0xFF && buf
[i
] != oob_buf
[i
])
1629 * onenand_verify - [GENERIC] verify the chip contents after a write
1630 * @param mtd MTD device structure
1631 * @param buf the databuffer to verify
1632 * @param addr offset to read from
1633 * @param len number of bytes to read and compare
1635 static int onenand_verify(struct mtd_info
*mtd
, const u_char
*buf
, loff_t addr
, size_t len
)
1637 struct onenand_chip
*this = mtd
->priv
;
1639 int thislen
, column
;
1642 thislen
= min_t(int, this->writesize
, len
);
1643 column
= addr
& (this->writesize
- 1);
1644 if (column
+ thislen
> this->writesize
)
1645 thislen
= this->writesize
- column
;
1647 this->command(mtd
, ONENAND_CMD_READ
, addr
, this->writesize
);
1649 onenand_update_bufferram(mtd
, addr
, 0);
1651 ret
= this->wait(mtd
, FL_READING
);
1655 onenand_update_bufferram(mtd
, addr
, 1);
1657 this->read_bufferram(mtd
, ONENAND_DATARAM
, this->verify_buf
, 0, mtd
->writesize
);
1659 if (memcmp(buf
, this->verify_buf
, thislen
))
1670 #define onenand_verify(...) (0)
1671 #define onenand_verify_oob(...) (0)
1674 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1676 static void onenand_panic_wait(struct mtd_info
*mtd
)
1678 struct onenand_chip
*this = mtd
->priv
;
1679 unsigned int interrupt
;
1682 for (i
= 0; i
< 2000; i
++) {
1683 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1684 if (interrupt
& ONENAND_INT_MASTER
)
1691 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1692 * @param mtd MTD device structure
1693 * @param to offset to write to
1694 * @param len number of bytes to write
1695 * @param retlen pointer to variable to store the number of written bytes
1696 * @param buf the data to write
1700 static int onenand_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1701 size_t *retlen
, const u_char
*buf
)
1703 struct onenand_chip
*this = mtd
->priv
;
1704 int column
, subpage
;
1708 if (this->state
== FL_PM_SUSPENDED
)
1711 /* Wait for any existing operation to clear */
1712 onenand_panic_wait(mtd
);
1714 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
1715 __func__
, (unsigned int) to
, (int) len
);
1717 /* Initialize retlen, in case of early exit */
1720 /* Do not allow writes past end of device */
1721 if (unlikely((to
+ len
) > mtd
->size
)) {
1722 printk(KERN_ERR
"%s: Attempt write to past end of device\n",
1727 /* Reject writes, which are not page aligned */
1728 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1729 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1734 column
= to
& (mtd
->writesize
- 1);
1736 /* Loop until all data write */
1737 while (written
< len
) {
1738 int thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1739 u_char
*wbuf
= (u_char
*) buf
;
1741 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1743 /* Partial page write */
1744 subpage
= thislen
< mtd
->writesize
;
1746 memset(this->page_buf
, 0xff, mtd
->writesize
);
1747 memcpy(this->page_buf
+ column
, buf
, thislen
);
1748 wbuf
= this->page_buf
;
1751 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1752 this->write_bufferram(mtd
, ONENAND_SPARERAM
, ffchars
, 0, mtd
->oobsize
);
1754 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1756 onenand_panic_wait(mtd
);
1758 /* In partial page write we don't update bufferram */
1759 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1760 if (ONENAND_IS_2PLANE(this)) {
1761 ONENAND_SET_BUFFERRAM1(this);
1762 onenand_update_bufferram(mtd
, to
+ this->writesize
, !ret
&& !subpage
);
1766 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
1785 * onenand_fill_auto_oob - [Internal] oob auto-placement transfer
1786 * @param mtd MTD device structure
1787 * @param oob_buf oob buffer
1788 * @param buf source address
1789 * @param column oob offset to write to
1790 * @param thislen oob length to write
1792 static int onenand_fill_auto_oob(struct mtd_info
*mtd
, u_char
*oob_buf
,
1793 const u_char
*buf
, int column
, int thislen
)
1795 struct onenand_chip
*this = mtd
->priv
;
1796 struct nand_oobfree
*free
;
1797 int writecol
= column
;
1798 int writeend
= column
+ thislen
;
1802 free
= this->ecclayout
->oobfree
;
1803 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&& free
->length
; i
++, free
++) {
1804 if (writecol
>= lastgap
)
1805 writecol
+= free
->offset
- lastgap
;
1806 if (writeend
>= lastgap
)
1807 writeend
+= free
->offset
- lastgap
;
1808 lastgap
= free
->offset
+ free
->length
;
1810 free
= this->ecclayout
->oobfree
;
1811 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&& free
->length
; i
++, free
++) {
1812 int free_end
= free
->offset
+ free
->length
;
1813 if (free
->offset
< writeend
&& free_end
> writecol
) {
1814 int st
= max_t(int,free
->offset
,writecol
);
1815 int ed
= min_t(int,free_end
,writeend
);
1817 memcpy(oob_buf
+ st
, buf
, n
);
1819 } else if (column
== 0)
1826 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1827 * @param mtd MTD device structure
1828 * @param to offset to write to
1829 * @param ops oob operation description structure
1831 * Write main and/or oob with ECC
1833 static int onenand_write_ops_nolock(struct mtd_info
*mtd
, loff_t to
,
1834 struct mtd_oob_ops
*ops
)
1836 struct onenand_chip
*this = mtd
->priv
;
1837 int written
= 0, column
, thislen
= 0, subpage
= 0;
1838 int prev
= 0, prevlen
= 0, prev_subpage
= 0, first
= 1;
1839 int oobwritten
= 0, oobcolumn
, thisooblen
, oobsize
;
1840 size_t len
= ops
->len
;
1841 size_t ooblen
= ops
->ooblen
;
1842 const u_char
*buf
= ops
->datbuf
;
1843 const u_char
*oob
= ops
->oobbuf
;
1847 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
1848 __func__
, (unsigned int) to
, (int) len
);
1850 /* Initialize retlen, in case of early exit */
1854 /* Do not allow writes past end of device */
1855 if (unlikely((to
+ len
) > mtd
->size
)) {
1856 printk(KERN_ERR
"%s: Attempt write to past end of device\n",
1861 /* Reject writes, which are not page aligned */
1862 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1863 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1868 /* Check zero length */
1872 if (ops
->mode
== MTD_OOB_AUTO
)
1873 oobsize
= this->ecclayout
->oobavail
;
1875 oobsize
= mtd
->oobsize
;
1877 oobcolumn
= to
& (mtd
->oobsize
- 1);
1879 column
= to
& (mtd
->writesize
- 1);
1881 /* Loop until all data write */
1883 if (written
< len
) {
1884 u_char
*wbuf
= (u_char
*) buf
;
1886 thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1887 thisooblen
= min_t(int, oobsize
- oobcolumn
, ooblen
- oobwritten
);
1891 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1893 /* Partial page write */
1894 subpage
= thislen
< mtd
->writesize
;
1896 memset(this->page_buf
, 0xff, mtd
->writesize
);
1897 memcpy(this->page_buf
+ column
, buf
, thislen
);
1898 wbuf
= this->page_buf
;
1901 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1904 oobbuf
= this->oob_buf
;
1906 /* We send data to spare ram with oobsize
1907 * to prevent byte access */
1908 memset(oobbuf
, 0xff, mtd
->oobsize
);
1909 if (ops
->mode
== MTD_OOB_AUTO
)
1910 onenand_fill_auto_oob(mtd
, oobbuf
, oob
, oobcolumn
, thisooblen
);
1912 memcpy(oobbuf
+ oobcolumn
, oob
, thisooblen
);
1914 oobwritten
+= thisooblen
;
1918 oobbuf
= (u_char
*) ffchars
;
1920 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
1922 ONENAND_SET_NEXT_BUFFERRAM(this);
1925 * 2 PLANE, MLC, and Flex-OneNAND do not support
1926 * write-while-program feature.
1928 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first
) {
1929 ONENAND_SET_PREV_BUFFERRAM(this);
1931 ret
= this->wait(mtd
, FL_WRITING
);
1933 /* In partial page write we don't update bufferram */
1934 onenand_update_bufferram(mtd
, prev
, !ret
&& !prev_subpage
);
1937 printk(KERN_ERR
"%s: write failed %d\n",
1942 if (written
== len
) {
1943 /* Only check verify write turn on */
1944 ret
= onenand_verify(mtd
, buf
- len
, to
- len
, len
);
1946 printk(KERN_ERR
"%s: verify failed %d\n",
1951 ONENAND_SET_NEXT_BUFFERRAM(this);
1954 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1957 * 2 PLANE, MLC, and Flex-OneNAND wait here
1959 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1960 ret
= this->wait(mtd
, FL_WRITING
);
1962 /* In partial page write we don't update bufferram */
1963 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1965 printk(KERN_ERR
"%s: write failed %d\n",
1970 /* Only check verify write turn on */
1971 ret
= onenand_verify(mtd
, buf
, to
, thislen
);
1973 printk(KERN_ERR
"%s: verify failed %d\n",
1987 prev_subpage
= subpage
;
1995 /* In error case, clear all bufferrams */
1997 onenand_invalidate_bufferram(mtd
, 0, -1);
1999 ops
->retlen
= written
;
2000 ops
->oobretlen
= oobwritten
;
2007 * onenand_write_oob_nolock - [Internal] OneNAND write out-of-band
2008 * @param mtd MTD device structure
2009 * @param to offset to write to
2010 * @param len number of bytes to write
2011 * @param retlen pointer to variable to store the number of written bytes
2012 * @param buf the data to write
2013 * @param mode operation mode
2015 * OneNAND write out-of-band
2017 static int onenand_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2018 struct mtd_oob_ops
*ops
)
2020 struct onenand_chip
*this = mtd
->priv
;
2021 int column
, ret
= 0, oobsize
;
2022 int written
= 0, oobcmd
;
2024 size_t len
= ops
->ooblen
;
2025 const u_char
*buf
= ops
->oobbuf
;
2026 mtd_oob_mode_t mode
= ops
->mode
;
2030 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
2031 __func__
, (unsigned int) to
, (int) len
);
2033 /* Initialize retlen, in case of early exit */
2036 if (mode
== MTD_OOB_AUTO
)
2037 oobsize
= this->ecclayout
->oobavail
;
2039 oobsize
= mtd
->oobsize
;
2041 column
= to
& (mtd
->oobsize
- 1);
2043 if (unlikely(column
>= oobsize
)) {
2044 printk(KERN_ERR
"%s: Attempted to start write outside oob\n",
2049 /* For compatibility with NAND: Do not allow write past end of page */
2050 if (unlikely(column
+ len
> oobsize
)) {
2051 printk(KERN_ERR
"%s: Attempt to write past end of page\n",
2056 /* Do not allow reads past end of device */
2057 if (unlikely(to
>= mtd
->size
||
2058 column
+ len
> ((mtd
->size
>> this->page_shift
) -
2059 (to
>> this->page_shift
)) * oobsize
)) {
2060 printk(KERN_ERR
"%s: Attempted to write past end of device\n",
2065 oobbuf
= this->oob_buf
;
2067 oobcmd
= ONENAND_IS_MLC(this) ? ONENAND_CMD_PROG
: ONENAND_CMD_PROGOOB
;
2069 /* Loop until all data write */
2070 while (written
< len
) {
2071 int thislen
= min_t(int, oobsize
, len
- written
);
2075 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, mtd
->oobsize
);
2077 /* We send data to spare ram with oobsize
2078 * to prevent byte access */
2079 memset(oobbuf
, 0xff, mtd
->oobsize
);
2080 if (mode
== MTD_OOB_AUTO
)
2081 onenand_fill_auto_oob(mtd
, oobbuf
, buf
, column
, thislen
);
2083 memcpy(oobbuf
+ column
, buf
, thislen
);
2084 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
2086 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this)) {
2087 /* Set main area of DataRAM to 0xff*/
2088 memset(this->page_buf
, 0xff, mtd
->writesize
);
2089 this->write_bufferram(mtd
, ONENAND_DATARAM
,
2090 this->page_buf
, 0, mtd
->writesize
);
2093 this->command(mtd
, oobcmd
, to
, mtd
->oobsize
);
2095 onenand_update_bufferram(mtd
, to
, 0);
2096 if (ONENAND_IS_2PLANE(this)) {
2097 ONENAND_SET_BUFFERRAM1(this);
2098 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2101 ret
= this->wait(mtd
, FL_WRITING
);
2103 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2107 ret
= onenand_verify_oob(mtd
, oobbuf
, to
);
2109 printk(KERN_ERR
"%s: verify failed %d\n",
2118 to
+= mtd
->writesize
;
2123 ops
->oobretlen
= written
;
2129 * onenand_write - [MTD Interface] write buffer to FLASH
2130 * @param mtd MTD device structure
2131 * @param to offset to write to
2132 * @param len number of bytes to write
2133 * @param retlen pointer to variable to store the number of written bytes
2134 * @param buf the data to write
2138 static int onenand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2139 size_t *retlen
, const u_char
*buf
)
2141 struct mtd_oob_ops ops
= {
2144 .datbuf
= (u_char
*) buf
,
2149 onenand_get_device(mtd
, FL_WRITING
);
2150 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
2151 onenand_release_device(mtd
);
2153 *retlen
= ops
.retlen
;
2158 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2159 * @param mtd: MTD device structure
2160 * @param to: offset to write
2161 * @param ops: oob operation description structure
2163 static int onenand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2164 struct mtd_oob_ops
*ops
)
2168 switch (ops
->mode
) {
2173 /* Not implemented yet */
2178 onenand_get_device(mtd
, FL_WRITING
);
2180 ret
= onenand_write_ops_nolock(mtd
, to
, ops
);
2182 ret
= onenand_write_oob_nolock(mtd
, to
, ops
);
2183 onenand_release_device(mtd
);
2189 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2190 * @param mtd MTD device structure
2191 * @param ofs offset from device start
2192 * @param allowbbt 1, if its allowed to access the bbt area
2194 * Check, if the block is bad. Either by reading the bad block table or
2195 * calling of the scan function.
2197 static int onenand_block_isbad_nolock(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
2199 struct onenand_chip
*this = mtd
->priv
;
2200 struct bbm_info
*bbm
= this->bbm
;
2202 /* Return info from the table */
2203 return bbm
->isbad_bbt(mtd
, ofs
, allowbbt
);
2207 static int onenand_multiblock_erase_verify(struct mtd_info
*mtd
,
2208 struct erase_info
*instr
)
2210 struct onenand_chip
*this = mtd
->priv
;
2211 loff_t addr
= instr
->addr
;
2212 int len
= instr
->len
;
2213 unsigned int block_size
= (1 << this->erase_shift
);
2217 this->command(mtd
, ONENAND_CMD_ERASE_VERIFY
, addr
, block_size
);
2218 ret
= this->wait(mtd
, FL_VERIFYING_ERASE
);
2220 printk(KERN_ERR
"%s: Failed verify, block %d\n",
2221 __func__
, onenand_block(this, addr
));
2222 instr
->state
= MTD_ERASE_FAILED
;
2223 instr
->fail_addr
= addr
;
2233 * onenand_multiblock_erase - [Internal] erase block(s) using multiblock erase
2234 * @param mtd MTD device structure
2235 * @param instr erase instruction
2236 * @param region erase region
2238 * Erase one or more blocks up to 64 block at a time
2240 static int onenand_multiblock_erase(struct mtd_info
*mtd
,
2241 struct erase_info
*instr
,
2242 unsigned int block_size
)
2244 struct onenand_chip
*this = mtd
->priv
;
2245 loff_t addr
= instr
->addr
;
2246 int len
= instr
->len
;
2251 instr
->state
= MTD_ERASING
;
2253 if (ONENAND_IS_DDP(this)) {
2254 loff_t bdry_addr
= this->chipsize
>> 1;
2255 if (addr
< bdry_addr
&& (addr
+ len
) > bdry_addr
)
2256 bdry_block
= bdry_addr
>> this->erase_shift
;
2261 /* Check if we have a bad block, we do not erase bad blocks */
2262 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2263 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2264 "at addr 0x%012llx\n",
2265 __func__
, (unsigned long long) addr
);
2266 instr
->state
= MTD_ERASE_FAILED
;
2276 /* loop over 64 eb batches */
2278 struct erase_info verify_instr
= *instr
;
2279 int max_eb_count
= MB_ERASE_MAX_BLK_COUNT
;
2281 verify_instr
.addr
= addr
;
2282 verify_instr
.len
= 0;
2284 /* do not cross chip boundary */
2286 int this_block
= (addr
>> this->erase_shift
);
2288 if (this_block
< bdry_block
) {
2289 max_eb_count
= min(max_eb_count
,
2290 (bdry_block
- this_block
));
2296 while (len
> block_size
&& eb_count
< (max_eb_count
- 1)) {
2297 this->command(mtd
, ONENAND_CMD_MULTIBLOCK_ERASE
,
2299 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2301 ret
= this->wait(mtd
, FL_PREPARING_ERASE
);
2303 printk(KERN_ERR
"%s: Failed multiblock erase, "
2304 "block %d\n", __func__
,
2305 onenand_block(this, addr
));
2306 instr
->state
= MTD_ERASE_FAILED
;
2307 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2316 /* last block of 64-eb series */
2318 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2319 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2321 ret
= this->wait(mtd
, FL_ERASING
);
2322 /* Check if it is write protected */
2324 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2325 __func__
, onenand_block(this, addr
));
2326 instr
->state
= MTD_ERASE_FAILED
;
2327 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2336 verify_instr
.len
= eb_count
* block_size
;
2337 if (onenand_multiblock_erase_verify(mtd
, &verify_instr
)) {
2338 instr
->state
= verify_instr
.state
;
2339 instr
->fail_addr
= verify_instr
.fail_addr
;
2349 * onenand_block_by_block_erase - [Internal] erase block(s) using regular erase
2350 * @param mtd MTD device structure
2351 * @param instr erase instruction
2352 * @param region erase region
2353 * @param block_size erase block size
2355 * Erase one or more blocks one block at a time
2357 static int onenand_block_by_block_erase(struct mtd_info
*mtd
,
2358 struct erase_info
*instr
,
2359 struct mtd_erase_region_info
*region
,
2360 unsigned int block_size
)
2362 struct onenand_chip
*this = mtd
->priv
;
2363 loff_t addr
= instr
->addr
;
2364 int len
= instr
->len
;
2365 loff_t region_end
= 0;
2369 /* region is set for Flex-OneNAND */
2370 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2373 instr
->state
= MTD_ERASING
;
2375 /* Loop through the blocks */
2379 /* Check if we have a bad block, we do not erase bad blocks */
2380 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2381 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2382 "at addr 0x%012llx\n",
2383 __func__
, (unsigned long long) addr
);
2384 instr
->state
= MTD_ERASE_FAILED
;
2388 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2390 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2392 ret
= this->wait(mtd
, FL_ERASING
);
2393 /* Check, if it is write protected */
2395 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2396 __func__
, onenand_block(this, addr
));
2397 instr
->state
= MTD_ERASE_FAILED
;
2398 instr
->fail_addr
= addr
;
2405 if (addr
== region_end
) {
2410 block_size
= region
->erasesize
;
2411 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2413 if (len
& (block_size
- 1)) {
2414 /* FIXME: This should be handled at MTD partitioning level. */
2415 printk(KERN_ERR
"%s: Unaligned address\n",
2425 * onenand_erase - [MTD Interface] erase block(s)
2426 * @param mtd MTD device structure
2427 * @param instr erase instruction
2429 * Erase one or more blocks
2431 static int onenand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2433 struct onenand_chip
*this = mtd
->priv
;
2434 unsigned int block_size
;
2435 loff_t addr
= instr
->addr
;
2436 loff_t len
= instr
->len
;
2438 struct mtd_erase_region_info
*region
= NULL
;
2439 loff_t region_offset
= 0;
2441 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start=0x%012llx, len=%llu\n", __func__
,
2442 (unsigned long long) instr
->addr
, (unsigned long long) instr
->len
);
2444 /* Do not allow erase past end of device */
2445 if (unlikely((len
+ addr
) > mtd
->size
)) {
2446 printk(KERN_ERR
"%s: Erase past end of device\n", __func__
);
2450 if (FLEXONENAND(this)) {
2451 /* Find the eraseregion of this address */
2452 int i
= flexonenand_region(mtd
, addr
);
2454 region
= &mtd
->eraseregions
[i
];
2455 block_size
= region
->erasesize
;
2457 /* Start address within region must align on block boundary.
2458 * Erase region's start offset is always block start address.
2460 region_offset
= region
->offset
;
2462 block_size
= 1 << this->erase_shift
;
2464 /* Start address must align on block boundary */
2465 if (unlikely((addr
- region_offset
) & (block_size
- 1))) {
2466 printk(KERN_ERR
"%s: Unaligned address\n", __func__
);
2470 /* Length must align on block boundary */
2471 if (unlikely(len
& (block_size
- 1))) {
2472 printk(KERN_ERR
"%s: Length not block aligned\n", __func__
);
2476 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2478 /* Grab the lock and see if the device is available */
2479 onenand_get_device(mtd
, FL_ERASING
);
2481 if (region
|| instr
->len
< MB_ERASE_MIN_BLK_COUNT
* block_size
) {
2482 /* region is set for Flex-OneNAND (no mb erase) */
2483 ret
= onenand_block_by_block_erase(mtd
, instr
,
2484 region
, block_size
);
2486 ret
= onenand_multiblock_erase(mtd
, instr
, block_size
);
2489 /* Deselect and wake up anyone waiting on the device */
2490 onenand_release_device(mtd
);
2492 /* Do call back function */
2494 instr
->state
= MTD_ERASE_DONE
;
2495 mtd_erase_callback(instr
);
2502 * onenand_sync - [MTD Interface] sync
2503 * @param mtd MTD device structure
2505 * Sync is actually a wait for chip ready function
2507 static void onenand_sync(struct mtd_info
*mtd
)
2509 DEBUG(MTD_DEBUG_LEVEL3
, "%s: called\n", __func__
);
2511 /* Grab the lock and see if the device is available */
2512 onenand_get_device(mtd
, FL_SYNCING
);
2514 /* Release it and go back */
2515 onenand_release_device(mtd
);
2519 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2520 * @param mtd MTD device structure
2521 * @param ofs offset relative to mtd start
2523 * Check whether the block is bad
2525 static int onenand_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2529 /* Check for invalid offset */
2530 if (ofs
> mtd
->size
)
2533 onenand_get_device(mtd
, FL_READING
);
2534 ret
= onenand_block_isbad_nolock(mtd
, ofs
, 0);
2535 onenand_release_device(mtd
);
2540 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2541 * @param mtd MTD device structure
2542 * @param ofs offset from device start
2544 * This is the default implementation, which can be overridden by
2545 * a hardware specific driver.
2547 static int onenand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2549 struct onenand_chip
*this = mtd
->priv
;
2550 struct bbm_info
*bbm
= this->bbm
;
2551 u_char buf
[2] = {0, 0};
2552 struct mtd_oob_ops ops
= {
2553 .mode
= MTD_OOB_PLACE
,
2560 /* Get block number */
2561 block
= onenand_block(this, ofs
);
2563 bbm
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
2565 /* We write two bytes, so we don't have to mess with 16-bit access */
2566 ofs
+= mtd
->oobsize
+ (bbm
->badblockpos
& ~0x01);
2567 /* FIXME : What to do when marking SLC block in partition
2568 * with MLC erasesize? For now, it is not advisable to
2569 * create partitions containing both SLC and MLC regions.
2571 return onenand_write_oob_nolock(mtd
, ofs
, &ops
);
2575 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2576 * @param mtd MTD device structure
2577 * @param ofs offset relative to mtd start
2579 * Mark the block as bad
2581 static int onenand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2583 struct onenand_chip
*this = mtd
->priv
;
2586 ret
= onenand_block_isbad(mtd
, ofs
);
2588 /* If it was bad already, return success and do nothing */
2594 onenand_get_device(mtd
, FL_WRITING
);
2595 ret
= this->block_markbad(mtd
, ofs
);
2596 onenand_release_device(mtd
);
2601 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2602 * @param mtd MTD device structure
2603 * @param ofs offset relative to mtd start
2604 * @param len number of bytes to lock or unlock
2605 * @param cmd lock or unlock command
2607 * Lock or unlock one or more blocks
2609 static int onenand_do_lock_cmd(struct mtd_info
*mtd
, loff_t ofs
, size_t len
, int cmd
)
2611 struct onenand_chip
*this = mtd
->priv
;
2612 int start
, end
, block
, value
, status
;
2615 start
= onenand_block(this, ofs
);
2616 end
= onenand_block(this, ofs
+ len
) - 1;
2618 if (cmd
== ONENAND_CMD_LOCK
)
2619 wp_status_mask
= ONENAND_WP_LS
;
2621 wp_status_mask
= ONENAND_WP_US
;
2623 /* Continuous lock scheme */
2624 if (this->options
& ONENAND_HAS_CONT_LOCK
) {
2625 /* Set start block address */
2626 this->write_word(start
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2627 /* Set end block address */
2628 this->write_word(end
, this->base
+ ONENAND_REG_END_BLOCK_ADDRESS
);
2629 /* Write lock command */
2630 this->command(mtd
, cmd
, 0, 0);
2632 /* There's no return value */
2633 this->wait(mtd
, FL_LOCKING
);
2636 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2637 & ONENAND_CTRL_ONGO
)
2640 /* Check lock status */
2641 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2642 if (!(status
& wp_status_mask
))
2643 printk(KERN_ERR
"%s: wp status = 0x%x\n",
2649 /* Block lock scheme */
2650 for (block
= start
; block
< end
+ 1; block
++) {
2651 /* Set block address */
2652 value
= onenand_block_address(this, block
);
2653 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2654 /* Select DataRAM for DDP */
2655 value
= onenand_bufferram_address(this, block
);
2656 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2657 /* Set start block address */
2658 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2659 /* Write lock command */
2660 this->command(mtd
, cmd
, 0, 0);
2662 /* There's no return value */
2663 this->wait(mtd
, FL_LOCKING
);
2666 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2667 & ONENAND_CTRL_ONGO
)
2670 /* Check lock status */
2671 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2672 if (!(status
& wp_status_mask
))
2673 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2674 __func__
, block
, status
);
2681 * onenand_lock - [MTD Interface] Lock block(s)
2682 * @param mtd MTD device structure
2683 * @param ofs offset relative to mtd start
2684 * @param len number of bytes to unlock
2686 * Lock one or more blocks
2688 static int onenand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2692 onenand_get_device(mtd
, FL_LOCKING
);
2693 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_LOCK
);
2694 onenand_release_device(mtd
);
2699 * onenand_unlock - [MTD Interface] Unlock block(s)
2700 * @param mtd MTD device structure
2701 * @param ofs offset relative to mtd start
2702 * @param len number of bytes to unlock
2704 * Unlock one or more blocks
2706 static int onenand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2710 onenand_get_device(mtd
, FL_LOCKING
);
2711 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2712 onenand_release_device(mtd
);
2717 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2718 * @param this onenand chip data structure
2722 static int onenand_check_lock_status(struct onenand_chip
*this)
2724 unsigned int value
, block
, status
;
2727 end
= this->chipsize
>> this->erase_shift
;
2728 for (block
= 0; block
< end
; block
++) {
2729 /* Set block address */
2730 value
= onenand_block_address(this, block
);
2731 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2732 /* Select DataRAM for DDP */
2733 value
= onenand_bufferram_address(this, block
);
2734 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2735 /* Set start block address */
2736 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2738 /* Check lock status */
2739 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2740 if (!(status
& ONENAND_WP_US
)) {
2741 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2742 __func__
, block
, status
);
2751 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2752 * @param mtd MTD device structure
2756 static void onenand_unlock_all(struct mtd_info
*mtd
)
2758 struct onenand_chip
*this = mtd
->priv
;
2760 loff_t len
= mtd
->size
;
2762 if (this->options
& ONENAND_HAS_UNLOCK_ALL
) {
2763 /* Set start block address */
2764 this->write_word(0, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2765 /* Write unlock command */
2766 this->command(mtd
, ONENAND_CMD_UNLOCK_ALL
, 0, 0);
2768 /* There's no return value */
2769 this->wait(mtd
, FL_LOCKING
);
2772 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2773 & ONENAND_CTRL_ONGO
)
2776 /* Don't check lock status */
2777 if (this->options
& ONENAND_SKIP_UNLOCK_CHECK
)
2780 /* Check lock status */
2781 if (onenand_check_lock_status(this))
2784 /* Workaround for all block unlock in DDP */
2785 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2786 /* All blocks on another chip */
2787 ofs
= this->chipsize
>> 1;
2788 len
= this->chipsize
>> 1;
2792 onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2795 #ifdef CONFIG_MTD_ONENAND_OTP
2798 * onenand_otp_command - Send OTP specific command to OneNAND device
2799 * @param mtd MTD device structure
2800 * @param cmd the command to be sent
2801 * @param addr offset to read from or write to
2802 * @param len number of bytes to read or write
2804 static int onenand_otp_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
,
2807 struct onenand_chip
*this = mtd
->priv
;
2808 int value
, block
, page
;
2810 /* Address translation */
2812 case ONENAND_CMD_OTP_ACCESS
:
2813 block
= (int) (addr
>> this->erase_shift
);
2818 block
= (int) (addr
>> this->erase_shift
);
2819 page
= (int) (addr
>> this->page_shift
);
2821 if (ONENAND_IS_2PLANE(this)) {
2822 /* Make the even block number */
2824 /* Is it the odd plane? */
2825 if (addr
& this->writesize
)
2829 page
&= this->page_mask
;
2834 /* Write 'DFS, FBA' of Flash */
2835 value
= onenand_block_address(this, block
);
2836 this->write_word(value
, this->base
+
2837 ONENAND_REG_START_ADDRESS1
);
2841 /* Now we use page size operation */
2842 int sectors
= 4, count
= 4;
2847 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
2848 cmd
= ONENAND_CMD_2X_PROG
;
2849 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
2853 /* Write 'FPA, FSA' of Flash */
2854 value
= onenand_page_address(page
, sectors
);
2855 this->write_word(value
, this->base
+
2856 ONENAND_REG_START_ADDRESS8
);
2858 /* Write 'BSA, BSC' of DataRAM */
2859 value
= onenand_buffer_address(dataram
, sectors
, count
);
2860 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
2863 /* Interrupt clear */
2864 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
2867 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
2873 * onenand_otp_write_oob_nolock - [Internal] OneNAND write out-of-band, specific to OTP
2874 * @param mtd MTD device structure
2875 * @param to offset to write to
2876 * @param len number of bytes to write
2877 * @param retlen pointer to variable to store the number of written bytes
2878 * @param buf the data to write
2880 * OneNAND write out-of-band only for OTP
2882 static int onenand_otp_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2883 struct mtd_oob_ops
*ops
)
2885 struct onenand_chip
*this = mtd
->priv
;
2886 int column
, ret
= 0, oobsize
;
2889 size_t len
= ops
->ooblen
;
2890 const u_char
*buf
= ops
->oobbuf
;
2891 int block
, value
, status
;
2895 /* Initialize retlen, in case of early exit */
2898 oobsize
= mtd
->oobsize
;
2900 column
= to
& (mtd
->oobsize
- 1);
2902 oobbuf
= this->oob_buf
;
2904 /* Loop until all data write */
2905 while (written
< len
) {
2906 int thislen
= min_t(int, oobsize
, len
- written
);
2910 block
= (int) (to
>> this->erase_shift
);
2912 * Write 'DFS, FBA' of Flash
2913 * Add: F100h DQ=DFS, FBA
2916 value
= onenand_block_address(this, block
);
2917 this->write_word(value
, this->base
+
2918 ONENAND_REG_START_ADDRESS1
);
2921 * Select DataRAM for DDP
2925 value
= onenand_bufferram_address(this, block
);
2926 this->write_word(value
, this->base
+
2927 ONENAND_REG_START_ADDRESS2
);
2928 ONENAND_SET_NEXT_BUFFERRAM(this);
2931 * Enter OTP access mode
2933 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2934 this->wait(mtd
, FL_OTPING
);
2936 /* We send data to spare ram with oobsize
2937 * to prevent byte access */
2938 memcpy(oobbuf
+ column
, buf
, thislen
);
2941 * Write Data into DataRAM
2943 * in sector0/spare/page0
2946 this->write_bufferram(mtd
, ONENAND_SPARERAM
,
2947 oobbuf
, 0, mtd
->oobsize
);
2949 onenand_otp_command(mtd
, ONENAND_CMD_PROGOOB
, to
, mtd
->oobsize
);
2950 onenand_update_bufferram(mtd
, to
, 0);
2951 if (ONENAND_IS_2PLANE(this)) {
2952 ONENAND_SET_BUFFERRAM1(this);
2953 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2956 ret
= this->wait(mtd
, FL_WRITING
);
2958 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2962 /* Exit OTP access mode */
2963 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2964 this->wait(mtd
, FL_RESETING
);
2966 status
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
2969 if (status
== 0x60) {
2970 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2971 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2972 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2973 } else if (status
== 0x20) {
2974 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2975 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2976 printk(KERN_DEBUG
"OTP Block\tUN-LOCKED\n");
2977 } else if (status
== 0x40) {
2978 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2979 printk(KERN_DEBUG
"1st Block\tUN-LOCKED\n");
2980 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2982 printk(KERN_DEBUG
"Reboot to check\n");
2989 to
+= mtd
->writesize
;
2994 ops
->oobretlen
= written
;
2999 /* Internal OTP operation */
3000 typedef int (*otp_op_t
)(struct mtd_info
*mtd
, loff_t form
, size_t len
,
3001 size_t *retlen
, u_char
*buf
);
3004 * do_otp_read - [DEFAULT] Read OTP block area
3005 * @param mtd MTD device structure
3006 * @param from The offset to read
3007 * @param len number of bytes to read
3008 * @param retlen pointer to variable to store the number of readbytes
3009 * @param buf the databuffer to put/get data
3011 * Read OTP block area.
3013 static int do_otp_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3014 size_t *retlen
, u_char
*buf
)
3016 struct onenand_chip
*this = mtd
->priv
;
3017 struct mtd_oob_ops ops
= {
3025 /* Enter OTP access mode */
3026 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3027 this->wait(mtd
, FL_OTPING
);
3029 ret
= ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this) ?
3030 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
3031 onenand_read_ops_nolock(mtd
, from
, &ops
);
3033 /* Exit OTP access mode */
3034 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3035 this->wait(mtd
, FL_RESETING
);
3041 * do_otp_write - [DEFAULT] Write OTP block area
3042 * @param mtd MTD device structure
3043 * @param to The offset to write
3044 * @param len number of bytes to write
3045 * @param retlen pointer to variable to store the number of write bytes
3046 * @param buf the databuffer to put/get data
3048 * Write OTP block area.
3050 static int do_otp_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
3051 size_t *retlen
, u_char
*buf
)
3053 struct onenand_chip
*this = mtd
->priv
;
3054 unsigned char *pbuf
= buf
;
3056 struct mtd_oob_ops ops
;
3058 /* Force buffer page aligned */
3059 if (len
< mtd
->writesize
) {
3060 memcpy(this->page_buf
, buf
, len
);
3061 memset(this->page_buf
+ len
, 0xff, mtd
->writesize
- len
);
3062 pbuf
= this->page_buf
;
3063 len
= mtd
->writesize
;
3066 /* Enter OTP access mode */
3067 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3068 this->wait(mtd
, FL_OTPING
);
3074 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
3075 *retlen
= ops
.retlen
;
3077 /* Exit OTP access mode */
3078 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3079 this->wait(mtd
, FL_RESETING
);
3085 * do_otp_lock - [DEFAULT] Lock OTP block area
3086 * @param mtd MTD device structure
3087 * @param from The offset to lock
3088 * @param len number of bytes to lock
3089 * @param retlen pointer to variable to store the number of lock bytes
3090 * @param buf the databuffer to put/get data
3092 * Lock OTP block area.
3094 static int do_otp_lock(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3095 size_t *retlen
, u_char
*buf
)
3097 struct onenand_chip
*this = mtd
->priv
;
3098 struct mtd_oob_ops ops
;
3101 if (FLEXONENAND(this)) {
3103 /* Enter OTP access mode */
3104 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3105 this->wait(mtd
, FL_OTPING
);
3107 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3108 * main area of page 49.
3110 ops
.len
= mtd
->writesize
;
3114 ret
= onenand_write_ops_nolock(mtd
, mtd
->writesize
* 49, &ops
);
3115 *retlen
= ops
.retlen
;
3117 /* Exit OTP access mode */
3118 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3119 this->wait(mtd
, FL_RESETING
);
3121 ops
.mode
= MTD_OOB_PLACE
;
3125 ret
= onenand_otp_write_oob_nolock(mtd
, from
, &ops
);
3126 *retlen
= ops
.oobretlen
;
3133 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3134 * @param mtd MTD device structure
3135 * @param from The offset to read/write
3136 * @param len number of bytes to read/write
3137 * @param retlen pointer to variable to store the number of read bytes
3138 * @param buf the databuffer to put/get data
3139 * @param action do given action
3140 * @param mode specify user and factory
3142 * Handle OTP operation.
3144 static int onenand_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3145 size_t *retlen
, u_char
*buf
,
3146 otp_op_t action
, int mode
)
3148 struct onenand_chip
*this = mtd
->priv
;
3155 density
= onenand_get_density(this->device_id
);
3156 if (density
< ONENAND_DEVICE_DENSITY_512Mb
)
3161 if (mode
== MTD_OTP_FACTORY
) {
3162 from
+= mtd
->writesize
* otp_pages
;
3163 otp_pages
= ONENAND_PAGES_PER_BLOCK
- otp_pages
;
3166 /* Check User/Factory boundary */
3167 if (mode
== MTD_OTP_USER
) {
3168 if (mtd
->writesize
* otp_pages
< from
+ len
)
3171 if (mtd
->writesize
* otp_pages
< len
)
3175 onenand_get_device(mtd
, FL_OTPING
);
3176 while (len
> 0 && otp_pages
> 0) {
3177 if (!action
) { /* OTP Info functions */
3178 struct otp_info
*otpinfo
;
3180 len
-= sizeof(struct otp_info
);
3186 otpinfo
= (struct otp_info
*) buf
;
3187 otpinfo
->start
= from
;
3188 otpinfo
->length
= mtd
->writesize
;
3189 otpinfo
->locked
= 0;
3191 from
+= mtd
->writesize
;
3192 buf
+= sizeof(struct otp_info
);
3193 *retlen
+= sizeof(struct otp_info
);
3197 ret
= action(mtd
, from
, len
, &tmp_retlen
, buf
);
3201 *retlen
+= tmp_retlen
;
3208 onenand_release_device(mtd
);
3214 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3215 * @param mtd MTD device structure
3216 * @param buf the databuffer to put/get data
3217 * @param len number of bytes to read
3219 * Read factory OTP info.
3221 static int onenand_get_fact_prot_info(struct mtd_info
*mtd
,
3222 struct otp_info
*buf
, size_t len
)
3227 ret
= onenand_otp_walk(mtd
, 0, len
, &retlen
, (u_char
*) buf
, NULL
, MTD_OTP_FACTORY
);
3229 return ret
? : retlen
;
3233 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3234 * @param mtd MTD device structure
3235 * @param from The offset to read
3236 * @param len number of bytes to read
3237 * @param retlen pointer to variable to store the number of read bytes
3238 * @param buf the databuffer to put/get data
3240 * Read factory OTP area.
3242 static int onenand_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3243 size_t len
, size_t *retlen
, u_char
*buf
)
3245 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_FACTORY
);
3249 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3250 * @param mtd MTD device structure
3251 * @param buf the databuffer to put/get data
3252 * @param len number of bytes to read
3254 * Read user OTP info.
3256 static int onenand_get_user_prot_info(struct mtd_info
*mtd
,
3257 struct otp_info
*buf
, size_t len
)
3262 ret
= onenand_otp_walk(mtd
, 0, len
, &retlen
, (u_char
*) buf
, NULL
, MTD_OTP_USER
);
3264 return ret
? : retlen
;
3268 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3269 * @param mtd MTD device structure
3270 * @param from The offset to read
3271 * @param len number of bytes to read
3272 * @param retlen pointer to variable to store the number of read bytes
3273 * @param buf the databuffer to put/get data
3275 * Read user OTP area.
3277 static int onenand_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3278 size_t len
, size_t *retlen
, u_char
*buf
)
3280 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_USER
);
3284 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3285 * @param mtd MTD device structure
3286 * @param from The offset to write
3287 * @param len number of bytes to write
3288 * @param retlen pointer to variable to store the number of write bytes
3289 * @param buf the databuffer to put/get data
3291 * Write user OTP area.
3293 static int onenand_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3294 size_t len
, size_t *retlen
, u_char
*buf
)
3296 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_write
, MTD_OTP_USER
);
3300 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3301 * @param mtd MTD device structure
3302 * @param from The offset to lock
3303 * @param len number of bytes to unlock
3305 * Write lock mark on spare area in page 0 in OTP block
3307 static int onenand_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3310 struct onenand_chip
*this = mtd
->priv
;
3311 u_char
*buf
= FLEXONENAND(this) ? this->page_buf
: this->oob_buf
;
3314 unsigned int otp_lock_offset
= ONENAND_OTP_LOCK_OFFSET
;
3316 memset(buf
, 0xff, FLEXONENAND(this) ? this->writesize
3319 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3320 * We write 16 bytes spare area instead of 2 bytes.
3321 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3322 * main area of page 49.
3326 len
= FLEXONENAND(this) ? mtd
->writesize
: 16;
3329 * Note: OTP lock operation
3330 * OTP block : 0xXXFC XX 1111 1100
3331 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3332 * Both : 0xXXF0 (If chip support) XX 1111 0000
3334 if (FLEXONENAND(this))
3335 otp_lock_offset
= FLEXONENAND_OTP_LOCK_OFFSET
;
3337 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3339 buf
[otp_lock_offset
] = 0xFC;
3341 buf
[otp_lock_offset
] = 0xF3;
3343 buf
[otp_lock_offset
] = 0xF0;
3345 printk(KERN_DEBUG
"[OneNAND] Invalid option selected for OTP\n");
3347 ret
= onenand_otp_walk(mtd
, from
, len
, &retlen
, buf
, do_otp_lock
, MTD_OTP_USER
);
3349 return ret
? : retlen
;
3352 #endif /* CONFIG_MTD_ONENAND_OTP */
3355 * onenand_check_features - Check and set OneNAND features
3356 * @param mtd MTD data structure
3358 * Check and set OneNAND features
3362 static void onenand_check_features(struct mtd_info
*mtd
)
3364 struct onenand_chip
*this = mtd
->priv
;
3365 unsigned int density
, process
;
3367 /* Lock scheme depends on density and process */
3368 density
= onenand_get_density(this->device_id
);
3369 process
= this->version_id
>> ONENAND_VERSION_PROCESS_SHIFT
;
3373 case ONENAND_DEVICE_DENSITY_4Gb
:
3374 if (ONENAND_IS_DDP(this))
3375 this->options
|= ONENAND_HAS_2PLANE
;
3377 this->options
|= ONENAND_HAS_4KB_PAGE
;
3379 case ONENAND_DEVICE_DENSITY_2Gb
:
3380 /* 2Gb DDP does not have 2 plane */
3381 if (!ONENAND_IS_DDP(this))
3382 this->options
|= ONENAND_HAS_2PLANE
;
3383 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3385 case ONENAND_DEVICE_DENSITY_1Gb
:
3386 /* A-Die has all block unlock */
3388 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3392 /* Some OneNAND has continuous lock scheme */
3394 this->options
|= ONENAND_HAS_CONT_LOCK
;
3398 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
3399 this->options
&= ~ONENAND_HAS_2PLANE
;
3401 if (FLEXONENAND(this)) {
3402 this->options
&= ~ONENAND_HAS_CONT_LOCK
;
3403 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3406 if (this->options
& ONENAND_HAS_CONT_LOCK
)
3407 printk(KERN_DEBUG
"Lock scheme is Continuous Lock\n");
3408 if (this->options
& ONENAND_HAS_UNLOCK_ALL
)
3409 printk(KERN_DEBUG
"Chip support all block unlock\n");
3410 if (this->options
& ONENAND_HAS_2PLANE
)
3411 printk(KERN_DEBUG
"Chip has 2 plane\n");
3412 if (this->options
& ONENAND_HAS_4KB_PAGE
)
3413 printk(KERN_DEBUG
"Chip has 4KiB pagesize\n");
3417 * onenand_print_device_info - Print device & version ID
3418 * @param device device ID
3419 * @param version version ID
3421 * Print device & version ID
3423 static void onenand_print_device_info(int device
, int version
)
3425 int vcc
, demuxed
, ddp
, density
, flexonenand
;
3427 vcc
= device
& ONENAND_DEVICE_VCC_MASK
;
3428 demuxed
= device
& ONENAND_DEVICE_IS_DEMUX
;
3429 ddp
= device
& ONENAND_DEVICE_IS_DDP
;
3430 density
= onenand_get_density(device
);
3431 flexonenand
= device
& DEVICE_IS_FLEXONENAND
;
3432 printk(KERN_INFO
"%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3433 demuxed
? "" : "Muxed ",
3434 flexonenand
? "Flex-" : "",
3437 vcc
? "2.65/3.3" : "1.8",
3439 printk(KERN_INFO
"OneNAND version = 0x%04x\n", version
);
3442 static const struct onenand_manufacturers onenand_manuf_ids
[] = {
3443 {ONENAND_MFR_SAMSUNG
, "Samsung"},
3444 {ONENAND_MFR_NUMONYX
, "Numonyx"},
3448 * onenand_check_maf - Check manufacturer ID
3449 * @param manuf manufacturer ID
3451 * Check manufacturer ID
3453 static int onenand_check_maf(int manuf
)
3455 int size
= ARRAY_SIZE(onenand_manuf_ids
);
3459 for (i
= 0; i
< size
; i
++)
3460 if (manuf
== onenand_manuf_ids
[i
].id
)
3464 name
= onenand_manuf_ids
[i
].name
;
3468 printk(KERN_DEBUG
"OneNAND Manufacturer: %s (0x%0x)\n", name
, manuf
);
3474 * flexonenand_get_boundary - Reads the SLC boundary
3475 * @param onenand_info - onenand info structure
3477 static int flexonenand_get_boundary(struct mtd_info
*mtd
)
3479 struct onenand_chip
*this = mtd
->priv
;
3481 int ret
, syscfg
, locked
;
3484 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3485 this->write_word((syscfg
| 0x0100), this->base
+ ONENAND_REG_SYS_CFG1
);
3487 for (die
= 0; die
< this->dies
; die
++) {
3488 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3489 this->wait(mtd
, FL_SYNCING
);
3491 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3492 ret
= this->wait(mtd
, FL_READING
);
3494 bdry
= this->read_word(this->base
+ ONENAND_DATARAM
);
3495 if ((bdry
>> FLEXONENAND_PI_UNLOCK_SHIFT
) == 3)
3499 this->boundary
[die
] = bdry
& FLEXONENAND_PI_MASK
;
3501 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3502 ret
= this->wait(mtd
, FL_RESETING
);
3504 printk(KERN_INFO
"Die %d boundary: %d%s\n", die
,
3505 this->boundary
[die
], locked
? "(Locked)" : "(Unlocked)");
3509 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3514 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3515 * boundary[], diesize[], mtd->size, mtd->erasesize
3516 * @param mtd - MTD device structure
3518 static void flexonenand_get_size(struct mtd_info
*mtd
)
3520 struct onenand_chip
*this = mtd
->priv
;
3521 int die
, i
, eraseshift
, density
;
3522 int blksperdie
, maxbdry
;
3525 density
= onenand_get_density(this->device_id
);
3526 blksperdie
= ((loff_t
)(16 << density
) << 20) >> (this->erase_shift
);
3527 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3528 maxbdry
= blksperdie
- 1;
3529 eraseshift
= this->erase_shift
- 1;
3531 mtd
->numeraseregions
= this->dies
<< 1;
3533 /* This fills up the device boundary */
3534 flexonenand_get_boundary(mtd
);
3537 for (; die
< this->dies
; die
++) {
3538 if (!die
|| this->boundary
[die
-1] != maxbdry
) {
3540 mtd
->eraseregions
[i
].offset
= ofs
;
3541 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3542 mtd
->eraseregions
[i
].numblocks
=
3543 this->boundary
[die
] + 1;
3544 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3547 mtd
->numeraseregions
-= 1;
3548 mtd
->eraseregions
[i
].numblocks
+=
3549 this->boundary
[die
] + 1;
3550 ofs
+= (this->boundary
[die
] + 1) << (eraseshift
- 1);
3552 if (this->boundary
[die
] != maxbdry
) {
3554 mtd
->eraseregions
[i
].offset
= ofs
;
3555 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3556 mtd
->eraseregions
[i
].numblocks
= maxbdry
^
3557 this->boundary
[die
];
3558 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3561 mtd
->numeraseregions
-= 1;
3564 /* Expose MLC erase size except when all blocks are SLC */
3565 mtd
->erasesize
= 1 << this->erase_shift
;
3566 if (mtd
->numeraseregions
== 1)
3567 mtd
->erasesize
>>= 1;
3569 printk(KERN_INFO
"Device has %d eraseregions\n", mtd
->numeraseregions
);
3570 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
3571 printk(KERN_INFO
"[offset: 0x%08x, erasesize: 0x%05x,"
3572 " numblocks: %04u]\n",
3573 (unsigned int) mtd
->eraseregions
[i
].offset
,
3574 mtd
->eraseregions
[i
].erasesize
,
3575 mtd
->eraseregions
[i
].numblocks
);
3577 for (die
= 0, mtd
->size
= 0; die
< this->dies
; die
++) {
3578 this->diesize
[die
] = (loff_t
)blksperdie
<< this->erase_shift
;
3579 this->diesize
[die
] -= (loff_t
)(this->boundary
[die
] + 1)
3580 << (this->erase_shift
- 1);
3581 mtd
->size
+= this->diesize
[die
];
3586 * flexonenand_check_blocks_erased - Check if blocks are erased
3587 * @param mtd_info - mtd info structure
3588 * @param start - first erase block to check
3589 * @param end - last erase block to check
3591 * Converting an unerased block from MLC to SLC
3592 * causes byte values to change. Since both data and its ECC
3593 * have changed, reads on the block give uncorrectable error.
3594 * This might lead to the block being detected as bad.
3596 * Avoid this by ensuring that the block to be converted is
3599 static int flexonenand_check_blocks_erased(struct mtd_info
*mtd
, int start
, int end
)
3601 struct onenand_chip
*this = mtd
->priv
;
3604 struct mtd_oob_ops ops
= {
3605 .mode
= MTD_OOB_PLACE
,
3607 .ooblen
= mtd
->oobsize
,
3609 .oobbuf
= this->oob_buf
,
3613 printk(KERN_DEBUG
"Check blocks from %d to %d\n", start
, end
);
3615 for (block
= start
; block
<= end
; block
++) {
3616 addr
= flexonenand_addr(this, block
);
3617 if (onenand_block_isbad_nolock(mtd
, addr
, 0))
3621 * Since main area write results in ECC write to spare,
3622 * it is sufficient to check only ECC bytes for change.
3624 ret
= onenand_read_oob_nolock(mtd
, addr
, &ops
);
3628 for (i
= 0; i
< mtd
->oobsize
; i
++)
3629 if (this->oob_buf
[i
] != 0xff)
3632 if (i
!= mtd
->oobsize
) {
3633 printk(KERN_WARNING
"%s: Block %d not erased.\n",
3643 * flexonenand_set_boundary - Writes the SLC boundary
3644 * @param mtd - mtd info structure
3646 int flexonenand_set_boundary(struct mtd_info
*mtd
, int die
,
3647 int boundary
, int lock
)
3649 struct onenand_chip
*this = mtd
->priv
;
3650 int ret
, density
, blksperdie
, old
, new, thisboundary
;
3653 /* Change only once for SDP Flex-OneNAND */
3654 if (die
&& (!ONENAND_IS_DDP(this)))
3657 /* boundary value of -1 indicates no required change */
3658 if (boundary
< 0 || boundary
== this->boundary
[die
])
3661 density
= onenand_get_density(this->device_id
);
3662 blksperdie
= ((16 << density
) << 20) >> this->erase_shift
;
3663 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3665 if (boundary
>= blksperdie
) {
3666 printk(KERN_ERR
"%s: Invalid boundary value. "
3667 "Boundary not changed.\n", __func__
);
3671 /* Check if converting blocks are erased */
3672 old
= this->boundary
[die
] + (die
* this->density_mask
);
3673 new = boundary
+ (die
* this->density_mask
);
3674 ret
= flexonenand_check_blocks_erased(mtd
, min(old
, new) + 1, max(old
, new));
3676 printk(KERN_ERR
"%s: Please erase blocks "
3677 "before boundary change\n", __func__
);
3681 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3682 this->wait(mtd
, FL_SYNCING
);
3684 /* Check is boundary is locked */
3685 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3686 ret
= this->wait(mtd
, FL_READING
);
3688 thisboundary
= this->read_word(this->base
+ ONENAND_DATARAM
);
3689 if ((thisboundary
>> FLEXONENAND_PI_UNLOCK_SHIFT
) != 3) {
3690 printk(KERN_ERR
"%s: boundary locked\n", __func__
);
3695 printk(KERN_INFO
"Changing die %d boundary: %d%s\n",
3696 die
, boundary
, lock
? "(Locked)" : "(Unlocked)");
3698 addr
= die
? this->diesize
[0] : 0;
3700 boundary
&= FLEXONENAND_PI_MASK
;
3701 boundary
|= lock
? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT
);
3703 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, 0);
3704 ret
= this->wait(mtd
, FL_ERASING
);
3706 printk(KERN_ERR
"%s: Failed PI erase for Die %d\n",
3711 this->write_word(boundary
, this->base
+ ONENAND_DATARAM
);
3712 this->command(mtd
, ONENAND_CMD_PROG
, addr
, 0);
3713 ret
= this->wait(mtd
, FL_WRITING
);
3715 printk(KERN_ERR
"%s: Failed PI write for Die %d\n",
3720 this->command(mtd
, FLEXONENAND_CMD_PI_UPDATE
, die
, 0);
3721 ret
= this->wait(mtd
, FL_WRITING
);
3723 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_REG_COMMAND
);
3724 this->wait(mtd
, FL_RESETING
);
3726 /* Recalculate device size on boundary change*/
3727 flexonenand_get_size(mtd
);
3733 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3734 * @param mtd MTD device structure
3736 * OneNAND detection method:
3737 * Compare the values from command with ones from register
3739 static int onenand_probe(struct mtd_info
*mtd
)
3741 struct onenand_chip
*this = mtd
->priv
;
3742 int bram_maf_id
, bram_dev_id
, maf_id
, dev_id
, ver_id
;
3746 /* Save system configuration 1 */
3747 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3748 /* Clear Sync. Burst Read mode to read BootRAM */
3749 this->write_word((syscfg
& ~ONENAND_SYS_CFG1_SYNC_READ
& ~ONENAND_SYS_CFG1_SYNC_WRITE
), this->base
+ ONENAND_REG_SYS_CFG1
);
3751 /* Send the command for reading device ID from BootRAM */
3752 this->write_word(ONENAND_CMD_READID
, this->base
+ ONENAND_BOOTRAM
);
3754 /* Read manufacturer and device IDs from BootRAM */
3755 bram_maf_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x0);
3756 bram_dev_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x2);
3758 /* Reset OneNAND to read default register values */
3759 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_BOOTRAM
);
3761 this->wait(mtd
, FL_RESETING
);
3763 /* Restore system configuration 1 */
3764 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3767 if (syscfg
& ONENAND_SYS_CFG1_SYNC_WRITE
) {
3768 bram_maf_id
= this->read_word(this->base
+ ONENAND_REG_MANUFACTURER_ID
);
3769 bram_dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3772 /* Check manufacturer ID */
3773 if (onenand_check_maf(bram_maf_id
))
3776 /* Read manufacturer and device IDs from Register */
3777 maf_id
= this->read_word(this->base
+ ONENAND_REG_MANUFACTURER_ID
);
3778 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3779 ver_id
= this->read_word(this->base
+ ONENAND_REG_VERSION_ID
);
3780 this->technology
= this->read_word(this->base
+ ONENAND_REG_TECHNOLOGY
);
3782 /* Check OneNAND device */
3783 if (maf_id
!= bram_maf_id
|| dev_id
!= bram_dev_id
)
3786 /* Flash device information */
3787 onenand_print_device_info(dev_id
, ver_id
);
3788 this->device_id
= dev_id
;
3789 this->version_id
= ver_id
;
3791 /* Check OneNAND features */
3792 onenand_check_features(mtd
);
3794 density
= onenand_get_density(dev_id
);
3795 if (FLEXONENAND(this)) {
3796 this->dies
= ONENAND_IS_DDP(this) ? 2 : 1;
3797 /* Maximum possible erase regions */
3798 mtd
->numeraseregions
= this->dies
<< 1;
3799 mtd
->eraseregions
= kzalloc(sizeof(struct mtd_erase_region_info
)
3800 * (this->dies
<< 1), GFP_KERNEL
);
3801 if (!mtd
->eraseregions
)
3806 * For Flex-OneNAND, chipsize represents maximum possible device size.
3807 * mtd->size represents the actual device size.
3809 this->chipsize
= (16 << density
) << 20;
3811 /* OneNAND page size & block size */
3812 /* The data buffer size is equal to page size */
3813 mtd
->writesize
= this->read_word(this->base
+ ONENAND_REG_DATA_BUFFER_SIZE
);
3814 /* We use the full BufferRAM */
3815 if (ONENAND_IS_MLC(this) || ONENAND_IS_4KB_PAGE(this))
3816 mtd
->writesize
<<= 1;
3818 mtd
->oobsize
= mtd
->writesize
>> 5;
3819 /* Pages per a block are always 64 in OneNAND */
3820 mtd
->erasesize
= mtd
->writesize
<< 6;
3822 * Flex-OneNAND SLC area has 64 pages per block.
3823 * Flex-OneNAND MLC area has 128 pages per block.
3824 * Expose MLC erase size to find erase_shift and page_mask.
3826 if (FLEXONENAND(this))
3827 mtd
->erasesize
<<= 1;
3829 this->erase_shift
= ffs(mtd
->erasesize
) - 1;
3830 this->page_shift
= ffs(mtd
->writesize
) - 1;
3831 this->page_mask
= (1 << (this->erase_shift
- this->page_shift
)) - 1;
3832 /* Set density mask. it is used for DDP */
3833 if (ONENAND_IS_DDP(this))
3834 this->density_mask
= this->chipsize
>> (this->erase_shift
+ 1);
3835 /* It's real page size */
3836 this->writesize
= mtd
->writesize
;
3838 /* REVISIT: Multichip handling */
3840 if (FLEXONENAND(this))
3841 flexonenand_get_size(mtd
);
3843 mtd
->size
= this->chipsize
;
3846 * We emulate the 4KiB page and 256KiB erase block size
3847 * But oobsize is still 64 bytes.
3848 * It is only valid if you turn on 2X program support,
3849 * Otherwise it will be ignored by compiler.
3851 if (ONENAND_IS_2PLANE(this)) {
3852 mtd
->writesize
<<= 1;
3853 mtd
->erasesize
<<= 1;
3860 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3861 * @param mtd MTD device structure
3863 static int onenand_suspend(struct mtd_info
*mtd
)
3865 return onenand_get_device(mtd
, FL_PM_SUSPENDED
);
3869 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3870 * @param mtd MTD device structure
3872 static void onenand_resume(struct mtd_info
*mtd
)
3874 struct onenand_chip
*this = mtd
->priv
;
3876 if (this->state
== FL_PM_SUSPENDED
)
3877 onenand_release_device(mtd
);
3879 printk(KERN_ERR
"%s: resume() called for the chip which is not "
3880 "in suspended state\n", __func__
);
3884 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3885 * @param mtd MTD device structure
3886 * @param maxchips Number of chips to scan for
3888 * This fills out all the not initialized function pointers
3889 * with the defaults.
3890 * The flash ID is read and the mtd/chip structures are
3891 * filled with the appropriate values.
3893 int onenand_scan(struct mtd_info
*mtd
, int maxchips
)
3896 struct onenand_chip
*this = mtd
->priv
;
3898 if (!this->read_word
)
3899 this->read_word
= onenand_readw
;
3900 if (!this->write_word
)
3901 this->write_word
= onenand_writew
;
3904 this->command
= onenand_command
;
3906 onenand_setup_wait(mtd
);
3907 if (!this->bbt_wait
)
3908 this->bbt_wait
= onenand_bbt_wait
;
3909 if (!this->unlock_all
)
3910 this->unlock_all
= onenand_unlock_all
;
3912 if (!this->read_bufferram
)
3913 this->read_bufferram
= onenand_read_bufferram
;
3914 if (!this->write_bufferram
)
3915 this->write_bufferram
= onenand_write_bufferram
;
3917 if (!this->block_markbad
)
3918 this->block_markbad
= onenand_default_block_markbad
;
3919 if (!this->scan_bbt
)
3920 this->scan_bbt
= onenand_default_bbt
;
3922 if (onenand_probe(mtd
))
3925 /* Set Sync. Burst Read after probing */
3926 if (this->mmcontrol
) {
3927 printk(KERN_INFO
"OneNAND Sync. Burst Read support\n");
3928 this->read_bufferram
= onenand_sync_read_bufferram
;
3931 /* Allocate buffers, if necessary */
3932 if (!this->page_buf
) {
3933 this->page_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3934 if (!this->page_buf
) {
3935 printk(KERN_ERR
"%s: Can't allocate page_buf\n",
3939 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3940 this->verify_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3941 if (!this->verify_buf
) {
3942 kfree(this->page_buf
);
3946 this->options
|= ONENAND_PAGEBUF_ALLOC
;
3948 if (!this->oob_buf
) {
3949 this->oob_buf
= kzalloc(mtd
->oobsize
, GFP_KERNEL
);
3950 if (!this->oob_buf
) {
3951 printk(KERN_ERR
"%s: Can't allocate oob_buf\n",
3953 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
3954 this->options
&= ~ONENAND_PAGEBUF_ALLOC
;
3955 kfree(this->page_buf
);
3959 this->options
|= ONENAND_OOBBUF_ALLOC
;
3962 this->state
= FL_READY
;
3963 init_waitqueue_head(&this->wq
);
3964 spin_lock_init(&this->chip_lock
);
3967 * Allow subpage writes up to oobsize.
3969 switch (mtd
->oobsize
) {
3971 this->ecclayout
= &onenand_oob_128
;
3972 mtd
->subpage_sft
= 0;
3975 this->ecclayout
= &onenand_oob_64
;
3976 mtd
->subpage_sft
= 2;
3980 this->ecclayout
= &onenand_oob_32
;
3981 mtd
->subpage_sft
= 1;
3985 printk(KERN_WARNING
"%s: No OOB scheme defined for oobsize %d\n",
3986 __func__
, mtd
->oobsize
);
3987 mtd
->subpage_sft
= 0;
3988 /* To prevent kernel oops */
3989 this->ecclayout
= &onenand_oob_32
;
3993 this->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3996 * The number of bytes available for a client to place data into
3997 * the out of band area
3999 this->ecclayout
->oobavail
= 0;
4000 for (i
= 0; i
< MTD_MAX_OOBFREE_ENTRIES
&&
4001 this->ecclayout
->oobfree
[i
].length
; i
++)
4002 this->ecclayout
->oobavail
+=
4003 this->ecclayout
->oobfree
[i
].length
;
4004 mtd
->oobavail
= this->ecclayout
->oobavail
;
4006 mtd
->ecclayout
= this->ecclayout
;
4008 /* Fill in remaining MTD driver data */
4009 mtd
->type
= MTD_NANDFLASH
;
4010 mtd
->flags
= MTD_CAP_NANDFLASH
;
4011 mtd
->erase
= onenand_erase
;
4013 mtd
->unpoint
= NULL
;
4014 mtd
->read
= onenand_read
;
4015 mtd
->write
= onenand_write
;
4016 mtd
->read_oob
= onenand_read_oob
;
4017 mtd
->write_oob
= onenand_write_oob
;
4018 mtd
->panic_write
= onenand_panic_write
;
4019 #ifdef CONFIG_MTD_ONENAND_OTP
4020 mtd
->get_fact_prot_info
= onenand_get_fact_prot_info
;
4021 mtd
->read_fact_prot_reg
= onenand_read_fact_prot_reg
;
4022 mtd
->get_user_prot_info
= onenand_get_user_prot_info
;
4023 mtd
->read_user_prot_reg
= onenand_read_user_prot_reg
;
4024 mtd
->write_user_prot_reg
= onenand_write_user_prot_reg
;
4025 mtd
->lock_user_prot_reg
= onenand_lock_user_prot_reg
;
4027 mtd
->sync
= onenand_sync
;
4028 mtd
->lock
= onenand_lock
;
4029 mtd
->unlock
= onenand_unlock
;
4030 mtd
->suspend
= onenand_suspend
;
4031 mtd
->resume
= onenand_resume
;
4032 mtd
->block_isbad
= onenand_block_isbad
;
4033 mtd
->block_markbad
= onenand_block_markbad
;
4034 mtd
->owner
= THIS_MODULE
;
4036 /* Unlock whole block */
4037 this->unlock_all(mtd
);
4039 ret
= this->scan_bbt(mtd
);
4040 if ((!FLEXONENAND(this)) || ret
)
4043 /* Change Flex-OneNAND boundaries if required */
4044 for (i
= 0; i
< MAX_DIES
; i
++)
4045 flexonenand_set_boundary(mtd
, i
, flex_bdry
[2 * i
],
4046 flex_bdry
[(2 * i
) + 1]);
4052 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4053 * @param mtd MTD device structure
4055 void onenand_release(struct mtd_info
*mtd
)
4057 struct onenand_chip
*this = mtd
->priv
;
4059 #ifdef CONFIG_MTD_PARTITIONS
4060 /* Deregister partitions */
4061 del_mtd_partitions (mtd
);
4063 /* Deregister the device */
4064 del_mtd_device (mtd
);
4066 /* Free bad block table memory, if allocated */
4068 struct bbm_info
*bbm
= this->bbm
;
4072 /* Buffers allocated by onenand_scan */
4073 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
4074 kfree(this->page_buf
);
4075 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4076 kfree(this->verify_buf
);
4079 if (this->options
& ONENAND_OOBBUF_ALLOC
)
4080 kfree(this->oob_buf
);
4081 kfree(mtd
->eraseregions
);
4084 EXPORT_SYMBOL_GPL(onenand_scan
);
4085 EXPORT_SYMBOL_GPL(onenand_release
);
4087 MODULE_LICENSE("GPL");
4088 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4089 MODULE_DESCRIPTION("Generic OneNAND flash driver code");