1 /* bnx2.c: Broadcom NX2 network driver.
3 * Copyright (c) 2004-2010 Broadcom Corporation
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
9 * Written by: Michael Chan (mchan@broadcom.com)
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
17 #include <linux/kernel.h>
18 #include <linux/timer.h>
19 #include <linux/errno.h>
20 #include <linux/ioport.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23 #include <linux/interrupt.h>
24 #include <linux/pci.h>
25 #include <linux/init.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/bitops.h>
33 #include <linux/delay.h>
34 #include <asm/byteorder.h>
36 #include <linux/time.h>
37 #include <linux/ethtool.h>
38 #include <linux/mii.h>
39 #include <linux/if_vlan.h>
40 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
45 #include <net/checksum.h>
46 #include <linux/workqueue.h>
47 #include <linux/crc32.h>
48 #include <linux/prefetch.h>
49 #include <linux/cache.h>
50 #include <linux/firmware.h>
51 #include <linux/log2.h>
53 #if defined(CONFIG_CNIC) || defined(CONFIG_CNIC_MODULE)
60 #define DRV_MODULE_NAME "bnx2"
61 #define DRV_MODULE_VERSION "2.0.15"
62 #define DRV_MODULE_RELDATE "May 4, 2010"
63 #define FW_MIPS_FILE_06 "bnx2/bnx2-mips-06-5.0.0.j6.fw"
64 #define FW_RV2P_FILE_06 "bnx2/bnx2-rv2p-06-5.0.0.j3.fw"
65 #define FW_MIPS_FILE_09 "bnx2/bnx2-mips-09-5.0.0.j15.fw"
66 #define FW_RV2P_FILE_09_Ax "bnx2/bnx2-rv2p-09ax-5.0.0.j10.fw"
67 #define FW_RV2P_FILE_09 "bnx2/bnx2-rv2p-09-5.0.0.j10.fw"
69 #define RUN_AT(x) (jiffies + (x))
71 /* Time in jiffies before concluding the transmitter is hung. */
72 #define TX_TIMEOUT (5*HZ)
74 static char version
[] __devinitdata
=
75 "Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME
" v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
77 MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
78 MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709/5716 Driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(DRV_MODULE_VERSION
);
81 MODULE_FIRMWARE(FW_MIPS_FILE_06
);
82 MODULE_FIRMWARE(FW_RV2P_FILE_06
);
83 MODULE_FIRMWARE(FW_MIPS_FILE_09
);
84 MODULE_FIRMWARE(FW_RV2P_FILE_09
);
85 MODULE_FIRMWARE(FW_RV2P_FILE_09_Ax
);
87 static int disable_msi
= 0;
89 module_param(disable_msi
, int, 0);
90 MODULE_PARM_DESC(disable_msi
, "Disable Message Signaled Interrupt (MSI)");
106 /* indexed by board_t, above */
109 } board_info
[] __devinitdata
= {
110 { "Broadcom NetXtreme II BCM5706 1000Base-T" },
111 { "HP NC370T Multifunction Gigabit Server Adapter" },
112 { "HP NC370i Multifunction Gigabit Server Adapter" },
113 { "Broadcom NetXtreme II BCM5706 1000Base-SX" },
114 { "HP NC370F Multifunction Gigabit Server Adapter" },
115 { "Broadcom NetXtreme II BCM5708 1000Base-T" },
116 { "Broadcom NetXtreme II BCM5708 1000Base-SX" },
117 { "Broadcom NetXtreme II BCM5709 1000Base-T" },
118 { "Broadcom NetXtreme II BCM5709 1000Base-SX" },
119 { "Broadcom NetXtreme II BCM5716 1000Base-T" },
120 { "Broadcom NetXtreme II BCM5716 1000Base-SX" },
123 static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl
) = {
124 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
125 PCI_VENDOR_ID_HP
, 0x3101, 0, 0, NC370T
},
126 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
127 PCI_VENDOR_ID_HP
, 0x3106, 0, 0, NC370I
},
128 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706
,
129 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706
},
130 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708
,
131 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708
},
132 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
133 PCI_VENDOR_ID_HP
, 0x3102, 0, 0, NC370F
},
134 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5706S
,
135 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5706S
},
136 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5708S
,
137 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5708S
},
138 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709
,
139 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709
},
140 { PCI_VENDOR_ID_BROADCOM
, PCI_DEVICE_ID_NX2_5709S
,
141 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5709S
},
142 { PCI_VENDOR_ID_BROADCOM
, 0x163b,
143 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716
},
144 { PCI_VENDOR_ID_BROADCOM
, 0x163c,
145 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, BCM5716S
},
149 static const struct flash_spec flash_table
[] =
151 #define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
152 #define NONBUFFERED_FLAGS (BNX2_NV_WREN)
154 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
155 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
156 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
158 /* Expansion entry 0001 */
159 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
160 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
161 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
163 /* Saifun SA25F010 (non-buffered flash) */
164 /* strap, cfg1, & write1 need updates */
165 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
166 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
167 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*2,
168 "Non-buffered flash (128kB)"},
169 /* Saifun SA25F020 (non-buffered flash) */
170 /* strap, cfg1, & write1 need updates */
171 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
172 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
173 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
*4,
174 "Non-buffered flash (256kB)"},
175 /* Expansion entry 0100 */
176 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
177 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
178 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
180 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
181 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
182 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
183 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*2,
184 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
185 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
186 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
187 NONBUFFERED_FLAGS
, ST_MICRO_FLASH_PAGE_BITS
, ST_MICRO_FLASH_PAGE_SIZE
,
188 ST_MICRO_FLASH_BYTE_ADDR_MASK
, ST_MICRO_FLASH_BASE_TOTAL_SIZE
*4,
189 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
190 /* Saifun SA25F005 (non-buffered flash) */
191 /* strap, cfg1, & write1 need updates */
192 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
194 SAIFUN_FLASH_BYTE_ADDR_MASK
, SAIFUN_FLASH_BASE_TOTAL_SIZE
,
195 "Non-buffered flash (64kB)"},
197 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
198 BUFFERED_FLAGS
, SEEPROM_PAGE_BITS
, SEEPROM_PAGE_SIZE
,
199 SEEPROM_BYTE_ADDR_MASK
, SEEPROM_TOTAL_SIZE
,
201 /* Expansion entry 1001 */
202 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
203 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
204 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
206 /* Expansion entry 1010 */
207 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
208 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
209 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
211 /* ATMEL AT45DB011B (buffered flash) */
212 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
213 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
214 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
,
215 "Buffered flash (128kB)"},
216 /* Expansion entry 1100 */
217 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
218 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
219 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
221 /* Expansion entry 1101 */
222 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
223 NONBUFFERED_FLAGS
, SAIFUN_FLASH_PAGE_BITS
, SAIFUN_FLASH_PAGE_SIZE
,
224 SAIFUN_FLASH_BYTE_ADDR_MASK
, 0,
226 /* Ateml Expansion entry 1110 */
227 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
228 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
229 BUFFERED_FLASH_BYTE_ADDR_MASK
, 0,
230 "Entry 1110 (Atmel)"},
231 /* ATMEL AT45DB021B (buffered flash) */
232 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
233 BUFFERED_FLAGS
, BUFFERED_FLASH_PAGE_BITS
, BUFFERED_FLASH_PAGE_SIZE
,
234 BUFFERED_FLASH_BYTE_ADDR_MASK
, BUFFERED_FLASH_TOTAL_SIZE
*2,
235 "Buffered flash (256kB)"},
238 static const struct flash_spec flash_5709
= {
239 .flags
= BNX2_NV_BUFFERED
,
240 .page_bits
= BCM5709_FLASH_PAGE_BITS
,
241 .page_size
= BCM5709_FLASH_PAGE_SIZE
,
242 .addr_mask
= BCM5709_FLASH_BYTE_ADDR_MASK
,
243 .total_size
= BUFFERED_FLASH_TOTAL_SIZE
*2,
244 .name
= "5709 Buffered flash (256kB)",
247 MODULE_DEVICE_TABLE(pci
, bnx2_pci_tbl
);
249 static void bnx2_init_napi(struct bnx2
*bp
);
250 static void bnx2_del_napi(struct bnx2
*bp
);
252 static inline u32
bnx2_tx_avail(struct bnx2
*bp
, struct bnx2_tx_ring_info
*txr
)
258 /* The ring uses 256 indices for 255 entries, one of them
259 * needs to be skipped.
261 diff
= txr
->tx_prod
- txr
->tx_cons
;
262 if (unlikely(diff
>= TX_DESC_CNT
)) {
264 if (diff
== TX_DESC_CNT
)
265 diff
= MAX_TX_DESC_CNT
;
267 return (bp
->tx_ring_size
- diff
);
271 bnx2_reg_rd_ind(struct bnx2
*bp
, u32 offset
)
275 spin_lock_bh(&bp
->indirect_lock
);
276 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
277 val
= REG_RD(bp
, BNX2_PCICFG_REG_WINDOW
);
278 spin_unlock_bh(&bp
->indirect_lock
);
283 bnx2_reg_wr_ind(struct bnx2
*bp
, u32 offset
, u32 val
)
285 spin_lock_bh(&bp
->indirect_lock
);
286 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, offset
);
287 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, val
);
288 spin_unlock_bh(&bp
->indirect_lock
);
292 bnx2_shmem_wr(struct bnx2
*bp
, u32 offset
, u32 val
)
294 bnx2_reg_wr_ind(bp
, bp
->shmem_base
+ offset
, val
);
298 bnx2_shmem_rd(struct bnx2
*bp
, u32 offset
)
300 return (bnx2_reg_rd_ind(bp
, bp
->shmem_base
+ offset
));
304 bnx2_ctx_wr(struct bnx2
*bp
, u32 cid_addr
, u32 offset
, u32 val
)
307 spin_lock_bh(&bp
->indirect_lock
);
308 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
311 REG_WR(bp
, BNX2_CTX_CTX_DATA
, val
);
312 REG_WR(bp
, BNX2_CTX_CTX_CTRL
,
313 offset
| BNX2_CTX_CTX_CTRL_WRITE_REQ
);
314 for (i
= 0; i
< 5; i
++) {
315 val
= REG_RD(bp
, BNX2_CTX_CTX_CTRL
);
316 if ((val
& BNX2_CTX_CTX_CTRL_WRITE_REQ
) == 0)
321 REG_WR(bp
, BNX2_CTX_DATA_ADR
, offset
);
322 REG_WR(bp
, BNX2_CTX_DATA
, val
);
324 spin_unlock_bh(&bp
->indirect_lock
);
329 bnx2_drv_ctl(struct net_device
*dev
, struct drv_ctl_info
*info
)
331 struct bnx2
*bp
= netdev_priv(dev
);
332 struct drv_ctl_io
*io
= &info
->data
.io
;
335 case DRV_CTL_IO_WR_CMD
:
336 bnx2_reg_wr_ind(bp
, io
->offset
, io
->data
);
338 case DRV_CTL_IO_RD_CMD
:
339 io
->data
= bnx2_reg_rd_ind(bp
, io
->offset
);
341 case DRV_CTL_CTX_WR_CMD
:
342 bnx2_ctx_wr(bp
, io
->cid_addr
, io
->offset
, io
->data
);
350 static void bnx2_setup_cnic_irq_info(struct bnx2
*bp
)
352 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
353 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
356 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
357 cp
->drv_state
|= CNIC_DRV_STATE_USING_MSIX
;
358 bnapi
->cnic_present
= 0;
359 sb_id
= bp
->irq_nvecs
;
360 cp
->irq_arr
[0].irq_flags
|= CNIC_IRQ_FL_MSIX
;
362 cp
->drv_state
&= ~CNIC_DRV_STATE_USING_MSIX
;
363 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
364 bnapi
->cnic_present
= 1;
366 cp
->irq_arr
[0].irq_flags
&= ~CNIC_IRQ_FL_MSIX
;
369 cp
->irq_arr
[0].vector
= bp
->irq_tbl
[sb_id
].vector
;
370 cp
->irq_arr
[0].status_blk
= (void *)
371 ((unsigned long) bnapi
->status_blk
.msi
+
372 (BNX2_SBLK_MSIX_ALIGN_SIZE
* sb_id
));
373 cp
->irq_arr
[0].status_blk_num
= sb_id
;
377 static int bnx2_register_cnic(struct net_device
*dev
, struct cnic_ops
*ops
,
380 struct bnx2
*bp
= netdev_priv(dev
);
381 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
386 if (cp
->drv_state
& CNIC_DRV_STATE_REGD
)
389 bp
->cnic_data
= data
;
390 rcu_assign_pointer(bp
->cnic_ops
, ops
);
393 cp
->drv_state
= CNIC_DRV_STATE_REGD
;
395 bnx2_setup_cnic_irq_info(bp
);
400 static int bnx2_unregister_cnic(struct net_device
*dev
)
402 struct bnx2
*bp
= netdev_priv(dev
);
403 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
404 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
406 mutex_lock(&bp
->cnic_lock
);
408 bnapi
->cnic_present
= 0;
409 rcu_assign_pointer(bp
->cnic_ops
, NULL
);
410 mutex_unlock(&bp
->cnic_lock
);
415 struct cnic_eth_dev
*bnx2_cnic_probe(struct net_device
*dev
)
417 struct bnx2
*bp
= netdev_priv(dev
);
418 struct cnic_eth_dev
*cp
= &bp
->cnic_eth_dev
;
420 cp
->drv_owner
= THIS_MODULE
;
421 cp
->chip_id
= bp
->chip_id
;
423 cp
->io_base
= bp
->regview
;
424 cp
->drv_ctl
= bnx2_drv_ctl
;
425 cp
->drv_register_cnic
= bnx2_register_cnic
;
426 cp
->drv_unregister_cnic
= bnx2_unregister_cnic
;
430 EXPORT_SYMBOL(bnx2_cnic_probe
);
433 bnx2_cnic_stop(struct bnx2
*bp
)
435 struct cnic_ops
*c_ops
;
436 struct cnic_ctl_info info
;
438 mutex_lock(&bp
->cnic_lock
);
439 c_ops
= bp
->cnic_ops
;
441 info
.cmd
= CNIC_CTL_STOP_CMD
;
442 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
444 mutex_unlock(&bp
->cnic_lock
);
448 bnx2_cnic_start(struct bnx2
*bp
)
450 struct cnic_ops
*c_ops
;
451 struct cnic_ctl_info info
;
453 mutex_lock(&bp
->cnic_lock
);
454 c_ops
= bp
->cnic_ops
;
456 if (!(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
457 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
459 bnapi
->cnic_tag
= bnapi
->last_status_idx
;
461 info
.cmd
= CNIC_CTL_START_CMD
;
462 c_ops
->cnic_ctl(bp
->cnic_data
, &info
);
464 mutex_unlock(&bp
->cnic_lock
);
470 bnx2_cnic_stop(struct bnx2
*bp
)
475 bnx2_cnic_start(struct bnx2
*bp
)
482 bnx2_read_phy(struct bnx2
*bp
, u32 reg
, u32
*val
)
487 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
488 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
489 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
491 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
492 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
497 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) |
498 BNX2_EMAC_MDIO_COMM_COMMAND_READ
| BNX2_EMAC_MDIO_COMM_DISEXT
|
499 BNX2_EMAC_MDIO_COMM_START_BUSY
;
500 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
502 for (i
= 0; i
< 50; i
++) {
505 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
506 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
509 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
510 val1
&= BNX2_EMAC_MDIO_COMM_DATA
;
516 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
) {
525 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
526 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
527 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
529 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
530 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
539 bnx2_write_phy(struct bnx2
*bp
, u32 reg
, u32 val
)
544 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
545 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
546 val1
&= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
548 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
549 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
554 val1
= (bp
->phy_addr
<< 21) | (reg
<< 16) | val
|
555 BNX2_EMAC_MDIO_COMM_COMMAND_WRITE
|
556 BNX2_EMAC_MDIO_COMM_START_BUSY
| BNX2_EMAC_MDIO_COMM_DISEXT
;
557 REG_WR(bp
, BNX2_EMAC_MDIO_COMM
, val1
);
559 for (i
= 0; i
< 50; i
++) {
562 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_COMM
);
563 if (!(val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)) {
569 if (val1
& BNX2_EMAC_MDIO_COMM_START_BUSY
)
574 if (bp
->phy_flags
& BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING
) {
575 val1
= REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
576 val1
|= BNX2_EMAC_MDIO_MODE_AUTO_POLL
;
578 REG_WR(bp
, BNX2_EMAC_MDIO_MODE
, val1
);
579 REG_RD(bp
, BNX2_EMAC_MDIO_MODE
);
588 bnx2_disable_int(struct bnx2
*bp
)
591 struct bnx2_napi
*bnapi
;
593 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
594 bnapi
= &bp
->bnx2_napi
[i
];
595 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
596 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
598 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
602 bnx2_enable_int(struct bnx2
*bp
)
605 struct bnx2_napi
*bnapi
;
607 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
608 bnapi
= &bp
->bnx2_napi
[i
];
610 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
611 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
612 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
613 bnapi
->last_status_idx
);
615 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
616 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
617 bnapi
->last_status_idx
);
619 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
623 bnx2_disable_int_sync(struct bnx2
*bp
)
627 atomic_inc(&bp
->intr_sem
);
628 if (!netif_running(bp
->dev
))
631 bnx2_disable_int(bp
);
632 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
633 synchronize_irq(bp
->irq_tbl
[i
].vector
);
637 bnx2_napi_disable(struct bnx2
*bp
)
641 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
642 napi_disable(&bp
->bnx2_napi
[i
].napi
);
646 bnx2_napi_enable(struct bnx2
*bp
)
650 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
651 napi_enable(&bp
->bnx2_napi
[i
].napi
);
655 bnx2_netif_stop(struct bnx2
*bp
, bool stop_cnic
)
659 if (netif_running(bp
->dev
)) {
660 bnx2_napi_disable(bp
);
661 netif_tx_disable(bp
->dev
);
663 bnx2_disable_int_sync(bp
);
664 netif_carrier_off(bp
->dev
); /* prevent tx timeout */
668 bnx2_netif_start(struct bnx2
*bp
, bool start_cnic
)
670 if (atomic_dec_and_test(&bp
->intr_sem
)) {
671 if (netif_running(bp
->dev
)) {
672 netif_tx_wake_all_queues(bp
->dev
);
673 spin_lock_bh(&bp
->phy_lock
);
675 netif_carrier_on(bp
->dev
);
676 spin_unlock_bh(&bp
->phy_lock
);
677 bnx2_napi_enable(bp
);
686 bnx2_free_tx_mem(struct bnx2
*bp
)
690 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
691 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
692 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
694 if (txr
->tx_desc_ring
) {
695 pci_free_consistent(bp
->pdev
, TXBD_RING_SIZE
,
697 txr
->tx_desc_mapping
);
698 txr
->tx_desc_ring
= NULL
;
700 kfree(txr
->tx_buf_ring
);
701 txr
->tx_buf_ring
= NULL
;
706 bnx2_free_rx_mem(struct bnx2
*bp
)
710 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
711 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
712 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
715 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
716 if (rxr
->rx_desc_ring
[j
])
717 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
718 rxr
->rx_desc_ring
[j
],
719 rxr
->rx_desc_mapping
[j
]);
720 rxr
->rx_desc_ring
[j
] = NULL
;
722 vfree(rxr
->rx_buf_ring
);
723 rxr
->rx_buf_ring
= NULL
;
725 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
726 if (rxr
->rx_pg_desc_ring
[j
])
727 pci_free_consistent(bp
->pdev
, RXBD_RING_SIZE
,
728 rxr
->rx_pg_desc_ring
[j
],
729 rxr
->rx_pg_desc_mapping
[j
]);
730 rxr
->rx_pg_desc_ring
[j
] = NULL
;
732 vfree(rxr
->rx_pg_ring
);
733 rxr
->rx_pg_ring
= NULL
;
738 bnx2_alloc_tx_mem(struct bnx2
*bp
)
742 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
743 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
744 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
746 txr
->tx_buf_ring
= kzalloc(SW_TXBD_RING_SIZE
, GFP_KERNEL
);
747 if (txr
->tx_buf_ring
== NULL
)
751 pci_alloc_consistent(bp
->pdev
, TXBD_RING_SIZE
,
752 &txr
->tx_desc_mapping
);
753 if (txr
->tx_desc_ring
== NULL
)
760 bnx2_alloc_rx_mem(struct bnx2
*bp
)
764 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
765 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
766 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
770 vmalloc(SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
771 if (rxr
->rx_buf_ring
== NULL
)
774 memset(rxr
->rx_buf_ring
, 0,
775 SW_RXBD_RING_SIZE
* bp
->rx_max_ring
);
777 for (j
= 0; j
< bp
->rx_max_ring
; j
++) {
778 rxr
->rx_desc_ring
[j
] =
779 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
780 &rxr
->rx_desc_mapping
[j
]);
781 if (rxr
->rx_desc_ring
[j
] == NULL
)
786 if (bp
->rx_pg_ring_size
) {
787 rxr
->rx_pg_ring
= vmalloc(SW_RXPG_RING_SIZE
*
789 if (rxr
->rx_pg_ring
== NULL
)
792 memset(rxr
->rx_pg_ring
, 0, SW_RXPG_RING_SIZE
*
796 for (j
= 0; j
< bp
->rx_max_pg_ring
; j
++) {
797 rxr
->rx_pg_desc_ring
[j
] =
798 pci_alloc_consistent(bp
->pdev
, RXBD_RING_SIZE
,
799 &rxr
->rx_pg_desc_mapping
[j
]);
800 if (rxr
->rx_pg_desc_ring
[j
] == NULL
)
809 bnx2_free_mem(struct bnx2
*bp
)
812 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
814 bnx2_free_tx_mem(bp
);
815 bnx2_free_rx_mem(bp
);
817 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
818 if (bp
->ctx_blk
[i
]) {
819 pci_free_consistent(bp
->pdev
, BCM_PAGE_SIZE
,
821 bp
->ctx_blk_mapping
[i
]);
822 bp
->ctx_blk
[i
] = NULL
;
825 if (bnapi
->status_blk
.msi
) {
826 pci_free_consistent(bp
->pdev
, bp
->status_stats_size
,
827 bnapi
->status_blk
.msi
,
828 bp
->status_blk_mapping
);
829 bnapi
->status_blk
.msi
= NULL
;
830 bp
->stats_blk
= NULL
;
835 bnx2_alloc_mem(struct bnx2
*bp
)
837 int i
, status_blk_size
, err
;
838 struct bnx2_napi
*bnapi
;
841 /* Combine status and statistics blocks into one allocation. */
842 status_blk_size
= L1_CACHE_ALIGN(sizeof(struct status_block
));
843 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
)
844 status_blk_size
= L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC
*
845 BNX2_SBLK_MSIX_ALIGN_SIZE
);
846 bp
->status_stats_size
= status_blk_size
+
847 sizeof(struct statistics_block
);
849 status_blk
= pci_alloc_consistent(bp
->pdev
, bp
->status_stats_size
,
850 &bp
->status_blk_mapping
);
851 if (status_blk
== NULL
)
854 memset(status_blk
, 0, bp
->status_stats_size
);
856 bnapi
= &bp
->bnx2_napi
[0];
857 bnapi
->status_blk
.msi
= status_blk
;
858 bnapi
->hw_tx_cons_ptr
=
859 &bnapi
->status_blk
.msi
->status_tx_quick_consumer_index0
;
860 bnapi
->hw_rx_cons_ptr
=
861 &bnapi
->status_blk
.msi
->status_rx_quick_consumer_index0
;
862 if (bp
->flags
& BNX2_FLAG_MSIX_CAP
) {
863 for (i
= 1; i
< BNX2_MAX_MSIX_VEC
; i
++) {
864 struct status_block_msix
*sblk
;
866 bnapi
= &bp
->bnx2_napi
[i
];
868 sblk
= (void *) (status_blk
+
869 BNX2_SBLK_MSIX_ALIGN_SIZE
* i
);
870 bnapi
->status_blk
.msix
= sblk
;
871 bnapi
->hw_tx_cons_ptr
=
872 &sblk
->status_tx_quick_consumer_index
;
873 bnapi
->hw_rx_cons_ptr
=
874 &sblk
->status_rx_quick_consumer_index
;
875 bnapi
->int_num
= i
<< 24;
879 bp
->stats_blk
= status_blk
+ status_blk_size
;
881 bp
->stats_blk_mapping
= bp
->status_blk_mapping
+ status_blk_size
;
883 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
884 bp
->ctx_pages
= 0x2000 / BCM_PAGE_SIZE
;
885 if (bp
->ctx_pages
== 0)
887 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
888 bp
->ctx_blk
[i
] = pci_alloc_consistent(bp
->pdev
,
890 &bp
->ctx_blk_mapping
[i
]);
891 if (bp
->ctx_blk
[i
] == NULL
)
896 err
= bnx2_alloc_rx_mem(bp
);
900 err
= bnx2_alloc_tx_mem(bp
);
912 bnx2_report_fw_link(struct bnx2
*bp
)
914 u32 fw_link_status
= 0;
916 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
922 switch (bp
->line_speed
) {
924 if (bp
->duplex
== DUPLEX_HALF
)
925 fw_link_status
= BNX2_LINK_STATUS_10HALF
;
927 fw_link_status
= BNX2_LINK_STATUS_10FULL
;
930 if (bp
->duplex
== DUPLEX_HALF
)
931 fw_link_status
= BNX2_LINK_STATUS_100HALF
;
933 fw_link_status
= BNX2_LINK_STATUS_100FULL
;
936 if (bp
->duplex
== DUPLEX_HALF
)
937 fw_link_status
= BNX2_LINK_STATUS_1000HALF
;
939 fw_link_status
= BNX2_LINK_STATUS_1000FULL
;
942 if (bp
->duplex
== DUPLEX_HALF
)
943 fw_link_status
= BNX2_LINK_STATUS_2500HALF
;
945 fw_link_status
= BNX2_LINK_STATUS_2500FULL
;
949 fw_link_status
|= BNX2_LINK_STATUS_LINK_UP
;
952 fw_link_status
|= BNX2_LINK_STATUS_AN_ENABLED
;
954 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
955 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
957 if (!(bmsr
& BMSR_ANEGCOMPLETE
) ||
958 bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)
959 fw_link_status
|= BNX2_LINK_STATUS_PARALLEL_DET
;
961 fw_link_status
|= BNX2_LINK_STATUS_AN_COMPLETE
;
965 fw_link_status
= BNX2_LINK_STATUS_LINK_DOWN
;
967 bnx2_shmem_wr(bp
, BNX2_LINK_STATUS
, fw_link_status
);
971 bnx2_xceiver_str(struct bnx2
*bp
)
973 return ((bp
->phy_port
== PORT_FIBRE
) ? "SerDes" :
974 ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) ? "Remote Copper" :
979 bnx2_report_link(struct bnx2
*bp
)
982 netif_carrier_on(bp
->dev
);
983 netdev_info(bp
->dev
, "NIC %s Link is Up, %d Mbps %s duplex",
984 bnx2_xceiver_str(bp
),
986 bp
->duplex
== DUPLEX_FULL
? "full" : "half");
989 if (bp
->flow_ctrl
& FLOW_CTRL_RX
) {
990 pr_cont(", receive ");
991 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
992 pr_cont("& transmit ");
995 pr_cont(", transmit ");
997 pr_cont("flow control ON");
1001 netif_carrier_off(bp
->dev
);
1002 netdev_err(bp
->dev
, "NIC %s Link is Down\n",
1003 bnx2_xceiver_str(bp
));
1006 bnx2_report_fw_link(bp
);
1010 bnx2_resolve_flow_ctrl(struct bnx2
*bp
)
1012 u32 local_adv
, remote_adv
;
1015 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
1016 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
1018 if (bp
->duplex
== DUPLEX_FULL
) {
1019 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
1024 if (bp
->duplex
!= DUPLEX_FULL
) {
1028 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1029 (CHIP_NUM(bp
) == CHIP_NUM_5708
)) {
1032 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1033 if (val
& BCM5708S_1000X_STAT1_TX_PAUSE
)
1034 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
1035 if (val
& BCM5708S_1000X_STAT1_RX_PAUSE
)
1036 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
1040 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1041 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1043 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1044 u32 new_local_adv
= 0;
1045 u32 new_remote_adv
= 0;
1047 if (local_adv
& ADVERTISE_1000XPAUSE
)
1048 new_local_adv
|= ADVERTISE_PAUSE_CAP
;
1049 if (local_adv
& ADVERTISE_1000XPSE_ASYM
)
1050 new_local_adv
|= ADVERTISE_PAUSE_ASYM
;
1051 if (remote_adv
& ADVERTISE_1000XPAUSE
)
1052 new_remote_adv
|= ADVERTISE_PAUSE_CAP
;
1053 if (remote_adv
& ADVERTISE_1000XPSE_ASYM
)
1054 new_remote_adv
|= ADVERTISE_PAUSE_ASYM
;
1056 local_adv
= new_local_adv
;
1057 remote_adv
= new_remote_adv
;
1060 /* See Table 28B-3 of 802.3ab-1999 spec. */
1061 if (local_adv
& ADVERTISE_PAUSE_CAP
) {
1062 if(local_adv
& ADVERTISE_PAUSE_ASYM
) {
1063 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1064 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1066 else if (remote_adv
& ADVERTISE_PAUSE_ASYM
) {
1067 bp
->flow_ctrl
= FLOW_CTRL_RX
;
1071 if (remote_adv
& ADVERTISE_PAUSE_CAP
) {
1072 bp
->flow_ctrl
= FLOW_CTRL_TX
| FLOW_CTRL_RX
;
1076 else if (local_adv
& ADVERTISE_PAUSE_ASYM
) {
1077 if ((remote_adv
& ADVERTISE_PAUSE_CAP
) &&
1078 (remote_adv
& ADVERTISE_PAUSE_ASYM
)) {
1080 bp
->flow_ctrl
= FLOW_CTRL_TX
;
1086 bnx2_5709s_linkup(struct bnx2
*bp
)
1092 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_GP_STATUS
);
1093 bnx2_read_phy(bp
, MII_BNX2_GP_TOP_AN_STATUS1
, &val
);
1094 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1096 if ((bp
->autoneg
& AUTONEG_SPEED
) == 0) {
1097 bp
->line_speed
= bp
->req_line_speed
;
1098 bp
->duplex
= bp
->req_duplex
;
1101 speed
= val
& MII_BNX2_GP_TOP_AN_SPEED_MSK
;
1103 case MII_BNX2_GP_TOP_AN_SPEED_10
:
1104 bp
->line_speed
= SPEED_10
;
1106 case MII_BNX2_GP_TOP_AN_SPEED_100
:
1107 bp
->line_speed
= SPEED_100
;
1109 case MII_BNX2_GP_TOP_AN_SPEED_1G
:
1110 case MII_BNX2_GP_TOP_AN_SPEED_1GKV
:
1111 bp
->line_speed
= SPEED_1000
;
1113 case MII_BNX2_GP_TOP_AN_SPEED_2_5G
:
1114 bp
->line_speed
= SPEED_2500
;
1117 if (val
& MII_BNX2_GP_TOP_AN_FD
)
1118 bp
->duplex
= DUPLEX_FULL
;
1120 bp
->duplex
= DUPLEX_HALF
;
1125 bnx2_5708s_linkup(struct bnx2
*bp
)
1130 bnx2_read_phy(bp
, BCM5708S_1000X_STAT1
, &val
);
1131 switch (val
& BCM5708S_1000X_STAT1_SPEED_MASK
) {
1132 case BCM5708S_1000X_STAT1_SPEED_10
:
1133 bp
->line_speed
= SPEED_10
;
1135 case BCM5708S_1000X_STAT1_SPEED_100
:
1136 bp
->line_speed
= SPEED_100
;
1138 case BCM5708S_1000X_STAT1_SPEED_1G
:
1139 bp
->line_speed
= SPEED_1000
;
1141 case BCM5708S_1000X_STAT1_SPEED_2G5
:
1142 bp
->line_speed
= SPEED_2500
;
1145 if (val
& BCM5708S_1000X_STAT1_FD
)
1146 bp
->duplex
= DUPLEX_FULL
;
1148 bp
->duplex
= DUPLEX_HALF
;
1154 bnx2_5706s_linkup(struct bnx2
*bp
)
1156 u32 bmcr
, local_adv
, remote_adv
, common
;
1159 bp
->line_speed
= SPEED_1000
;
1161 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1162 if (bmcr
& BMCR_FULLDPLX
) {
1163 bp
->duplex
= DUPLEX_FULL
;
1166 bp
->duplex
= DUPLEX_HALF
;
1169 if (!(bmcr
& BMCR_ANENABLE
)) {
1173 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1174 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1176 common
= local_adv
& remote_adv
;
1177 if (common
& (ADVERTISE_1000XHALF
| ADVERTISE_1000XFULL
)) {
1179 if (common
& ADVERTISE_1000XFULL
) {
1180 bp
->duplex
= DUPLEX_FULL
;
1183 bp
->duplex
= DUPLEX_HALF
;
1191 bnx2_copper_linkup(struct bnx2
*bp
)
1195 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1196 if (bmcr
& BMCR_ANENABLE
) {
1197 u32 local_adv
, remote_adv
, common
;
1199 bnx2_read_phy(bp
, MII_CTRL1000
, &local_adv
);
1200 bnx2_read_phy(bp
, MII_STAT1000
, &remote_adv
);
1202 common
= local_adv
& (remote_adv
>> 2);
1203 if (common
& ADVERTISE_1000FULL
) {
1204 bp
->line_speed
= SPEED_1000
;
1205 bp
->duplex
= DUPLEX_FULL
;
1207 else if (common
& ADVERTISE_1000HALF
) {
1208 bp
->line_speed
= SPEED_1000
;
1209 bp
->duplex
= DUPLEX_HALF
;
1212 bnx2_read_phy(bp
, bp
->mii_adv
, &local_adv
);
1213 bnx2_read_phy(bp
, bp
->mii_lpa
, &remote_adv
);
1215 common
= local_adv
& remote_adv
;
1216 if (common
& ADVERTISE_100FULL
) {
1217 bp
->line_speed
= SPEED_100
;
1218 bp
->duplex
= DUPLEX_FULL
;
1220 else if (common
& ADVERTISE_100HALF
) {
1221 bp
->line_speed
= SPEED_100
;
1222 bp
->duplex
= DUPLEX_HALF
;
1224 else if (common
& ADVERTISE_10FULL
) {
1225 bp
->line_speed
= SPEED_10
;
1226 bp
->duplex
= DUPLEX_FULL
;
1228 else if (common
& ADVERTISE_10HALF
) {
1229 bp
->line_speed
= SPEED_10
;
1230 bp
->duplex
= DUPLEX_HALF
;
1239 if (bmcr
& BMCR_SPEED100
) {
1240 bp
->line_speed
= SPEED_100
;
1243 bp
->line_speed
= SPEED_10
;
1245 if (bmcr
& BMCR_FULLDPLX
) {
1246 bp
->duplex
= DUPLEX_FULL
;
1249 bp
->duplex
= DUPLEX_HALF
;
1257 bnx2_init_rx_context(struct bnx2
*bp
, u32 cid
)
1259 u32 val
, rx_cid_addr
= GET_CID_ADDR(cid
);
1261 val
= BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE
;
1262 val
|= BNX2_L2CTX_CTX_TYPE_SIZE_L2
;
1265 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1266 u32 lo_water
, hi_water
;
1268 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1269 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DEFAULT
;
1271 lo_water
= BNX2_L2CTX_LO_WATER_MARK_DIS
;
1272 if (lo_water
>= bp
->rx_ring_size
)
1275 hi_water
= min_t(int, bp
->rx_ring_size
/ 4, lo_water
+ 16);
1277 if (hi_water
<= lo_water
)
1280 hi_water
/= BNX2_L2CTX_HI_WATER_MARK_SCALE
;
1281 lo_water
/= BNX2_L2CTX_LO_WATER_MARK_SCALE
;
1285 else if (hi_water
== 0)
1287 val
|= lo_water
| (hi_water
<< BNX2_L2CTX_HI_WATER_MARK_SHIFT
);
1289 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_CTX_TYPE
, val
);
1293 bnx2_init_all_rx_contexts(struct bnx2
*bp
)
1298 for (i
= 0, cid
= RX_CID
; i
< bp
->num_rx_rings
; i
++, cid
++) {
1301 bnx2_init_rx_context(bp
, cid
);
1306 bnx2_set_mac_link(struct bnx2
*bp
)
1310 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x2620);
1311 if (bp
->link_up
&& (bp
->line_speed
== SPEED_1000
) &&
1312 (bp
->duplex
== DUPLEX_HALF
)) {
1313 REG_WR(bp
, BNX2_EMAC_TX_LENGTHS
, 0x26ff);
1316 /* Configure the EMAC mode register. */
1317 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
1319 val
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
1320 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
1321 BNX2_EMAC_MODE_25G_MODE
);
1324 switch (bp
->line_speed
) {
1326 if (CHIP_NUM(bp
) != CHIP_NUM_5706
) {
1327 val
|= BNX2_EMAC_MODE_PORT_MII_10M
;
1332 val
|= BNX2_EMAC_MODE_PORT_MII
;
1335 val
|= BNX2_EMAC_MODE_25G_MODE
;
1338 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1343 val
|= BNX2_EMAC_MODE_PORT_GMII
;
1346 /* Set the MAC to operate in the appropriate duplex mode. */
1347 if (bp
->duplex
== DUPLEX_HALF
)
1348 val
|= BNX2_EMAC_MODE_HALF_DUPLEX
;
1349 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
1351 /* Enable/disable rx PAUSE. */
1352 bp
->rx_mode
&= ~BNX2_EMAC_RX_MODE_FLOW_EN
;
1354 if (bp
->flow_ctrl
& FLOW_CTRL_RX
)
1355 bp
->rx_mode
|= BNX2_EMAC_RX_MODE_FLOW_EN
;
1356 REG_WR(bp
, BNX2_EMAC_RX_MODE
, bp
->rx_mode
);
1358 /* Enable/disable tx PAUSE. */
1359 val
= REG_RD(bp
, BNX2_EMAC_TX_MODE
);
1360 val
&= ~BNX2_EMAC_TX_MODE_FLOW_EN
;
1362 if (bp
->flow_ctrl
& FLOW_CTRL_TX
)
1363 val
|= BNX2_EMAC_TX_MODE_FLOW_EN
;
1364 REG_WR(bp
, BNX2_EMAC_TX_MODE
, val
);
1366 /* Acknowledge the interrupt. */
1367 REG_WR(bp
, BNX2_EMAC_STATUS
, BNX2_EMAC_STATUS_LINK_CHANGE
);
1369 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1370 bnx2_init_all_rx_contexts(bp
);
1374 bnx2_enable_bmsr1(struct bnx2
*bp
)
1376 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1377 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1378 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1379 MII_BNX2_BLK_ADDR_GP_STATUS
);
1383 bnx2_disable_bmsr1(struct bnx2
*bp
)
1385 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1386 (CHIP_NUM(bp
) == CHIP_NUM_5709
))
1387 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1388 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1392 bnx2_test_and_enable_2g5(struct bnx2
*bp
)
1397 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1400 if (bp
->autoneg
& AUTONEG_SPEED
)
1401 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1403 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1404 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1406 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1407 if (!(up1
& BCM5708S_UP1_2G5
)) {
1408 up1
|= BCM5708S_UP1_2G5
;
1409 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1413 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1414 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1415 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1421 bnx2_test_and_disable_2g5(struct bnx2
*bp
)
1426 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1429 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1430 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
1432 bnx2_read_phy(bp
, bp
->mii_up1
, &up1
);
1433 if (up1
& BCM5708S_UP1_2G5
) {
1434 up1
&= ~BCM5708S_UP1_2G5
;
1435 bnx2_write_phy(bp
, bp
->mii_up1
, up1
);
1439 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1440 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1441 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1447 bnx2_enable_forced_2g5(struct bnx2
*bp
)
1451 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1454 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1457 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1458 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1459 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1460 val
&= ~MII_BNX2_SD_MISC1_FORCE_MSK
;
1461 val
|= MII_BNX2_SD_MISC1_FORCE
| MII_BNX2_SD_MISC1_FORCE_2_5G
;
1462 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1464 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1465 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1466 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1468 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1469 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1470 bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1475 if (bp
->autoneg
& AUTONEG_SPEED
) {
1476 bmcr
&= ~BMCR_ANENABLE
;
1477 if (bp
->req_duplex
== DUPLEX_FULL
)
1478 bmcr
|= BMCR_FULLDPLX
;
1480 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1484 bnx2_disable_forced_2g5(struct bnx2
*bp
)
1488 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
1491 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1494 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1495 MII_BNX2_BLK_ADDR_SERDES_DIG
);
1496 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, &val
);
1497 val
&= ~MII_BNX2_SD_MISC1_FORCE
;
1498 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_MISC1
, val
);
1500 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
,
1501 MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
1502 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1504 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1505 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1506 bmcr
&= ~BCM5708S_BMCR_FORCE_2500
;
1511 if (bp
->autoneg
& AUTONEG_SPEED
)
1512 bmcr
|= BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_ANRESTART
;
1513 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1517 bnx2_5706s_force_link_dn(struct bnx2
*bp
, int start
)
1521 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_SERDES_CTL
);
1522 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
1524 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
& 0xff0f);
1526 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
| 0xc0);
1530 bnx2_set_link(struct bnx2
*bp
)
1535 if (bp
->loopback
== MAC_LOOPBACK
|| bp
->loopback
== PHY_LOOPBACK
) {
1540 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1543 link_up
= bp
->link_up
;
1545 bnx2_enable_bmsr1(bp
);
1546 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1547 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
1548 bnx2_disable_bmsr1(bp
);
1550 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1551 (CHIP_NUM(bp
) == CHIP_NUM_5706
)) {
1554 if (bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
) {
1555 bnx2_5706s_force_link_dn(bp
, 0);
1556 bp
->phy_flags
&= ~BNX2_PHY_FLAG_FORCED_DOWN
;
1558 val
= REG_RD(bp
, BNX2_EMAC_STATUS
);
1560 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
1561 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1562 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
1564 if ((val
& BNX2_EMAC_STATUS_LINK
) &&
1565 !(an_dbg
& MISC_SHDW_AN_DBG_NOSYNC
))
1566 bmsr
|= BMSR_LSTATUS
;
1568 bmsr
&= ~BMSR_LSTATUS
;
1571 if (bmsr
& BMSR_LSTATUS
) {
1574 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1575 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
1576 bnx2_5706s_linkup(bp
);
1577 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
1578 bnx2_5708s_linkup(bp
);
1579 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
1580 bnx2_5709s_linkup(bp
);
1583 bnx2_copper_linkup(bp
);
1585 bnx2_resolve_flow_ctrl(bp
);
1588 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
1589 (bp
->autoneg
& AUTONEG_SPEED
))
1590 bnx2_disable_forced_2g5(bp
);
1592 if (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
) {
1595 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1596 bmcr
|= BMCR_ANENABLE
;
1597 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
1599 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
1604 if (bp
->link_up
!= link_up
) {
1605 bnx2_report_link(bp
);
1608 bnx2_set_mac_link(bp
);
1614 bnx2_reset_phy(struct bnx2
*bp
)
1619 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_RESET
);
1621 #define PHY_RESET_MAX_WAIT 100
1622 for (i
= 0; i
< PHY_RESET_MAX_WAIT
; i
++) {
1625 bnx2_read_phy(bp
, bp
->mii_bmcr
, ®
);
1626 if (!(reg
& BMCR_RESET
)) {
1631 if (i
== PHY_RESET_MAX_WAIT
) {
1638 bnx2_phy_get_pause_adv(struct bnx2
*bp
)
1642 if ((bp
->req_flow_ctrl
& (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) ==
1643 (FLOW_CTRL_RX
| FLOW_CTRL_TX
)) {
1645 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1646 adv
= ADVERTISE_1000XPAUSE
;
1649 adv
= ADVERTISE_PAUSE_CAP
;
1652 else if (bp
->req_flow_ctrl
& FLOW_CTRL_TX
) {
1653 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1654 adv
= ADVERTISE_1000XPSE_ASYM
;
1657 adv
= ADVERTISE_PAUSE_ASYM
;
1660 else if (bp
->req_flow_ctrl
& FLOW_CTRL_RX
) {
1661 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1662 adv
= ADVERTISE_1000XPAUSE
| ADVERTISE_1000XPSE_ASYM
;
1665 adv
= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1671 static int bnx2_fw_sync(struct bnx2
*, u32
, int, int);
1674 bnx2_setup_remote_phy(struct bnx2
*bp
, u8 port
)
1675 __releases(&bp
->phy_lock
)
1676 __acquires(&bp
->phy_lock
)
1678 u32 speed_arg
= 0, pause_adv
;
1680 pause_adv
= bnx2_phy_get_pause_adv(bp
);
1682 if (bp
->autoneg
& AUTONEG_SPEED
) {
1683 speed_arg
|= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
;
1684 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
1685 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1686 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
1687 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1688 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
1689 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1690 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
1691 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1692 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1693 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1694 if (bp
->advertising
& ADVERTISED_2500baseX_Full
)
1695 speed_arg
|= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1697 if (bp
->req_line_speed
== SPEED_2500
)
1698 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
;
1699 else if (bp
->req_line_speed
== SPEED_1000
)
1700 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_1GFULL
;
1701 else if (bp
->req_line_speed
== SPEED_100
) {
1702 if (bp
->req_duplex
== DUPLEX_FULL
)
1703 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100FULL
;
1705 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_100HALF
;
1706 } else if (bp
->req_line_speed
== SPEED_10
) {
1707 if (bp
->req_duplex
== DUPLEX_FULL
)
1708 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10FULL
;
1710 speed_arg
= BNX2_NETLINK_SET_LINK_SPEED_10HALF
;
1714 if (pause_adv
& (ADVERTISE_1000XPAUSE
| ADVERTISE_PAUSE_CAP
))
1715 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE
;
1716 if (pause_adv
& (ADVERTISE_1000XPSE_ASYM
| ADVERTISE_PAUSE_ASYM
))
1717 speed_arg
|= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE
;
1719 if (port
== PORT_TP
)
1720 speed_arg
|= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE
|
1721 BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED
;
1723 bnx2_shmem_wr(bp
, BNX2_DRV_MB_ARG0
, speed_arg
);
1725 spin_unlock_bh(&bp
->phy_lock
);
1726 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_CMD_SET_LINK
, 1, 0);
1727 spin_lock_bh(&bp
->phy_lock
);
1733 bnx2_setup_serdes_phy(struct bnx2
*bp
, u8 port
)
1734 __releases(&bp
->phy_lock
)
1735 __acquires(&bp
->phy_lock
)
1740 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
1741 return (bnx2_setup_remote_phy(bp
, port
));
1743 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
1745 int force_link_down
= 0;
1747 if (bp
->req_line_speed
== SPEED_2500
) {
1748 if (!bnx2_test_and_enable_2g5(bp
))
1749 force_link_down
= 1;
1750 } else if (bp
->req_line_speed
== SPEED_1000
) {
1751 if (bnx2_test_and_disable_2g5(bp
))
1752 force_link_down
= 1;
1754 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1755 adv
&= ~(ADVERTISE_1000XFULL
| ADVERTISE_1000XHALF
);
1757 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1758 new_bmcr
= bmcr
& ~BMCR_ANENABLE
;
1759 new_bmcr
|= BMCR_SPEED1000
;
1761 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
1762 if (bp
->req_line_speed
== SPEED_2500
)
1763 bnx2_enable_forced_2g5(bp
);
1764 else if (bp
->req_line_speed
== SPEED_1000
) {
1765 bnx2_disable_forced_2g5(bp
);
1766 new_bmcr
&= ~0x2000;
1769 } else if (CHIP_NUM(bp
) == CHIP_NUM_5708
) {
1770 if (bp
->req_line_speed
== SPEED_2500
)
1771 new_bmcr
|= BCM5708S_BMCR_FORCE_2500
;
1773 new_bmcr
= bmcr
& ~BCM5708S_BMCR_FORCE_2500
;
1776 if (bp
->req_duplex
== DUPLEX_FULL
) {
1777 adv
|= ADVERTISE_1000XFULL
;
1778 new_bmcr
|= BMCR_FULLDPLX
;
1781 adv
|= ADVERTISE_1000XHALF
;
1782 new_bmcr
&= ~BMCR_FULLDPLX
;
1784 if ((new_bmcr
!= bmcr
) || (force_link_down
)) {
1785 /* Force a link down visible on the other side */
1787 bnx2_write_phy(bp
, bp
->mii_adv
, adv
&
1788 ~(ADVERTISE_1000XFULL
|
1789 ADVERTISE_1000XHALF
));
1790 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
|
1791 BMCR_ANRESTART
| BMCR_ANENABLE
);
1794 netif_carrier_off(bp
->dev
);
1795 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1796 bnx2_report_link(bp
);
1798 bnx2_write_phy(bp
, bp
->mii_adv
, adv
);
1799 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
1801 bnx2_resolve_flow_ctrl(bp
);
1802 bnx2_set_mac_link(bp
);
1807 bnx2_test_and_enable_2g5(bp
);
1809 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
1810 new_adv
|= ADVERTISE_1000XFULL
;
1812 new_adv
|= bnx2_phy_get_pause_adv(bp
);
1814 bnx2_read_phy(bp
, bp
->mii_adv
, &adv
);
1815 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
1817 bp
->serdes_an_pending
= 0;
1818 if ((adv
!= new_adv
) || ((bmcr
& BMCR_ANENABLE
) == 0)) {
1819 /* Force a link down visible on the other side */
1821 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
1822 spin_unlock_bh(&bp
->phy_lock
);
1824 spin_lock_bh(&bp
->phy_lock
);
1827 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv
);
1828 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
|
1830 /* Speed up link-up time when the link partner
1831 * does not autonegotiate which is very common
1832 * in blade servers. Some blade servers use
1833 * IPMI for kerboard input and it's important
1834 * to minimize link disruptions. Autoneg. involves
1835 * exchanging base pages plus 3 next pages and
1836 * normally completes in about 120 msec.
1838 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
1839 bp
->serdes_an_pending
= 1;
1840 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
1842 bnx2_resolve_flow_ctrl(bp
);
1843 bnx2_set_mac_link(bp
);
1849 #define ETHTOOL_ALL_FIBRE_SPEED \
1850 (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
1851 (ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
1852 (ADVERTISED_1000baseT_Full)
1854 #define ETHTOOL_ALL_COPPER_SPEED \
1855 (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1856 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1857 ADVERTISED_1000baseT_Full)
1859 #define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
1860 ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
1862 #define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
1865 bnx2_set_default_remote_link(struct bnx2
*bp
)
1869 if (bp
->phy_port
== PORT_TP
)
1870 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_COPPER_LINK
);
1872 link
= bnx2_shmem_rd(bp
, BNX2_RPHY_SERDES_LINK
);
1874 if (link
& BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG
) {
1875 bp
->req_line_speed
= 0;
1876 bp
->autoneg
|= AUTONEG_SPEED
;
1877 bp
->advertising
= ADVERTISED_Autoneg
;
1878 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1879 bp
->advertising
|= ADVERTISED_10baseT_Half
;
1880 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10FULL
)
1881 bp
->advertising
|= ADVERTISED_10baseT_Full
;
1882 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1883 bp
->advertising
|= ADVERTISED_100baseT_Half
;
1884 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100FULL
)
1885 bp
->advertising
|= ADVERTISED_100baseT_Full
;
1886 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1887 bp
->advertising
|= ADVERTISED_1000baseT_Full
;
1888 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1889 bp
->advertising
|= ADVERTISED_2500baseX_Full
;
1892 bp
->advertising
= 0;
1893 bp
->req_duplex
= DUPLEX_FULL
;
1894 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10
) {
1895 bp
->req_line_speed
= SPEED_10
;
1896 if (link
& BNX2_NETLINK_SET_LINK_SPEED_10HALF
)
1897 bp
->req_duplex
= DUPLEX_HALF
;
1899 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100
) {
1900 bp
->req_line_speed
= SPEED_100
;
1901 if (link
& BNX2_NETLINK_SET_LINK_SPEED_100HALF
)
1902 bp
->req_duplex
= DUPLEX_HALF
;
1904 if (link
& BNX2_NETLINK_SET_LINK_SPEED_1GFULL
)
1905 bp
->req_line_speed
= SPEED_1000
;
1906 if (link
& BNX2_NETLINK_SET_LINK_SPEED_2G5FULL
)
1907 bp
->req_line_speed
= SPEED_2500
;
1912 bnx2_set_default_link(struct bnx2
*bp
)
1914 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
1915 bnx2_set_default_remote_link(bp
);
1919 bp
->autoneg
= AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
;
1920 bp
->req_line_speed
= 0;
1921 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
1924 bp
->advertising
= ETHTOOL_ALL_FIBRE_SPEED
| ADVERTISED_Autoneg
;
1926 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
);
1927 reg
&= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK
;
1928 if (reg
== BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G
) {
1930 bp
->req_line_speed
= bp
->line_speed
= SPEED_1000
;
1931 bp
->req_duplex
= DUPLEX_FULL
;
1934 bp
->advertising
= ETHTOOL_ALL_COPPER_SPEED
| ADVERTISED_Autoneg
;
1938 bnx2_send_heart_beat(struct bnx2
*bp
)
1943 spin_lock(&bp
->indirect_lock
);
1944 msg
= (u32
) (++bp
->fw_drv_pulse_wr_seq
& BNX2_DRV_PULSE_SEQ_MASK
);
1945 addr
= bp
->shmem_base
+ BNX2_DRV_PULSE_MB
;
1946 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW_ADDRESS
, addr
);
1947 REG_WR(bp
, BNX2_PCICFG_REG_WINDOW
, msg
);
1948 spin_unlock(&bp
->indirect_lock
);
1952 bnx2_remote_phy_event(struct bnx2
*bp
)
1955 u8 link_up
= bp
->link_up
;
1958 msg
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
1960 if (msg
& BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
)
1961 bnx2_send_heart_beat(bp
);
1963 msg
&= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED
;
1965 if ((msg
& BNX2_LINK_STATUS_LINK_UP
) == BNX2_LINK_STATUS_LINK_DOWN
)
1971 speed
= msg
& BNX2_LINK_STATUS_SPEED_MASK
;
1972 bp
->duplex
= DUPLEX_FULL
;
1974 case BNX2_LINK_STATUS_10HALF
:
1975 bp
->duplex
= DUPLEX_HALF
;
1976 case BNX2_LINK_STATUS_10FULL
:
1977 bp
->line_speed
= SPEED_10
;
1979 case BNX2_LINK_STATUS_100HALF
:
1980 bp
->duplex
= DUPLEX_HALF
;
1981 case BNX2_LINK_STATUS_100BASE_T4
:
1982 case BNX2_LINK_STATUS_100FULL
:
1983 bp
->line_speed
= SPEED_100
;
1985 case BNX2_LINK_STATUS_1000HALF
:
1986 bp
->duplex
= DUPLEX_HALF
;
1987 case BNX2_LINK_STATUS_1000FULL
:
1988 bp
->line_speed
= SPEED_1000
;
1990 case BNX2_LINK_STATUS_2500HALF
:
1991 bp
->duplex
= DUPLEX_HALF
;
1992 case BNX2_LINK_STATUS_2500FULL
:
1993 bp
->line_speed
= SPEED_2500
;
2001 if ((bp
->autoneg
& (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) !=
2002 (AUTONEG_SPEED
| AUTONEG_FLOW_CTRL
)) {
2003 if (bp
->duplex
== DUPLEX_FULL
)
2004 bp
->flow_ctrl
= bp
->req_flow_ctrl
;
2006 if (msg
& BNX2_LINK_STATUS_TX_FC_ENABLED
)
2007 bp
->flow_ctrl
|= FLOW_CTRL_TX
;
2008 if (msg
& BNX2_LINK_STATUS_RX_FC_ENABLED
)
2009 bp
->flow_ctrl
|= FLOW_CTRL_RX
;
2012 old_port
= bp
->phy_port
;
2013 if (msg
& BNX2_LINK_STATUS_SERDES_LINK
)
2014 bp
->phy_port
= PORT_FIBRE
;
2016 bp
->phy_port
= PORT_TP
;
2018 if (old_port
!= bp
->phy_port
)
2019 bnx2_set_default_link(bp
);
2022 if (bp
->link_up
!= link_up
)
2023 bnx2_report_link(bp
);
2025 bnx2_set_mac_link(bp
);
2029 bnx2_set_remote_link(struct bnx2
*bp
)
2033 evt_code
= bnx2_shmem_rd(bp
, BNX2_FW_EVT_CODE_MB
);
2035 case BNX2_FW_EVT_CODE_LINK_EVENT
:
2036 bnx2_remote_phy_event(bp
);
2038 case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT
:
2040 bnx2_send_heart_beat(bp
);
2047 bnx2_setup_copper_phy(struct bnx2
*bp
)
2048 __releases(&bp
->phy_lock
)
2049 __acquires(&bp
->phy_lock
)
2054 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
2056 if (bp
->autoneg
& AUTONEG_SPEED
) {
2057 u32 adv_reg
, adv1000_reg
;
2058 u32 new_adv_reg
= 0;
2059 u32 new_adv1000_reg
= 0;
2061 bnx2_read_phy(bp
, bp
->mii_adv
, &adv_reg
);
2062 adv_reg
&= (PHY_ALL_10_100_SPEED
| ADVERTISE_PAUSE_CAP
|
2063 ADVERTISE_PAUSE_ASYM
);
2065 bnx2_read_phy(bp
, MII_CTRL1000
, &adv1000_reg
);
2066 adv1000_reg
&= PHY_ALL_1000_SPEED
;
2068 if (bp
->advertising
& ADVERTISED_10baseT_Half
)
2069 new_adv_reg
|= ADVERTISE_10HALF
;
2070 if (bp
->advertising
& ADVERTISED_10baseT_Full
)
2071 new_adv_reg
|= ADVERTISE_10FULL
;
2072 if (bp
->advertising
& ADVERTISED_100baseT_Half
)
2073 new_adv_reg
|= ADVERTISE_100HALF
;
2074 if (bp
->advertising
& ADVERTISED_100baseT_Full
)
2075 new_adv_reg
|= ADVERTISE_100FULL
;
2076 if (bp
->advertising
& ADVERTISED_1000baseT_Full
)
2077 new_adv1000_reg
|= ADVERTISE_1000FULL
;
2079 new_adv_reg
|= ADVERTISE_CSMA
;
2081 new_adv_reg
|= bnx2_phy_get_pause_adv(bp
);
2083 if ((adv1000_reg
!= new_adv1000_reg
) ||
2084 (adv_reg
!= new_adv_reg
) ||
2085 ((bmcr
& BMCR_ANENABLE
) == 0)) {
2087 bnx2_write_phy(bp
, bp
->mii_adv
, new_adv_reg
);
2088 bnx2_write_phy(bp
, MII_CTRL1000
, new_adv1000_reg
);
2089 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_ANRESTART
|
2092 else if (bp
->link_up
) {
2093 /* Flow ctrl may have changed from auto to forced */
2094 /* or vice-versa. */
2096 bnx2_resolve_flow_ctrl(bp
);
2097 bnx2_set_mac_link(bp
);
2103 if (bp
->req_line_speed
== SPEED_100
) {
2104 new_bmcr
|= BMCR_SPEED100
;
2106 if (bp
->req_duplex
== DUPLEX_FULL
) {
2107 new_bmcr
|= BMCR_FULLDPLX
;
2109 if (new_bmcr
!= bmcr
) {
2112 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2113 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2115 if (bmsr
& BMSR_LSTATUS
) {
2116 /* Force link down */
2117 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
2118 spin_unlock_bh(&bp
->phy_lock
);
2120 spin_lock_bh(&bp
->phy_lock
);
2122 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2123 bnx2_read_phy(bp
, bp
->mii_bmsr
, &bmsr
);
2126 bnx2_write_phy(bp
, bp
->mii_bmcr
, new_bmcr
);
2128 /* Normally, the new speed is setup after the link has
2129 * gone down and up again. In some cases, link will not go
2130 * down so we need to set up the new speed here.
2132 if (bmsr
& BMSR_LSTATUS
) {
2133 bp
->line_speed
= bp
->req_line_speed
;
2134 bp
->duplex
= bp
->req_duplex
;
2135 bnx2_resolve_flow_ctrl(bp
);
2136 bnx2_set_mac_link(bp
);
2139 bnx2_resolve_flow_ctrl(bp
);
2140 bnx2_set_mac_link(bp
);
2146 bnx2_setup_phy(struct bnx2
*bp
, u8 port
)
2147 __releases(&bp
->phy_lock
)
2148 __acquires(&bp
->phy_lock
)
2150 if (bp
->loopback
== MAC_LOOPBACK
)
2153 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2154 return (bnx2_setup_serdes_phy(bp
, port
));
2157 return (bnx2_setup_copper_phy(bp
));
2162 bnx2_init_5709s_phy(struct bnx2
*bp
, int reset_phy
)
2166 bp
->mii_bmcr
= MII_BMCR
+ 0x10;
2167 bp
->mii_bmsr
= MII_BMSR
+ 0x10;
2168 bp
->mii_bmsr1
= MII_BNX2_GP_TOP_AN_STATUS1
;
2169 bp
->mii_adv
= MII_ADVERTISE
+ 0x10;
2170 bp
->mii_lpa
= MII_LPA
+ 0x10;
2171 bp
->mii_up1
= MII_BNX2_OVER1G_UP1
;
2173 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_AER
);
2174 bnx2_write_phy(bp
, MII_BNX2_AER_AER
, MII_BNX2_AER_AER_AN_MMD
);
2176 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2180 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_SERDES_DIG
);
2182 bnx2_read_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, &val
);
2183 val
&= ~MII_BNX2_SD_1000XCTL1_AUTODET
;
2184 val
|= MII_BNX2_SD_1000XCTL1_FIBER
;
2185 bnx2_write_phy(bp
, MII_BNX2_SERDES_DIG_1000XCTL1
, val
);
2187 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_OVER1G
);
2188 bnx2_read_phy(bp
, MII_BNX2_OVER1G_UP1
, &val
);
2189 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
2190 val
|= BCM5708S_UP1_2G5
;
2192 val
&= ~BCM5708S_UP1_2G5
;
2193 bnx2_write_phy(bp
, MII_BNX2_OVER1G_UP1
, val
);
2195 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_BAM_NXTPG
);
2196 bnx2_read_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, &val
);
2197 val
|= MII_BNX2_NXTPG_CTL_T2
| MII_BNX2_NXTPG_CTL_BAM
;
2198 bnx2_write_phy(bp
, MII_BNX2_BAM_NXTPG_CTL
, val
);
2200 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_CL73_USERB0
);
2202 val
= MII_BNX2_CL73_BAM_EN
| MII_BNX2_CL73_BAM_STA_MGR_EN
|
2203 MII_BNX2_CL73_BAM_NP_AFT_BP_EN
;
2204 bnx2_write_phy(bp
, MII_BNX2_CL73_BAM_CTL1
, val
);
2206 bnx2_write_phy(bp
, MII_BNX2_BLK_ADDR
, MII_BNX2_BLK_ADDR_COMBO_IEEEB0
);
2212 bnx2_init_5708s_phy(struct bnx2
*bp
, int reset_phy
)
2219 bp
->mii_up1
= BCM5708S_UP1
;
2221 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG3
);
2222 bnx2_write_phy(bp
, BCM5708S_DIG_3_0
, BCM5708S_DIG_3_0_USE_IEEE
);
2223 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2225 bnx2_read_phy(bp
, BCM5708S_1000X_CTL1
, &val
);
2226 val
|= BCM5708S_1000X_CTL1_FIBER_MODE
| BCM5708S_1000X_CTL1_AUTODET_EN
;
2227 bnx2_write_phy(bp
, BCM5708S_1000X_CTL1
, val
);
2229 bnx2_read_phy(bp
, BCM5708S_1000X_CTL2
, &val
);
2230 val
|= BCM5708S_1000X_CTL2_PLLEL_DET_EN
;
2231 bnx2_write_phy(bp
, BCM5708S_1000X_CTL2
, val
);
2233 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) {
2234 bnx2_read_phy(bp
, BCM5708S_UP1
, &val
);
2235 val
|= BCM5708S_UP1_2G5
;
2236 bnx2_write_phy(bp
, BCM5708S_UP1
, val
);
2239 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
2240 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
2241 (CHIP_ID(bp
) == CHIP_ID_5708_B1
)) {
2242 /* increase tx signal amplitude */
2243 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2244 BCM5708S_BLK_ADDR_TX_MISC
);
2245 bnx2_read_phy(bp
, BCM5708S_TX_ACTL1
, &val
);
2246 val
&= ~BCM5708S_TX_ACTL1_DRIVER_VCM
;
2247 bnx2_write_phy(bp
, BCM5708S_TX_ACTL1
, val
);
2248 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
, BCM5708S_BLK_ADDR_DIG
);
2251 val
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_CONFIG
) &
2252 BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK
;
2257 is_backplane
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
2258 if (is_backplane
& BNX2_SHARED_HW_CFG_PHY_BACKPLANE
) {
2259 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2260 BCM5708S_BLK_ADDR_TX_MISC
);
2261 bnx2_write_phy(bp
, BCM5708S_TX_ACTL3
, val
);
2262 bnx2_write_phy(bp
, BCM5708S_BLK_ADDR
,
2263 BCM5708S_BLK_ADDR_DIG
);
2270 bnx2_init_5706s_phy(struct bnx2
*bp
, int reset_phy
)
2275 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
2277 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2278 REG_WR(bp
, BNX2_MISC_GP_HW_CTL0
, 0x300);
2280 if (bp
->dev
->mtu
> 1500) {
2283 /* Set extended packet length bit */
2284 bnx2_write_phy(bp
, 0x18, 0x7);
2285 bnx2_read_phy(bp
, 0x18, &val
);
2286 bnx2_write_phy(bp
, 0x18, (val
& 0xfff8) | 0x4000);
2288 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2289 bnx2_read_phy(bp
, 0x1c, &val
);
2290 bnx2_write_phy(bp
, 0x1c, (val
& 0x3ff) | 0xec02);
2295 bnx2_write_phy(bp
, 0x18, 0x7);
2296 bnx2_read_phy(bp
, 0x18, &val
);
2297 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2299 bnx2_write_phy(bp
, 0x1c, 0x6c00);
2300 bnx2_read_phy(bp
, 0x1c, &val
);
2301 bnx2_write_phy(bp
, 0x1c, (val
& 0x3fd) | 0xec00);
2308 bnx2_init_copper_phy(struct bnx2
*bp
, int reset_phy
)
2315 if (bp
->phy_flags
& BNX2_PHY_FLAG_CRC_FIX
) {
2316 bnx2_write_phy(bp
, 0x18, 0x0c00);
2317 bnx2_write_phy(bp
, 0x17, 0x000a);
2318 bnx2_write_phy(bp
, 0x15, 0x310b);
2319 bnx2_write_phy(bp
, 0x17, 0x201f);
2320 bnx2_write_phy(bp
, 0x15, 0x9506);
2321 bnx2_write_phy(bp
, 0x17, 0x401f);
2322 bnx2_write_phy(bp
, 0x15, 0x14e2);
2323 bnx2_write_phy(bp
, 0x18, 0x0400);
2326 if (bp
->phy_flags
& BNX2_PHY_FLAG_DIS_EARLY_DAC
) {
2327 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
,
2328 MII_BNX2_DSP_EXPAND_REG
| 0x8);
2329 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &val
);
2331 bnx2_write_phy(bp
, MII_BNX2_DSP_RW_PORT
, val
);
2334 if (bp
->dev
->mtu
> 1500) {
2335 /* Set extended packet length bit */
2336 bnx2_write_phy(bp
, 0x18, 0x7);
2337 bnx2_read_phy(bp
, 0x18, &val
);
2338 bnx2_write_phy(bp
, 0x18, val
| 0x4000);
2340 bnx2_read_phy(bp
, 0x10, &val
);
2341 bnx2_write_phy(bp
, 0x10, val
| 0x1);
2344 bnx2_write_phy(bp
, 0x18, 0x7);
2345 bnx2_read_phy(bp
, 0x18, &val
);
2346 bnx2_write_phy(bp
, 0x18, val
& ~0x4007);
2348 bnx2_read_phy(bp
, 0x10, &val
);
2349 bnx2_write_phy(bp
, 0x10, val
& ~0x1);
2352 /* ethernet@wirespeed */
2353 bnx2_write_phy(bp
, 0x18, 0x7007);
2354 bnx2_read_phy(bp
, 0x18, &val
);
2355 bnx2_write_phy(bp
, 0x18, val
| (1 << 15) | (1 << 4));
2361 bnx2_init_phy(struct bnx2
*bp
, int reset_phy
)
2362 __releases(&bp
->phy_lock
)
2363 __acquires(&bp
->phy_lock
)
2368 bp
->phy_flags
&= ~BNX2_PHY_FLAG_INT_MODE_MASK
;
2369 bp
->phy_flags
|= BNX2_PHY_FLAG_INT_MODE_LINK_READY
;
2371 bp
->mii_bmcr
= MII_BMCR
;
2372 bp
->mii_bmsr
= MII_BMSR
;
2373 bp
->mii_bmsr1
= MII_BMSR
;
2374 bp
->mii_adv
= MII_ADVERTISE
;
2375 bp
->mii_lpa
= MII_LPA
;
2377 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
2379 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
2382 bnx2_read_phy(bp
, MII_PHYSID1
, &val
);
2383 bp
->phy_id
= val
<< 16;
2384 bnx2_read_phy(bp
, MII_PHYSID2
, &val
);
2385 bp
->phy_id
|= val
& 0xffff;
2387 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
2388 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
2389 rc
= bnx2_init_5706s_phy(bp
, reset_phy
);
2390 else if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
2391 rc
= bnx2_init_5708s_phy(bp
, reset_phy
);
2392 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
2393 rc
= bnx2_init_5709s_phy(bp
, reset_phy
);
2396 rc
= bnx2_init_copper_phy(bp
, reset_phy
);
2401 rc
= bnx2_setup_phy(bp
, bp
->phy_port
);
2407 bnx2_set_mac_loopback(struct bnx2
*bp
)
2411 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2412 mac_mode
&= ~BNX2_EMAC_MODE_PORT
;
2413 mac_mode
|= BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
;
2414 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2419 static int bnx2_test_link(struct bnx2
*);
2422 bnx2_set_phy_loopback(struct bnx2
*bp
)
2427 spin_lock_bh(&bp
->phy_lock
);
2428 rc
= bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
| BMCR_FULLDPLX
|
2430 spin_unlock_bh(&bp
->phy_lock
);
2434 for (i
= 0; i
< 10; i
++) {
2435 if (bnx2_test_link(bp
) == 0)
2440 mac_mode
= REG_RD(bp
, BNX2_EMAC_MODE
);
2441 mac_mode
&= ~(BNX2_EMAC_MODE_PORT
| BNX2_EMAC_MODE_HALF_DUPLEX
|
2442 BNX2_EMAC_MODE_MAC_LOOP
| BNX2_EMAC_MODE_FORCE_LINK
|
2443 BNX2_EMAC_MODE_25G_MODE
);
2445 mac_mode
|= BNX2_EMAC_MODE_PORT_GMII
;
2446 REG_WR(bp
, BNX2_EMAC_MODE
, mac_mode
);
2452 bnx2_fw_sync(struct bnx2
*bp
, u32 msg_data
, int ack
, int silent
)
2458 msg_data
|= bp
->fw_wr_seq
;
2460 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2465 /* wait for an acknowledgement. */
2466 for (i
= 0; i
< (BNX2_FW_ACK_TIME_OUT_MS
/ 10); i
++) {
2469 val
= bnx2_shmem_rd(bp
, BNX2_FW_MB
);
2471 if ((val
& BNX2_FW_MSG_ACK
) == (msg_data
& BNX2_DRV_MSG_SEQ
))
2474 if ((msg_data
& BNX2_DRV_MSG_DATA
) == BNX2_DRV_MSG_DATA_WAIT0
)
2477 /* If we timed out, inform the firmware that this is the case. */
2478 if ((val
& BNX2_FW_MSG_ACK
) != (msg_data
& BNX2_DRV_MSG_SEQ
)) {
2480 pr_err("fw sync timeout, reset code = %x\n", msg_data
);
2482 msg_data
&= ~BNX2_DRV_MSG_CODE
;
2483 msg_data
|= BNX2_DRV_MSG_CODE_FW_TIMEOUT
;
2485 bnx2_shmem_wr(bp
, BNX2_DRV_MB
, msg_data
);
2490 if ((val
& BNX2_FW_MSG_STATUS_MASK
) != BNX2_FW_MSG_STATUS_OK
)
2497 bnx2_init_5709_context(struct bnx2
*bp
)
2502 val
= BNX2_CTX_COMMAND_ENABLED
| BNX2_CTX_COMMAND_MEM_INIT
| (1 << 12);
2503 val
|= (BCM_PAGE_BITS
- 8) << 16;
2504 REG_WR(bp
, BNX2_CTX_COMMAND
, val
);
2505 for (i
= 0; i
< 10; i
++) {
2506 val
= REG_RD(bp
, BNX2_CTX_COMMAND
);
2507 if (!(val
& BNX2_CTX_COMMAND_MEM_INIT
))
2511 if (val
& BNX2_CTX_COMMAND_MEM_INIT
)
2514 for (i
= 0; i
< bp
->ctx_pages
; i
++) {
2518 memset(bp
->ctx_blk
[i
], 0, BCM_PAGE_SIZE
);
2522 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA0
,
2523 (bp
->ctx_blk_mapping
[i
] & 0xffffffff) |
2524 BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID
);
2525 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_DATA1
,
2526 (u64
) bp
->ctx_blk_mapping
[i
] >> 32);
2527 REG_WR(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
, i
|
2528 BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
);
2529 for (j
= 0; j
< 10; j
++) {
2531 val
= REG_RD(bp
, BNX2_CTX_HOST_PAGE_TBL_CTRL
);
2532 if (!(val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
))
2536 if (val
& BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ
) {
2545 bnx2_init_context(struct bnx2
*bp
)
2551 u32 vcid_addr
, pcid_addr
, offset
;
2556 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
2559 vcid_addr
= GET_PCID_ADDR(vcid
);
2561 new_vcid
= 0x60 + (vcid
& 0xf0) + (vcid
& 0x7);
2566 pcid_addr
= GET_PCID_ADDR(new_vcid
);
2569 vcid_addr
= GET_CID_ADDR(vcid
);
2570 pcid_addr
= vcid_addr
;
2573 for (i
= 0; i
< (CTX_SIZE
/ PHY_CTX_SIZE
); i
++) {
2574 vcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2575 pcid_addr
+= (i
<< PHY_CTX_SHIFT
);
2577 REG_WR(bp
, BNX2_CTX_VIRT_ADDR
, vcid_addr
);
2578 REG_WR(bp
, BNX2_CTX_PAGE_TBL
, pcid_addr
);
2580 /* Zero out the context. */
2581 for (offset
= 0; offset
< PHY_CTX_SIZE
; offset
+= 4)
2582 bnx2_ctx_wr(bp
, vcid_addr
, offset
, 0);
2588 bnx2_alloc_bad_rbuf(struct bnx2
*bp
)
2594 good_mbuf
= kmalloc(512 * sizeof(u16
), GFP_KERNEL
);
2595 if (good_mbuf
== NULL
) {
2596 pr_err("Failed to allocate memory in %s\n", __func__
);
2600 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
2601 BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE
);
2605 /* Allocate a bunch of mbufs and save the good ones in an array. */
2606 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2607 while (val
& BNX2_RBUF_STATUS1_FREE_COUNT
) {
2608 bnx2_reg_wr_ind(bp
, BNX2_RBUF_COMMAND
,
2609 BNX2_RBUF_COMMAND_ALLOC_REQ
);
2611 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_FW_BUF_ALLOC
);
2613 val
&= BNX2_RBUF_FW_BUF_ALLOC_VALUE
;
2615 /* The addresses with Bit 9 set are bad memory blocks. */
2616 if (!(val
& (1 << 9))) {
2617 good_mbuf
[good_mbuf_cnt
] = (u16
) val
;
2621 val
= bnx2_reg_rd_ind(bp
, BNX2_RBUF_STATUS1
);
2624 /* Free the good ones back to the mbuf pool thus discarding
2625 * all the bad ones. */
2626 while (good_mbuf_cnt
) {
2629 val
= good_mbuf
[good_mbuf_cnt
];
2630 val
= (val
<< 9) | val
| 1;
2632 bnx2_reg_wr_ind(bp
, BNX2_RBUF_FW_BUF_FREE
, val
);
2639 bnx2_set_mac_addr(struct bnx2
*bp
, u8
*mac_addr
, u32 pos
)
2643 val
= (mac_addr
[0] << 8) | mac_addr
[1];
2645 REG_WR(bp
, BNX2_EMAC_MAC_MATCH0
+ (pos
* 8), val
);
2647 val
= (mac_addr
[2] << 24) | (mac_addr
[3] << 16) |
2648 (mac_addr
[4] << 8) | mac_addr
[5];
2650 REG_WR(bp
, BNX2_EMAC_MAC_MATCH1
+ (pos
* 8), val
);
2654 bnx2_alloc_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2657 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2658 struct rx_bd
*rxbd
=
2659 &rxr
->rx_pg_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2660 struct page
*page
= alloc_page(GFP_ATOMIC
);
2664 mapping
= pci_map_page(bp
->pdev
, page
, 0, PAGE_SIZE
,
2665 PCI_DMA_FROMDEVICE
);
2666 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2672 dma_unmap_addr_set(rx_pg
, mapping
, mapping
);
2673 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2674 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2679 bnx2_free_rx_page(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2681 struct sw_pg
*rx_pg
= &rxr
->rx_pg_ring
[index
];
2682 struct page
*page
= rx_pg
->page
;
2687 pci_unmap_page(bp
->pdev
, dma_unmap_addr(rx_pg
, mapping
), PAGE_SIZE
,
2688 PCI_DMA_FROMDEVICE
);
2695 bnx2_alloc_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, u16 index
)
2697 struct sk_buff
*skb
;
2698 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[index
];
2700 struct rx_bd
*rxbd
= &rxr
->rx_desc_ring
[RX_RING(index
)][RX_IDX(index
)];
2701 unsigned long align
;
2703 skb
= netdev_alloc_skb(bp
->dev
, bp
->rx_buf_size
);
2708 if (unlikely((align
= (unsigned long) skb
->data
& (BNX2_RX_ALIGN
- 1))))
2709 skb_reserve(skb
, BNX2_RX_ALIGN
- align
);
2711 mapping
= pci_map_single(bp
->pdev
, skb
->data
, bp
->rx_buf_use_size
,
2712 PCI_DMA_FROMDEVICE
);
2713 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
2719 rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2720 dma_unmap_addr_set(rx_buf
, mapping
, mapping
);
2722 rxbd
->rx_bd_haddr_hi
= (u64
) mapping
>> 32;
2723 rxbd
->rx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
2725 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2731 bnx2_phy_event_is_set(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, u32 event
)
2733 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
2734 u32 new_link_state
, old_link_state
;
2737 new_link_state
= sblk
->status_attn_bits
& event
;
2738 old_link_state
= sblk
->status_attn_bits_ack
& event
;
2739 if (new_link_state
!= old_link_state
) {
2741 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_SET_CMD
, event
);
2743 REG_WR(bp
, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD
, event
);
2751 bnx2_phy_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
2753 spin_lock(&bp
->phy_lock
);
2755 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_LINK_STATE
))
2757 if (bnx2_phy_event_is_set(bp
, bnapi
, STATUS_ATTN_BITS_TIMER_ABORT
))
2758 bnx2_set_remote_link(bp
);
2760 spin_unlock(&bp
->phy_lock
);
2765 bnx2_get_hw_tx_cons(struct bnx2_napi
*bnapi
)
2769 /* Tell compiler that status block fields can change. */
2771 cons
= *bnapi
->hw_tx_cons_ptr
;
2773 if (unlikely((cons
& MAX_TX_DESC_CNT
) == MAX_TX_DESC_CNT
))
2779 bnx2_tx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
2781 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
2782 u16 hw_cons
, sw_cons
, sw_ring_cons
;
2783 int tx_pkt
= 0, index
;
2784 struct netdev_queue
*txq
;
2786 index
= (bnapi
- bp
->bnx2_napi
);
2787 txq
= netdev_get_tx_queue(bp
->dev
, index
);
2789 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2790 sw_cons
= txr
->tx_cons
;
2792 while (sw_cons
!= hw_cons
) {
2793 struct sw_tx_bd
*tx_buf
;
2794 struct sk_buff
*skb
;
2797 sw_ring_cons
= TX_RING_IDX(sw_cons
);
2799 tx_buf
= &txr
->tx_buf_ring
[sw_ring_cons
];
2802 /* prefetch skb_end_pointer() to speedup skb_shinfo(skb) */
2803 prefetch(&skb
->end
);
2805 /* partial BD completions possible with TSO packets */
2806 if (tx_buf
->is_gso
) {
2807 u16 last_idx
, last_ring_idx
;
2809 last_idx
= sw_cons
+ tx_buf
->nr_frags
+ 1;
2810 last_ring_idx
= sw_ring_cons
+ tx_buf
->nr_frags
+ 1;
2811 if (unlikely(last_ring_idx
>= MAX_TX_DESC_CNT
)) {
2814 if (((s16
) ((s16
) last_idx
- (s16
) hw_cons
)) > 0) {
2819 pci_unmap_single(bp
->pdev
, dma_unmap_addr(tx_buf
, mapping
),
2820 skb_headlen(skb
), PCI_DMA_TODEVICE
);
2823 last
= tx_buf
->nr_frags
;
2825 for (i
= 0; i
< last
; i
++) {
2826 sw_cons
= NEXT_TX_BD(sw_cons
);
2828 pci_unmap_page(bp
->pdev
,
2830 &txr
->tx_buf_ring
[TX_RING_IDX(sw_cons
)],
2832 skb_shinfo(skb
)->frags
[i
].size
,
2836 sw_cons
= NEXT_TX_BD(sw_cons
);
2840 if (tx_pkt
== budget
)
2843 if (hw_cons
== sw_cons
)
2844 hw_cons
= bnx2_get_hw_tx_cons(bnapi
);
2847 txr
->hw_tx_cons
= hw_cons
;
2848 txr
->tx_cons
= sw_cons
;
2850 /* Need to make the tx_cons update visible to bnx2_start_xmit()
2851 * before checking for netif_tx_queue_stopped(). Without the
2852 * memory barrier, there is a small possibility that bnx2_start_xmit()
2853 * will miss it and cause the queue to be stopped forever.
2857 if (unlikely(netif_tx_queue_stopped(txq
)) &&
2858 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)) {
2859 __netif_tx_lock(txq
, smp_processor_id());
2860 if ((netif_tx_queue_stopped(txq
)) &&
2861 (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
))
2862 netif_tx_wake_queue(txq
);
2863 __netif_tx_unlock(txq
);
2870 bnx2_reuse_rx_skb_pages(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2871 struct sk_buff
*skb
, int count
)
2873 struct sw_pg
*cons_rx_pg
, *prod_rx_pg
;
2874 struct rx_bd
*cons_bd
, *prod_bd
;
2877 u16 cons
= rxr
->rx_pg_cons
;
2879 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2881 /* The caller was unable to allocate a new page to replace the
2882 * last one in the frags array, so we need to recycle that page
2883 * and then free the skb.
2887 struct skb_shared_info
*shinfo
;
2889 shinfo
= skb_shinfo(skb
);
2891 page
= shinfo
->frags
[shinfo
->nr_frags
].page
;
2892 shinfo
->frags
[shinfo
->nr_frags
].page
= NULL
;
2894 cons_rx_pg
->page
= page
;
2898 hw_prod
= rxr
->rx_pg_prod
;
2900 for (i
= 0; i
< count
; i
++) {
2901 prod
= RX_PG_RING_IDX(hw_prod
);
2903 prod_rx_pg
= &rxr
->rx_pg_ring
[prod
];
2904 cons_rx_pg
= &rxr
->rx_pg_ring
[cons
];
2905 cons_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2906 prod_bd
= &rxr
->rx_pg_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2909 prod_rx_pg
->page
= cons_rx_pg
->page
;
2910 cons_rx_pg
->page
= NULL
;
2911 dma_unmap_addr_set(prod_rx_pg
, mapping
,
2912 dma_unmap_addr(cons_rx_pg
, mapping
));
2914 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2915 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2918 cons
= RX_PG_RING_IDX(NEXT_RX_BD(cons
));
2919 hw_prod
= NEXT_RX_BD(hw_prod
);
2921 rxr
->rx_pg_prod
= hw_prod
;
2922 rxr
->rx_pg_cons
= cons
;
2926 bnx2_reuse_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
,
2927 struct sk_buff
*skb
, u16 cons
, u16 prod
)
2929 struct sw_bd
*cons_rx_buf
, *prod_rx_buf
;
2930 struct rx_bd
*cons_bd
, *prod_bd
;
2932 cons_rx_buf
= &rxr
->rx_buf_ring
[cons
];
2933 prod_rx_buf
= &rxr
->rx_buf_ring
[prod
];
2935 pci_dma_sync_single_for_device(bp
->pdev
,
2936 dma_unmap_addr(cons_rx_buf
, mapping
),
2937 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
, PCI_DMA_FROMDEVICE
);
2939 rxr
->rx_prod_bseq
+= bp
->rx_buf_use_size
;
2941 prod_rx_buf
->skb
= skb
;
2942 prod_rx_buf
->desc
= (struct l2_fhdr
*) skb
->data
;
2947 dma_unmap_addr_set(prod_rx_buf
, mapping
,
2948 dma_unmap_addr(cons_rx_buf
, mapping
));
2950 cons_bd
= &rxr
->rx_desc_ring
[RX_RING(cons
)][RX_IDX(cons
)];
2951 prod_bd
= &rxr
->rx_desc_ring
[RX_RING(prod
)][RX_IDX(prod
)];
2952 prod_bd
->rx_bd_haddr_hi
= cons_bd
->rx_bd_haddr_hi
;
2953 prod_bd
->rx_bd_haddr_lo
= cons_bd
->rx_bd_haddr_lo
;
2957 bnx2_rx_skb(struct bnx2
*bp
, struct bnx2_rx_ring_info
*rxr
, struct sk_buff
*skb
,
2958 unsigned int len
, unsigned int hdr_len
, dma_addr_t dma_addr
,
2962 u16 prod
= ring_idx
& 0xffff;
2964 err
= bnx2_alloc_rx_skb(bp
, rxr
, prod
);
2965 if (unlikely(err
)) {
2966 bnx2_reuse_rx_skb(bp
, rxr
, skb
, (u16
) (ring_idx
>> 16), prod
);
2968 unsigned int raw_len
= len
+ 4;
2969 int pages
= PAGE_ALIGN(raw_len
- hdr_len
) >> PAGE_SHIFT
;
2971 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
2976 skb_reserve(skb
, BNX2_RX_OFFSET
);
2977 pci_unmap_single(bp
->pdev
, dma_addr
, bp
->rx_buf_use_size
,
2978 PCI_DMA_FROMDEVICE
);
2984 unsigned int i
, frag_len
, frag_size
, pages
;
2985 struct sw_pg
*rx_pg
;
2986 u16 pg_cons
= rxr
->rx_pg_cons
;
2987 u16 pg_prod
= rxr
->rx_pg_prod
;
2989 frag_size
= len
+ 4 - hdr_len
;
2990 pages
= PAGE_ALIGN(frag_size
) >> PAGE_SHIFT
;
2991 skb_put(skb
, hdr_len
);
2993 for (i
= 0; i
< pages
; i
++) {
2994 dma_addr_t mapping_old
;
2996 frag_len
= min(frag_size
, (unsigned int) PAGE_SIZE
);
2997 if (unlikely(frag_len
<= 4)) {
2998 unsigned int tail
= 4 - frag_len
;
3000 rxr
->rx_pg_cons
= pg_cons
;
3001 rxr
->rx_pg_prod
= pg_prod
;
3002 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
,
3009 &skb_shinfo(skb
)->frags
[i
- 1];
3011 skb
->data_len
-= tail
;
3012 skb
->truesize
-= tail
;
3016 rx_pg
= &rxr
->rx_pg_ring
[pg_cons
];
3018 /* Don't unmap yet. If we're unable to allocate a new
3019 * page, we need to recycle the page and the DMA addr.
3021 mapping_old
= dma_unmap_addr(rx_pg
, mapping
);
3025 skb_fill_page_desc(skb
, i
, rx_pg
->page
, 0, frag_len
);
3028 err
= bnx2_alloc_rx_page(bp
, rxr
,
3029 RX_PG_RING_IDX(pg_prod
));
3030 if (unlikely(err
)) {
3031 rxr
->rx_pg_cons
= pg_cons
;
3032 rxr
->rx_pg_prod
= pg_prod
;
3033 bnx2_reuse_rx_skb_pages(bp
, rxr
, skb
,
3038 pci_unmap_page(bp
->pdev
, mapping_old
,
3039 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
3041 frag_size
-= frag_len
;
3042 skb
->data_len
+= frag_len
;
3043 skb
->truesize
+= frag_len
;
3044 skb
->len
+= frag_len
;
3046 pg_prod
= NEXT_RX_BD(pg_prod
);
3047 pg_cons
= RX_PG_RING_IDX(NEXT_RX_BD(pg_cons
));
3049 rxr
->rx_pg_prod
= pg_prod
;
3050 rxr
->rx_pg_cons
= pg_cons
;
3056 bnx2_get_hw_rx_cons(struct bnx2_napi
*bnapi
)
3060 /* Tell compiler that status block fields can change. */
3062 cons
= *bnapi
->hw_rx_cons_ptr
;
3064 if (unlikely((cons
& MAX_RX_DESC_CNT
) == MAX_RX_DESC_CNT
))
3070 bnx2_rx_int(struct bnx2
*bp
, struct bnx2_napi
*bnapi
, int budget
)
3072 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3073 u16 hw_cons
, sw_cons
, sw_ring_cons
, sw_prod
, sw_ring_prod
;
3074 struct l2_fhdr
*rx_hdr
;
3075 int rx_pkt
= 0, pg_ring_used
= 0;
3076 struct pci_dev
*pdev
= bp
->pdev
;
3078 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3079 sw_cons
= rxr
->rx_cons
;
3080 sw_prod
= rxr
->rx_prod
;
3082 /* Memory barrier necessary as speculative reads of the rx
3083 * buffer can be ahead of the index in the status block
3086 while (sw_cons
!= hw_cons
) {
3087 unsigned int len
, hdr_len
;
3089 struct sw_bd
*rx_buf
, *next_rx_buf
;
3090 struct sk_buff
*skb
;
3091 dma_addr_t dma_addr
;
3093 int hw_vlan __maybe_unused
= 0;
3095 sw_ring_cons
= RX_RING_IDX(sw_cons
);
3096 sw_ring_prod
= RX_RING_IDX(sw_prod
);
3098 rx_buf
= &rxr
->rx_buf_ring
[sw_ring_cons
];
3102 if (!get_dma_ops(&pdev
->dev
)->sync_single_for_cpu
) {
3105 RX_RING_IDX(NEXT_RX_BD(sw_cons
))];
3106 prefetch(next_rx_buf
->desc
);
3110 dma_addr
= dma_unmap_addr(rx_buf
, mapping
);
3112 pci_dma_sync_single_for_cpu(bp
->pdev
, dma_addr
,
3113 BNX2_RX_OFFSET
+ BNX2_RX_COPY_THRESH
,
3114 PCI_DMA_FROMDEVICE
);
3116 rx_hdr
= rx_buf
->desc
;
3117 len
= rx_hdr
->l2_fhdr_pkt_len
;
3118 status
= rx_hdr
->l2_fhdr_status
;
3121 if (status
& L2_FHDR_STATUS_SPLIT
) {
3122 hdr_len
= rx_hdr
->l2_fhdr_ip_xsum
;
3124 } else if (len
> bp
->rx_jumbo_thresh
) {
3125 hdr_len
= bp
->rx_jumbo_thresh
;
3129 if (unlikely(status
& (L2_FHDR_ERRORS_BAD_CRC
|
3130 L2_FHDR_ERRORS_PHY_DECODE
|
3131 L2_FHDR_ERRORS_ALIGNMENT
|
3132 L2_FHDR_ERRORS_TOO_SHORT
|
3133 L2_FHDR_ERRORS_GIANT_FRAME
))) {
3135 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3140 pages
= PAGE_ALIGN(len
- hdr_len
) >> PAGE_SHIFT
;
3142 bnx2_reuse_rx_skb_pages(bp
, rxr
, NULL
, pages
);
3149 if (len
<= bp
->rx_copy_thresh
) {
3150 struct sk_buff
*new_skb
;
3152 new_skb
= netdev_alloc_skb(bp
->dev
, len
+ 6);
3153 if (new_skb
== NULL
) {
3154 bnx2_reuse_rx_skb(bp
, rxr
, skb
, sw_ring_cons
,
3160 skb_copy_from_linear_data_offset(skb
,
3162 new_skb
->data
, len
+ 6);
3163 skb_reserve(new_skb
, 6);
3164 skb_put(new_skb
, len
);
3166 bnx2_reuse_rx_skb(bp
, rxr
, skb
,
3167 sw_ring_cons
, sw_ring_prod
);
3170 } else if (unlikely(bnx2_rx_skb(bp
, rxr
, skb
, len
, hdr_len
,
3171 dma_addr
, (sw_ring_cons
<< 16) | sw_ring_prod
)))
3174 if ((status
& L2_FHDR_STATUS_L2_VLAN_TAG
) &&
3175 !(bp
->rx_mode
& BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
)) {
3176 vtag
= rx_hdr
->l2_fhdr_vlan_tag
;
3183 struct vlan_ethhdr
*ve
= (struct vlan_ethhdr
*)
3186 memmove(ve
, skb
->data
+ 4, ETH_ALEN
* 2);
3187 ve
->h_vlan_proto
= htons(ETH_P_8021Q
);
3188 ve
->h_vlan_TCI
= htons(vtag
);
3193 skb
->protocol
= eth_type_trans(skb
, bp
->dev
);
3195 if ((len
> (bp
->dev
->mtu
+ ETH_HLEN
)) &&
3196 (ntohs(skb
->protocol
) != 0x8100)) {
3203 skb
->ip_summed
= CHECKSUM_NONE
;
3205 (status
& (L2_FHDR_STATUS_TCP_SEGMENT
|
3206 L2_FHDR_STATUS_UDP_DATAGRAM
))) {
3208 if (likely((status
& (L2_FHDR_ERRORS_TCP_XSUM
|
3209 L2_FHDR_ERRORS_UDP_XSUM
)) == 0))
3210 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3213 skb_record_rx_queue(skb
, bnapi
- &bp
->bnx2_napi
[0]);
3217 vlan_gro_receive(&bnapi
->napi
, bp
->vlgrp
, vtag
, skb
);
3220 napi_gro_receive(&bnapi
->napi
, skb
);
3225 sw_cons
= NEXT_RX_BD(sw_cons
);
3226 sw_prod
= NEXT_RX_BD(sw_prod
);
3228 if ((rx_pkt
== budget
))
3231 /* Refresh hw_cons to see if there is new work */
3232 if (sw_cons
== hw_cons
) {
3233 hw_cons
= bnx2_get_hw_rx_cons(bnapi
);
3237 rxr
->rx_cons
= sw_cons
;
3238 rxr
->rx_prod
= sw_prod
;
3241 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
3243 REG_WR16(bp
, rxr
->rx_bidx_addr
, sw_prod
);
3245 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
3253 /* MSI ISR - The only difference between this and the INTx ISR
3254 * is that the MSI interrupt is always serviced.
3257 bnx2_msi(int irq
, void *dev_instance
)
3259 struct bnx2_napi
*bnapi
= dev_instance
;
3260 struct bnx2
*bp
= bnapi
->bp
;
3262 prefetch(bnapi
->status_blk
.msi
);
3263 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3264 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3265 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3267 /* Return here if interrupt is disabled. */
3268 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3271 napi_schedule(&bnapi
->napi
);
3277 bnx2_msi_1shot(int irq
, void *dev_instance
)
3279 struct bnx2_napi
*bnapi
= dev_instance
;
3280 struct bnx2
*bp
= bnapi
->bp
;
3282 prefetch(bnapi
->status_blk
.msi
);
3284 /* Return here if interrupt is disabled. */
3285 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3288 napi_schedule(&bnapi
->napi
);
3294 bnx2_interrupt(int irq
, void *dev_instance
)
3296 struct bnx2_napi
*bnapi
= dev_instance
;
3297 struct bnx2
*bp
= bnapi
->bp
;
3298 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3300 /* When using INTx, it is possible for the interrupt to arrive
3301 * at the CPU before the status block posted prior to the
3302 * interrupt. Reading a register will flush the status block.
3303 * When using MSI, the MSI message will always complete after
3304 * the status block write.
3306 if ((sblk
->status_idx
== bnapi
->last_status_idx
) &&
3307 (REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
) &
3308 BNX2_PCICFG_MISC_STATUS_INTA_VALUE
))
3311 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3312 BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM
|
3313 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
3315 /* Read back to deassert IRQ immediately to avoid too many
3316 * spurious interrupts.
3318 REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
);
3320 /* Return here if interrupt is shared and is disabled. */
3321 if (unlikely(atomic_read(&bp
->intr_sem
) != 0))
3324 if (napi_schedule_prep(&bnapi
->napi
)) {
3325 bnapi
->last_status_idx
= sblk
->status_idx
;
3326 __napi_schedule(&bnapi
->napi
);
3333 bnx2_has_fast_work(struct bnx2_napi
*bnapi
)
3335 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3336 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3338 if ((bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
) ||
3339 (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
))
3344 #define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
3345 STATUS_ATTN_BITS_TIMER_ABORT)
3348 bnx2_has_work(struct bnx2_napi
*bnapi
)
3350 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3352 if (bnx2_has_fast_work(bnapi
))
3356 if (bnapi
->cnic_present
&& (bnapi
->cnic_tag
!= sblk
->status_idx
))
3360 if ((sblk
->status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3361 (sblk
->status_attn_bits_ack
& STATUS_ATTN_EVENTS
))
3368 bnx2_chk_missed_msi(struct bnx2
*bp
)
3370 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0];
3373 if (bnx2_has_work(bnapi
)) {
3374 msi_ctrl
= REG_RD(bp
, BNX2_PCICFG_MSI_CONTROL
);
3375 if (!(msi_ctrl
& BNX2_PCICFG_MSI_CONTROL_ENABLE
))
3378 if (bnapi
->last_status_idx
== bp
->idle_chk_status_idx
) {
3379 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
&
3380 ~BNX2_PCICFG_MSI_CONTROL_ENABLE
);
3381 REG_WR(bp
, BNX2_PCICFG_MSI_CONTROL
, msi_ctrl
);
3382 bnx2_msi(bp
->irq_tbl
[0].vector
, bnapi
);
3386 bp
->idle_chk_status_idx
= bnapi
->last_status_idx
;
3390 static void bnx2_poll_cnic(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3392 struct cnic_ops
*c_ops
;
3394 if (!bnapi
->cnic_present
)
3398 c_ops
= rcu_dereference(bp
->cnic_ops
);
3400 bnapi
->cnic_tag
= c_ops
->cnic_handler(bp
->cnic_data
,
3401 bnapi
->status_blk
.msi
);
3406 static void bnx2_poll_link(struct bnx2
*bp
, struct bnx2_napi
*bnapi
)
3408 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3409 u32 status_attn_bits
= sblk
->status_attn_bits
;
3410 u32 status_attn_bits_ack
= sblk
->status_attn_bits_ack
;
3412 if ((status_attn_bits
& STATUS_ATTN_EVENTS
) !=
3413 (status_attn_bits_ack
& STATUS_ATTN_EVENTS
)) {
3415 bnx2_phy_int(bp
, bnapi
);
3417 /* This is needed to take care of transient status
3418 * during link changes.
3420 REG_WR(bp
, BNX2_HC_COMMAND
,
3421 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
3422 REG_RD(bp
, BNX2_HC_COMMAND
);
3426 static int bnx2_poll_work(struct bnx2
*bp
, struct bnx2_napi
*bnapi
,
3427 int work_done
, int budget
)
3429 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
3430 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
3432 if (bnx2_get_hw_tx_cons(bnapi
) != txr
->hw_tx_cons
)
3433 bnx2_tx_int(bp
, bnapi
, 0);
3435 if (bnx2_get_hw_rx_cons(bnapi
) != rxr
->rx_cons
)
3436 work_done
+= bnx2_rx_int(bp
, bnapi
, budget
- work_done
);
3441 static int bnx2_poll_msix(struct napi_struct
*napi
, int budget
)
3443 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3444 struct bnx2
*bp
= bnapi
->bp
;
3446 struct status_block_msix
*sblk
= bnapi
->status_blk
.msix
;
3449 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3450 if (unlikely(work_done
>= budget
))
3453 bnapi
->last_status_idx
= sblk
->status_idx
;
3454 /* status idx must be read before checking for more work. */
3456 if (likely(!bnx2_has_fast_work(bnapi
))) {
3458 napi_complete(napi
);
3459 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, bnapi
->int_num
|
3460 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3461 bnapi
->last_status_idx
);
3468 static int bnx2_poll(struct napi_struct
*napi
, int budget
)
3470 struct bnx2_napi
*bnapi
= container_of(napi
, struct bnx2_napi
, napi
);
3471 struct bnx2
*bp
= bnapi
->bp
;
3473 struct status_block
*sblk
= bnapi
->status_blk
.msi
;
3476 bnx2_poll_link(bp
, bnapi
);
3478 work_done
= bnx2_poll_work(bp
, bnapi
, work_done
, budget
);
3481 bnx2_poll_cnic(bp
, bnapi
);
3484 /* bnapi->last_status_idx is used below to tell the hw how
3485 * much work has been processed, so we must read it before
3486 * checking for more work.
3488 bnapi
->last_status_idx
= sblk
->status_idx
;
3490 if (unlikely(work_done
>= budget
))
3494 if (likely(!bnx2_has_work(bnapi
))) {
3495 napi_complete(napi
);
3496 if (likely(bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)) {
3497 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3498 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3499 bnapi
->last_status_idx
);
3502 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3503 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3504 BNX2_PCICFG_INT_ACK_CMD_MASK_INT
|
3505 bnapi
->last_status_idx
);
3507 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
,
3508 BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID
|
3509 bnapi
->last_status_idx
);
3517 /* Called with rtnl_lock from vlan functions and also netif_tx_lock
3518 * from set_multicast.
3521 bnx2_set_rx_mode(struct net_device
*dev
)
3523 struct bnx2
*bp
= netdev_priv(dev
);
3524 u32 rx_mode
, sort_mode
;
3525 struct netdev_hw_addr
*ha
;
3528 if (!netif_running(dev
))
3531 spin_lock_bh(&bp
->phy_lock
);
3533 rx_mode
= bp
->rx_mode
& ~(BNX2_EMAC_RX_MODE_PROMISCUOUS
|
3534 BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
);
3535 sort_mode
= 1 | BNX2_RPM_SORT_USER0_BC_EN
;
3537 if (!bp
->vlgrp
&& (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
))
3538 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3540 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
3541 rx_mode
|= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG
;
3543 if (dev
->flags
& IFF_PROMISC
) {
3544 /* Promiscuous mode. */
3545 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3546 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3547 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3549 else if (dev
->flags
& IFF_ALLMULTI
) {
3550 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3551 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3554 sort_mode
|= BNX2_RPM_SORT_USER0_MC_EN
;
3557 /* Accept one or more multicast(s). */
3558 u32 mc_filter
[NUM_MC_HASH_REGISTERS
];
3563 memset(mc_filter
, 0, 4 * NUM_MC_HASH_REGISTERS
);
3565 netdev_for_each_mc_addr(ha
, dev
) {
3566 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
3568 regidx
= (bit
& 0xe0) >> 5;
3570 mc_filter
[regidx
] |= (1 << bit
);
3573 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3574 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3578 sort_mode
|= BNX2_RPM_SORT_USER0_MC_HSH_EN
;
3581 if (netdev_uc_count(dev
) > BNX2_MAX_UNICAST_ADDRESSES
) {
3582 rx_mode
|= BNX2_EMAC_RX_MODE_PROMISCUOUS
;
3583 sort_mode
|= BNX2_RPM_SORT_USER0_PROM_EN
|
3584 BNX2_RPM_SORT_USER0_PROM_VLAN
;
3585 } else if (!(dev
->flags
& IFF_PROMISC
)) {
3586 /* Add all entries into to the match filter list */
3588 netdev_for_each_uc_addr(ha
, dev
) {
3589 bnx2_set_mac_addr(bp
, ha
->addr
,
3590 i
+ BNX2_START_UNICAST_ADDRESS_INDEX
);
3592 (i
+ BNX2_START_UNICAST_ADDRESS_INDEX
));
3598 if (rx_mode
!= bp
->rx_mode
) {
3599 bp
->rx_mode
= rx_mode
;
3600 REG_WR(bp
, BNX2_EMAC_RX_MODE
, rx_mode
);
3603 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3604 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
);
3605 REG_WR(bp
, BNX2_RPM_SORT_USER0
, sort_mode
| BNX2_RPM_SORT_USER0_ENA
);
3607 spin_unlock_bh(&bp
->phy_lock
);
3610 static int __devinit
3611 check_fw_section(const struct firmware
*fw
,
3612 const struct bnx2_fw_file_section
*section
,
3613 u32 alignment
, bool non_empty
)
3615 u32 offset
= be32_to_cpu(section
->offset
);
3616 u32 len
= be32_to_cpu(section
->len
);
3618 if ((offset
== 0 && len
!= 0) || offset
>= fw
->size
|| offset
& 3)
3620 if ((non_empty
&& len
== 0) || len
> fw
->size
- offset
||
3621 len
& (alignment
- 1))
3626 static int __devinit
3627 check_mips_fw_entry(const struct firmware
*fw
,
3628 const struct bnx2_mips_fw_file_entry
*entry
)
3630 if (check_fw_section(fw
, &entry
->text
, 4, true) ||
3631 check_fw_section(fw
, &entry
->data
, 4, false) ||
3632 check_fw_section(fw
, &entry
->rodata
, 4, false))
3637 static int __devinit
3638 bnx2_request_firmware(struct bnx2
*bp
)
3640 const char *mips_fw_file
, *rv2p_fw_file
;
3641 const struct bnx2_mips_fw_file
*mips_fw
;
3642 const struct bnx2_rv2p_fw_file
*rv2p_fw
;
3645 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
3646 mips_fw_file
= FW_MIPS_FILE_09
;
3647 if ((CHIP_ID(bp
) == CHIP_ID_5709_A0
) ||
3648 (CHIP_ID(bp
) == CHIP_ID_5709_A1
))
3649 rv2p_fw_file
= FW_RV2P_FILE_09_Ax
;
3651 rv2p_fw_file
= FW_RV2P_FILE_09
;
3653 mips_fw_file
= FW_MIPS_FILE_06
;
3654 rv2p_fw_file
= FW_RV2P_FILE_06
;
3657 rc
= request_firmware(&bp
->mips_firmware
, mips_fw_file
, &bp
->pdev
->dev
);
3659 pr_err("Can't load firmware file \"%s\"\n", mips_fw_file
);
3663 rc
= request_firmware(&bp
->rv2p_firmware
, rv2p_fw_file
, &bp
->pdev
->dev
);
3665 pr_err("Can't load firmware file \"%s\"\n", rv2p_fw_file
);
3668 mips_fw
= (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3669 rv2p_fw
= (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3670 if (bp
->mips_firmware
->size
< sizeof(*mips_fw
) ||
3671 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->com
) ||
3672 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->cp
) ||
3673 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->rxp
) ||
3674 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->tpat
) ||
3675 check_mips_fw_entry(bp
->mips_firmware
, &mips_fw
->txp
)) {
3676 pr_err("Firmware file \"%s\" is invalid\n", mips_fw_file
);
3679 if (bp
->rv2p_firmware
->size
< sizeof(*rv2p_fw
) ||
3680 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc1
.rv2p
, 8, true) ||
3681 check_fw_section(bp
->rv2p_firmware
, &rv2p_fw
->proc2
.rv2p
, 8, true)) {
3682 pr_err("Firmware file \"%s\" is invalid\n", rv2p_fw_file
);
3690 rv2p_fw_fixup(u32 rv2p_proc
, int idx
, u32 loc
, u32 rv2p_code
)
3693 case RV2P_P1_FIXUP_PAGE_SIZE_IDX
:
3694 rv2p_code
&= ~RV2P_BD_PAGE_SIZE_MSK
;
3695 rv2p_code
|= RV2P_BD_PAGE_SIZE
;
3702 load_rv2p_fw(struct bnx2
*bp
, u32 rv2p_proc
,
3703 const struct bnx2_rv2p_fw_file_entry
*fw_entry
)
3705 u32 rv2p_code_len
, file_offset
;
3710 rv2p_code_len
= be32_to_cpu(fw_entry
->rv2p
.len
);
3711 file_offset
= be32_to_cpu(fw_entry
->rv2p
.offset
);
3713 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3715 if (rv2p_proc
== RV2P_PROC1
) {
3716 cmd
= BNX2_RV2P_PROC1_ADDR_CMD_RDWR
;
3717 addr
= BNX2_RV2P_PROC1_ADDR_CMD
;
3719 cmd
= BNX2_RV2P_PROC2_ADDR_CMD_RDWR
;
3720 addr
= BNX2_RV2P_PROC2_ADDR_CMD
;
3723 for (i
= 0; i
< rv2p_code_len
; i
+= 8) {
3724 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, be32_to_cpu(*rv2p_code
));
3726 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, be32_to_cpu(*rv2p_code
));
3729 val
= (i
/ 8) | cmd
;
3730 REG_WR(bp
, addr
, val
);
3733 rv2p_code
= (__be32
*)(bp
->rv2p_firmware
->data
+ file_offset
);
3734 for (i
= 0; i
< 8; i
++) {
3737 loc
= be32_to_cpu(fw_entry
->fixup
[i
]);
3738 if (loc
&& ((loc
* 4) < rv2p_code_len
)) {
3739 code
= be32_to_cpu(*(rv2p_code
+ loc
- 1));
3740 REG_WR(bp
, BNX2_RV2P_INSTR_HIGH
, code
);
3741 code
= be32_to_cpu(*(rv2p_code
+ loc
));
3742 code
= rv2p_fw_fixup(rv2p_proc
, i
, loc
, code
);
3743 REG_WR(bp
, BNX2_RV2P_INSTR_LOW
, code
);
3745 val
= (loc
/ 2) | cmd
;
3746 REG_WR(bp
, addr
, val
);
3750 /* Reset the processor, un-stall is done later. */
3751 if (rv2p_proc
== RV2P_PROC1
) {
3752 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC1_RESET
);
3755 REG_WR(bp
, BNX2_RV2P_COMMAND
, BNX2_RV2P_COMMAND_PROC2_RESET
);
3762 load_cpu_fw(struct bnx2
*bp
, const struct cpu_reg
*cpu_reg
,
3763 const struct bnx2_mips_fw_file_entry
*fw_entry
)
3765 u32 addr
, len
, file_offset
;
3771 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3772 val
|= cpu_reg
->mode_value_halt
;
3773 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3774 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3776 /* Load the Text area. */
3777 addr
= be32_to_cpu(fw_entry
->text
.addr
);
3778 len
= be32_to_cpu(fw_entry
->text
.len
);
3779 file_offset
= be32_to_cpu(fw_entry
->text
.offset
);
3780 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3782 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3786 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3787 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3790 /* Load the Data area. */
3791 addr
= be32_to_cpu(fw_entry
->data
.addr
);
3792 len
= be32_to_cpu(fw_entry
->data
.len
);
3793 file_offset
= be32_to_cpu(fw_entry
->data
.offset
);
3794 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3796 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3800 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3801 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3804 /* Load the Read-Only area. */
3805 addr
= be32_to_cpu(fw_entry
->rodata
.addr
);
3806 len
= be32_to_cpu(fw_entry
->rodata
.len
);
3807 file_offset
= be32_to_cpu(fw_entry
->rodata
.offset
);
3808 data
= (__be32
*)(bp
->mips_firmware
->data
+ file_offset
);
3810 offset
= cpu_reg
->spad_base
+ (addr
- cpu_reg
->mips_view_base
);
3814 for (j
= 0; j
< (len
/ 4); j
++, offset
+= 4)
3815 bnx2_reg_wr_ind(bp
, offset
, be32_to_cpu(data
[j
]));
3818 /* Clear the pre-fetch instruction. */
3819 bnx2_reg_wr_ind(bp
, cpu_reg
->inst
, 0);
3821 val
= be32_to_cpu(fw_entry
->start_addr
);
3822 bnx2_reg_wr_ind(bp
, cpu_reg
->pc
, val
);
3824 /* Start the CPU. */
3825 val
= bnx2_reg_rd_ind(bp
, cpu_reg
->mode
);
3826 val
&= ~cpu_reg
->mode_value_halt
;
3827 bnx2_reg_wr_ind(bp
, cpu_reg
->state
, cpu_reg
->state_value_clear
);
3828 bnx2_reg_wr_ind(bp
, cpu_reg
->mode
, val
);
3834 bnx2_init_cpus(struct bnx2
*bp
)
3836 const struct bnx2_mips_fw_file
*mips_fw
=
3837 (const struct bnx2_mips_fw_file
*) bp
->mips_firmware
->data
;
3838 const struct bnx2_rv2p_fw_file
*rv2p_fw
=
3839 (const struct bnx2_rv2p_fw_file
*) bp
->rv2p_firmware
->data
;
3842 /* Initialize the RV2P processor. */
3843 load_rv2p_fw(bp
, RV2P_PROC1
, &rv2p_fw
->proc1
);
3844 load_rv2p_fw(bp
, RV2P_PROC2
, &rv2p_fw
->proc2
);
3846 /* Initialize the RX Processor. */
3847 rc
= load_cpu_fw(bp
, &cpu_reg_rxp
, &mips_fw
->rxp
);
3851 /* Initialize the TX Processor. */
3852 rc
= load_cpu_fw(bp
, &cpu_reg_txp
, &mips_fw
->txp
);
3856 /* Initialize the TX Patch-up Processor. */
3857 rc
= load_cpu_fw(bp
, &cpu_reg_tpat
, &mips_fw
->tpat
);
3861 /* Initialize the Completion Processor. */
3862 rc
= load_cpu_fw(bp
, &cpu_reg_com
, &mips_fw
->com
);
3866 /* Initialize the Command Processor. */
3867 rc
= load_cpu_fw(bp
, &cpu_reg_cp
, &mips_fw
->cp
);
3874 bnx2_set_power_state(struct bnx2
*bp
, pci_power_t state
)
3878 pci_read_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
, &pmcsr
);
3884 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3885 (pmcsr
& ~PCI_PM_CTRL_STATE_MASK
) |
3886 PCI_PM_CTRL_PME_STATUS
);
3888 if (pmcsr
& PCI_PM_CTRL_STATE_MASK
)
3889 /* delay required during transition out of D3hot */
3892 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3893 val
|= BNX2_EMAC_MODE_MPKT_RCVD
| BNX2_EMAC_MODE_ACPI_RCVD
;
3894 val
&= ~BNX2_EMAC_MODE_MPKT
;
3895 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3897 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3898 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3899 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3910 autoneg
= bp
->autoneg
;
3911 advertising
= bp
->advertising
;
3913 if (bp
->phy_port
== PORT_TP
) {
3914 bp
->autoneg
= AUTONEG_SPEED
;
3915 bp
->advertising
= ADVERTISED_10baseT_Half
|
3916 ADVERTISED_10baseT_Full
|
3917 ADVERTISED_100baseT_Half
|
3918 ADVERTISED_100baseT_Full
|
3922 spin_lock_bh(&bp
->phy_lock
);
3923 bnx2_setup_phy(bp
, bp
->phy_port
);
3924 spin_unlock_bh(&bp
->phy_lock
);
3926 bp
->autoneg
= autoneg
;
3927 bp
->advertising
= advertising
;
3929 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
3931 val
= REG_RD(bp
, BNX2_EMAC_MODE
);
3933 /* Enable port mode. */
3934 val
&= ~BNX2_EMAC_MODE_PORT
;
3935 val
|= BNX2_EMAC_MODE_MPKT_RCVD
|
3936 BNX2_EMAC_MODE_ACPI_RCVD
|
3937 BNX2_EMAC_MODE_MPKT
;
3938 if (bp
->phy_port
== PORT_TP
)
3939 val
|= BNX2_EMAC_MODE_PORT_MII
;
3941 val
|= BNX2_EMAC_MODE_PORT_GMII
;
3942 if (bp
->line_speed
== SPEED_2500
)
3943 val
|= BNX2_EMAC_MODE_25G_MODE
;
3946 REG_WR(bp
, BNX2_EMAC_MODE
, val
);
3948 /* receive all multicast */
3949 for (i
= 0; i
< NUM_MC_HASH_REGISTERS
; i
++) {
3950 REG_WR(bp
, BNX2_EMAC_MULTICAST_HASH0
+ (i
* 4),
3953 REG_WR(bp
, BNX2_EMAC_RX_MODE
,
3954 BNX2_EMAC_RX_MODE_SORT_MODE
);
3956 val
= 1 | BNX2_RPM_SORT_USER0_BC_EN
|
3957 BNX2_RPM_SORT_USER0_MC_EN
;
3958 REG_WR(bp
, BNX2_RPM_SORT_USER0
, 0x0);
3959 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
);
3960 REG_WR(bp
, BNX2_RPM_SORT_USER0
, val
|
3961 BNX2_RPM_SORT_USER0_ENA
);
3963 /* Need to enable EMAC and RPM for WOL. */
3964 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
3965 BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE
|
3966 BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE
|
3967 BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE
);
3969 val
= REG_RD(bp
, BNX2_RPM_CONFIG
);
3970 val
&= ~BNX2_RPM_CONFIG_ACPI_ENA
;
3971 REG_WR(bp
, BNX2_RPM_CONFIG
, val
);
3973 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
3976 wol_msg
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
3979 if (!(bp
->flags
& BNX2_FLAG_NO_WOL
))
3980 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT3
| wol_msg
,
3983 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
3984 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
3985 (CHIP_ID(bp
) == CHIP_ID_5706_A1
)) {
3994 pmcsr
|= PCI_PM_CTRL_PME_ENABLE
;
3996 pci_write_config_word(bp
->pdev
, bp
->pm_cap
+ PCI_PM_CTRL
,
3999 /* No more memory access after this point until
4000 * device is brought back to D0.
4012 bnx2_acquire_nvram_lock(struct bnx2
*bp
)
4017 /* Request access to the flash interface. */
4018 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_SET2
);
4019 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4020 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4021 if (val
& BNX2_NVM_SW_ARB_ARB_ARB2
)
4027 if (j
>= NVRAM_TIMEOUT_COUNT
)
4034 bnx2_release_nvram_lock(struct bnx2
*bp
)
4039 /* Relinquish nvram interface. */
4040 REG_WR(bp
, BNX2_NVM_SW_ARB
, BNX2_NVM_SW_ARB_ARB_REQ_CLR2
);
4042 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4043 val
= REG_RD(bp
, BNX2_NVM_SW_ARB
);
4044 if (!(val
& BNX2_NVM_SW_ARB_ARB_ARB2
))
4050 if (j
>= NVRAM_TIMEOUT_COUNT
)
4058 bnx2_enable_nvram_write(struct bnx2
*bp
)
4062 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4063 REG_WR(bp
, BNX2_MISC_CFG
, val
| BNX2_MISC_CFG_NVM_WR_EN_PCI
);
4065 if (bp
->flash_info
->flags
& BNX2_NV_WREN
) {
4068 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4069 REG_WR(bp
, BNX2_NVM_COMMAND
,
4070 BNX2_NVM_COMMAND_WREN
| BNX2_NVM_COMMAND_DOIT
);
4072 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4075 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4076 if (val
& BNX2_NVM_COMMAND_DONE
)
4080 if (j
>= NVRAM_TIMEOUT_COUNT
)
4087 bnx2_disable_nvram_write(struct bnx2
*bp
)
4091 val
= REG_RD(bp
, BNX2_MISC_CFG
);
4092 REG_WR(bp
, BNX2_MISC_CFG
, val
& ~BNX2_MISC_CFG_NVM_WR_EN
);
4097 bnx2_enable_nvram_access(struct bnx2
*bp
)
4101 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4102 /* Enable both bits, even on read. */
4103 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4104 val
| BNX2_NVM_ACCESS_ENABLE_EN
| BNX2_NVM_ACCESS_ENABLE_WR_EN
);
4108 bnx2_disable_nvram_access(struct bnx2
*bp
)
4112 val
= REG_RD(bp
, BNX2_NVM_ACCESS_ENABLE
);
4113 /* Disable both bits, even after read. */
4114 REG_WR(bp
, BNX2_NVM_ACCESS_ENABLE
,
4115 val
& ~(BNX2_NVM_ACCESS_ENABLE_EN
|
4116 BNX2_NVM_ACCESS_ENABLE_WR_EN
));
4120 bnx2_nvram_erase_page(struct bnx2
*bp
, u32 offset
)
4125 if (bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)
4126 /* Buffered flash, no erase needed */
4129 /* Build an erase command */
4130 cmd
= BNX2_NVM_COMMAND_ERASE
| BNX2_NVM_COMMAND_WR
|
4131 BNX2_NVM_COMMAND_DOIT
;
4133 /* Need to clear DONE bit separately. */
4134 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4136 /* Address of the NVRAM to read from. */
4137 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4139 /* Issue an erase command. */
4140 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4142 /* Wait for completion. */
4143 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4148 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4149 if (val
& BNX2_NVM_COMMAND_DONE
)
4153 if (j
>= NVRAM_TIMEOUT_COUNT
)
4160 bnx2_nvram_read_dword(struct bnx2
*bp
, u32 offset
, u8
*ret_val
, u32 cmd_flags
)
4165 /* Build the command word. */
4166 cmd
= BNX2_NVM_COMMAND_DOIT
| cmd_flags
;
4168 /* Calculate an offset of a buffered flash, not needed for 5709. */
4169 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4170 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4171 bp
->flash_info
->page_bits
) +
4172 (offset
% bp
->flash_info
->page_size
);
4175 /* Need to clear DONE bit separately. */
4176 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4178 /* Address of the NVRAM to read from. */
4179 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4181 /* Issue a read command. */
4182 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4184 /* Wait for completion. */
4185 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4190 val
= REG_RD(bp
, BNX2_NVM_COMMAND
);
4191 if (val
& BNX2_NVM_COMMAND_DONE
) {
4192 __be32 v
= cpu_to_be32(REG_RD(bp
, BNX2_NVM_READ
));
4193 memcpy(ret_val
, &v
, 4);
4197 if (j
>= NVRAM_TIMEOUT_COUNT
)
4205 bnx2_nvram_write_dword(struct bnx2
*bp
, u32 offset
, u8
*val
, u32 cmd_flags
)
4211 /* Build the command word. */
4212 cmd
= BNX2_NVM_COMMAND_DOIT
| BNX2_NVM_COMMAND_WR
| cmd_flags
;
4214 /* Calculate an offset of a buffered flash, not needed for 5709. */
4215 if (bp
->flash_info
->flags
& BNX2_NV_TRANSLATE
) {
4216 offset
= ((offset
/ bp
->flash_info
->page_size
) <<
4217 bp
->flash_info
->page_bits
) +
4218 (offset
% bp
->flash_info
->page_size
);
4221 /* Need to clear DONE bit separately. */
4222 REG_WR(bp
, BNX2_NVM_COMMAND
, BNX2_NVM_COMMAND_DONE
);
4224 memcpy(&val32
, val
, 4);
4226 /* Write the data. */
4227 REG_WR(bp
, BNX2_NVM_WRITE
, be32_to_cpu(val32
));
4229 /* Address of the NVRAM to write to. */
4230 REG_WR(bp
, BNX2_NVM_ADDR
, offset
& BNX2_NVM_ADDR_NVM_ADDR_VALUE
);
4232 /* Issue the write command. */
4233 REG_WR(bp
, BNX2_NVM_COMMAND
, cmd
);
4235 /* Wait for completion. */
4236 for (j
= 0; j
< NVRAM_TIMEOUT_COUNT
; j
++) {
4239 if (REG_RD(bp
, BNX2_NVM_COMMAND
) & BNX2_NVM_COMMAND_DONE
)
4242 if (j
>= NVRAM_TIMEOUT_COUNT
)
4249 bnx2_init_nvram(struct bnx2
*bp
)
4252 int j
, entry_count
, rc
= 0;
4253 const struct flash_spec
*flash
;
4255 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4256 bp
->flash_info
= &flash_5709
;
4257 goto get_flash_size
;
4260 /* Determine the selected interface. */
4261 val
= REG_RD(bp
, BNX2_NVM_CFG1
);
4263 entry_count
= ARRAY_SIZE(flash_table
);
4265 if (val
& 0x40000000) {
4267 /* Flash interface has been reconfigured */
4268 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4270 if ((val
& FLASH_BACKUP_STRAP_MASK
) ==
4271 (flash
->config1
& FLASH_BACKUP_STRAP_MASK
)) {
4272 bp
->flash_info
= flash
;
4279 /* Not yet been reconfigured */
4281 if (val
& (1 << 23))
4282 mask
= FLASH_BACKUP_STRAP_MASK
;
4284 mask
= FLASH_STRAP_MASK
;
4286 for (j
= 0, flash
= &flash_table
[0]; j
< entry_count
;
4289 if ((val
& mask
) == (flash
->strapping
& mask
)) {
4290 bp
->flash_info
= flash
;
4292 /* Request access to the flash interface. */
4293 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4296 /* Enable access to flash interface */
4297 bnx2_enable_nvram_access(bp
);
4299 /* Reconfigure the flash interface */
4300 REG_WR(bp
, BNX2_NVM_CFG1
, flash
->config1
);
4301 REG_WR(bp
, BNX2_NVM_CFG2
, flash
->config2
);
4302 REG_WR(bp
, BNX2_NVM_CFG3
, flash
->config3
);
4303 REG_WR(bp
, BNX2_NVM_WRITE1
, flash
->write1
);
4305 /* Disable access to flash interface */
4306 bnx2_disable_nvram_access(bp
);
4307 bnx2_release_nvram_lock(bp
);
4312 } /* if (val & 0x40000000) */
4314 if (j
== entry_count
) {
4315 bp
->flash_info
= NULL
;
4316 pr_alert("Unknown flash/EEPROM type\n");
4321 val
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG2
);
4322 val
&= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK
;
4324 bp
->flash_size
= val
;
4326 bp
->flash_size
= bp
->flash_info
->total_size
;
4332 bnx2_nvram_read(struct bnx2
*bp
, u32 offset
, u8
*ret_buf
,
4336 u32 cmd_flags
, offset32
, len32
, extra
;
4341 /* Request access to the flash interface. */
4342 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4345 /* Enable access to flash interface */
4346 bnx2_enable_nvram_access(bp
);
4359 pre_len
= 4 - (offset
& 3);
4361 if (pre_len
>= len32
) {
4363 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4364 BNX2_NVM_COMMAND_LAST
;
4367 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4370 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4375 memcpy(ret_buf
, buf
+ (offset
& 3), pre_len
);
4382 extra
= 4 - (len32
& 3);
4383 len32
= (len32
+ 4) & ~3;
4390 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4392 cmd_flags
= BNX2_NVM_COMMAND_FIRST
|
4393 BNX2_NVM_COMMAND_LAST
;
4395 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4397 memcpy(ret_buf
, buf
, 4 - extra
);
4399 else if (len32
> 0) {
4402 /* Read the first word. */
4406 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4408 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, cmd_flags
);
4410 /* Advance to the next dword. */
4415 while (len32
> 4 && rc
== 0) {
4416 rc
= bnx2_nvram_read_dword(bp
, offset32
, ret_buf
, 0);
4418 /* Advance to the next dword. */
4427 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4428 rc
= bnx2_nvram_read_dword(bp
, offset32
, buf
, cmd_flags
);
4430 memcpy(ret_buf
, buf
, 4 - extra
);
4433 /* Disable access to flash interface */
4434 bnx2_disable_nvram_access(bp
);
4436 bnx2_release_nvram_lock(bp
);
4442 bnx2_nvram_write(struct bnx2
*bp
, u32 offset
, u8
*data_buf
,
4445 u32 written
, offset32
, len32
;
4446 u8
*buf
, start
[4], end
[4], *align_buf
= NULL
, *flash_buffer
= NULL
;
4448 int align_start
, align_end
;
4453 align_start
= align_end
= 0;
4455 if ((align_start
= (offset32
& 3))) {
4457 len32
+= align_start
;
4460 if ((rc
= bnx2_nvram_read(bp
, offset32
, start
, 4)))
4465 align_end
= 4 - (len32
& 3);
4467 if ((rc
= bnx2_nvram_read(bp
, offset32
+ len32
- 4, end
, 4)))
4471 if (align_start
|| align_end
) {
4472 align_buf
= kmalloc(len32
, GFP_KERNEL
);
4473 if (align_buf
== NULL
)
4476 memcpy(align_buf
, start
, 4);
4479 memcpy(align_buf
+ len32
- 4, end
, 4);
4481 memcpy(align_buf
+ align_start
, data_buf
, buf_size
);
4485 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4486 flash_buffer
= kmalloc(264, GFP_KERNEL
);
4487 if (flash_buffer
== NULL
) {
4489 goto nvram_write_end
;
4494 while ((written
< len32
) && (rc
== 0)) {
4495 u32 page_start
, page_end
, data_start
, data_end
;
4496 u32 addr
, cmd_flags
;
4499 /* Find the page_start addr */
4500 page_start
= offset32
+ written
;
4501 page_start
-= (page_start
% bp
->flash_info
->page_size
);
4502 /* Find the page_end addr */
4503 page_end
= page_start
+ bp
->flash_info
->page_size
;
4504 /* Find the data_start addr */
4505 data_start
= (written
== 0) ? offset32
: page_start
;
4506 /* Find the data_end addr */
4507 data_end
= (page_end
> offset32
+ len32
) ?
4508 (offset32
+ len32
) : page_end
;
4510 /* Request access to the flash interface. */
4511 if ((rc
= bnx2_acquire_nvram_lock(bp
)) != 0)
4512 goto nvram_write_end
;
4514 /* Enable access to flash interface */
4515 bnx2_enable_nvram_access(bp
);
4517 cmd_flags
= BNX2_NVM_COMMAND_FIRST
;
4518 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4521 /* Read the whole page into the buffer
4522 * (non-buffer flash only) */
4523 for (j
= 0; j
< bp
->flash_info
->page_size
; j
+= 4) {
4524 if (j
== (bp
->flash_info
->page_size
- 4)) {
4525 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4527 rc
= bnx2_nvram_read_dword(bp
,
4533 goto nvram_write_end
;
4539 /* Enable writes to flash interface (unlock write-protect) */
4540 if ((rc
= bnx2_enable_nvram_write(bp
)) != 0)
4541 goto nvram_write_end
;
4543 /* Loop to write back the buffer data from page_start to
4546 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4547 /* Erase the page */
4548 if ((rc
= bnx2_nvram_erase_page(bp
, page_start
)) != 0)
4549 goto nvram_write_end
;
4551 /* Re-enable the write again for the actual write */
4552 bnx2_enable_nvram_write(bp
);
4554 for (addr
= page_start
; addr
< data_start
;
4555 addr
+= 4, i
+= 4) {
4557 rc
= bnx2_nvram_write_dword(bp
, addr
,
4558 &flash_buffer
[i
], cmd_flags
);
4561 goto nvram_write_end
;
4567 /* Loop to write the new data from data_start to data_end */
4568 for (addr
= data_start
; addr
< data_end
; addr
+= 4, i
+= 4) {
4569 if ((addr
== page_end
- 4) ||
4570 ((bp
->flash_info
->flags
& BNX2_NV_BUFFERED
) &&
4571 (addr
== data_end
- 4))) {
4573 cmd_flags
|= BNX2_NVM_COMMAND_LAST
;
4575 rc
= bnx2_nvram_write_dword(bp
, addr
, buf
,
4579 goto nvram_write_end
;
4585 /* Loop to write back the buffer data from data_end
4587 if (!(bp
->flash_info
->flags
& BNX2_NV_BUFFERED
)) {
4588 for (addr
= data_end
; addr
< page_end
;
4589 addr
+= 4, i
+= 4) {
4591 if (addr
== page_end
-4) {
4592 cmd_flags
= BNX2_NVM_COMMAND_LAST
;
4594 rc
= bnx2_nvram_write_dword(bp
, addr
,
4595 &flash_buffer
[i
], cmd_flags
);
4598 goto nvram_write_end
;
4604 /* Disable writes to flash interface (lock write-protect) */
4605 bnx2_disable_nvram_write(bp
);
4607 /* Disable access to flash interface */
4608 bnx2_disable_nvram_access(bp
);
4609 bnx2_release_nvram_lock(bp
);
4611 /* Increment written */
4612 written
+= data_end
- data_start
;
4616 kfree(flash_buffer
);
4622 bnx2_init_fw_cap(struct bnx2
*bp
)
4626 bp
->phy_flags
&= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4627 bp
->flags
&= ~BNX2_FLAG_CAN_KEEP_VLAN
;
4629 if (!(bp
->flags
& BNX2_FLAG_ASF_ENABLE
))
4630 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4632 val
= bnx2_shmem_rd(bp
, BNX2_FW_CAP_MB
);
4633 if ((val
& BNX2_FW_CAP_SIGNATURE_MASK
) != BNX2_FW_CAP_SIGNATURE
)
4636 if ((val
& BNX2_FW_CAP_CAN_KEEP_VLAN
) == BNX2_FW_CAP_CAN_KEEP_VLAN
) {
4637 bp
->flags
|= BNX2_FLAG_CAN_KEEP_VLAN
;
4638 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
| BNX2_FW_CAP_CAN_KEEP_VLAN
;
4641 if ((bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) &&
4642 (val
& BNX2_FW_CAP_REMOTE_PHY_CAPABLE
)) {
4645 bp
->phy_flags
|= BNX2_PHY_FLAG_REMOTE_PHY_CAP
;
4647 link
= bnx2_shmem_rd(bp
, BNX2_LINK_STATUS
);
4648 if (link
& BNX2_LINK_STATUS_SERDES_LINK
)
4649 bp
->phy_port
= PORT_FIBRE
;
4651 bp
->phy_port
= PORT_TP
;
4653 sig
|= BNX2_DRV_ACK_CAP_SIGNATURE
|
4654 BNX2_FW_CAP_REMOTE_PHY_CAPABLE
;
4657 if (netif_running(bp
->dev
) && sig
)
4658 bnx2_shmem_wr(bp
, BNX2_DRV_ACK_CAP_MB
, sig
);
4662 bnx2_setup_msix_tbl(struct bnx2
*bp
)
4664 REG_WR(bp
, BNX2_PCI_GRC_WINDOW_ADDR
, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN
);
4666 REG_WR(bp
, BNX2_PCI_GRC_WINDOW2_ADDR
, BNX2_MSIX_TABLE_ADDR
);
4667 REG_WR(bp
, BNX2_PCI_GRC_WINDOW3_ADDR
, BNX2_MSIX_PBA_ADDR
);
4671 bnx2_reset_chip(struct bnx2
*bp
, u32 reset_code
)
4677 /* Wait for the current PCI transaction to complete before
4678 * issuing a reset. */
4679 REG_WR(bp
, BNX2_MISC_ENABLE_CLR_BITS
,
4680 BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE
|
4681 BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE
|
4682 BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE
|
4683 BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE
);
4684 val
= REG_RD(bp
, BNX2_MISC_ENABLE_CLR_BITS
);
4687 /* Wait for the firmware to tell us it is ok to issue a reset. */
4688 bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT0
| reset_code
, 1, 1);
4690 /* Deposit a driver reset signature so the firmware knows that
4691 * this is a soft reset. */
4692 bnx2_shmem_wr(bp
, BNX2_DRV_RESET_SIGNATURE
,
4693 BNX2_DRV_RESET_SIGNATURE_MAGIC
);
4695 /* Do a dummy read to force the chip to complete all current transaction
4696 * before we issue a reset. */
4697 val
= REG_RD(bp
, BNX2_MISC_ID
);
4699 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4700 REG_WR(bp
, BNX2_MISC_COMMAND
, BNX2_MISC_COMMAND_SW_RESET
);
4701 REG_RD(bp
, BNX2_MISC_COMMAND
);
4704 val
= BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4705 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4707 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
, val
);
4710 val
= BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4711 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
4712 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
;
4715 REG_WR(bp
, BNX2_PCICFG_MISC_CONFIG
, val
);
4717 /* Reading back any register after chip reset will hang the
4718 * bus on 5706 A0 and A1. The msleep below provides plenty
4719 * of margin for write posting.
4721 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
4722 (CHIP_ID(bp
) == CHIP_ID_5706_A1
))
4725 /* Reset takes approximate 30 usec */
4726 for (i
= 0; i
< 10; i
++) {
4727 val
= REG_RD(bp
, BNX2_PCICFG_MISC_CONFIG
);
4728 if ((val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4729 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) == 0)
4734 if (val
& (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ
|
4735 BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY
)) {
4736 pr_err("Chip reset did not complete\n");
4741 /* Make sure byte swapping is properly configured. */
4742 val
= REG_RD(bp
, BNX2_PCI_SWAP_DIAG0
);
4743 if (val
!= 0x01020304) {
4744 pr_err("Chip not in correct endian mode\n");
4748 /* Wait for the firmware to finish its initialization. */
4749 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT1
| reset_code
, 1, 0);
4753 spin_lock_bh(&bp
->phy_lock
);
4754 old_port
= bp
->phy_port
;
4755 bnx2_init_fw_cap(bp
);
4756 if ((bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) &&
4757 old_port
!= bp
->phy_port
)
4758 bnx2_set_default_remote_link(bp
);
4759 spin_unlock_bh(&bp
->phy_lock
);
4761 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4762 /* Adjust the voltage regular to two steps lower. The default
4763 * of this register is 0x0000000e. */
4764 REG_WR(bp
, BNX2_MISC_VREG_CONTROL
, 0x000000fa);
4766 /* Remove bad rbuf memory from the free pool. */
4767 rc
= bnx2_alloc_bad_rbuf(bp
);
4770 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4771 bnx2_setup_msix_tbl(bp
);
4772 /* Prevent MSIX table reads and write from timing out */
4773 REG_WR(bp
, BNX2_MISC_ECO_HW_CTL
,
4774 BNX2_MISC_ECO_HW_CTL_LARGE_GRC_TMOUT_EN
);
4781 bnx2_init_chip(struct bnx2
*bp
)
4786 /* Make sure the interrupt is not active. */
4787 REG_WR(bp
, BNX2_PCICFG_INT_ACK_CMD
, BNX2_PCICFG_INT_ACK_CMD_MASK_INT
);
4789 val
= BNX2_DMA_CONFIG_DATA_BYTE_SWAP
|
4790 BNX2_DMA_CONFIG_DATA_WORD_SWAP
|
4792 BNX2_DMA_CONFIG_CNTL_BYTE_SWAP
|
4794 BNX2_DMA_CONFIG_CNTL_WORD_SWAP
|
4795 DMA_READ_CHANS
<< 12 |
4796 DMA_WRITE_CHANS
<< 16;
4798 val
|= (0x2 << 20) | (1 << 11);
4800 if ((bp
->flags
& BNX2_FLAG_PCIX
) && (bp
->bus_speed_mhz
== 133))
4803 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) &&
4804 (CHIP_ID(bp
) != CHIP_ID_5706_A0
) && !(bp
->flags
& BNX2_FLAG_PCIX
))
4805 val
|= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA
;
4807 REG_WR(bp
, BNX2_DMA_CONFIG
, val
);
4809 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
4810 val
= REG_RD(bp
, BNX2_TDMA_CONFIG
);
4811 val
|= BNX2_TDMA_CONFIG_ONE_DMA
;
4812 REG_WR(bp
, BNX2_TDMA_CONFIG
, val
);
4815 if (bp
->flags
& BNX2_FLAG_PCIX
) {
4818 pci_read_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4820 pci_write_config_word(bp
->pdev
, bp
->pcix_cap
+ PCI_X_CMD
,
4821 val16
& ~PCI_X_CMD_ERO
);
4824 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
,
4825 BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE
|
4826 BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE
|
4827 BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE
);
4829 /* Initialize context mapping and zero out the quick contexts. The
4830 * context block must have already been enabled. */
4831 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4832 rc
= bnx2_init_5709_context(bp
);
4836 bnx2_init_context(bp
);
4838 if ((rc
= bnx2_init_cpus(bp
)) != 0)
4841 bnx2_init_nvram(bp
);
4843 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
4845 val
= REG_RD(bp
, BNX2_MQ_CONFIG
);
4846 val
&= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE
;
4847 val
|= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256
;
4848 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4849 val
|= BNX2_MQ_CONFIG_BIN_MQ_MODE
;
4850 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
4851 val
|= BNX2_MQ_CONFIG_HALT_DIS
;
4854 REG_WR(bp
, BNX2_MQ_CONFIG
, val
);
4856 val
= 0x10000 + (MAX_CID_CNT
* MB_KERNEL_CTX_SIZE
);
4857 REG_WR(bp
, BNX2_MQ_KNL_BYP_WIND_START
, val
);
4858 REG_WR(bp
, BNX2_MQ_KNL_WIND_END
, val
);
4860 val
= (BCM_PAGE_BITS
- 8) << 24;
4861 REG_WR(bp
, BNX2_RV2P_CONFIG
, val
);
4863 /* Configure page size. */
4864 val
= REG_RD(bp
, BNX2_TBDR_CONFIG
);
4865 val
&= ~BNX2_TBDR_CONFIG_PAGE_SIZE
;
4866 val
|= (BCM_PAGE_BITS
- 8) << 24 | 0x40;
4867 REG_WR(bp
, BNX2_TBDR_CONFIG
, val
);
4869 val
= bp
->mac_addr
[0] +
4870 (bp
->mac_addr
[1] << 8) +
4871 (bp
->mac_addr
[2] << 16) +
4873 (bp
->mac_addr
[4] << 8) +
4874 (bp
->mac_addr
[5] << 16);
4875 REG_WR(bp
, BNX2_EMAC_BACKOFF_SEED
, val
);
4877 /* Program the MTU. Also include 4 bytes for CRC32. */
4879 val
= mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4880 if (val
> (MAX_ETHERNET_PACKET_SIZE
+ 4))
4881 val
|= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA
;
4882 REG_WR(bp
, BNX2_EMAC_RX_MTU_SIZE
, val
);
4887 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG
, BNX2_RBUF_CONFIG_VAL(mtu
));
4888 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG2
, BNX2_RBUF_CONFIG2_VAL(mtu
));
4889 bnx2_reg_wr_ind(bp
, BNX2_RBUF_CONFIG3
, BNX2_RBUF_CONFIG3_VAL(mtu
));
4891 memset(bp
->bnx2_napi
[0].status_blk
.msi
, 0, bp
->status_stats_size
);
4892 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++)
4893 bp
->bnx2_napi
[i
].last_status_idx
= 0;
4895 bp
->idle_chk_status_idx
= 0xffff;
4897 bp
->rx_mode
= BNX2_EMAC_RX_MODE_SORT_MODE
;
4899 /* Set up how to generate a link change interrupt. */
4900 REG_WR(bp
, BNX2_EMAC_ATTENTION_ENA
, BNX2_EMAC_ATTENTION_ENA_LINK
);
4902 REG_WR(bp
, BNX2_HC_STATUS_ADDR_L
,
4903 (u64
) bp
->status_blk_mapping
& 0xffffffff);
4904 REG_WR(bp
, BNX2_HC_STATUS_ADDR_H
, (u64
) bp
->status_blk_mapping
>> 32);
4906 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_L
,
4907 (u64
) bp
->stats_blk_mapping
& 0xffffffff);
4908 REG_WR(bp
, BNX2_HC_STATISTICS_ADDR_H
,
4909 (u64
) bp
->stats_blk_mapping
>> 32);
4911 REG_WR(bp
, BNX2_HC_TX_QUICK_CONS_TRIP
,
4912 (bp
->tx_quick_cons_trip_int
<< 16) | bp
->tx_quick_cons_trip
);
4914 REG_WR(bp
, BNX2_HC_RX_QUICK_CONS_TRIP
,
4915 (bp
->rx_quick_cons_trip_int
<< 16) | bp
->rx_quick_cons_trip
);
4917 REG_WR(bp
, BNX2_HC_COMP_PROD_TRIP
,
4918 (bp
->comp_prod_trip_int
<< 16) | bp
->comp_prod_trip
);
4920 REG_WR(bp
, BNX2_HC_TX_TICKS
, (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4922 REG_WR(bp
, BNX2_HC_RX_TICKS
, (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4924 REG_WR(bp
, BNX2_HC_COM_TICKS
,
4925 (bp
->com_ticks_int
<< 16) | bp
->com_ticks
);
4927 REG_WR(bp
, BNX2_HC_CMD_TICKS
,
4928 (bp
->cmd_ticks_int
<< 16) | bp
->cmd_ticks
);
4930 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
)
4931 REG_WR(bp
, BNX2_HC_STATS_TICKS
, 0);
4933 REG_WR(bp
, BNX2_HC_STATS_TICKS
, bp
->stats_ticks
);
4934 REG_WR(bp
, BNX2_HC_STAT_COLLECT_TICKS
, 0xbb8); /* 3ms */
4936 if (CHIP_ID(bp
) == CHIP_ID_5706_A1
)
4937 val
= BNX2_HC_CONFIG_COLLECT_STATS
;
4939 val
= BNX2_HC_CONFIG_RX_TMR_MODE
| BNX2_HC_CONFIG_TX_TMR_MODE
|
4940 BNX2_HC_CONFIG_COLLECT_STATS
;
4943 if (bp
->flags
& BNX2_FLAG_USING_MSIX
) {
4944 REG_WR(bp
, BNX2_HC_MSIX_BIT_VECTOR
,
4945 BNX2_HC_MSIX_BIT_VECTOR_VAL
);
4947 val
|= BNX2_HC_CONFIG_SB_ADDR_INC_128B
;
4950 if (bp
->flags
& BNX2_FLAG_ONE_SHOT_MSI
)
4951 val
|= BNX2_HC_CONFIG_ONE_SHOT
| BNX2_HC_CONFIG_USE_INT_PARAM
;
4953 REG_WR(bp
, BNX2_HC_CONFIG
, val
);
4955 for (i
= 1; i
< bp
->irq_nvecs
; i
++) {
4956 u32 base
= ((i
- 1) * BNX2_HC_SB_CONFIG_SIZE
) +
4957 BNX2_HC_SB_CONFIG_1
;
4960 BNX2_HC_SB_CONFIG_1_TX_TMR_MODE
|
4961 BNX2_HC_SB_CONFIG_1_RX_TMR_MODE
|
4962 BNX2_HC_SB_CONFIG_1_ONE_SHOT
);
4964 REG_WR(bp
, base
+ BNX2_HC_TX_QUICK_CONS_TRIP_OFF
,
4965 (bp
->tx_quick_cons_trip_int
<< 16) |
4966 bp
->tx_quick_cons_trip
);
4968 REG_WR(bp
, base
+ BNX2_HC_TX_TICKS_OFF
,
4969 (bp
->tx_ticks_int
<< 16) | bp
->tx_ticks
);
4971 REG_WR(bp
, base
+ BNX2_HC_RX_QUICK_CONS_TRIP_OFF
,
4972 (bp
->rx_quick_cons_trip_int
<< 16) |
4973 bp
->rx_quick_cons_trip
);
4975 REG_WR(bp
, base
+ BNX2_HC_RX_TICKS_OFF
,
4976 (bp
->rx_ticks_int
<< 16) | bp
->rx_ticks
);
4979 /* Clear internal stats counters. */
4980 REG_WR(bp
, BNX2_HC_COMMAND
, BNX2_HC_COMMAND_CLR_STAT_NOW
);
4982 REG_WR(bp
, BNX2_HC_ATTN_BITS_ENABLE
, STATUS_ATTN_EVENTS
);
4984 /* Initialize the receive filter. */
4985 bnx2_set_rx_mode(bp
->dev
);
4987 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
4988 val
= REG_RD(bp
, BNX2_MISC_NEW_CORE_CTL
);
4989 val
|= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE
;
4990 REG_WR(bp
, BNX2_MISC_NEW_CORE_CTL
, val
);
4992 rc
= bnx2_fw_sync(bp
, BNX2_DRV_MSG_DATA_WAIT2
| BNX2_DRV_MSG_CODE_RESET
,
4995 REG_WR(bp
, BNX2_MISC_ENABLE_SET_BITS
, BNX2_MISC_ENABLE_DEFAULT
);
4996 REG_RD(bp
, BNX2_MISC_ENABLE_SET_BITS
);
5000 bp
->hc_cmd
= REG_RD(bp
, BNX2_HC_COMMAND
);
5006 bnx2_clear_ring_states(struct bnx2
*bp
)
5008 struct bnx2_napi
*bnapi
;
5009 struct bnx2_tx_ring_info
*txr
;
5010 struct bnx2_rx_ring_info
*rxr
;
5013 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
5014 bnapi
= &bp
->bnx2_napi
[i
];
5015 txr
= &bnapi
->tx_ring
;
5016 rxr
= &bnapi
->rx_ring
;
5019 txr
->hw_tx_cons
= 0;
5020 rxr
->rx_prod_bseq
= 0;
5023 rxr
->rx_pg_prod
= 0;
5024 rxr
->rx_pg_cons
= 0;
5029 bnx2_init_tx_context(struct bnx2
*bp
, u32 cid
, struct bnx2_tx_ring_info
*txr
)
5031 u32 val
, offset0
, offset1
, offset2
, offset3
;
5032 u32 cid_addr
= GET_CID_ADDR(cid
);
5034 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5035 offset0
= BNX2_L2CTX_TYPE_XI
;
5036 offset1
= BNX2_L2CTX_CMD_TYPE_XI
;
5037 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI_XI
;
5038 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO_XI
;
5040 offset0
= BNX2_L2CTX_TYPE
;
5041 offset1
= BNX2_L2CTX_CMD_TYPE
;
5042 offset2
= BNX2_L2CTX_TBDR_BHADDR_HI
;
5043 offset3
= BNX2_L2CTX_TBDR_BHADDR_LO
;
5045 val
= BNX2_L2CTX_TYPE_TYPE_L2
| BNX2_L2CTX_TYPE_SIZE_L2
;
5046 bnx2_ctx_wr(bp
, cid_addr
, offset0
, val
);
5048 val
= BNX2_L2CTX_CMD_TYPE_TYPE_L2
| (8 << 16);
5049 bnx2_ctx_wr(bp
, cid_addr
, offset1
, val
);
5051 val
= (u64
) txr
->tx_desc_mapping
>> 32;
5052 bnx2_ctx_wr(bp
, cid_addr
, offset2
, val
);
5054 val
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5055 bnx2_ctx_wr(bp
, cid_addr
, offset3
, val
);
5059 bnx2_init_tx_ring(struct bnx2
*bp
, int ring_num
)
5063 struct bnx2_napi
*bnapi
;
5064 struct bnx2_tx_ring_info
*txr
;
5066 bnapi
= &bp
->bnx2_napi
[ring_num
];
5067 txr
= &bnapi
->tx_ring
;
5072 cid
= TX_TSS_CID
+ ring_num
- 1;
5074 bp
->tx_wake_thresh
= bp
->tx_ring_size
/ 2;
5076 txbd
= &txr
->tx_desc_ring
[MAX_TX_DESC_CNT
];
5078 txbd
->tx_bd_haddr_hi
= (u64
) txr
->tx_desc_mapping
>> 32;
5079 txbd
->tx_bd_haddr_lo
= (u64
) txr
->tx_desc_mapping
& 0xffffffff;
5082 txr
->tx_prod_bseq
= 0;
5084 txr
->tx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BIDX
;
5085 txr
->tx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_TX_HOST_BSEQ
;
5087 bnx2_init_tx_context(bp
, cid
, txr
);
5091 bnx2_init_rxbd_rings(struct rx_bd
*rx_ring
[], dma_addr_t dma
[], u32 buf_size
,
5097 for (i
= 0; i
< num_rings
; i
++) {
5100 rxbd
= &rx_ring
[i
][0];
5101 for (j
= 0; j
< MAX_RX_DESC_CNT
; j
++, rxbd
++) {
5102 rxbd
->rx_bd_len
= buf_size
;
5103 rxbd
->rx_bd_flags
= RX_BD_FLAGS_START
| RX_BD_FLAGS_END
;
5105 if (i
== (num_rings
- 1))
5109 rxbd
->rx_bd_haddr_hi
= (u64
) dma
[j
] >> 32;
5110 rxbd
->rx_bd_haddr_lo
= (u64
) dma
[j
] & 0xffffffff;
5115 bnx2_init_rx_ring(struct bnx2
*bp
, int ring_num
)
5118 u16 prod
, ring_prod
;
5119 u32 cid
, rx_cid_addr
, val
;
5120 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[ring_num
];
5121 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5126 cid
= RX_RSS_CID
+ ring_num
- 1;
5128 rx_cid_addr
= GET_CID_ADDR(cid
);
5130 bnx2_init_rxbd_rings(rxr
->rx_desc_ring
, rxr
->rx_desc_mapping
,
5131 bp
->rx_buf_use_size
, bp
->rx_max_ring
);
5133 bnx2_init_rx_context(bp
, cid
);
5135 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
5136 val
= REG_RD(bp
, BNX2_MQ_MAP_L2_5
);
5137 REG_WR(bp
, BNX2_MQ_MAP_L2_5
, val
| BNX2_MQ_MAP_L2_5_ARM
);
5140 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, 0);
5141 if (bp
->rx_pg_ring_size
) {
5142 bnx2_init_rxbd_rings(rxr
->rx_pg_desc_ring
,
5143 rxr
->rx_pg_desc_mapping
,
5144 PAGE_SIZE
, bp
->rx_max_pg_ring
);
5145 val
= (bp
->rx_buf_use_size
<< 16) | PAGE_SIZE
;
5146 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_PG_BUF_SIZE
, val
);
5147 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_RBDC_KEY
,
5148 BNX2_L2CTX_RBDC_JUMBO_KEY
- ring_num
);
5150 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] >> 32;
5151 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_HI
, val
);
5153 val
= (u64
) rxr
->rx_pg_desc_mapping
[0] & 0xffffffff;
5154 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_PG_BDHADDR_LO
, val
);
5156 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5157 REG_WR(bp
, BNX2_MQ_MAP_L2_3
, BNX2_MQ_MAP_L2_3_DEFAULT
);
5160 val
= (u64
) rxr
->rx_desc_mapping
[0] >> 32;
5161 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_HI
, val
);
5163 val
= (u64
) rxr
->rx_desc_mapping
[0] & 0xffffffff;
5164 bnx2_ctx_wr(bp
, rx_cid_addr
, BNX2_L2CTX_NX_BDHADDR_LO
, val
);
5166 ring_prod
= prod
= rxr
->rx_pg_prod
;
5167 for (i
= 0; i
< bp
->rx_pg_ring_size
; i
++) {
5168 if (bnx2_alloc_rx_page(bp
, rxr
, ring_prod
) < 0) {
5169 netdev_warn(bp
->dev
, "init'ed rx page ring %d with %d/%d pages only\n",
5170 ring_num
, i
, bp
->rx_pg_ring_size
);
5173 prod
= NEXT_RX_BD(prod
);
5174 ring_prod
= RX_PG_RING_IDX(prod
);
5176 rxr
->rx_pg_prod
= prod
;
5178 ring_prod
= prod
= rxr
->rx_prod
;
5179 for (i
= 0; i
< bp
->rx_ring_size
; i
++) {
5180 if (bnx2_alloc_rx_skb(bp
, rxr
, ring_prod
) < 0) {
5181 netdev_warn(bp
->dev
, "init'ed rx ring %d with %d/%d skbs only\n",
5182 ring_num
, i
, bp
->rx_ring_size
);
5185 prod
= NEXT_RX_BD(prod
);
5186 ring_prod
= RX_RING_IDX(prod
);
5188 rxr
->rx_prod
= prod
;
5190 rxr
->rx_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BDIDX
;
5191 rxr
->rx_bseq_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_BSEQ
;
5192 rxr
->rx_pg_bidx_addr
= MB_GET_CID_ADDR(cid
) + BNX2_L2CTX_HOST_PG_BDIDX
;
5194 REG_WR16(bp
, rxr
->rx_pg_bidx_addr
, rxr
->rx_pg_prod
);
5195 REG_WR16(bp
, rxr
->rx_bidx_addr
, prod
);
5197 REG_WR(bp
, rxr
->rx_bseq_addr
, rxr
->rx_prod_bseq
);
5201 bnx2_init_all_rings(struct bnx2
*bp
)
5206 bnx2_clear_ring_states(bp
);
5208 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, 0);
5209 for (i
= 0; i
< bp
->num_tx_rings
; i
++)
5210 bnx2_init_tx_ring(bp
, i
);
5212 if (bp
->num_tx_rings
> 1)
5213 REG_WR(bp
, BNX2_TSCH_TSS_CFG
, ((bp
->num_tx_rings
- 1) << 24) |
5216 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, 0);
5217 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
, 0);
5219 for (i
= 0; i
< bp
->num_rx_rings
; i
++)
5220 bnx2_init_rx_ring(bp
, i
);
5222 if (bp
->num_rx_rings
> 1) {
5224 u8
*tbl
= (u8
*) &tbl_32
;
5226 bnx2_reg_wr_ind(bp
, BNX2_RXP_SCRATCH_RSS_TBL_SZ
,
5227 BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
);
5229 for (i
= 0; i
< BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES
; i
++) {
5230 tbl
[i
% 4] = i
% (bp
->num_rx_rings
- 1);
5233 BNX2_RXP_SCRATCH_RSS_TBL
+ i
,
5234 cpu_to_be32(tbl_32
));
5237 val
= BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI
|
5238 BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI
;
5240 REG_WR(bp
, BNX2_RLUP_RSS_CONFIG
, val
);
5245 static u32
bnx2_find_max_ring(u32 ring_size
, u32 max_size
)
5247 u32 max
, num_rings
= 1;
5249 while (ring_size
> MAX_RX_DESC_CNT
) {
5250 ring_size
-= MAX_RX_DESC_CNT
;
5253 /* round to next power of 2 */
5255 while ((max
& num_rings
) == 0)
5258 if (num_rings
!= max
)
5265 bnx2_set_rx_ring_size(struct bnx2
*bp
, u32 size
)
5267 u32 rx_size
, rx_space
, jumbo_size
;
5269 /* 8 for CRC and VLAN */
5270 rx_size
= bp
->dev
->mtu
+ ETH_HLEN
+ BNX2_RX_OFFSET
+ 8;
5272 rx_space
= SKB_DATA_ALIGN(rx_size
+ BNX2_RX_ALIGN
) + NET_SKB_PAD
+
5273 sizeof(struct skb_shared_info
);
5275 bp
->rx_copy_thresh
= BNX2_RX_COPY_THRESH
;
5276 bp
->rx_pg_ring_size
= 0;
5277 bp
->rx_max_pg_ring
= 0;
5278 bp
->rx_max_pg_ring_idx
= 0;
5279 if ((rx_space
> PAGE_SIZE
) && !(bp
->flags
& BNX2_FLAG_JUMBO_BROKEN
)) {
5280 int pages
= PAGE_ALIGN(bp
->dev
->mtu
- 40) >> PAGE_SHIFT
;
5282 jumbo_size
= size
* pages
;
5283 if (jumbo_size
> MAX_TOTAL_RX_PG_DESC_CNT
)
5284 jumbo_size
= MAX_TOTAL_RX_PG_DESC_CNT
;
5286 bp
->rx_pg_ring_size
= jumbo_size
;
5287 bp
->rx_max_pg_ring
= bnx2_find_max_ring(jumbo_size
,
5289 bp
->rx_max_pg_ring_idx
= (bp
->rx_max_pg_ring
* RX_DESC_CNT
) - 1;
5290 rx_size
= BNX2_RX_COPY_THRESH
+ BNX2_RX_OFFSET
;
5291 bp
->rx_copy_thresh
= 0;
5294 bp
->rx_buf_use_size
= rx_size
;
5296 bp
->rx_buf_size
= bp
->rx_buf_use_size
+ BNX2_RX_ALIGN
;
5297 bp
->rx_jumbo_thresh
= rx_size
- BNX2_RX_OFFSET
;
5298 bp
->rx_ring_size
= size
;
5299 bp
->rx_max_ring
= bnx2_find_max_ring(size
, MAX_RX_RINGS
);
5300 bp
->rx_max_ring_idx
= (bp
->rx_max_ring
* RX_DESC_CNT
) - 1;
5304 bnx2_free_tx_skbs(struct bnx2
*bp
)
5308 for (i
= 0; i
< bp
->num_tx_rings
; i
++) {
5309 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5310 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5313 if (txr
->tx_buf_ring
== NULL
)
5316 for (j
= 0; j
< TX_DESC_CNT
; ) {
5317 struct sw_tx_bd
*tx_buf
= &txr
->tx_buf_ring
[j
];
5318 struct sk_buff
*skb
= tx_buf
->skb
;
5326 pci_unmap_single(bp
->pdev
,
5327 dma_unmap_addr(tx_buf
, mapping
),
5333 last
= tx_buf
->nr_frags
;
5335 for (k
= 0; k
< last
; k
++, j
++) {
5336 tx_buf
= &txr
->tx_buf_ring
[TX_RING_IDX(j
)];
5337 pci_unmap_page(bp
->pdev
,
5338 dma_unmap_addr(tx_buf
, mapping
),
5339 skb_shinfo(skb
)->frags
[k
].size
,
5348 bnx2_free_rx_skbs(struct bnx2
*bp
)
5352 for (i
= 0; i
< bp
->num_rx_rings
; i
++) {
5353 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
5354 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5357 if (rxr
->rx_buf_ring
== NULL
)
5360 for (j
= 0; j
< bp
->rx_max_ring_idx
; j
++) {
5361 struct sw_bd
*rx_buf
= &rxr
->rx_buf_ring
[j
];
5362 struct sk_buff
*skb
= rx_buf
->skb
;
5367 pci_unmap_single(bp
->pdev
,
5368 dma_unmap_addr(rx_buf
, mapping
),
5369 bp
->rx_buf_use_size
,
5370 PCI_DMA_FROMDEVICE
);
5376 for (j
= 0; j
< bp
->rx_max_pg_ring_idx
; j
++)
5377 bnx2_free_rx_page(bp
, rxr
, j
);
5382 bnx2_free_skbs(struct bnx2
*bp
)
5384 bnx2_free_tx_skbs(bp
);
5385 bnx2_free_rx_skbs(bp
);
5389 bnx2_reset_nic(struct bnx2
*bp
, u32 reset_code
)
5393 rc
= bnx2_reset_chip(bp
, reset_code
);
5398 if ((rc
= bnx2_init_chip(bp
)) != 0)
5401 bnx2_init_all_rings(bp
);
5406 bnx2_init_nic(struct bnx2
*bp
, int reset_phy
)
5410 if ((rc
= bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
)) != 0)
5413 spin_lock_bh(&bp
->phy_lock
);
5414 bnx2_init_phy(bp
, reset_phy
);
5416 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5417 bnx2_remote_phy_event(bp
);
5418 spin_unlock_bh(&bp
->phy_lock
);
5423 bnx2_shutdown_chip(struct bnx2
*bp
)
5427 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
5428 reset_code
= BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN
;
5430 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_WOL
;
5432 reset_code
= BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL
;
5434 return bnx2_reset_chip(bp
, reset_code
);
5438 bnx2_test_registers(struct bnx2
*bp
)
5442 static const struct {
5445 #define BNX2_FL_NOT_5709 1
5449 { 0x006c, 0, 0x00000000, 0x0000003f },
5450 { 0x0090, 0, 0xffffffff, 0x00000000 },
5451 { 0x0094, 0, 0x00000000, 0x00000000 },
5453 { 0x0404, BNX2_FL_NOT_5709
, 0x00003f00, 0x00000000 },
5454 { 0x0418, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5455 { 0x041c, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5456 { 0x0420, BNX2_FL_NOT_5709
, 0x00000000, 0x80ffffff },
5457 { 0x0424, BNX2_FL_NOT_5709
, 0x00000000, 0x00000000 },
5458 { 0x0428, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5459 { 0x0450, BNX2_FL_NOT_5709
, 0x00000000, 0x0000ffff },
5460 { 0x0454, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5461 { 0x0458, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5463 { 0x0808, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5464 { 0x0854, BNX2_FL_NOT_5709
, 0x00000000, 0xffffffff },
5465 { 0x0868, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5466 { 0x086c, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5467 { 0x0870, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5468 { 0x0874, BNX2_FL_NOT_5709
, 0x00000000, 0x77777777 },
5470 { 0x0c00, BNX2_FL_NOT_5709
, 0x00000000, 0x00000001 },
5471 { 0x0c04, BNX2_FL_NOT_5709
, 0x00000000, 0x03ff0001 },
5472 { 0x0c08, BNX2_FL_NOT_5709
, 0x0f0ff073, 0x00000000 },
5474 { 0x1000, 0, 0x00000000, 0x00000001 },
5475 { 0x1004, BNX2_FL_NOT_5709
, 0x00000000, 0x000f0001 },
5477 { 0x1408, 0, 0x01c00800, 0x00000000 },
5478 { 0x149c, 0, 0x8000ffff, 0x00000000 },
5479 { 0x14a8, 0, 0x00000000, 0x000001ff },
5480 { 0x14ac, 0, 0x0fffffff, 0x10000000 },
5481 { 0x14b0, 0, 0x00000002, 0x00000001 },
5482 { 0x14b8, 0, 0x00000000, 0x00000000 },
5483 { 0x14c0, 0, 0x00000000, 0x00000009 },
5484 { 0x14c4, 0, 0x00003fff, 0x00000000 },
5485 { 0x14cc, 0, 0x00000000, 0x00000001 },
5486 { 0x14d0, 0, 0xffffffff, 0x00000000 },
5488 { 0x1800, 0, 0x00000000, 0x00000001 },
5489 { 0x1804, 0, 0x00000000, 0x00000003 },
5491 { 0x2800, 0, 0x00000000, 0x00000001 },
5492 { 0x2804, 0, 0x00000000, 0x00003f01 },
5493 { 0x2808, 0, 0x0f3f3f03, 0x00000000 },
5494 { 0x2810, 0, 0xffff0000, 0x00000000 },
5495 { 0x2814, 0, 0xffff0000, 0x00000000 },
5496 { 0x2818, 0, 0xffff0000, 0x00000000 },
5497 { 0x281c, 0, 0xffff0000, 0x00000000 },
5498 { 0x2834, 0, 0xffffffff, 0x00000000 },
5499 { 0x2840, 0, 0x00000000, 0xffffffff },
5500 { 0x2844, 0, 0x00000000, 0xffffffff },
5501 { 0x2848, 0, 0xffffffff, 0x00000000 },
5502 { 0x284c, 0, 0xf800f800, 0x07ff07ff },
5504 { 0x2c00, 0, 0x00000000, 0x00000011 },
5505 { 0x2c04, 0, 0x00000000, 0x00030007 },
5507 { 0x3c00, 0, 0x00000000, 0x00000001 },
5508 { 0x3c04, 0, 0x00000000, 0x00070000 },
5509 { 0x3c08, 0, 0x00007f71, 0x07f00000 },
5510 { 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
5511 { 0x3c10, 0, 0xffffffff, 0x00000000 },
5512 { 0x3c14, 0, 0x00000000, 0xffffffff },
5513 { 0x3c18, 0, 0x00000000, 0xffffffff },
5514 { 0x3c1c, 0, 0xfffff000, 0x00000000 },
5515 { 0x3c20, 0, 0xffffff00, 0x00000000 },
5517 { 0x5004, 0, 0x00000000, 0x0000007f },
5518 { 0x5008, 0, 0x0f0007ff, 0x00000000 },
5520 { 0x5c00, 0, 0x00000000, 0x00000001 },
5521 { 0x5c04, 0, 0x00000000, 0x0003000f },
5522 { 0x5c08, 0, 0x00000003, 0x00000000 },
5523 { 0x5c0c, 0, 0x0000fff8, 0x00000000 },
5524 { 0x5c10, 0, 0x00000000, 0xffffffff },
5525 { 0x5c80, 0, 0x00000000, 0x0f7113f1 },
5526 { 0x5c84, 0, 0x00000000, 0x0000f333 },
5527 { 0x5c88, 0, 0x00000000, 0x00077373 },
5528 { 0x5c8c, 0, 0x00000000, 0x0007f737 },
5530 { 0x6808, 0, 0x0000ff7f, 0x00000000 },
5531 { 0x680c, 0, 0xffffffff, 0x00000000 },
5532 { 0x6810, 0, 0xffffffff, 0x00000000 },
5533 { 0x6814, 0, 0xffffffff, 0x00000000 },
5534 { 0x6818, 0, 0xffffffff, 0x00000000 },
5535 { 0x681c, 0, 0xffffffff, 0x00000000 },
5536 { 0x6820, 0, 0x00ff00ff, 0x00000000 },
5537 { 0x6824, 0, 0x00ff00ff, 0x00000000 },
5538 { 0x6828, 0, 0x00ff00ff, 0x00000000 },
5539 { 0x682c, 0, 0x03ff03ff, 0x00000000 },
5540 { 0x6830, 0, 0x03ff03ff, 0x00000000 },
5541 { 0x6834, 0, 0x03ff03ff, 0x00000000 },
5542 { 0x6838, 0, 0x03ff03ff, 0x00000000 },
5543 { 0x683c, 0, 0x0000ffff, 0x00000000 },
5544 { 0x6840, 0, 0x00000ff0, 0x00000000 },
5545 { 0x6844, 0, 0x00ffff00, 0x00000000 },
5546 { 0x684c, 0, 0xffffffff, 0x00000000 },
5547 { 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
5548 { 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
5549 { 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
5550 { 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
5551 { 0x6908, 0, 0x00000000, 0x0001ff0f },
5552 { 0x690c, 0, 0x00000000, 0x0ffe00f0 },
5554 { 0xffff, 0, 0x00000000, 0x00000000 },
5559 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5562 for (i
= 0; reg_tbl
[i
].offset
!= 0xffff; i
++) {
5563 u32 offset
, rw_mask
, ro_mask
, save_val
, val
;
5564 u16 flags
= reg_tbl
[i
].flags
;
5566 if (is_5709
&& (flags
& BNX2_FL_NOT_5709
))
5569 offset
= (u32
) reg_tbl
[i
].offset
;
5570 rw_mask
= reg_tbl
[i
].rw_mask
;
5571 ro_mask
= reg_tbl
[i
].ro_mask
;
5573 save_val
= readl(bp
->regview
+ offset
);
5575 writel(0, bp
->regview
+ offset
);
5577 val
= readl(bp
->regview
+ offset
);
5578 if ((val
& rw_mask
) != 0) {
5582 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5586 writel(0xffffffff, bp
->regview
+ offset
);
5588 val
= readl(bp
->regview
+ offset
);
5589 if ((val
& rw_mask
) != rw_mask
) {
5593 if ((val
& ro_mask
) != (save_val
& ro_mask
)) {
5597 writel(save_val
, bp
->regview
+ offset
);
5601 writel(save_val
, bp
->regview
+ offset
);
5609 bnx2_do_mem_test(struct bnx2
*bp
, u32 start
, u32 size
)
5611 static const u32 test_pattern
[] = { 0x00000000, 0xffffffff, 0x55555555,
5612 0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
5615 for (i
= 0; i
< sizeof(test_pattern
) / 4; i
++) {
5618 for (offset
= 0; offset
< size
; offset
+= 4) {
5620 bnx2_reg_wr_ind(bp
, start
+ offset
, test_pattern
[i
]);
5622 if (bnx2_reg_rd_ind(bp
, start
+ offset
) !=
5632 bnx2_test_memory(struct bnx2
*bp
)
5636 static struct mem_entry
{
5639 } mem_tbl_5706
[] = {
5640 { 0x60000, 0x4000 },
5641 { 0xa0000, 0x3000 },
5642 { 0xe0000, 0x4000 },
5643 { 0x120000, 0x4000 },
5644 { 0x1a0000, 0x4000 },
5645 { 0x160000, 0x4000 },
5649 { 0x60000, 0x4000 },
5650 { 0xa0000, 0x3000 },
5651 { 0xe0000, 0x4000 },
5652 { 0x120000, 0x4000 },
5653 { 0x1a0000, 0x4000 },
5656 struct mem_entry
*mem_tbl
;
5658 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
5659 mem_tbl
= mem_tbl_5709
;
5661 mem_tbl
= mem_tbl_5706
;
5663 for (i
= 0; mem_tbl
[i
].offset
!= 0xffffffff; i
++) {
5664 if ((ret
= bnx2_do_mem_test(bp
, mem_tbl
[i
].offset
,
5665 mem_tbl
[i
].len
)) != 0) {
5673 #define BNX2_MAC_LOOPBACK 0
5674 #define BNX2_PHY_LOOPBACK 1
5677 bnx2_run_loopback(struct bnx2
*bp
, int loopback_mode
)
5679 unsigned int pkt_size
, num_pkts
, i
;
5680 struct sk_buff
*skb
, *rx_skb
;
5681 unsigned char *packet
;
5682 u16 rx_start_idx
, rx_idx
;
5685 struct sw_bd
*rx_buf
;
5686 struct l2_fhdr
*rx_hdr
;
5688 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[0], *tx_napi
;
5689 struct bnx2_tx_ring_info
*txr
= &bnapi
->tx_ring
;
5690 struct bnx2_rx_ring_info
*rxr
= &bnapi
->rx_ring
;
5694 txr
= &tx_napi
->tx_ring
;
5695 rxr
= &bnapi
->rx_ring
;
5696 if (loopback_mode
== BNX2_MAC_LOOPBACK
) {
5697 bp
->loopback
= MAC_LOOPBACK
;
5698 bnx2_set_mac_loopback(bp
);
5700 else if (loopback_mode
== BNX2_PHY_LOOPBACK
) {
5701 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
5704 bp
->loopback
= PHY_LOOPBACK
;
5705 bnx2_set_phy_loopback(bp
);
5710 pkt_size
= min(bp
->dev
->mtu
+ ETH_HLEN
, bp
->rx_jumbo_thresh
- 4);
5711 skb
= netdev_alloc_skb(bp
->dev
, pkt_size
);
5714 packet
= skb_put(skb
, pkt_size
);
5715 memcpy(packet
, bp
->dev
->dev_addr
, 6);
5716 memset(packet
+ 6, 0x0, 8);
5717 for (i
= 14; i
< pkt_size
; i
++)
5718 packet
[i
] = (unsigned char) (i
& 0xff);
5720 map
= pci_map_single(bp
->pdev
, skb
->data
, pkt_size
,
5722 if (pci_dma_mapping_error(bp
->pdev
, map
)) {
5727 REG_WR(bp
, BNX2_HC_COMMAND
,
5728 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5730 REG_RD(bp
, BNX2_HC_COMMAND
);
5733 rx_start_idx
= bnx2_get_hw_rx_cons(bnapi
);
5737 txbd
= &txr
->tx_desc_ring
[TX_RING_IDX(txr
->tx_prod
)];
5739 txbd
->tx_bd_haddr_hi
= (u64
) map
>> 32;
5740 txbd
->tx_bd_haddr_lo
= (u64
) map
& 0xffffffff;
5741 txbd
->tx_bd_mss_nbytes
= pkt_size
;
5742 txbd
->tx_bd_vlan_tag_flags
= TX_BD_FLAGS_START
| TX_BD_FLAGS_END
;
5745 txr
->tx_prod
= NEXT_TX_BD(txr
->tx_prod
);
5746 txr
->tx_prod_bseq
+= pkt_size
;
5748 REG_WR16(bp
, txr
->tx_bidx_addr
, txr
->tx_prod
);
5749 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
5753 REG_WR(bp
, BNX2_HC_COMMAND
,
5754 bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW_WO_INT
);
5756 REG_RD(bp
, BNX2_HC_COMMAND
);
5760 pci_unmap_single(bp
->pdev
, map
, pkt_size
, PCI_DMA_TODEVICE
);
5763 if (bnx2_get_hw_tx_cons(tx_napi
) != txr
->tx_prod
)
5764 goto loopback_test_done
;
5766 rx_idx
= bnx2_get_hw_rx_cons(bnapi
);
5767 if (rx_idx
!= rx_start_idx
+ num_pkts
) {
5768 goto loopback_test_done
;
5771 rx_buf
= &rxr
->rx_buf_ring
[rx_start_idx
];
5772 rx_skb
= rx_buf
->skb
;
5774 rx_hdr
= rx_buf
->desc
;
5775 skb_reserve(rx_skb
, BNX2_RX_OFFSET
);
5777 pci_dma_sync_single_for_cpu(bp
->pdev
,
5778 dma_unmap_addr(rx_buf
, mapping
),
5779 bp
->rx_buf_size
, PCI_DMA_FROMDEVICE
);
5781 if (rx_hdr
->l2_fhdr_status
&
5782 (L2_FHDR_ERRORS_BAD_CRC
|
5783 L2_FHDR_ERRORS_PHY_DECODE
|
5784 L2_FHDR_ERRORS_ALIGNMENT
|
5785 L2_FHDR_ERRORS_TOO_SHORT
|
5786 L2_FHDR_ERRORS_GIANT_FRAME
)) {
5788 goto loopback_test_done
;
5791 if ((rx_hdr
->l2_fhdr_pkt_len
- 4) != pkt_size
) {
5792 goto loopback_test_done
;
5795 for (i
= 14; i
< pkt_size
; i
++) {
5796 if (*(rx_skb
->data
+ i
) != (unsigned char) (i
& 0xff)) {
5797 goto loopback_test_done
;
5808 #define BNX2_MAC_LOOPBACK_FAILED 1
5809 #define BNX2_PHY_LOOPBACK_FAILED 2
5810 #define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
5811 BNX2_PHY_LOOPBACK_FAILED)
5814 bnx2_test_loopback(struct bnx2
*bp
)
5818 if (!netif_running(bp
->dev
))
5819 return BNX2_LOOPBACK_FAILED
;
5821 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
5822 spin_lock_bh(&bp
->phy_lock
);
5823 bnx2_init_phy(bp
, 1);
5824 spin_unlock_bh(&bp
->phy_lock
);
5825 if (bnx2_run_loopback(bp
, BNX2_MAC_LOOPBACK
))
5826 rc
|= BNX2_MAC_LOOPBACK_FAILED
;
5827 if (bnx2_run_loopback(bp
, BNX2_PHY_LOOPBACK
))
5828 rc
|= BNX2_PHY_LOOPBACK_FAILED
;
5832 #define NVRAM_SIZE 0x200
5833 #define CRC32_RESIDUAL 0xdebb20e3
5836 bnx2_test_nvram(struct bnx2
*bp
)
5838 __be32 buf
[NVRAM_SIZE
/ 4];
5839 u8
*data
= (u8
*) buf
;
5843 if ((rc
= bnx2_nvram_read(bp
, 0, data
, 4)) != 0)
5844 goto test_nvram_done
;
5846 magic
= be32_to_cpu(buf
[0]);
5847 if (magic
!= 0x669955aa) {
5849 goto test_nvram_done
;
5852 if ((rc
= bnx2_nvram_read(bp
, 0x100, data
, NVRAM_SIZE
)) != 0)
5853 goto test_nvram_done
;
5855 csum
= ether_crc_le(0x100, data
);
5856 if (csum
!= CRC32_RESIDUAL
) {
5858 goto test_nvram_done
;
5861 csum
= ether_crc_le(0x100, data
+ 0x100);
5862 if (csum
!= CRC32_RESIDUAL
) {
5871 bnx2_test_link(struct bnx2
*bp
)
5875 if (!netif_running(bp
->dev
))
5878 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
5883 spin_lock_bh(&bp
->phy_lock
);
5884 bnx2_enable_bmsr1(bp
);
5885 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5886 bnx2_read_phy(bp
, bp
->mii_bmsr1
, &bmsr
);
5887 bnx2_disable_bmsr1(bp
);
5888 spin_unlock_bh(&bp
->phy_lock
);
5890 if (bmsr
& BMSR_LSTATUS
) {
5897 bnx2_test_intr(struct bnx2
*bp
)
5902 if (!netif_running(bp
->dev
))
5905 status_idx
= REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff;
5907 /* This register is not touched during run-time. */
5908 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
| BNX2_HC_COMMAND_COAL_NOW
);
5909 REG_RD(bp
, BNX2_HC_COMMAND
);
5911 for (i
= 0; i
< 10; i
++) {
5912 if ((REG_RD(bp
, BNX2_PCICFG_INT_ACK_CMD
) & 0xffff) !=
5918 msleep_interruptible(10);
5926 /* Determining link for parallel detection. */
5928 bnx2_5706_serdes_has_link(struct bnx2
*bp
)
5930 u32 mode_ctl
, an_dbg
, exp
;
5932 if (bp
->phy_flags
& BNX2_PHY_FLAG_NO_PARALLEL
)
5935 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_MODE_CTL
);
5936 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &mode_ctl
);
5938 if (!(mode_ctl
& MISC_SHDW_MODE_CTL_SIG_DET
))
5941 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
5942 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5943 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &an_dbg
);
5945 if (an_dbg
& (MISC_SHDW_AN_DBG_NOSYNC
| MISC_SHDW_AN_DBG_RUDI_INVALID
))
5948 bnx2_write_phy(bp
, MII_BNX2_DSP_ADDRESS
, MII_EXPAND_REG1
);
5949 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5950 bnx2_read_phy(bp
, MII_BNX2_DSP_RW_PORT
, &exp
);
5952 if (exp
& MII_EXPAND_REG1_RUDI_C
) /* receiving CONFIG */
5959 bnx2_5706_serdes_timer(struct bnx2
*bp
)
5963 spin_lock(&bp
->phy_lock
);
5964 if (bp
->serdes_an_pending
) {
5965 bp
->serdes_an_pending
--;
5967 } else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
5970 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
5972 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5974 if (bmcr
& BMCR_ANENABLE
) {
5975 if (bnx2_5706_serdes_has_link(bp
)) {
5976 bmcr
&= ~BMCR_ANENABLE
;
5977 bmcr
|= BMCR_SPEED1000
| BMCR_FULLDPLX
;
5978 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5979 bp
->phy_flags
|= BNX2_PHY_FLAG_PARALLEL_DETECT
;
5983 else if ((bp
->link_up
) && (bp
->autoneg
& AUTONEG_SPEED
) &&
5984 (bp
->phy_flags
& BNX2_PHY_FLAG_PARALLEL_DETECT
)) {
5987 bnx2_write_phy(bp
, 0x17, 0x0f01);
5988 bnx2_read_phy(bp
, 0x15, &phy2
);
5992 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
5993 bmcr
|= BMCR_ANENABLE
;
5994 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
);
5996 bp
->phy_flags
&= ~BNX2_PHY_FLAG_PARALLEL_DETECT
;
5999 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6004 bnx2_write_phy(bp
, MII_BNX2_MISC_SHADOW
, MISC_SHDW_AN_DBG
);
6005 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6006 bnx2_read_phy(bp
, MII_BNX2_MISC_SHADOW
, &val
);
6008 if (bp
->link_up
&& (val
& MISC_SHDW_AN_DBG_NOSYNC
)) {
6009 if (!(bp
->phy_flags
& BNX2_PHY_FLAG_FORCED_DOWN
)) {
6010 bnx2_5706s_force_link_dn(bp
, 1);
6011 bp
->phy_flags
|= BNX2_PHY_FLAG_FORCED_DOWN
;
6014 } else if (!bp
->link_up
&& !(val
& MISC_SHDW_AN_DBG_NOSYNC
))
6017 spin_unlock(&bp
->phy_lock
);
6021 bnx2_5708_serdes_timer(struct bnx2
*bp
)
6023 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
6026 if ((bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
) == 0) {
6027 bp
->serdes_an_pending
= 0;
6031 spin_lock(&bp
->phy_lock
);
6032 if (bp
->serdes_an_pending
)
6033 bp
->serdes_an_pending
--;
6034 else if ((bp
->link_up
== 0) && (bp
->autoneg
& AUTONEG_SPEED
)) {
6037 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6038 if (bmcr
& BMCR_ANENABLE
) {
6039 bnx2_enable_forced_2g5(bp
);
6040 bp
->current_interval
= BNX2_SERDES_FORCED_TIMEOUT
;
6042 bnx2_disable_forced_2g5(bp
);
6043 bp
->serdes_an_pending
= 2;
6044 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6048 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
6050 spin_unlock(&bp
->phy_lock
);
6054 bnx2_timer(unsigned long data
)
6056 struct bnx2
*bp
= (struct bnx2
*) data
;
6058 if (!netif_running(bp
->dev
))
6061 if (atomic_read(&bp
->intr_sem
) != 0)
6062 goto bnx2_restart_timer
;
6064 if ((bp
->flags
& (BNX2_FLAG_USING_MSI
| BNX2_FLAG_ONE_SHOT_MSI
)) ==
6065 BNX2_FLAG_USING_MSI
)
6066 bnx2_chk_missed_msi(bp
);
6068 bnx2_send_heart_beat(bp
);
6070 bp
->stats_blk
->stat_FwRxDrop
=
6071 bnx2_reg_rd_ind(bp
, BNX2_FW_RX_DROP_COUNT
);
6073 /* workaround occasional corrupted counters */
6074 if ((bp
->flags
& BNX2_FLAG_BROKEN_STATS
) && bp
->stats_ticks
)
6075 REG_WR(bp
, BNX2_HC_COMMAND
, bp
->hc_cmd
|
6076 BNX2_HC_COMMAND_STATS_NOW
);
6078 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6079 if (CHIP_NUM(bp
) == CHIP_NUM_5706
)
6080 bnx2_5706_serdes_timer(bp
);
6082 bnx2_5708_serdes_timer(bp
);
6086 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6090 bnx2_request_irq(struct bnx2
*bp
)
6092 unsigned long flags
;
6093 struct bnx2_irq
*irq
;
6096 if (bp
->flags
& BNX2_FLAG_USING_MSI_OR_MSIX
)
6099 flags
= IRQF_SHARED
;
6101 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6102 irq
= &bp
->irq_tbl
[i
];
6103 rc
= request_irq(irq
->vector
, irq
->handler
, flags
, irq
->name
,
6113 bnx2_free_irq(struct bnx2
*bp
)
6115 struct bnx2_irq
*irq
;
6118 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
6119 irq
= &bp
->irq_tbl
[i
];
6121 free_irq(irq
->vector
, &bp
->bnx2_napi
[i
]);
6124 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6125 pci_disable_msi(bp
->pdev
);
6126 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6127 pci_disable_msix(bp
->pdev
);
6129 bp
->flags
&= ~(BNX2_FLAG_USING_MSI_OR_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
);
6133 bnx2_enable_msix(struct bnx2
*bp
, int msix_vecs
)
6136 struct msix_entry msix_ent
[BNX2_MAX_MSIX_VEC
];
6137 struct net_device
*dev
= bp
->dev
;
6138 const int len
= sizeof(bp
->irq_tbl
[0].name
);
6140 bnx2_setup_msix_tbl(bp
);
6141 REG_WR(bp
, BNX2_PCI_MSIX_CONTROL
, BNX2_MAX_MSIX_HW_VEC
- 1);
6142 REG_WR(bp
, BNX2_PCI_MSIX_TBL_OFF_BIR
, BNX2_PCI_GRC_WINDOW2_BASE
);
6143 REG_WR(bp
, BNX2_PCI_MSIX_PBA_OFF_BIT
, BNX2_PCI_GRC_WINDOW3_BASE
);
6145 /* Need to flush the previous three writes to ensure MSI-X
6146 * is setup properly */
6147 REG_RD(bp
, BNX2_PCI_MSIX_CONTROL
);
6149 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6150 msix_ent
[i
].entry
= i
;
6151 msix_ent
[i
].vector
= 0;
6154 rc
= pci_enable_msix(bp
->pdev
, msix_ent
, BNX2_MAX_MSIX_VEC
);
6158 bp
->irq_nvecs
= msix_vecs
;
6159 bp
->flags
|= BNX2_FLAG_USING_MSIX
| BNX2_FLAG_ONE_SHOT_MSI
;
6160 for (i
= 0; i
< BNX2_MAX_MSIX_VEC
; i
++) {
6161 bp
->irq_tbl
[i
].vector
= msix_ent
[i
].vector
;
6162 snprintf(bp
->irq_tbl
[i
].name
, len
, "%s-%d", dev
->name
, i
);
6163 bp
->irq_tbl
[i
].handler
= bnx2_msi_1shot
;
6168 bnx2_setup_int_mode(struct bnx2
*bp
, int dis_msi
)
6170 int cpus
= num_online_cpus();
6171 int msix_vecs
= min(cpus
+ 1, RX_MAX_RINGS
);
6173 bp
->irq_tbl
[0].handler
= bnx2_interrupt
;
6174 strcpy(bp
->irq_tbl
[0].name
, bp
->dev
->name
);
6176 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6178 if ((bp
->flags
& BNX2_FLAG_MSIX_CAP
) && !dis_msi
&& cpus
> 1)
6179 bnx2_enable_msix(bp
, msix_vecs
);
6181 if ((bp
->flags
& BNX2_FLAG_MSI_CAP
) && !dis_msi
&&
6182 !(bp
->flags
& BNX2_FLAG_USING_MSIX
)) {
6183 if (pci_enable_msi(bp
->pdev
) == 0) {
6184 bp
->flags
|= BNX2_FLAG_USING_MSI
;
6185 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6186 bp
->flags
|= BNX2_FLAG_ONE_SHOT_MSI
;
6187 bp
->irq_tbl
[0].handler
= bnx2_msi_1shot
;
6189 bp
->irq_tbl
[0].handler
= bnx2_msi
;
6191 bp
->irq_tbl
[0].vector
= bp
->pdev
->irq
;
6195 bp
->num_tx_rings
= rounddown_pow_of_two(bp
->irq_nvecs
);
6196 bp
->dev
->real_num_tx_queues
= bp
->num_tx_rings
;
6198 bp
->num_rx_rings
= bp
->irq_nvecs
;
6201 /* Called with rtnl_lock */
6203 bnx2_open(struct net_device
*dev
)
6205 struct bnx2
*bp
= netdev_priv(dev
);
6208 netif_carrier_off(dev
);
6210 bnx2_set_power_state(bp
, PCI_D0
);
6211 bnx2_disable_int(bp
);
6213 bnx2_setup_int_mode(bp
, disable_msi
);
6215 bnx2_napi_enable(bp
);
6216 rc
= bnx2_alloc_mem(bp
);
6220 rc
= bnx2_request_irq(bp
);
6224 rc
= bnx2_init_nic(bp
, 1);
6228 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6230 atomic_set(&bp
->intr_sem
, 0);
6232 memset(bp
->temp_stats_blk
, 0, sizeof(struct statistics_block
));
6234 bnx2_enable_int(bp
);
6236 if (bp
->flags
& BNX2_FLAG_USING_MSI
) {
6237 /* Test MSI to make sure it is working
6238 * If MSI test fails, go back to INTx mode
6240 if (bnx2_test_intr(bp
) != 0) {
6241 netdev_warn(bp
->dev
, "No interrupt was generated using MSI, switching to INTx mode. Please report this failure to the PCI maintainer and include system chipset information.\n");
6243 bnx2_disable_int(bp
);
6246 bnx2_setup_int_mode(bp
, 1);
6248 rc
= bnx2_init_nic(bp
, 0);
6251 rc
= bnx2_request_irq(bp
);
6254 del_timer_sync(&bp
->timer
);
6257 bnx2_enable_int(bp
);
6260 if (bp
->flags
& BNX2_FLAG_USING_MSI
)
6261 netdev_info(dev
, "using MSI\n");
6262 else if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6263 netdev_info(dev
, "using MSIX\n");
6265 netif_tx_start_all_queues(dev
);
6270 bnx2_napi_disable(bp
);
6279 bnx2_reset_task(struct work_struct
*work
)
6281 struct bnx2
*bp
= container_of(work
, struct bnx2
, reset_task
);
6284 if (!netif_running(bp
->dev
)) {
6289 bnx2_netif_stop(bp
, true);
6291 bnx2_init_nic(bp
, 1);
6293 atomic_set(&bp
->intr_sem
, 1);
6294 bnx2_netif_start(bp
, true);
6299 bnx2_dump_state(struct bnx2
*bp
)
6301 struct net_device
*dev
= bp
->dev
;
6304 netdev_err(dev
, "DEBUG: intr_sem[%x]\n", atomic_read(&bp
->intr_sem
));
6305 netdev_err(dev
, "DEBUG: EMAC_TX_STATUS[%08x] EMAC_RX_STATUS[%08x]\n",
6306 REG_RD(bp
, BNX2_EMAC_TX_STATUS
),
6307 REG_RD(bp
, BNX2_EMAC_RX_STATUS
));
6308 netdev_err(dev
, "DEBUG: RPM_MGMT_PKT_CTRL[%08x]\n",
6309 REG_RD(bp
, BNX2_RPM_MGMT_PKT_CTRL
));
6310 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
6311 mcp_p0
= BNX2_MCP_STATE_P0
;
6312 mcp_p1
= BNX2_MCP_STATE_P1
;
6314 mcp_p0
= BNX2_MCP_STATE_P0_5708
;
6315 mcp_p1
= BNX2_MCP_STATE_P1_5708
;
6317 netdev_err(dev
, "DEBUG: MCP_STATE_P0[%08x] MCP_STATE_P1[%08x]\n",
6318 bnx2_reg_rd_ind(bp
, mcp_p0
), bnx2_reg_rd_ind(bp
, mcp_p1
));
6319 netdev_err(dev
, "DEBUG: HC_STATS_INTERRUPT_STATUS[%08x]\n",
6320 REG_RD(bp
, BNX2_HC_STATS_INTERRUPT_STATUS
));
6321 if (bp
->flags
& BNX2_FLAG_USING_MSIX
)
6322 netdev_err(dev
, "DEBUG: PBA[%08x]\n",
6323 REG_RD(bp
, BNX2_PCI_GRC_WINDOW3_BASE
));
6327 bnx2_tx_timeout(struct net_device
*dev
)
6329 struct bnx2
*bp
= netdev_priv(dev
);
6331 bnx2_dump_state(bp
);
6333 /* This allows the netif to be shutdown gracefully before resetting */
6334 schedule_work(&bp
->reset_task
);
6338 /* Called with rtnl_lock */
6340 bnx2_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*vlgrp
)
6342 struct bnx2
*bp
= netdev_priv(dev
);
6344 if (netif_running(dev
))
6345 bnx2_netif_stop(bp
, false);
6349 if (!netif_running(dev
))
6352 bnx2_set_rx_mode(dev
);
6353 if (bp
->flags
& BNX2_FLAG_CAN_KEEP_VLAN
)
6354 bnx2_fw_sync(bp
, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE
, 0, 1);
6356 bnx2_netif_start(bp
, false);
6360 /* Called with netif_tx_lock.
6361 * bnx2_tx_int() runs without netif_tx_lock unless it needs to call
6362 * netif_wake_queue().
6365 bnx2_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
6367 struct bnx2
*bp
= netdev_priv(dev
);
6370 struct sw_tx_bd
*tx_buf
;
6371 u32 len
, vlan_tag_flags
, last_frag
, mss
;
6372 u16 prod
, ring_prod
;
6374 struct bnx2_napi
*bnapi
;
6375 struct bnx2_tx_ring_info
*txr
;
6376 struct netdev_queue
*txq
;
6378 /* Determine which tx ring we will be placed on */
6379 i
= skb_get_queue_mapping(skb
);
6380 bnapi
= &bp
->bnx2_napi
[i
];
6381 txr
= &bnapi
->tx_ring
;
6382 txq
= netdev_get_tx_queue(dev
, i
);
6384 if (unlikely(bnx2_tx_avail(bp
, txr
) <
6385 (skb_shinfo(skb
)->nr_frags
+ 1))) {
6386 netif_tx_stop_queue(txq
);
6387 netdev_err(dev
, "BUG! Tx ring full when queue awake!\n");
6389 return NETDEV_TX_BUSY
;
6391 len
= skb_headlen(skb
);
6392 prod
= txr
->tx_prod
;
6393 ring_prod
= TX_RING_IDX(prod
);
6396 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
6397 vlan_tag_flags
|= TX_BD_FLAGS_TCP_UDP_CKSUM
;
6401 if (bp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
6403 (TX_BD_FLAGS_VLAN_TAG
| (vlan_tx_tag_get(skb
) << 16));
6406 if ((mss
= skb_shinfo(skb
)->gso_size
)) {
6410 vlan_tag_flags
|= TX_BD_FLAGS_SW_LSO
;
6412 tcp_opt_len
= tcp_optlen(skb
);
6414 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV6
) {
6415 u32 tcp_off
= skb_transport_offset(skb
) -
6416 sizeof(struct ipv6hdr
) - ETH_HLEN
;
6418 vlan_tag_flags
|= ((tcp_opt_len
>> 2) << 8) |
6419 TX_BD_FLAGS_SW_FLAGS
;
6420 if (likely(tcp_off
== 0))
6421 vlan_tag_flags
&= ~TX_BD_FLAGS_TCP6_OFF0_MSK
;
6424 vlan_tag_flags
|= ((tcp_off
& 0x3) <<
6425 TX_BD_FLAGS_TCP6_OFF0_SHL
) |
6426 ((tcp_off
& 0x10) <<
6427 TX_BD_FLAGS_TCP6_OFF4_SHL
);
6428 mss
|= (tcp_off
& 0xc) << TX_BD_TCP6_OFF2_SHL
;
6432 if (tcp_opt_len
|| (iph
->ihl
> 5)) {
6433 vlan_tag_flags
|= ((iph
->ihl
- 5) +
6434 (tcp_opt_len
>> 2)) << 8;
6440 mapping
= pci_map_single(bp
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
6441 if (pci_dma_mapping_error(bp
->pdev
, mapping
)) {
6443 return NETDEV_TX_OK
;
6446 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6448 dma_unmap_addr_set(tx_buf
, mapping
, mapping
);
6450 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6452 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6453 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6454 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6455 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
| TX_BD_FLAGS_START
;
6457 last_frag
= skb_shinfo(skb
)->nr_frags
;
6458 tx_buf
->nr_frags
= last_frag
;
6459 tx_buf
->is_gso
= skb_is_gso(skb
);
6461 for (i
= 0; i
< last_frag
; i
++) {
6462 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
6464 prod
= NEXT_TX_BD(prod
);
6465 ring_prod
= TX_RING_IDX(prod
);
6466 txbd
= &txr
->tx_desc_ring
[ring_prod
];
6469 mapping
= pci_map_page(bp
->pdev
, frag
->page
, frag
->page_offset
,
6470 len
, PCI_DMA_TODEVICE
);
6471 if (pci_dma_mapping_error(bp
->pdev
, mapping
))
6473 dma_unmap_addr_set(&txr
->tx_buf_ring
[ring_prod
], mapping
,
6476 txbd
->tx_bd_haddr_hi
= (u64
) mapping
>> 32;
6477 txbd
->tx_bd_haddr_lo
= (u64
) mapping
& 0xffffffff;
6478 txbd
->tx_bd_mss_nbytes
= len
| (mss
<< 16);
6479 txbd
->tx_bd_vlan_tag_flags
= vlan_tag_flags
;
6482 txbd
->tx_bd_vlan_tag_flags
|= TX_BD_FLAGS_END
;
6484 prod
= NEXT_TX_BD(prod
);
6485 txr
->tx_prod_bseq
+= skb
->len
;
6487 REG_WR16(bp
, txr
->tx_bidx_addr
, prod
);
6488 REG_WR(bp
, txr
->tx_bseq_addr
, txr
->tx_prod_bseq
);
6492 txr
->tx_prod
= prod
;
6494 if (unlikely(bnx2_tx_avail(bp
, txr
) <= MAX_SKB_FRAGS
)) {
6495 netif_tx_stop_queue(txq
);
6496 if (bnx2_tx_avail(bp
, txr
) > bp
->tx_wake_thresh
)
6497 netif_tx_wake_queue(txq
);
6500 return NETDEV_TX_OK
;
6502 /* save value of frag that failed */
6505 /* start back at beginning and unmap skb */
6506 prod
= txr
->tx_prod
;
6507 ring_prod
= TX_RING_IDX(prod
);
6508 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6510 pci_unmap_single(bp
->pdev
, dma_unmap_addr(tx_buf
, mapping
),
6511 skb_headlen(skb
), PCI_DMA_TODEVICE
);
6513 /* unmap remaining mapped pages */
6514 for (i
= 0; i
< last_frag
; i
++) {
6515 prod
= NEXT_TX_BD(prod
);
6516 ring_prod
= TX_RING_IDX(prod
);
6517 tx_buf
= &txr
->tx_buf_ring
[ring_prod
];
6518 pci_unmap_page(bp
->pdev
, dma_unmap_addr(tx_buf
, mapping
),
6519 skb_shinfo(skb
)->frags
[i
].size
,
6524 return NETDEV_TX_OK
;
6527 /* Called with rtnl_lock */
6529 bnx2_close(struct net_device
*dev
)
6531 struct bnx2
*bp
= netdev_priv(dev
);
6533 cancel_work_sync(&bp
->reset_task
);
6535 bnx2_disable_int_sync(bp
);
6536 bnx2_napi_disable(bp
);
6537 del_timer_sync(&bp
->timer
);
6538 bnx2_shutdown_chip(bp
);
6544 netif_carrier_off(bp
->dev
);
6545 bnx2_set_power_state(bp
, PCI_D3hot
);
6550 bnx2_save_stats(struct bnx2
*bp
)
6552 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
6553 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
6556 /* The 1st 10 counters are 64-bit counters */
6557 for (i
= 0; i
< 20; i
+= 2) {
6561 hi
= temp_stats
[i
] + hw_stats
[i
];
6562 lo
= (u64
) temp_stats
[i
+ 1] + (u64
) hw_stats
[i
+ 1];
6563 if (lo
> 0xffffffff)
6566 temp_stats
[i
+ 1] = lo
& 0xffffffff;
6569 for ( ; i
< sizeof(struct statistics_block
) / 4; i
++)
6570 temp_stats
[i
] += hw_stats
[i
];
6573 #define GET_64BIT_NET_STATS64(ctr) \
6574 (unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
6575 (unsigned long) (ctr##_lo)
6577 #define GET_64BIT_NET_STATS32(ctr) \
6580 #if (BITS_PER_LONG == 64)
6581 #define GET_64BIT_NET_STATS(ctr) \
6582 GET_64BIT_NET_STATS64(bp->stats_blk->ctr) + \
6583 GET_64BIT_NET_STATS64(bp->temp_stats_blk->ctr)
6585 #define GET_64BIT_NET_STATS(ctr) \
6586 GET_64BIT_NET_STATS32(bp->stats_blk->ctr) + \
6587 GET_64BIT_NET_STATS32(bp->temp_stats_blk->ctr)
6590 #define GET_32BIT_NET_STATS(ctr) \
6591 (unsigned long) (bp->stats_blk->ctr + \
6592 bp->temp_stats_blk->ctr)
6594 static struct net_device_stats
*
6595 bnx2_get_stats(struct net_device
*dev
)
6597 struct bnx2
*bp
= netdev_priv(dev
);
6598 struct net_device_stats
*net_stats
= &dev
->stats
;
6600 if (bp
->stats_blk
== NULL
) {
6603 net_stats
->rx_packets
=
6604 GET_64BIT_NET_STATS(stat_IfHCInUcastPkts
) +
6605 GET_64BIT_NET_STATS(stat_IfHCInMulticastPkts
) +
6606 GET_64BIT_NET_STATS(stat_IfHCInBroadcastPkts
);
6608 net_stats
->tx_packets
=
6609 GET_64BIT_NET_STATS(stat_IfHCOutUcastPkts
) +
6610 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
) +
6611 GET_64BIT_NET_STATS(stat_IfHCOutBroadcastPkts
);
6613 net_stats
->rx_bytes
=
6614 GET_64BIT_NET_STATS(stat_IfHCInOctets
);
6616 net_stats
->tx_bytes
=
6617 GET_64BIT_NET_STATS(stat_IfHCOutOctets
);
6619 net_stats
->multicast
=
6620 GET_64BIT_NET_STATS(stat_IfHCOutMulticastPkts
);
6622 net_stats
->collisions
=
6623 GET_32BIT_NET_STATS(stat_EtherStatsCollisions
);
6625 net_stats
->rx_length_errors
=
6626 GET_32BIT_NET_STATS(stat_EtherStatsUndersizePkts
) +
6627 GET_32BIT_NET_STATS(stat_EtherStatsOverrsizePkts
);
6629 net_stats
->rx_over_errors
=
6630 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6631 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
);
6633 net_stats
->rx_frame_errors
=
6634 GET_32BIT_NET_STATS(stat_Dot3StatsAlignmentErrors
);
6636 net_stats
->rx_crc_errors
=
6637 GET_32BIT_NET_STATS(stat_Dot3StatsFCSErrors
);
6639 net_stats
->rx_errors
= net_stats
->rx_length_errors
+
6640 net_stats
->rx_over_errors
+ net_stats
->rx_frame_errors
+
6641 net_stats
->rx_crc_errors
;
6643 net_stats
->tx_aborted_errors
=
6644 GET_32BIT_NET_STATS(stat_Dot3StatsExcessiveCollisions
) +
6645 GET_32BIT_NET_STATS(stat_Dot3StatsLateCollisions
);
6647 if ((CHIP_NUM(bp
) == CHIP_NUM_5706
) ||
6648 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
6649 net_stats
->tx_carrier_errors
= 0;
6651 net_stats
->tx_carrier_errors
=
6652 GET_32BIT_NET_STATS(stat_Dot3StatsCarrierSenseErrors
);
6655 net_stats
->tx_errors
=
6656 GET_32BIT_NET_STATS(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
) +
6657 net_stats
->tx_aborted_errors
+
6658 net_stats
->tx_carrier_errors
;
6660 net_stats
->rx_missed_errors
=
6661 GET_32BIT_NET_STATS(stat_IfInFTQDiscards
) +
6662 GET_32BIT_NET_STATS(stat_IfInMBUFDiscards
) +
6663 GET_32BIT_NET_STATS(stat_FwRxDrop
);
6668 /* All ethtool functions called with rtnl_lock */
6671 bnx2_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6673 struct bnx2
*bp
= netdev_priv(dev
);
6674 int support_serdes
= 0, support_copper
= 0;
6676 cmd
->supported
= SUPPORTED_Autoneg
;
6677 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6680 } else if (bp
->phy_port
== PORT_FIBRE
)
6685 if (support_serdes
) {
6686 cmd
->supported
|= SUPPORTED_1000baseT_Full
|
6688 if (bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
)
6689 cmd
->supported
|= SUPPORTED_2500baseX_Full
;
6692 if (support_copper
) {
6693 cmd
->supported
|= SUPPORTED_10baseT_Half
|
6694 SUPPORTED_10baseT_Full
|
6695 SUPPORTED_100baseT_Half
|
6696 SUPPORTED_100baseT_Full
|
6697 SUPPORTED_1000baseT_Full
|
6702 spin_lock_bh(&bp
->phy_lock
);
6703 cmd
->port
= bp
->phy_port
;
6704 cmd
->advertising
= bp
->advertising
;
6706 if (bp
->autoneg
& AUTONEG_SPEED
) {
6707 cmd
->autoneg
= AUTONEG_ENABLE
;
6710 cmd
->autoneg
= AUTONEG_DISABLE
;
6713 if (netif_carrier_ok(dev
)) {
6714 cmd
->speed
= bp
->line_speed
;
6715 cmd
->duplex
= bp
->duplex
;
6721 spin_unlock_bh(&bp
->phy_lock
);
6723 cmd
->transceiver
= XCVR_INTERNAL
;
6724 cmd
->phy_address
= bp
->phy_addr
;
6730 bnx2_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
6732 struct bnx2
*bp
= netdev_priv(dev
);
6733 u8 autoneg
= bp
->autoneg
;
6734 u8 req_duplex
= bp
->req_duplex
;
6735 u16 req_line_speed
= bp
->req_line_speed
;
6736 u32 advertising
= bp
->advertising
;
6739 spin_lock_bh(&bp
->phy_lock
);
6741 if (cmd
->port
!= PORT_TP
&& cmd
->port
!= PORT_FIBRE
)
6742 goto err_out_unlock
;
6744 if (cmd
->port
!= bp
->phy_port
&&
6745 !(bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
))
6746 goto err_out_unlock
;
6748 /* If device is down, we can store the settings only if the user
6749 * is setting the currently active port.
6751 if (!netif_running(dev
) && cmd
->port
!= bp
->phy_port
)
6752 goto err_out_unlock
;
6754 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
6755 autoneg
|= AUTONEG_SPEED
;
6757 advertising
= cmd
->advertising
;
6758 if (cmd
->port
== PORT_TP
) {
6759 advertising
&= ETHTOOL_ALL_COPPER_SPEED
;
6761 advertising
= ETHTOOL_ALL_COPPER_SPEED
;
6763 advertising
&= ETHTOOL_ALL_FIBRE_SPEED
;
6765 advertising
= ETHTOOL_ALL_FIBRE_SPEED
;
6767 advertising
|= ADVERTISED_Autoneg
;
6770 if (cmd
->port
== PORT_FIBRE
) {
6771 if ((cmd
->speed
!= SPEED_1000
&&
6772 cmd
->speed
!= SPEED_2500
) ||
6773 (cmd
->duplex
!= DUPLEX_FULL
))
6774 goto err_out_unlock
;
6776 if (cmd
->speed
== SPEED_2500
&&
6777 !(bp
->phy_flags
& BNX2_PHY_FLAG_2_5G_CAPABLE
))
6778 goto err_out_unlock
;
6780 else if (cmd
->speed
== SPEED_1000
|| cmd
->speed
== SPEED_2500
)
6781 goto err_out_unlock
;
6783 autoneg
&= ~AUTONEG_SPEED
;
6784 req_line_speed
= cmd
->speed
;
6785 req_duplex
= cmd
->duplex
;
6789 bp
->autoneg
= autoneg
;
6790 bp
->advertising
= advertising
;
6791 bp
->req_line_speed
= req_line_speed
;
6792 bp
->req_duplex
= req_duplex
;
6795 /* If device is down, the new settings will be picked up when it is
6798 if (netif_running(dev
))
6799 err
= bnx2_setup_phy(bp
, cmd
->port
);
6802 spin_unlock_bh(&bp
->phy_lock
);
6808 bnx2_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
6810 struct bnx2
*bp
= netdev_priv(dev
);
6812 strcpy(info
->driver
, DRV_MODULE_NAME
);
6813 strcpy(info
->version
, DRV_MODULE_VERSION
);
6814 strcpy(info
->bus_info
, pci_name(bp
->pdev
));
6815 strcpy(info
->fw_version
, bp
->fw_version
);
6818 #define BNX2_REGDUMP_LEN (32 * 1024)
6821 bnx2_get_regs_len(struct net_device
*dev
)
6823 return BNX2_REGDUMP_LEN
;
6827 bnx2_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
, void *_p
)
6829 u32
*p
= _p
, i
, offset
;
6831 struct bnx2
*bp
= netdev_priv(dev
);
6832 u32 reg_boundaries
[] = { 0x0000, 0x0098, 0x0400, 0x045c,
6833 0x0800, 0x0880, 0x0c00, 0x0c10,
6834 0x0c30, 0x0d08, 0x1000, 0x101c,
6835 0x1040, 0x1048, 0x1080, 0x10a4,
6836 0x1400, 0x1490, 0x1498, 0x14f0,
6837 0x1500, 0x155c, 0x1580, 0x15dc,
6838 0x1600, 0x1658, 0x1680, 0x16d8,
6839 0x1800, 0x1820, 0x1840, 0x1854,
6840 0x1880, 0x1894, 0x1900, 0x1984,
6841 0x1c00, 0x1c0c, 0x1c40, 0x1c54,
6842 0x1c80, 0x1c94, 0x1d00, 0x1d84,
6843 0x2000, 0x2030, 0x23c0, 0x2400,
6844 0x2800, 0x2820, 0x2830, 0x2850,
6845 0x2b40, 0x2c10, 0x2fc0, 0x3058,
6846 0x3c00, 0x3c94, 0x4000, 0x4010,
6847 0x4080, 0x4090, 0x43c0, 0x4458,
6848 0x4c00, 0x4c18, 0x4c40, 0x4c54,
6849 0x4fc0, 0x5010, 0x53c0, 0x5444,
6850 0x5c00, 0x5c18, 0x5c80, 0x5c90,
6851 0x5fc0, 0x6000, 0x6400, 0x6428,
6852 0x6800, 0x6848, 0x684c, 0x6860,
6853 0x6888, 0x6910, 0x8000 };
6857 memset(p
, 0, BNX2_REGDUMP_LEN
);
6859 if (!netif_running(bp
->dev
))
6863 offset
= reg_boundaries
[0];
6865 while (offset
< BNX2_REGDUMP_LEN
) {
6866 *p
++ = REG_RD(bp
, offset
);
6868 if (offset
== reg_boundaries
[i
+ 1]) {
6869 offset
= reg_boundaries
[i
+ 2];
6870 p
= (u32
*) (orig_p
+ offset
);
6877 bnx2_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6879 struct bnx2
*bp
= netdev_priv(dev
);
6881 if (bp
->flags
& BNX2_FLAG_NO_WOL
) {
6886 wol
->supported
= WAKE_MAGIC
;
6888 wol
->wolopts
= WAKE_MAGIC
;
6892 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
6896 bnx2_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
6898 struct bnx2
*bp
= netdev_priv(dev
);
6900 if (wol
->wolopts
& ~WAKE_MAGIC
)
6903 if (wol
->wolopts
& WAKE_MAGIC
) {
6904 if (bp
->flags
& BNX2_FLAG_NO_WOL
)
6916 bnx2_nway_reset(struct net_device
*dev
)
6918 struct bnx2
*bp
= netdev_priv(dev
);
6921 if (!netif_running(dev
))
6924 if (!(bp
->autoneg
& AUTONEG_SPEED
)) {
6928 spin_lock_bh(&bp
->phy_lock
);
6930 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
) {
6933 rc
= bnx2_setup_remote_phy(bp
, bp
->phy_port
);
6934 spin_unlock_bh(&bp
->phy_lock
);
6938 /* Force a link down visible on the other side */
6939 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
6940 bnx2_write_phy(bp
, bp
->mii_bmcr
, BMCR_LOOPBACK
);
6941 spin_unlock_bh(&bp
->phy_lock
);
6945 spin_lock_bh(&bp
->phy_lock
);
6947 bp
->current_interval
= BNX2_SERDES_AN_TIMEOUT
;
6948 bp
->serdes_an_pending
= 1;
6949 mod_timer(&bp
->timer
, jiffies
+ bp
->current_interval
);
6952 bnx2_read_phy(bp
, bp
->mii_bmcr
, &bmcr
);
6953 bmcr
&= ~BMCR_LOOPBACK
;
6954 bnx2_write_phy(bp
, bp
->mii_bmcr
, bmcr
| BMCR_ANRESTART
| BMCR_ANENABLE
);
6956 spin_unlock_bh(&bp
->phy_lock
);
6962 bnx2_get_link(struct net_device
*dev
)
6964 struct bnx2
*bp
= netdev_priv(dev
);
6970 bnx2_get_eeprom_len(struct net_device
*dev
)
6972 struct bnx2
*bp
= netdev_priv(dev
);
6974 if (bp
->flash_info
== NULL
)
6977 return (int) bp
->flash_size
;
6981 bnx2_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
6984 struct bnx2
*bp
= netdev_priv(dev
);
6987 if (!netif_running(dev
))
6990 /* parameters already validated in ethtool_get_eeprom */
6992 rc
= bnx2_nvram_read(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
6998 bnx2_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
7001 struct bnx2
*bp
= netdev_priv(dev
);
7004 if (!netif_running(dev
))
7007 /* parameters already validated in ethtool_set_eeprom */
7009 rc
= bnx2_nvram_write(bp
, eeprom
->offset
, eebuf
, eeprom
->len
);
7015 bnx2_get_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7017 struct bnx2
*bp
= netdev_priv(dev
);
7019 memset(coal
, 0, sizeof(struct ethtool_coalesce
));
7021 coal
->rx_coalesce_usecs
= bp
->rx_ticks
;
7022 coal
->rx_max_coalesced_frames
= bp
->rx_quick_cons_trip
;
7023 coal
->rx_coalesce_usecs_irq
= bp
->rx_ticks_int
;
7024 coal
->rx_max_coalesced_frames_irq
= bp
->rx_quick_cons_trip_int
;
7026 coal
->tx_coalesce_usecs
= bp
->tx_ticks
;
7027 coal
->tx_max_coalesced_frames
= bp
->tx_quick_cons_trip
;
7028 coal
->tx_coalesce_usecs_irq
= bp
->tx_ticks_int
;
7029 coal
->tx_max_coalesced_frames_irq
= bp
->tx_quick_cons_trip_int
;
7031 coal
->stats_block_coalesce_usecs
= bp
->stats_ticks
;
7037 bnx2_set_coalesce(struct net_device
*dev
, struct ethtool_coalesce
*coal
)
7039 struct bnx2
*bp
= netdev_priv(dev
);
7041 bp
->rx_ticks
= (u16
) coal
->rx_coalesce_usecs
;
7042 if (bp
->rx_ticks
> 0x3ff) bp
->rx_ticks
= 0x3ff;
7044 bp
->rx_quick_cons_trip
= (u16
) coal
->rx_max_coalesced_frames
;
7045 if (bp
->rx_quick_cons_trip
> 0xff) bp
->rx_quick_cons_trip
= 0xff;
7047 bp
->rx_ticks_int
= (u16
) coal
->rx_coalesce_usecs_irq
;
7048 if (bp
->rx_ticks_int
> 0x3ff) bp
->rx_ticks_int
= 0x3ff;
7050 bp
->rx_quick_cons_trip_int
= (u16
) coal
->rx_max_coalesced_frames_irq
;
7051 if (bp
->rx_quick_cons_trip_int
> 0xff)
7052 bp
->rx_quick_cons_trip_int
= 0xff;
7054 bp
->tx_ticks
= (u16
) coal
->tx_coalesce_usecs
;
7055 if (bp
->tx_ticks
> 0x3ff) bp
->tx_ticks
= 0x3ff;
7057 bp
->tx_quick_cons_trip
= (u16
) coal
->tx_max_coalesced_frames
;
7058 if (bp
->tx_quick_cons_trip
> 0xff) bp
->tx_quick_cons_trip
= 0xff;
7060 bp
->tx_ticks_int
= (u16
) coal
->tx_coalesce_usecs_irq
;
7061 if (bp
->tx_ticks_int
> 0x3ff) bp
->tx_ticks_int
= 0x3ff;
7063 bp
->tx_quick_cons_trip_int
= (u16
) coal
->tx_max_coalesced_frames_irq
;
7064 if (bp
->tx_quick_cons_trip_int
> 0xff) bp
->tx_quick_cons_trip_int
=
7067 bp
->stats_ticks
= coal
->stats_block_coalesce_usecs
;
7068 if (bp
->flags
& BNX2_FLAG_BROKEN_STATS
) {
7069 if (bp
->stats_ticks
!= 0 && bp
->stats_ticks
!= USEC_PER_SEC
)
7070 bp
->stats_ticks
= USEC_PER_SEC
;
7072 if (bp
->stats_ticks
> BNX2_HC_STATS_TICKS_HC_STAT_TICKS
)
7073 bp
->stats_ticks
= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7074 bp
->stats_ticks
&= BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
7076 if (netif_running(bp
->dev
)) {
7077 bnx2_netif_stop(bp
, true);
7078 bnx2_init_nic(bp
, 0);
7079 bnx2_netif_start(bp
, true);
7086 bnx2_get_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7088 struct bnx2
*bp
= netdev_priv(dev
);
7090 ering
->rx_max_pending
= MAX_TOTAL_RX_DESC_CNT
;
7091 ering
->rx_mini_max_pending
= 0;
7092 ering
->rx_jumbo_max_pending
= MAX_TOTAL_RX_PG_DESC_CNT
;
7094 ering
->rx_pending
= bp
->rx_ring_size
;
7095 ering
->rx_mini_pending
= 0;
7096 ering
->rx_jumbo_pending
= bp
->rx_pg_ring_size
;
7098 ering
->tx_max_pending
= MAX_TX_DESC_CNT
;
7099 ering
->tx_pending
= bp
->tx_ring_size
;
7103 bnx2_change_ring_size(struct bnx2
*bp
, u32 rx
, u32 tx
)
7105 if (netif_running(bp
->dev
)) {
7106 /* Reset will erase chipset stats; save them */
7107 bnx2_save_stats(bp
);
7109 bnx2_netif_stop(bp
, true);
7110 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_RESET
);
7115 bnx2_set_rx_ring_size(bp
, rx
);
7116 bp
->tx_ring_size
= tx
;
7118 if (netif_running(bp
->dev
)) {
7121 rc
= bnx2_alloc_mem(bp
);
7123 rc
= bnx2_init_nic(bp
, 0);
7126 bnx2_napi_enable(bp
);
7131 mutex_lock(&bp
->cnic_lock
);
7132 /* Let cnic know about the new status block. */
7133 if (bp
->cnic_eth_dev
.drv_state
& CNIC_DRV_STATE_REGD
)
7134 bnx2_setup_cnic_irq_info(bp
);
7135 mutex_unlock(&bp
->cnic_lock
);
7137 bnx2_netif_start(bp
, true);
7143 bnx2_set_ringparam(struct net_device
*dev
, struct ethtool_ringparam
*ering
)
7145 struct bnx2
*bp
= netdev_priv(dev
);
7148 if ((ering
->rx_pending
> MAX_TOTAL_RX_DESC_CNT
) ||
7149 (ering
->tx_pending
> MAX_TX_DESC_CNT
) ||
7150 (ering
->tx_pending
<= MAX_SKB_FRAGS
)) {
7154 rc
= bnx2_change_ring_size(bp
, ering
->rx_pending
, ering
->tx_pending
);
7159 bnx2_get_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7161 struct bnx2
*bp
= netdev_priv(dev
);
7163 epause
->autoneg
= ((bp
->autoneg
& AUTONEG_FLOW_CTRL
) != 0);
7164 epause
->rx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_RX
) != 0);
7165 epause
->tx_pause
= ((bp
->flow_ctrl
& FLOW_CTRL_TX
) != 0);
7169 bnx2_set_pauseparam(struct net_device
*dev
, struct ethtool_pauseparam
*epause
)
7171 struct bnx2
*bp
= netdev_priv(dev
);
7173 bp
->req_flow_ctrl
= 0;
7174 if (epause
->rx_pause
)
7175 bp
->req_flow_ctrl
|= FLOW_CTRL_RX
;
7176 if (epause
->tx_pause
)
7177 bp
->req_flow_ctrl
|= FLOW_CTRL_TX
;
7179 if (epause
->autoneg
) {
7180 bp
->autoneg
|= AUTONEG_FLOW_CTRL
;
7183 bp
->autoneg
&= ~AUTONEG_FLOW_CTRL
;
7186 if (netif_running(dev
)) {
7187 spin_lock_bh(&bp
->phy_lock
);
7188 bnx2_setup_phy(bp
, bp
->phy_port
);
7189 spin_unlock_bh(&bp
->phy_lock
);
7196 bnx2_get_rx_csum(struct net_device
*dev
)
7198 struct bnx2
*bp
= netdev_priv(dev
);
7204 bnx2_set_rx_csum(struct net_device
*dev
, u32 data
)
7206 struct bnx2
*bp
= netdev_priv(dev
);
7213 bnx2_set_tso(struct net_device
*dev
, u32 data
)
7215 struct bnx2
*bp
= netdev_priv(dev
);
7218 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
7219 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7220 dev
->features
|= NETIF_F_TSO6
;
7222 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
|
7228 char string
[ETH_GSTRING_LEN
];
7229 } bnx2_stats_str_arr
[] = {
7231 { "rx_error_bytes" },
7233 { "tx_error_bytes" },
7234 { "rx_ucast_packets" },
7235 { "rx_mcast_packets" },
7236 { "rx_bcast_packets" },
7237 { "tx_ucast_packets" },
7238 { "tx_mcast_packets" },
7239 { "tx_bcast_packets" },
7240 { "tx_mac_errors" },
7241 { "tx_carrier_errors" },
7242 { "rx_crc_errors" },
7243 { "rx_align_errors" },
7244 { "tx_single_collisions" },
7245 { "tx_multi_collisions" },
7247 { "tx_excess_collisions" },
7248 { "tx_late_collisions" },
7249 { "tx_total_collisions" },
7252 { "rx_undersize_packets" },
7253 { "rx_oversize_packets" },
7254 { "rx_64_byte_packets" },
7255 { "rx_65_to_127_byte_packets" },
7256 { "rx_128_to_255_byte_packets" },
7257 { "rx_256_to_511_byte_packets" },
7258 { "rx_512_to_1023_byte_packets" },
7259 { "rx_1024_to_1522_byte_packets" },
7260 { "rx_1523_to_9022_byte_packets" },
7261 { "tx_64_byte_packets" },
7262 { "tx_65_to_127_byte_packets" },
7263 { "tx_128_to_255_byte_packets" },
7264 { "tx_256_to_511_byte_packets" },
7265 { "tx_512_to_1023_byte_packets" },
7266 { "tx_1024_to_1522_byte_packets" },
7267 { "tx_1523_to_9022_byte_packets" },
7268 { "rx_xon_frames" },
7269 { "rx_xoff_frames" },
7270 { "tx_xon_frames" },
7271 { "tx_xoff_frames" },
7272 { "rx_mac_ctrl_frames" },
7273 { "rx_filtered_packets" },
7274 { "rx_ftq_discards" },
7276 { "rx_fw_discards" },
7279 #define BNX2_NUM_STATS (sizeof(bnx2_stats_str_arr)/\
7280 sizeof(bnx2_stats_str_arr[0]))
7282 #define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
7284 static const unsigned long bnx2_stats_offset_arr
[BNX2_NUM_STATS
] = {
7285 STATS_OFFSET32(stat_IfHCInOctets_hi
),
7286 STATS_OFFSET32(stat_IfHCInBadOctets_hi
),
7287 STATS_OFFSET32(stat_IfHCOutOctets_hi
),
7288 STATS_OFFSET32(stat_IfHCOutBadOctets_hi
),
7289 STATS_OFFSET32(stat_IfHCInUcastPkts_hi
),
7290 STATS_OFFSET32(stat_IfHCInMulticastPkts_hi
),
7291 STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi
),
7292 STATS_OFFSET32(stat_IfHCOutUcastPkts_hi
),
7293 STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi
),
7294 STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi
),
7295 STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors
),
7296 STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors
),
7297 STATS_OFFSET32(stat_Dot3StatsFCSErrors
),
7298 STATS_OFFSET32(stat_Dot3StatsAlignmentErrors
),
7299 STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames
),
7300 STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames
),
7301 STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions
),
7302 STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions
),
7303 STATS_OFFSET32(stat_Dot3StatsLateCollisions
),
7304 STATS_OFFSET32(stat_EtherStatsCollisions
),
7305 STATS_OFFSET32(stat_EtherStatsFragments
),
7306 STATS_OFFSET32(stat_EtherStatsJabbers
),
7307 STATS_OFFSET32(stat_EtherStatsUndersizePkts
),
7308 STATS_OFFSET32(stat_EtherStatsOverrsizePkts
),
7309 STATS_OFFSET32(stat_EtherStatsPktsRx64Octets
),
7310 STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets
),
7311 STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets
),
7312 STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets
),
7313 STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets
),
7314 STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets
),
7315 STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets
),
7316 STATS_OFFSET32(stat_EtherStatsPktsTx64Octets
),
7317 STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets
),
7318 STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets
),
7319 STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets
),
7320 STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets
),
7321 STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets
),
7322 STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets
),
7323 STATS_OFFSET32(stat_XonPauseFramesReceived
),
7324 STATS_OFFSET32(stat_XoffPauseFramesReceived
),
7325 STATS_OFFSET32(stat_OutXonSent
),
7326 STATS_OFFSET32(stat_OutXoffSent
),
7327 STATS_OFFSET32(stat_MacControlFramesReceived
),
7328 STATS_OFFSET32(stat_IfInFramesL2FilterDiscards
),
7329 STATS_OFFSET32(stat_IfInFTQDiscards
),
7330 STATS_OFFSET32(stat_IfInMBUFDiscards
),
7331 STATS_OFFSET32(stat_FwRxDrop
),
7334 /* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
7335 * skipped because of errata.
7337 static u8 bnx2_5706_stats_len_arr
[BNX2_NUM_STATS
] = {
7338 8,0,8,8,8,8,8,8,8,8,
7339 4,0,4,4,4,4,4,4,4,4,
7340 4,4,4,4,4,4,4,4,4,4,
7341 4,4,4,4,4,4,4,4,4,4,
7345 static u8 bnx2_5708_stats_len_arr
[BNX2_NUM_STATS
] = {
7346 8,0,8,8,8,8,8,8,8,8,
7347 4,4,4,4,4,4,4,4,4,4,
7348 4,4,4,4,4,4,4,4,4,4,
7349 4,4,4,4,4,4,4,4,4,4,
7353 #define BNX2_NUM_TESTS 6
7356 char string
[ETH_GSTRING_LEN
];
7357 } bnx2_tests_str_arr
[BNX2_NUM_TESTS
] = {
7358 { "register_test (offline)" },
7359 { "memory_test (offline)" },
7360 { "loopback_test (offline)" },
7361 { "nvram_test (online)" },
7362 { "interrupt_test (online)" },
7363 { "link_test (online)" },
7367 bnx2_get_sset_count(struct net_device
*dev
, int sset
)
7371 return BNX2_NUM_TESTS
;
7373 return BNX2_NUM_STATS
;
7380 bnx2_self_test(struct net_device
*dev
, struct ethtool_test
*etest
, u64
*buf
)
7382 struct bnx2
*bp
= netdev_priv(dev
);
7384 bnx2_set_power_state(bp
, PCI_D0
);
7386 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_TESTS
);
7387 if (etest
->flags
& ETH_TEST_FL_OFFLINE
) {
7390 bnx2_netif_stop(bp
, true);
7391 bnx2_reset_chip(bp
, BNX2_DRV_MSG_CODE_DIAG
);
7394 if (bnx2_test_registers(bp
) != 0) {
7396 etest
->flags
|= ETH_TEST_FL_FAILED
;
7398 if (bnx2_test_memory(bp
) != 0) {
7400 etest
->flags
|= ETH_TEST_FL_FAILED
;
7402 if ((buf
[2] = bnx2_test_loopback(bp
)) != 0)
7403 etest
->flags
|= ETH_TEST_FL_FAILED
;
7405 if (!netif_running(bp
->dev
))
7406 bnx2_shutdown_chip(bp
);
7408 bnx2_init_nic(bp
, 1);
7409 bnx2_netif_start(bp
, true);
7412 /* wait for link up */
7413 for (i
= 0; i
< 7; i
++) {
7416 msleep_interruptible(1000);
7420 if (bnx2_test_nvram(bp
) != 0) {
7422 etest
->flags
|= ETH_TEST_FL_FAILED
;
7424 if (bnx2_test_intr(bp
) != 0) {
7426 etest
->flags
|= ETH_TEST_FL_FAILED
;
7429 if (bnx2_test_link(bp
) != 0) {
7431 etest
->flags
|= ETH_TEST_FL_FAILED
;
7434 if (!netif_running(bp
->dev
))
7435 bnx2_set_power_state(bp
, PCI_D3hot
);
7439 bnx2_get_strings(struct net_device
*dev
, u32 stringset
, u8
*buf
)
7441 switch (stringset
) {
7443 memcpy(buf
, bnx2_stats_str_arr
,
7444 sizeof(bnx2_stats_str_arr
));
7447 memcpy(buf
, bnx2_tests_str_arr
,
7448 sizeof(bnx2_tests_str_arr
));
7454 bnx2_get_ethtool_stats(struct net_device
*dev
,
7455 struct ethtool_stats
*stats
, u64
*buf
)
7457 struct bnx2
*bp
= netdev_priv(dev
);
7459 u32
*hw_stats
= (u32
*) bp
->stats_blk
;
7460 u32
*temp_stats
= (u32
*) bp
->temp_stats_blk
;
7461 u8
*stats_len_arr
= NULL
;
7463 if (hw_stats
== NULL
) {
7464 memset(buf
, 0, sizeof(u64
) * BNX2_NUM_STATS
);
7468 if ((CHIP_ID(bp
) == CHIP_ID_5706_A0
) ||
7469 (CHIP_ID(bp
) == CHIP_ID_5706_A1
) ||
7470 (CHIP_ID(bp
) == CHIP_ID_5706_A2
) ||
7471 (CHIP_ID(bp
) == CHIP_ID_5708_A0
))
7472 stats_len_arr
= bnx2_5706_stats_len_arr
;
7474 stats_len_arr
= bnx2_5708_stats_len_arr
;
7476 for (i
= 0; i
< BNX2_NUM_STATS
; i
++) {
7477 unsigned long offset
;
7479 if (stats_len_arr
[i
] == 0) {
7480 /* skip this counter */
7485 offset
= bnx2_stats_offset_arr
[i
];
7486 if (stats_len_arr
[i
] == 4) {
7487 /* 4-byte counter */
7488 buf
[i
] = (u64
) *(hw_stats
+ offset
) +
7489 *(temp_stats
+ offset
);
7492 /* 8-byte counter */
7493 buf
[i
] = (((u64
) *(hw_stats
+ offset
)) << 32) +
7494 *(hw_stats
+ offset
+ 1) +
7495 (((u64
) *(temp_stats
+ offset
)) << 32) +
7496 *(temp_stats
+ offset
+ 1);
7501 bnx2_phys_id(struct net_device
*dev
, u32 data
)
7503 struct bnx2
*bp
= netdev_priv(dev
);
7507 bnx2_set_power_state(bp
, PCI_D0
);
7512 save
= REG_RD(bp
, BNX2_MISC_CFG
);
7513 REG_WR(bp
, BNX2_MISC_CFG
, BNX2_MISC_CFG_LEDMODE_MAC
);
7515 for (i
= 0; i
< (data
* 2); i
++) {
7517 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
);
7520 REG_WR(bp
, BNX2_EMAC_LED
, BNX2_EMAC_LED_OVERRIDE
|
7521 BNX2_EMAC_LED_1000MB_OVERRIDE
|
7522 BNX2_EMAC_LED_100MB_OVERRIDE
|
7523 BNX2_EMAC_LED_10MB_OVERRIDE
|
7524 BNX2_EMAC_LED_TRAFFIC_OVERRIDE
|
7525 BNX2_EMAC_LED_TRAFFIC
);
7527 msleep_interruptible(500);
7528 if (signal_pending(current
))
7531 REG_WR(bp
, BNX2_EMAC_LED
, 0);
7532 REG_WR(bp
, BNX2_MISC_CFG
, save
);
7534 if (!netif_running(dev
))
7535 bnx2_set_power_state(bp
, PCI_D3hot
);
7541 bnx2_set_tx_csum(struct net_device
*dev
, u32 data
)
7543 struct bnx2
*bp
= netdev_priv(dev
);
7545 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
7546 return (ethtool_op_set_tx_ipv6_csum(dev
, data
));
7548 return (ethtool_op_set_tx_csum(dev
, data
));
7551 static const struct ethtool_ops bnx2_ethtool_ops
= {
7552 .get_settings
= bnx2_get_settings
,
7553 .set_settings
= bnx2_set_settings
,
7554 .get_drvinfo
= bnx2_get_drvinfo
,
7555 .get_regs_len
= bnx2_get_regs_len
,
7556 .get_regs
= bnx2_get_regs
,
7557 .get_wol
= bnx2_get_wol
,
7558 .set_wol
= bnx2_set_wol
,
7559 .nway_reset
= bnx2_nway_reset
,
7560 .get_link
= bnx2_get_link
,
7561 .get_eeprom_len
= bnx2_get_eeprom_len
,
7562 .get_eeprom
= bnx2_get_eeprom
,
7563 .set_eeprom
= bnx2_set_eeprom
,
7564 .get_coalesce
= bnx2_get_coalesce
,
7565 .set_coalesce
= bnx2_set_coalesce
,
7566 .get_ringparam
= bnx2_get_ringparam
,
7567 .set_ringparam
= bnx2_set_ringparam
,
7568 .get_pauseparam
= bnx2_get_pauseparam
,
7569 .set_pauseparam
= bnx2_set_pauseparam
,
7570 .get_rx_csum
= bnx2_get_rx_csum
,
7571 .set_rx_csum
= bnx2_set_rx_csum
,
7572 .set_tx_csum
= bnx2_set_tx_csum
,
7573 .set_sg
= ethtool_op_set_sg
,
7574 .set_tso
= bnx2_set_tso
,
7575 .self_test
= bnx2_self_test
,
7576 .get_strings
= bnx2_get_strings
,
7577 .phys_id
= bnx2_phys_id
,
7578 .get_ethtool_stats
= bnx2_get_ethtool_stats
,
7579 .get_sset_count
= bnx2_get_sset_count
,
7582 /* Called with rtnl_lock */
7584 bnx2_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
7586 struct mii_ioctl_data
*data
= if_mii(ifr
);
7587 struct bnx2
*bp
= netdev_priv(dev
);
7592 data
->phy_id
= bp
->phy_addr
;
7598 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7601 if (!netif_running(dev
))
7604 spin_lock_bh(&bp
->phy_lock
);
7605 err
= bnx2_read_phy(bp
, data
->reg_num
& 0x1f, &mii_regval
);
7606 spin_unlock_bh(&bp
->phy_lock
);
7608 data
->val_out
= mii_regval
;
7614 if (bp
->phy_flags
& BNX2_PHY_FLAG_REMOTE_PHY_CAP
)
7617 if (!netif_running(dev
))
7620 spin_lock_bh(&bp
->phy_lock
);
7621 err
= bnx2_write_phy(bp
, data
->reg_num
& 0x1f, data
->val_in
);
7622 spin_unlock_bh(&bp
->phy_lock
);
7633 /* Called with rtnl_lock */
7635 bnx2_change_mac_addr(struct net_device
*dev
, void *p
)
7637 struct sockaddr
*addr
= p
;
7638 struct bnx2
*bp
= netdev_priv(dev
);
7640 if (!is_valid_ether_addr(addr
->sa_data
))
7643 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
7644 if (netif_running(dev
))
7645 bnx2_set_mac_addr(bp
, bp
->dev
->dev_addr
, 0);
7650 /* Called with rtnl_lock */
7652 bnx2_change_mtu(struct net_device
*dev
, int new_mtu
)
7654 struct bnx2
*bp
= netdev_priv(dev
);
7656 if (((new_mtu
+ ETH_HLEN
) > MAX_ETHERNET_JUMBO_PACKET_SIZE
) ||
7657 ((new_mtu
+ ETH_HLEN
) < MIN_ETHERNET_PACKET_SIZE
))
7661 return (bnx2_change_ring_size(bp
, bp
->rx_ring_size
, bp
->tx_ring_size
));
7664 #ifdef CONFIG_NET_POLL_CONTROLLER
7666 poll_bnx2(struct net_device
*dev
)
7668 struct bnx2
*bp
= netdev_priv(dev
);
7671 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
7672 struct bnx2_irq
*irq
= &bp
->irq_tbl
[i
];
7674 disable_irq(irq
->vector
);
7675 irq
->handler(irq
->vector
, &bp
->bnx2_napi
[i
]);
7676 enable_irq(irq
->vector
);
7681 static void __devinit
7682 bnx2_get_5709_media(struct bnx2
*bp
)
7684 u32 val
= REG_RD(bp
, BNX2_MISC_DUAL_MEDIA_CTRL
);
7685 u32 bond_id
= val
& BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID
;
7688 if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C
)
7690 else if (bond_id
== BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S
) {
7691 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7695 if (val
& BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE
)
7696 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL
) >> 21;
7698 strap
= (val
& BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP
) >> 8;
7700 if (PCI_FUNC(bp
->pdev
->devfn
) == 0) {
7705 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7713 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
7719 static void __devinit
7720 bnx2_get_pci_speed(struct bnx2
*bp
)
7724 reg
= REG_RD(bp
, BNX2_PCICFG_MISC_STATUS
);
7725 if (reg
& BNX2_PCICFG_MISC_STATUS_PCIX_DET
) {
7728 bp
->flags
|= BNX2_FLAG_PCIX
;
7730 clkreg
= REG_RD(bp
, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS
);
7732 clkreg
&= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET
;
7734 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ
:
7735 bp
->bus_speed_mhz
= 133;
7738 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ
:
7739 bp
->bus_speed_mhz
= 100;
7742 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ
:
7743 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ
:
7744 bp
->bus_speed_mhz
= 66;
7747 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ
:
7748 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ
:
7749 bp
->bus_speed_mhz
= 50;
7752 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW
:
7753 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ
:
7754 case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ
:
7755 bp
->bus_speed_mhz
= 33;
7760 if (reg
& BNX2_PCICFG_MISC_STATUS_M66EN
)
7761 bp
->bus_speed_mhz
= 66;
7763 bp
->bus_speed_mhz
= 33;
7766 if (reg
& BNX2_PCICFG_MISC_STATUS_32BIT_DET
)
7767 bp
->flags
|= BNX2_FLAG_PCI_32BIT
;
7771 static void __devinit
7772 bnx2_read_vpd_fw_ver(struct bnx2
*bp
)
7776 unsigned int block_end
, rosize
, len
;
7778 #define BNX2_VPD_NVRAM_OFFSET 0x300
7779 #define BNX2_VPD_LEN 128
7780 #define BNX2_MAX_VER_SLEN 30
7782 data
= kmalloc(256, GFP_KERNEL
);
7786 rc
= bnx2_nvram_read(bp
, BNX2_VPD_NVRAM_OFFSET
, data
+ BNX2_VPD_LEN
,
7791 for (i
= 0; i
< BNX2_VPD_LEN
; i
+= 4) {
7792 data
[i
] = data
[i
+ BNX2_VPD_LEN
+ 3];
7793 data
[i
+ 1] = data
[i
+ BNX2_VPD_LEN
+ 2];
7794 data
[i
+ 2] = data
[i
+ BNX2_VPD_LEN
+ 1];
7795 data
[i
+ 3] = data
[i
+ BNX2_VPD_LEN
];
7798 i
= pci_vpd_find_tag(data
, 0, BNX2_VPD_LEN
, PCI_VPD_LRDT_RO_DATA
);
7802 rosize
= pci_vpd_lrdt_size(&data
[i
]);
7803 i
+= PCI_VPD_LRDT_TAG_SIZE
;
7804 block_end
= i
+ rosize
;
7806 if (block_end
> BNX2_VPD_LEN
)
7809 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7810 PCI_VPD_RO_KEYWORD_MFR_ID
);
7814 len
= pci_vpd_info_field_size(&data
[j
]);
7816 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7817 if (j
+ len
> block_end
|| len
!= 4 ||
7818 memcmp(&data
[j
], "1028", 4))
7821 j
= pci_vpd_find_info_keyword(data
, i
, rosize
,
7822 PCI_VPD_RO_KEYWORD_VENDOR0
);
7826 len
= pci_vpd_info_field_size(&data
[j
]);
7828 j
+= PCI_VPD_INFO_FLD_HDR_SIZE
;
7829 if (j
+ len
> block_end
|| len
> BNX2_MAX_VER_SLEN
)
7832 memcpy(bp
->fw_version
, &data
[j
], len
);
7833 bp
->fw_version
[len
] = ' ';
7839 static int __devinit
7840 bnx2_init_board(struct pci_dev
*pdev
, struct net_device
*dev
)
7843 unsigned long mem_len
;
7846 u64 dma_mask
, persist_dma_mask
;
7848 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7849 bp
= netdev_priv(dev
);
7854 bp
->temp_stats_blk
=
7855 kzalloc(sizeof(struct statistics_block
), GFP_KERNEL
);
7857 if (bp
->temp_stats_blk
== NULL
) {
7862 /* enable device (incl. PCI PM wakeup), and bus-mastering */
7863 rc
= pci_enable_device(pdev
);
7865 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
7869 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
7871 "Cannot find PCI device base address, aborting\n");
7873 goto err_out_disable
;
7876 rc
= pci_request_regions(pdev
, DRV_MODULE_NAME
);
7878 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
7879 goto err_out_disable
;
7882 pci_set_master(pdev
);
7883 pci_save_state(pdev
);
7885 bp
->pm_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
7886 if (bp
->pm_cap
== 0) {
7888 "Cannot find power management capability, aborting\n");
7890 goto err_out_release
;
7896 spin_lock_init(&bp
->phy_lock
);
7897 spin_lock_init(&bp
->indirect_lock
);
7899 mutex_init(&bp
->cnic_lock
);
7901 INIT_WORK(&bp
->reset_task
, bnx2_reset_task
);
7903 dev
->base_addr
= dev
->mem_start
= pci_resource_start(pdev
, 0);
7904 mem_len
= MB_GET_CID_ADDR(TX_TSS_CID
+ TX_MAX_TSS_RINGS
+ 1);
7905 dev
->mem_end
= dev
->mem_start
+ mem_len
;
7906 dev
->irq
= pdev
->irq
;
7908 bp
->regview
= ioremap_nocache(dev
->base_addr
, mem_len
);
7911 dev_err(&pdev
->dev
, "Cannot map register space, aborting\n");
7913 goto err_out_release
;
7916 /* Configure byte swap and enable write to the reg_window registers.
7917 * Rely on CPU to do target byte swapping on big endian systems
7918 * The chip's target access swapping will not swap all accesses
7920 pci_write_config_dword(bp
->pdev
, BNX2_PCICFG_MISC_CONFIG
,
7921 BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA
|
7922 BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP
);
7924 bnx2_set_power_state(bp
, PCI_D0
);
7926 bp
->chip_id
= REG_RD(bp
, BNX2_MISC_ID
);
7928 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
7929 if (pci_find_capability(pdev
, PCI_CAP_ID_EXP
) == 0) {
7931 "Cannot find PCIE capability, aborting\n");
7935 bp
->flags
|= BNX2_FLAG_PCIE
;
7936 if (CHIP_REV(bp
) == CHIP_REV_Ax
)
7937 bp
->flags
|= BNX2_FLAG_JUMBO_BROKEN
;
7939 bp
->pcix_cap
= pci_find_capability(pdev
, PCI_CAP_ID_PCIX
);
7940 if (bp
->pcix_cap
== 0) {
7942 "Cannot find PCIX capability, aborting\n");
7946 bp
->flags
|= BNX2_FLAG_BROKEN_STATS
;
7949 if (CHIP_NUM(bp
) == CHIP_NUM_5709
&& CHIP_REV(bp
) != CHIP_REV_Ax
) {
7950 if (pci_find_capability(pdev
, PCI_CAP_ID_MSIX
))
7951 bp
->flags
|= BNX2_FLAG_MSIX_CAP
;
7954 if (CHIP_ID(bp
) != CHIP_ID_5706_A0
&& CHIP_ID(bp
) != CHIP_ID_5706_A1
) {
7955 if (pci_find_capability(pdev
, PCI_CAP_ID_MSI
))
7956 bp
->flags
|= BNX2_FLAG_MSI_CAP
;
7959 /* 5708 cannot support DMA addresses > 40-bit. */
7960 if (CHIP_NUM(bp
) == CHIP_NUM_5708
)
7961 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(40);
7963 persist_dma_mask
= dma_mask
= DMA_BIT_MASK(64);
7965 /* Configure DMA attributes. */
7966 if (pci_set_dma_mask(pdev
, dma_mask
) == 0) {
7967 dev
->features
|= NETIF_F_HIGHDMA
;
7968 rc
= pci_set_consistent_dma_mask(pdev
, persist_dma_mask
);
7971 "pci_set_consistent_dma_mask failed, aborting\n");
7974 } else if ((rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32))) != 0) {
7975 dev_err(&pdev
->dev
, "System does not support DMA, aborting\n");
7979 if (!(bp
->flags
& BNX2_FLAG_PCIE
))
7980 bnx2_get_pci_speed(bp
);
7982 /* 5706A0 may falsely detect SERR and PERR. */
7983 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
7984 reg
= REG_RD(bp
, PCI_COMMAND
);
7985 reg
&= ~(PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
7986 REG_WR(bp
, PCI_COMMAND
, reg
);
7988 else if ((CHIP_ID(bp
) == CHIP_ID_5706_A1
) &&
7989 !(bp
->flags
& BNX2_FLAG_PCIX
)) {
7992 "5706 A1 can only be used in a PCIX bus, aborting\n");
7996 bnx2_init_nvram(bp
);
7998 reg
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_SIGNATURE
);
8000 if ((reg
& BNX2_SHM_HDR_SIGNATURE_SIG_MASK
) ==
8001 BNX2_SHM_HDR_SIGNATURE_SIG
) {
8002 u32 off
= PCI_FUNC(pdev
->devfn
) << 2;
8004 bp
->shmem_base
= bnx2_reg_rd_ind(bp
, BNX2_SHM_HDR_ADDR_0
+ off
);
8006 bp
->shmem_base
= HOST_VIEW_SHMEM_BASE
;
8008 /* Get the permanent MAC address. First we need to make sure the
8009 * firmware is actually running.
8011 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_SIGNATURE
);
8013 if ((reg
& BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK
) !=
8014 BNX2_DEV_INFO_SIGNATURE_MAGIC
) {
8015 dev_err(&pdev
->dev
, "Firmware not running, aborting\n");
8020 bnx2_read_vpd_fw_ver(bp
);
8022 j
= strlen(bp
->fw_version
);
8023 reg
= bnx2_shmem_rd(bp
, BNX2_DEV_INFO_BC_REV
);
8024 for (i
= 0; i
< 3 && j
< 24; i
++) {
8028 bp
->fw_version
[j
++] = 'b';
8029 bp
->fw_version
[j
++] = 'c';
8030 bp
->fw_version
[j
++] = ' ';
8032 num
= (u8
) (reg
>> (24 - (i
* 8)));
8033 for (k
= 100, skip0
= 1; k
>= 1; num
%= k
, k
/= 10) {
8034 if (num
>= k
|| !skip0
|| k
== 1) {
8035 bp
->fw_version
[j
++] = (num
/ k
) + '0';
8040 bp
->fw_version
[j
++] = '.';
8042 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_FEATURE
);
8043 if (reg
& BNX2_PORT_FEATURE_WOL_ENABLED
)
8046 if (reg
& BNX2_PORT_FEATURE_ASF_ENABLED
) {
8047 bp
->flags
|= BNX2_FLAG_ASF_ENABLE
;
8049 for (i
= 0; i
< 30; i
++) {
8050 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8051 if (reg
& BNX2_CONDITION_MFW_RUN_MASK
)
8056 reg
= bnx2_shmem_rd(bp
, BNX2_BC_STATE_CONDITION
);
8057 reg
&= BNX2_CONDITION_MFW_RUN_MASK
;
8058 if (reg
!= BNX2_CONDITION_MFW_RUN_UNKNOWN
&&
8059 reg
!= BNX2_CONDITION_MFW_RUN_NONE
) {
8060 u32 addr
= bnx2_shmem_rd(bp
, BNX2_MFW_VER_PTR
);
8063 bp
->fw_version
[j
++] = ' ';
8064 for (i
= 0; i
< 3 && j
< 28; i
++) {
8065 reg
= bnx2_reg_rd_ind(bp
, addr
+ i
* 4);
8067 memcpy(&bp
->fw_version
[j
], ®
, 4);
8072 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_UPPER
);
8073 bp
->mac_addr
[0] = (u8
) (reg
>> 8);
8074 bp
->mac_addr
[1] = (u8
) reg
;
8076 reg
= bnx2_shmem_rd(bp
, BNX2_PORT_HW_CFG_MAC_LOWER
);
8077 bp
->mac_addr
[2] = (u8
) (reg
>> 24);
8078 bp
->mac_addr
[3] = (u8
) (reg
>> 16);
8079 bp
->mac_addr
[4] = (u8
) (reg
>> 8);
8080 bp
->mac_addr
[5] = (u8
) reg
;
8082 bp
->tx_ring_size
= MAX_TX_DESC_CNT
;
8083 bnx2_set_rx_ring_size(bp
, 255);
8087 bp
->tx_quick_cons_trip_int
= 2;
8088 bp
->tx_quick_cons_trip
= 20;
8089 bp
->tx_ticks_int
= 18;
8092 bp
->rx_quick_cons_trip_int
= 2;
8093 bp
->rx_quick_cons_trip
= 12;
8094 bp
->rx_ticks_int
= 18;
8097 bp
->stats_ticks
= USEC_PER_SEC
& BNX2_HC_STATS_TICKS_HC_STAT_TICKS
;
8099 bp
->current_interval
= BNX2_TIMER_INTERVAL
;
8103 /* Disable WOL support if we are running on a SERDES chip. */
8104 if (CHIP_NUM(bp
) == CHIP_NUM_5709
)
8105 bnx2_get_5709_media(bp
);
8106 else if (CHIP_BOND_ID(bp
) & CHIP_BOND_ID_SERDES_BIT
)
8107 bp
->phy_flags
|= BNX2_PHY_FLAG_SERDES
;
8109 bp
->phy_port
= PORT_TP
;
8110 if (bp
->phy_flags
& BNX2_PHY_FLAG_SERDES
) {
8111 bp
->phy_port
= PORT_FIBRE
;
8112 reg
= bnx2_shmem_rd(bp
, BNX2_SHARED_HW_CFG_CONFIG
);
8113 if (!(reg
& BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX
)) {
8114 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8117 if (CHIP_NUM(bp
) == CHIP_NUM_5706
) {
8118 /* Don't do parallel detect on this board because of
8119 * some board problems. The link will not go down
8120 * if we do parallel detect.
8122 if (pdev
->subsystem_vendor
== PCI_VENDOR_ID_HP
&&
8123 pdev
->subsystem_device
== 0x310c)
8124 bp
->phy_flags
|= BNX2_PHY_FLAG_NO_PARALLEL
;
8127 if (reg
& BNX2_SHARED_HW_CFG_PHY_2_5G
)
8128 bp
->phy_flags
|= BNX2_PHY_FLAG_2_5G_CAPABLE
;
8130 } else if (CHIP_NUM(bp
) == CHIP_NUM_5706
||
8131 CHIP_NUM(bp
) == CHIP_NUM_5708
)
8132 bp
->phy_flags
|= BNX2_PHY_FLAG_CRC_FIX
;
8133 else if (CHIP_NUM(bp
) == CHIP_NUM_5709
&&
8134 (CHIP_REV(bp
) == CHIP_REV_Ax
||
8135 CHIP_REV(bp
) == CHIP_REV_Bx
))
8136 bp
->phy_flags
|= BNX2_PHY_FLAG_DIS_EARLY_DAC
;
8138 bnx2_init_fw_cap(bp
);
8140 if ((CHIP_ID(bp
) == CHIP_ID_5708_A0
) ||
8141 (CHIP_ID(bp
) == CHIP_ID_5708_B0
) ||
8142 (CHIP_ID(bp
) == CHIP_ID_5708_B1
) ||
8143 !(REG_RD(bp
, BNX2_PCI_CONFIG_3
) & BNX2_PCI_CONFIG_3_VAUX_PRESET
)) {
8144 bp
->flags
|= BNX2_FLAG_NO_WOL
;
8148 if (CHIP_ID(bp
) == CHIP_ID_5706_A0
) {
8149 bp
->tx_quick_cons_trip_int
=
8150 bp
->tx_quick_cons_trip
;
8151 bp
->tx_ticks_int
= bp
->tx_ticks
;
8152 bp
->rx_quick_cons_trip_int
=
8153 bp
->rx_quick_cons_trip
;
8154 bp
->rx_ticks_int
= bp
->rx_ticks
;
8155 bp
->comp_prod_trip_int
= bp
->comp_prod_trip
;
8156 bp
->com_ticks_int
= bp
->com_ticks
;
8157 bp
->cmd_ticks_int
= bp
->cmd_ticks
;
8160 /* Disable MSI on 5706 if AMD 8132 bridge is found.
8162 * MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
8163 * with byte enables disabled on the unused 32-bit word. This is legal
8164 * but causes problems on the AMD 8132 which will eventually stop
8165 * responding after a while.
8167 * AMD believes this incompatibility is unique to the 5706, and
8168 * prefers to locally disable MSI rather than globally disabling it.
8170 if (CHIP_NUM(bp
) == CHIP_NUM_5706
&& disable_msi
== 0) {
8171 struct pci_dev
*amd_8132
= NULL
;
8173 while ((amd_8132
= pci_get_device(PCI_VENDOR_ID_AMD
,
8174 PCI_DEVICE_ID_AMD_8132_BRIDGE
,
8177 if (amd_8132
->revision
>= 0x10 &&
8178 amd_8132
->revision
<= 0x13) {
8180 pci_dev_put(amd_8132
);
8186 bnx2_set_default_link(bp
);
8187 bp
->req_flow_ctrl
= FLOW_CTRL_RX
| FLOW_CTRL_TX
;
8189 init_timer(&bp
->timer
);
8190 bp
->timer
.expires
= RUN_AT(BNX2_TIMER_INTERVAL
);
8191 bp
->timer
.data
= (unsigned long) bp
;
8192 bp
->timer
.function
= bnx2_timer
;
8198 iounmap(bp
->regview
);
8203 pci_release_regions(pdev
);
8206 pci_disable_device(pdev
);
8207 pci_set_drvdata(pdev
, NULL
);
8213 static char * __devinit
8214 bnx2_bus_string(struct bnx2
*bp
, char *str
)
8218 if (bp
->flags
& BNX2_FLAG_PCIE
) {
8219 s
+= sprintf(s
, "PCI Express");
8221 s
+= sprintf(s
, "PCI");
8222 if (bp
->flags
& BNX2_FLAG_PCIX
)
8223 s
+= sprintf(s
, "-X");
8224 if (bp
->flags
& BNX2_FLAG_PCI_32BIT
)
8225 s
+= sprintf(s
, " 32-bit");
8227 s
+= sprintf(s
, " 64-bit");
8228 s
+= sprintf(s
, " %dMHz", bp
->bus_speed_mhz
);
8234 bnx2_del_napi(struct bnx2
*bp
)
8238 for (i
= 0; i
< bp
->irq_nvecs
; i
++)
8239 netif_napi_del(&bp
->bnx2_napi
[i
].napi
);
8243 bnx2_init_napi(struct bnx2
*bp
)
8247 for (i
= 0; i
< bp
->irq_nvecs
; i
++) {
8248 struct bnx2_napi
*bnapi
= &bp
->bnx2_napi
[i
];
8249 int (*poll
)(struct napi_struct
*, int);
8254 poll
= bnx2_poll_msix
;
8256 netif_napi_add(bp
->dev
, &bp
->bnx2_napi
[i
].napi
, poll
, 64);
8261 static const struct net_device_ops bnx2_netdev_ops
= {
8262 .ndo_open
= bnx2_open
,
8263 .ndo_start_xmit
= bnx2_start_xmit
,
8264 .ndo_stop
= bnx2_close
,
8265 .ndo_get_stats
= bnx2_get_stats
,
8266 .ndo_set_rx_mode
= bnx2_set_rx_mode
,
8267 .ndo_do_ioctl
= bnx2_ioctl
,
8268 .ndo_validate_addr
= eth_validate_addr
,
8269 .ndo_set_mac_address
= bnx2_change_mac_addr
,
8270 .ndo_change_mtu
= bnx2_change_mtu
,
8271 .ndo_tx_timeout
= bnx2_tx_timeout
,
8273 .ndo_vlan_rx_register
= bnx2_vlan_rx_register
,
8275 #ifdef CONFIG_NET_POLL_CONTROLLER
8276 .ndo_poll_controller
= poll_bnx2
,
8280 static void inline vlan_features_add(struct net_device
*dev
, unsigned long flags
)
8283 dev
->vlan_features
|= flags
;
8287 static int __devinit
8288 bnx2_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8290 static int version_printed
= 0;
8291 struct net_device
*dev
= NULL
;
8296 if (version_printed
++ == 0)
8297 pr_info("%s", version
);
8299 /* dev zeroed in init_etherdev */
8300 dev
= alloc_etherdev_mq(sizeof(*bp
), TX_MAX_RINGS
);
8305 rc
= bnx2_init_board(pdev
, dev
);
8311 dev
->netdev_ops
= &bnx2_netdev_ops
;
8312 dev
->watchdog_timeo
= TX_TIMEOUT
;
8313 dev
->ethtool_ops
= &bnx2_ethtool_ops
;
8315 bp
= netdev_priv(dev
);
8317 pci_set_drvdata(pdev
, dev
);
8319 rc
= bnx2_request_firmware(bp
);
8323 memcpy(dev
->dev_addr
, bp
->mac_addr
, 6);
8324 memcpy(dev
->perm_addr
, bp
->mac_addr
, 6);
8326 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
| NETIF_F_GRO
;
8327 vlan_features_add(dev
, NETIF_F_IP_CSUM
| NETIF_F_SG
);
8328 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8329 dev
->features
|= NETIF_F_IPV6_CSUM
;
8330 vlan_features_add(dev
, NETIF_F_IPV6_CSUM
);
8333 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
8335 dev
->features
|= NETIF_F_TSO
| NETIF_F_TSO_ECN
;
8336 vlan_features_add(dev
, NETIF_F_TSO
| NETIF_F_TSO_ECN
);
8337 if (CHIP_NUM(bp
) == CHIP_NUM_5709
) {
8338 dev
->features
|= NETIF_F_TSO6
;
8339 vlan_features_add(dev
, NETIF_F_TSO6
);
8341 if ((rc
= register_netdev(dev
))) {
8342 dev_err(&pdev
->dev
, "Cannot register net device\n");
8346 netdev_info(dev
, "%s (%c%d) %s found at mem %lx, IRQ %d, node addr %pM\n",
8347 board_info
[ent
->driver_data
].name
,
8348 ((CHIP_ID(bp
) & 0xf000) >> 12) + 'A',
8349 ((CHIP_ID(bp
) & 0x0ff0) >> 4),
8350 bnx2_bus_string(bp
, str
),
8352 bp
->pdev
->irq
, dev
->dev_addr
);
8357 if (bp
->mips_firmware
)
8358 release_firmware(bp
->mips_firmware
);
8359 if (bp
->rv2p_firmware
)
8360 release_firmware(bp
->rv2p_firmware
);
8363 iounmap(bp
->regview
);
8364 pci_release_regions(pdev
);
8365 pci_disable_device(pdev
);
8366 pci_set_drvdata(pdev
, NULL
);
8371 static void __devexit
8372 bnx2_remove_one(struct pci_dev
*pdev
)
8374 struct net_device
*dev
= pci_get_drvdata(pdev
);
8375 struct bnx2
*bp
= netdev_priv(dev
);
8377 flush_scheduled_work();
8379 unregister_netdev(dev
);
8381 if (bp
->mips_firmware
)
8382 release_firmware(bp
->mips_firmware
);
8383 if (bp
->rv2p_firmware
)
8384 release_firmware(bp
->rv2p_firmware
);
8387 iounmap(bp
->regview
);
8389 kfree(bp
->temp_stats_blk
);
8392 pci_release_regions(pdev
);
8393 pci_disable_device(pdev
);
8394 pci_set_drvdata(pdev
, NULL
);
8398 bnx2_suspend(struct pci_dev
*pdev
, pm_message_t state
)
8400 struct net_device
*dev
= pci_get_drvdata(pdev
);
8401 struct bnx2
*bp
= netdev_priv(dev
);
8403 /* PCI register 4 needs to be saved whether netif_running() or not.
8404 * MSI address and data need to be saved if using MSI and
8407 pci_save_state(pdev
);
8408 if (!netif_running(dev
))
8411 flush_scheduled_work();
8412 bnx2_netif_stop(bp
, true);
8413 netif_device_detach(dev
);
8414 del_timer_sync(&bp
->timer
);
8415 bnx2_shutdown_chip(bp
);
8417 bnx2_set_power_state(bp
, pci_choose_state(pdev
, state
));
8422 bnx2_resume(struct pci_dev
*pdev
)
8424 struct net_device
*dev
= pci_get_drvdata(pdev
);
8425 struct bnx2
*bp
= netdev_priv(dev
);
8427 pci_restore_state(pdev
);
8428 if (!netif_running(dev
))
8431 bnx2_set_power_state(bp
, PCI_D0
);
8432 netif_device_attach(dev
);
8433 bnx2_init_nic(bp
, 1);
8434 bnx2_netif_start(bp
, true);
8439 * bnx2_io_error_detected - called when PCI error is detected
8440 * @pdev: Pointer to PCI device
8441 * @state: The current pci connection state
8443 * This function is called after a PCI bus error affecting
8444 * this device has been detected.
8446 static pci_ers_result_t
bnx2_io_error_detected(struct pci_dev
*pdev
,
8447 pci_channel_state_t state
)
8449 struct net_device
*dev
= pci_get_drvdata(pdev
);
8450 struct bnx2
*bp
= netdev_priv(dev
);
8453 netif_device_detach(dev
);
8455 if (state
== pci_channel_io_perm_failure
) {
8457 return PCI_ERS_RESULT_DISCONNECT
;
8460 if (netif_running(dev
)) {
8461 bnx2_netif_stop(bp
, true);
8462 del_timer_sync(&bp
->timer
);
8463 bnx2_reset_nic(bp
, BNX2_DRV_MSG_CODE_RESET
);
8466 pci_disable_device(pdev
);
8469 /* Request a slot slot reset. */
8470 return PCI_ERS_RESULT_NEED_RESET
;
8474 * bnx2_io_slot_reset - called after the pci bus has been reset.
8475 * @pdev: Pointer to PCI device
8477 * Restart the card from scratch, as if from a cold-boot.
8479 static pci_ers_result_t
bnx2_io_slot_reset(struct pci_dev
*pdev
)
8481 struct net_device
*dev
= pci_get_drvdata(pdev
);
8482 struct bnx2
*bp
= netdev_priv(dev
);
8485 if (pci_enable_device(pdev
)) {
8487 "Cannot re-enable PCI device after reset\n");
8489 return PCI_ERS_RESULT_DISCONNECT
;
8491 pci_set_master(pdev
);
8492 pci_restore_state(pdev
);
8493 pci_save_state(pdev
);
8495 if (netif_running(dev
)) {
8496 bnx2_set_power_state(bp
, PCI_D0
);
8497 bnx2_init_nic(bp
, 1);
8501 return PCI_ERS_RESULT_RECOVERED
;
8505 * bnx2_io_resume - called when traffic can start flowing again.
8506 * @pdev: Pointer to PCI device
8508 * This callback is called when the error recovery driver tells us that
8509 * its OK to resume normal operation.
8511 static void bnx2_io_resume(struct pci_dev
*pdev
)
8513 struct net_device
*dev
= pci_get_drvdata(pdev
);
8514 struct bnx2
*bp
= netdev_priv(dev
);
8517 if (netif_running(dev
))
8518 bnx2_netif_start(bp
, true);
8520 netif_device_attach(dev
);
8524 static struct pci_error_handlers bnx2_err_handler
= {
8525 .error_detected
= bnx2_io_error_detected
,
8526 .slot_reset
= bnx2_io_slot_reset
,
8527 .resume
= bnx2_io_resume
,
8530 static struct pci_driver bnx2_pci_driver
= {
8531 .name
= DRV_MODULE_NAME
,
8532 .id_table
= bnx2_pci_tbl
,
8533 .probe
= bnx2_init_one
,
8534 .remove
= __devexit_p(bnx2_remove_one
),
8535 .suspend
= bnx2_suspend
,
8536 .resume
= bnx2_resume
,
8537 .err_handler
= &bnx2_err_handler
,
8540 static int __init
bnx2_init(void)
8542 return pci_register_driver(&bnx2_pci_driver
);
8545 static void __exit
bnx2_cleanup(void)
8547 pci_unregister_driver(&bnx2_pci_driver
);
8550 module_init(bnx2_init
);
8551 module_exit(bnx2_cleanup
);