2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
50 * Rx buffer size. We use largish buffers if possible but settle for single
51 * pages under memory shortage.
54 # define FL_PG_ORDER 0
56 # define FL_PG_ORDER (16 - PAGE_SHIFT)
59 /* RX_PULL_LEN should be <= RX_COPY_THRES */
60 #define RX_COPY_THRES 256
61 #define RX_PULL_LEN 128
64 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
65 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
67 #define RX_PKT_SKB_LEN 512
69 /* Ethernet header padding prepended to RX_PKTs */
73 * Max number of Tx descriptors we clean up at a time. Should be modest as
74 * freeing skbs isn't cheap and it happens while holding locks. We just need
75 * to free packets faster than they arrive, we eventually catch up and keep
76 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
78 #define MAX_TX_RECLAIM 16
81 * Max number of Rx buffers we replenish at a time. Again keep this modest,
82 * allocating buffers isn't cheap either.
84 #define MAX_RX_REFILL 16U
87 * Period of the Rx queue check timer. This timer is infrequent as it has
88 * something to do only when the system experiences severe memory shortage.
90 #define RX_QCHECK_PERIOD (HZ / 2)
93 * Period of the Tx queue check timer.
95 #define TX_QCHECK_PERIOD (HZ / 2)
98 * Max number of Tx descriptors to be reclaimed by the Tx timer.
100 #define MAX_TIMER_TX_RECLAIM 100
103 * Timer index used when backing off due to memory shortage.
105 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
108 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
109 * attempt to refill it.
111 #define FL_STARVE_THRES 4
114 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
115 * This is the same as calc_tx_descs() for a TSO packet with
116 * nr_frags == MAX_SKB_FRAGS.
118 #define ETHTXQ_STOP_THRES \
119 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
122 * Suspension threshold for non-Ethernet Tx queues. We require enough room
123 * for a full sized WR.
125 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
128 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
131 #define MAX_IMM_TX_PKT_LEN 128
134 * Max size of a WR sent through a control Tx queue.
136 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
139 /* packet alignment in FL buffers */
140 FL_ALIGN
= L1_CACHE_BYTES
< 32 ? 32 : L1_CACHE_BYTES
,
141 /* egress status entry size */
142 STAT_LEN
= L1_CACHE_BYTES
> 64 ? 128 : 64
145 struct tx_sw_desc
{ /* SW state per Tx descriptor */
147 struct ulptx_sgl
*sgl
;
150 struct rx_sw_desc
{ /* SW state per Rx descriptor */
156 * The low bits of rx_sw_desc.dma_addr have special meaning.
159 RX_LARGE_BUF
= 1 << 0, /* buffer is larger than PAGE_SIZE */
160 RX_UNMAPPED_BUF
= 1 << 1, /* buffer is not mapped */
163 static inline dma_addr_t
get_buf_addr(const struct rx_sw_desc
*d
)
165 return d
->dma_addr
& ~(dma_addr_t
)(RX_LARGE_BUF
| RX_UNMAPPED_BUF
);
168 static inline bool is_buf_mapped(const struct rx_sw_desc
*d
)
170 return !(d
->dma_addr
& RX_UNMAPPED_BUF
);
174 * txq_avail - return the number of available slots in a Tx queue
177 * Returns the number of descriptors in a Tx queue available to write new
180 static inline unsigned int txq_avail(const struct sge_txq
*q
)
182 return q
->size
- 1 - q
->in_use
;
186 * fl_cap - return the capacity of a free-buffer list
189 * Returns the capacity of a free-buffer list. The capacity is less than
190 * the size because one descriptor needs to be left unpopulated, otherwise
191 * HW will think the FL is empty.
193 static inline unsigned int fl_cap(const struct sge_fl
*fl
)
195 return fl
->size
- 8; /* 1 descriptor = 8 buffers */
198 static inline bool fl_starving(const struct sge_fl
*fl
)
200 return fl
->avail
- fl
->pend_cred
<= FL_STARVE_THRES
;
203 static int map_skb(struct device
*dev
, const struct sk_buff
*skb
,
206 const skb_frag_t
*fp
, *end
;
207 const struct skb_shared_info
*si
;
209 *addr
= dma_map_single(dev
, skb
->data
, skb_headlen(skb
), DMA_TO_DEVICE
);
210 if (dma_mapping_error(dev
, *addr
))
213 si
= skb_shinfo(skb
);
214 end
= &si
->frags
[si
->nr_frags
];
216 for (fp
= si
->frags
; fp
< end
; fp
++) {
217 *++addr
= dma_map_page(dev
, fp
->page
, fp
->page_offset
, fp
->size
,
219 if (dma_mapping_error(dev
, *addr
))
225 while (fp
-- > si
->frags
)
226 dma_unmap_page(dev
, *--addr
, fp
->size
, DMA_TO_DEVICE
);
228 dma_unmap_single(dev
, addr
[-1], skb_headlen(skb
), DMA_TO_DEVICE
);
233 #ifdef CONFIG_NEED_DMA_MAP_STATE
234 static void unmap_skb(struct device
*dev
, const struct sk_buff
*skb
,
235 const dma_addr_t
*addr
)
237 const skb_frag_t
*fp
, *end
;
238 const struct skb_shared_info
*si
;
240 dma_unmap_single(dev
, *addr
++, skb_headlen(skb
), DMA_TO_DEVICE
);
242 si
= skb_shinfo(skb
);
243 end
= &si
->frags
[si
->nr_frags
];
244 for (fp
= si
->frags
; fp
< end
; fp
++)
245 dma_unmap_page(dev
, *addr
++, fp
->size
, DMA_TO_DEVICE
);
249 * deferred_unmap_destructor - unmap a packet when it is freed
252 * This is the packet destructor used for Tx packets that need to remain
253 * mapped until they are freed rather than until their Tx descriptors are
256 static void deferred_unmap_destructor(struct sk_buff
*skb
)
258 unmap_skb(skb
->dev
->dev
.parent
, skb
, (dma_addr_t
*)skb
->head
);
262 static void unmap_sgl(struct device
*dev
, const struct sk_buff
*skb
,
263 const struct ulptx_sgl
*sgl
, const struct sge_txq
*q
)
265 const struct ulptx_sge_pair
*p
;
266 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
268 if (likely(skb_headlen(skb
)))
269 dma_unmap_single(dev
, be64_to_cpu(sgl
->addr0
), ntohl(sgl
->len0
),
272 dma_unmap_page(dev
, be64_to_cpu(sgl
->addr0
), ntohl(sgl
->len0
),
278 * the complexity below is because of the possibility of a wrap-around
279 * in the middle of an SGL
281 for (p
= sgl
->sge
; nfrags
>= 2; nfrags
-= 2) {
282 if (likely((u8
*)(p
+ 1) <= (u8
*)q
->stat
)) {
283 unmap
: dma_unmap_page(dev
, be64_to_cpu(p
->addr
[0]),
284 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
285 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[1]),
286 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
288 } else if ((u8
*)p
== (u8
*)q
->stat
) {
289 p
= (const struct ulptx_sge_pair
*)q
->desc
;
291 } else if ((u8
*)p
+ 8 == (u8
*)q
->stat
) {
292 const __be64
*addr
= (const __be64
*)q
->desc
;
294 dma_unmap_page(dev
, be64_to_cpu(addr
[0]),
295 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
296 dma_unmap_page(dev
, be64_to_cpu(addr
[1]),
297 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
298 p
= (const struct ulptx_sge_pair
*)&addr
[2];
300 const __be64
*addr
= (const __be64
*)q
->desc
;
302 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[0]),
303 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
304 dma_unmap_page(dev
, be64_to_cpu(addr
[0]),
305 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
306 p
= (const struct ulptx_sge_pair
*)&addr
[1];
312 if ((u8
*)p
== (u8
*)q
->stat
)
313 p
= (const struct ulptx_sge_pair
*)q
->desc
;
314 addr
= (u8
*)p
+ 16 <= (u8
*)q
->stat
? p
->addr
[0] :
315 *(const __be64
*)q
->desc
;
316 dma_unmap_page(dev
, be64_to_cpu(addr
), ntohl(p
->len
[0]),
322 * free_tx_desc - reclaims Tx descriptors and their buffers
323 * @adapter: the adapter
324 * @q: the Tx queue to reclaim descriptors from
325 * @n: the number of descriptors to reclaim
326 * @unmap: whether the buffers should be unmapped for DMA
328 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
329 * Tx buffers. Called with the Tx queue lock held.
331 static void free_tx_desc(struct adapter
*adap
, struct sge_txq
*q
,
332 unsigned int n
, bool unmap
)
334 struct tx_sw_desc
*d
;
335 unsigned int cidx
= q
->cidx
;
336 struct device
*dev
= adap
->pdev_dev
;
340 if (d
->skb
) { /* an SGL is present */
342 unmap_sgl(dev
, d
->skb
, d
->sgl
, q
);
347 if (++cidx
== q
->size
) {
356 * Return the number of reclaimable descriptors in a Tx queue.
358 static inline int reclaimable(const struct sge_txq
*q
)
360 int hw_cidx
= ntohs(q
->stat
->cidx
);
362 return hw_cidx
< 0 ? hw_cidx
+ q
->size
: hw_cidx
;
366 * reclaim_completed_tx - reclaims completed Tx descriptors
368 * @q: the Tx queue to reclaim completed descriptors from
369 * @unmap: whether the buffers should be unmapped for DMA
371 * Reclaims Tx descriptors that the SGE has indicated it has processed,
372 * and frees the associated buffers if possible. Called with the Tx
375 static inline void reclaim_completed_tx(struct adapter
*adap
, struct sge_txq
*q
,
378 int avail
= reclaimable(q
);
382 * Limit the amount of clean up work we do at a time to keep
383 * the Tx lock hold time O(1).
385 if (avail
> MAX_TX_RECLAIM
)
386 avail
= MAX_TX_RECLAIM
;
388 free_tx_desc(adap
, q
, avail
, unmap
);
393 static inline int get_buf_size(const struct rx_sw_desc
*d
)
396 return (d
->dma_addr
& RX_LARGE_BUF
) ? (PAGE_SIZE
<< FL_PG_ORDER
) :
404 * free_rx_bufs - free the Rx buffers on an SGE free list
406 * @q: the SGE free list to free buffers from
407 * @n: how many buffers to free
409 * Release the next @n buffers on an SGE free-buffer Rx queue. The
410 * buffers must be made inaccessible to HW before calling this function.
412 static void free_rx_bufs(struct adapter
*adap
, struct sge_fl
*q
, int n
)
415 struct rx_sw_desc
*d
= &q
->sdesc
[q
->cidx
];
417 if (is_buf_mapped(d
))
418 dma_unmap_page(adap
->pdev_dev
, get_buf_addr(d
),
419 get_buf_size(d
), PCI_DMA_FROMDEVICE
);
422 if (++q
->cidx
== q
->size
)
429 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
431 * @q: the SGE free list
433 * Unmap the current buffer on an SGE free-buffer Rx queue. The
434 * buffer must be made inaccessible to HW before calling this function.
436 * This is similar to @free_rx_bufs above but does not free the buffer.
437 * Do note that the FL still loses any further access to the buffer.
439 static void unmap_rx_buf(struct adapter
*adap
, struct sge_fl
*q
)
441 struct rx_sw_desc
*d
= &q
->sdesc
[q
->cidx
];
443 if (is_buf_mapped(d
))
444 dma_unmap_page(adap
->pdev_dev
, get_buf_addr(d
),
445 get_buf_size(d
), PCI_DMA_FROMDEVICE
);
447 if (++q
->cidx
== q
->size
)
452 static inline void ring_fl_db(struct adapter
*adap
, struct sge_fl
*q
)
454 if (q
->pend_cred
>= 8) {
456 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL
), DBPRIO
|
457 QID(q
->cntxt_id
) | PIDX(q
->pend_cred
/ 8));
462 static inline void set_rx_sw_desc(struct rx_sw_desc
*sd
, struct page
*pg
,
466 sd
->dma_addr
= mapping
; /* includes size low bits */
470 * refill_fl - refill an SGE Rx buffer ring
472 * @q: the ring to refill
473 * @n: the number of new buffers to allocate
474 * @gfp: the gfp flags for the allocations
476 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
477 * allocated with the supplied gfp flags. The caller must assure that
478 * @n does not exceed the queue's capacity. If afterwards the queue is
479 * found critically low mark it as starving in the bitmap of starving FLs.
481 * Returns the number of buffers allocated.
483 static unsigned int refill_fl(struct adapter
*adap
, struct sge_fl
*q
, int n
,
488 unsigned int cred
= q
->avail
;
489 __be64
*d
= &q
->desc
[q
->pidx
];
490 struct rx_sw_desc
*sd
= &q
->sdesc
[q
->pidx
];
492 gfp
|= __GFP_NOWARN
; /* failures are expected */
496 * Prefer large buffers
499 pg
= alloc_pages(gfp
| __GFP_COMP
, FL_PG_ORDER
);
501 q
->large_alloc_failed
++;
502 break; /* fall back to single pages */
505 mapping
= dma_map_page(adap
->pdev_dev
, pg
, 0,
506 PAGE_SIZE
<< FL_PG_ORDER
,
508 if (unlikely(dma_mapping_error(adap
->pdev_dev
, mapping
))) {
509 __free_pages(pg
, FL_PG_ORDER
);
510 goto out
; /* do not try small pages for this error */
512 mapping
|= RX_LARGE_BUF
;
513 *d
++ = cpu_to_be64(mapping
);
515 set_rx_sw_desc(sd
, pg
, mapping
);
519 if (++q
->pidx
== q
->size
) {
529 pg
= __netdev_alloc_page(adap
->port
[0], gfp
);
535 mapping
= dma_map_page(adap
->pdev_dev
, pg
, 0, PAGE_SIZE
,
537 if (unlikely(dma_mapping_error(adap
->pdev_dev
, mapping
))) {
538 netdev_free_page(adap
->port
[0], pg
);
541 *d
++ = cpu_to_be64(mapping
);
543 set_rx_sw_desc(sd
, pg
, mapping
);
547 if (++q
->pidx
== q
->size
) {
554 out
: cred
= q
->avail
- cred
;
555 q
->pend_cred
+= cred
;
558 if (unlikely(fl_starving(q
))) {
560 set_bit(q
->cntxt_id
, adap
->sge
.starving_fl
);
566 static inline void __refill_fl(struct adapter
*adap
, struct sge_fl
*fl
)
568 refill_fl(adap
, fl
, min(MAX_RX_REFILL
, fl_cap(fl
) - fl
->avail
),
573 * alloc_ring - allocate resources for an SGE descriptor ring
574 * @dev: the PCI device's core device
575 * @nelem: the number of descriptors
576 * @elem_size: the size of each descriptor
577 * @sw_size: the size of the SW state associated with each ring element
578 * @phys: the physical address of the allocated ring
579 * @metadata: address of the array holding the SW state for the ring
580 * @stat_size: extra space in HW ring for status information
582 * Allocates resources for an SGE descriptor ring, such as Tx queues,
583 * free buffer lists, or response queues. Each SGE ring requires
584 * space for its HW descriptors plus, optionally, space for the SW state
585 * associated with each HW entry (the metadata). The function returns
586 * three values: the virtual address for the HW ring (the return value
587 * of the function), the bus address of the HW ring, and the address
590 static void *alloc_ring(struct device
*dev
, size_t nelem
, size_t elem_size
,
591 size_t sw_size
, dma_addr_t
*phys
, void *metadata
,
594 size_t len
= nelem
* elem_size
+ stat_size
;
596 void *p
= dma_alloc_coherent(dev
, len
, phys
, GFP_KERNEL
);
601 s
= kcalloc(nelem
, sw_size
, GFP_KERNEL
);
604 dma_free_coherent(dev
, len
, p
, *phys
);
609 *(void **)metadata
= s
;
615 * sgl_len - calculates the size of an SGL of the given capacity
616 * @n: the number of SGL entries
618 * Calculates the number of flits needed for a scatter/gather list that
619 * can hold the given number of entries.
621 static inline unsigned int sgl_len(unsigned int n
)
624 return (3 * n
) / 2 + (n
& 1) + 2;
628 * flits_to_desc - returns the num of Tx descriptors for the given flits
629 * @n: the number of flits
631 * Returns the number of Tx descriptors needed for the supplied number
634 static inline unsigned int flits_to_desc(unsigned int n
)
636 BUG_ON(n
> SGE_MAX_WR_LEN
/ 8);
637 return DIV_ROUND_UP(n
, 8);
641 * is_eth_imm - can an Ethernet packet be sent as immediate data?
644 * Returns whether an Ethernet packet is small enough to fit as
647 static inline int is_eth_imm(const struct sk_buff
*skb
)
649 return skb
->len
<= MAX_IMM_TX_PKT_LEN
- sizeof(struct cpl_tx_pkt
);
653 * calc_tx_flits - calculate the number of flits for a packet Tx WR
656 * Returns the number of flits needed for a Tx WR for the given Ethernet
657 * packet, including the needed WR and CPL headers.
659 static inline unsigned int calc_tx_flits(const struct sk_buff
*skb
)
664 return DIV_ROUND_UP(skb
->len
+ sizeof(struct cpl_tx_pkt
), 8);
666 flits
= sgl_len(skb_shinfo(skb
)->nr_frags
+ 1) + 4;
667 if (skb_shinfo(skb
)->gso_size
)
673 * calc_tx_descs - calculate the number of Tx descriptors for a packet
676 * Returns the number of Tx descriptors needed for the given Ethernet
677 * packet, including the needed WR and CPL headers.
679 static inline unsigned int calc_tx_descs(const struct sk_buff
*skb
)
681 return flits_to_desc(calc_tx_flits(skb
));
685 * write_sgl - populate a scatter/gather list for a packet
687 * @q: the Tx queue we are writing into
688 * @sgl: starting location for writing the SGL
689 * @end: points right after the end of the SGL
690 * @start: start offset into skb main-body data to include in the SGL
691 * @addr: the list of bus addresses for the SGL elements
693 * Generates a gather list for the buffers that make up a packet.
694 * The caller must provide adequate space for the SGL that will be written.
695 * The SGL includes all of the packet's page fragments and the data in its
696 * main body except for the first @start bytes. @sgl must be 16-byte
697 * aligned and within a Tx descriptor with available space. @end points
698 * right after the end of the SGL but does not account for any potential
699 * wrap around, i.e., @end > @sgl.
701 static void write_sgl(const struct sk_buff
*skb
, struct sge_txq
*q
,
702 struct ulptx_sgl
*sgl
, u64
*end
, unsigned int start
,
703 const dma_addr_t
*addr
)
706 struct ulptx_sge_pair
*to
;
707 const struct skb_shared_info
*si
= skb_shinfo(skb
);
708 unsigned int nfrags
= si
->nr_frags
;
709 struct ulptx_sge_pair buf
[MAX_SKB_FRAGS
/ 2 + 1];
711 len
= skb_headlen(skb
) - start
;
713 sgl
->len0
= htonl(len
);
714 sgl
->addr0
= cpu_to_be64(addr
[0] + start
);
717 sgl
->len0
= htonl(si
->frags
[0].size
);
718 sgl
->addr0
= cpu_to_be64(addr
[1]);
721 sgl
->cmd_nsge
= htonl(ULPTX_CMD(ULP_TX_SC_DSGL
) | ULPTX_NSGE(nfrags
));
722 if (likely(--nfrags
== 0))
725 * Most of the complexity below deals with the possibility we hit the
726 * end of the queue in the middle of writing the SGL. For this case
727 * only we create the SGL in a temporary buffer and then copy it.
729 to
= (u8
*)end
> (u8
*)q
->stat
? buf
: sgl
->sge
;
731 for (i
= (nfrags
!= si
->nr_frags
); nfrags
>= 2; nfrags
-= 2, to
++) {
732 to
->len
[0] = cpu_to_be32(si
->frags
[i
].size
);
733 to
->len
[1] = cpu_to_be32(si
->frags
[++i
].size
);
734 to
->addr
[0] = cpu_to_be64(addr
[i
]);
735 to
->addr
[1] = cpu_to_be64(addr
[++i
]);
738 to
->len
[0] = cpu_to_be32(si
->frags
[i
].size
);
739 to
->len
[1] = cpu_to_be32(0);
740 to
->addr
[0] = cpu_to_be64(addr
[i
+ 1]);
742 if (unlikely((u8
*)end
> (u8
*)q
->stat
)) {
743 unsigned int part0
= (u8
*)q
->stat
- (u8
*)sgl
->sge
, part1
;
746 memcpy(sgl
->sge
, buf
, part0
);
747 part1
= (u8
*)end
- (u8
*)q
->stat
;
748 memcpy(q
->desc
, (u8
*)buf
+ part0
, part1
);
749 end
= (void *)q
->desc
+ part1
;
751 if ((uintptr_t)end
& 8) /* 0-pad to multiple of 16 */
756 * ring_tx_db - check and potentially ring a Tx queue's doorbell
759 * @n: number of new descriptors to give to HW
761 * Ring the doorbel for a Tx queue.
763 static inline void ring_tx_db(struct adapter
*adap
, struct sge_txq
*q
, int n
)
765 wmb(); /* write descriptors before telling HW */
766 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL
),
767 QID(q
->cntxt_id
) | PIDX(n
));
771 * inline_tx_skb - inline a packet's data into Tx descriptors
773 * @q: the Tx queue where the packet will be inlined
774 * @pos: starting position in the Tx queue where to inline the packet
776 * Inline a packet's contents directly into Tx descriptors, starting at
777 * the given position within the Tx DMA ring.
778 * Most of the complexity of this operation is dealing with wrap arounds
779 * in the middle of the packet we want to inline.
781 static void inline_tx_skb(const struct sk_buff
*skb
, const struct sge_txq
*q
,
785 int left
= (void *)q
->stat
- pos
;
787 if (likely(skb
->len
<= left
)) {
788 if (likely(!skb
->data_len
))
789 skb_copy_from_linear_data(skb
, pos
, skb
->len
);
791 skb_copy_bits(skb
, 0, pos
, skb
->len
);
794 skb_copy_bits(skb
, 0, pos
, left
);
795 skb_copy_bits(skb
, left
, q
->desc
, skb
->len
- left
);
796 pos
= (void *)q
->desc
+ (skb
->len
- left
);
799 /* 0-pad to multiple of 16 */
800 p
= PTR_ALIGN(pos
, 8);
801 if ((uintptr_t)p
& 8)
806 * Figure out what HW csum a packet wants and return the appropriate control
809 static u64
hwcsum(const struct sk_buff
*skb
)
812 const struct iphdr
*iph
= ip_hdr(skb
);
814 if (iph
->version
== 4) {
815 if (iph
->protocol
== IPPROTO_TCP
)
816 csum_type
= TX_CSUM_TCPIP
;
817 else if (iph
->protocol
== IPPROTO_UDP
)
818 csum_type
= TX_CSUM_UDPIP
;
821 * unknown protocol, disable HW csum
822 * and hope a bad packet is detected
824 return TXPKT_L4CSUM_DIS
;
828 * this doesn't work with extension headers
830 const struct ipv6hdr
*ip6h
= (const struct ipv6hdr
*)iph
;
832 if (ip6h
->nexthdr
== IPPROTO_TCP
)
833 csum_type
= TX_CSUM_TCPIP6
;
834 else if (ip6h
->nexthdr
== IPPROTO_UDP
)
835 csum_type
= TX_CSUM_UDPIP6
;
840 if (likely(csum_type
>= TX_CSUM_TCPIP
))
841 return TXPKT_CSUM_TYPE(csum_type
) |
842 TXPKT_IPHDR_LEN(skb_network_header_len(skb
)) |
843 TXPKT_ETHHDR_LEN(skb_network_offset(skb
) - ETH_HLEN
);
845 int start
= skb_transport_offset(skb
);
847 return TXPKT_CSUM_TYPE(csum_type
) | TXPKT_CSUM_START(start
) |
848 TXPKT_CSUM_LOC(start
+ skb
->csum_offset
);
852 static void eth_txq_stop(struct sge_eth_txq
*q
)
854 netif_tx_stop_queue(q
->txq
);
858 static inline void txq_advance(struct sge_txq
*q
, unsigned int n
)
862 if (q
->pidx
>= q
->size
)
867 * t4_eth_xmit - add a packet to an Ethernet Tx queue
869 * @dev: the egress net device
871 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
873 netdev_tx_t
t4_eth_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
878 unsigned int flits
, ndesc
;
879 struct adapter
*adap
;
880 struct sge_eth_txq
*q
;
881 const struct port_info
*pi
;
882 struct fw_eth_tx_pkt_wr
*wr
;
883 struct cpl_tx_pkt_core
*cpl
;
884 const struct skb_shared_info
*ssi
;
885 dma_addr_t addr
[MAX_SKB_FRAGS
+ 1];
888 * The chip min packet length is 10 octets but play safe and reject
889 * anything shorter than an Ethernet header.
891 if (unlikely(skb
->len
< ETH_HLEN
)) {
892 out_free
: dev_kfree_skb(skb
);
896 pi
= netdev_priv(dev
);
898 qidx
= skb_get_queue_mapping(skb
);
899 q
= &adap
->sge
.ethtxq
[qidx
+ pi
->first_qset
];
901 reclaim_completed_tx(adap
, &q
->q
, true);
903 flits
= calc_tx_flits(skb
);
904 ndesc
= flits_to_desc(flits
);
905 credits
= txq_avail(&q
->q
) - ndesc
;
907 if (unlikely(credits
< 0)) {
909 dev_err(adap
->pdev_dev
,
910 "%s: Tx ring %u full while queue awake!\n",
912 return NETDEV_TX_BUSY
;
915 if (!is_eth_imm(skb
) &&
916 unlikely(map_skb(adap
->pdev_dev
, skb
, addr
) < 0)) {
921 wr_mid
= FW_WR_LEN16(DIV_ROUND_UP(flits
, 2));
922 if (unlikely(credits
< ETHTXQ_STOP_THRES
)) {
924 wr_mid
|= FW_WR_EQUEQ
| FW_WR_EQUIQ
;
927 wr
= (void *)&q
->q
.desc
[q
->q
.pidx
];
928 wr
->equiq_to_len16
= htonl(wr_mid
);
929 wr
->r3
= cpu_to_be64(0);
930 end
= (u64
*)wr
+ flits
;
932 ssi
= skb_shinfo(skb
);
934 struct cpl_tx_pkt_lso
*lso
= (void *)wr
;
935 bool v6
= (ssi
->gso_type
& SKB_GSO_TCPV6
) != 0;
936 int l3hdr_len
= skb_network_header_len(skb
);
937 int eth_xtra_len
= skb_network_offset(skb
) - ETH_HLEN
;
939 wr
->op_immdlen
= htonl(FW_WR_OP(FW_ETH_TX_PKT_WR
) |
940 FW_WR_IMMDLEN(sizeof(*lso
)));
941 lso
->lso_ctrl
= htonl(LSO_OPCODE(CPL_TX_PKT_LSO
) |
942 LSO_FIRST_SLICE
| LSO_LAST_SLICE
|
944 LSO_ETHHDR_LEN(eth_xtra_len
/ 4) |
945 LSO_IPHDR_LEN(l3hdr_len
/ 4) |
946 LSO_TCPHDR_LEN(tcp_hdr(skb
)->doff
));
947 lso
->ipid_ofst
= htons(0);
948 lso
->mss
= htons(ssi
->gso_size
);
949 lso
->seqno_offset
= htonl(0);
950 lso
->len
= htonl(skb
->len
);
951 cpl
= (void *)(lso
+ 1);
952 cntrl
= TXPKT_CSUM_TYPE(v6
? TX_CSUM_TCPIP6
: TX_CSUM_TCPIP
) |
953 TXPKT_IPHDR_LEN(l3hdr_len
) |
954 TXPKT_ETHHDR_LEN(eth_xtra_len
);
956 q
->tx_cso
+= ssi
->gso_segs
;
960 len
= is_eth_imm(skb
) ? skb
->len
+ sizeof(*cpl
) : sizeof(*cpl
);
961 wr
->op_immdlen
= htonl(FW_WR_OP(FW_ETH_TX_PKT_WR
) |
963 cpl
= (void *)(wr
+ 1);
964 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
965 cntrl
= hwcsum(skb
) | TXPKT_IPCSUM_DIS
;
968 cntrl
= TXPKT_L4CSUM_DIS
| TXPKT_IPCSUM_DIS
;
971 if (vlan_tx_tag_present(skb
)) {
973 cntrl
|= TXPKT_VLAN_VLD
| TXPKT_VLAN(vlan_tx_tag_get(skb
));
976 cpl
->ctrl0
= htonl(TXPKT_OPCODE(CPL_TX_PKT_XT
) |
977 TXPKT_INTF(pi
->tx_chan
) | TXPKT_PF(0));
978 cpl
->pack
= htons(0);
979 cpl
->len
= htons(skb
->len
);
980 cpl
->ctrl1
= cpu_to_be64(cntrl
);
982 if (is_eth_imm(skb
)) {
983 inline_tx_skb(skb
, &q
->q
, cpl
+ 1);
988 write_sgl(skb
, &q
->q
, (struct ulptx_sgl
*)(cpl
+ 1), end
, 0,
992 last_desc
= q
->q
.pidx
+ ndesc
- 1;
993 if (last_desc
>= q
->q
.size
)
994 last_desc
-= q
->q
.size
;
995 q
->q
.sdesc
[last_desc
].skb
= skb
;
996 q
->q
.sdesc
[last_desc
].sgl
= (struct ulptx_sgl
*)(cpl
+ 1);
999 txq_advance(&q
->q
, ndesc
);
1001 ring_tx_db(adap
, &q
->q
, ndesc
);
1002 return NETDEV_TX_OK
;
1006 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1007 * @q: the SGE control Tx queue
1009 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1010 * that send only immediate data (presently just the control queues) and
1011 * thus do not have any sk_buffs to release.
1013 static inline void reclaim_completed_tx_imm(struct sge_txq
*q
)
1015 int hw_cidx
= ntohs(q
->stat
->cidx
);
1016 int reclaim
= hw_cidx
- q
->cidx
;
1021 q
->in_use
-= reclaim
;
1026 * is_imm - check whether a packet can be sent as immediate data
1029 * Returns true if a packet can be sent as a WR with immediate data.
1031 static inline int is_imm(const struct sk_buff
*skb
)
1033 return skb
->len
<= MAX_CTRL_WR_LEN
;
1037 * ctrlq_check_stop - check if a control queue is full and should stop
1039 * @wr: most recent WR written to the queue
1041 * Check if a control queue has become full and should be stopped.
1042 * We clean up control queue descriptors very lazily, only when we are out.
1043 * If the queue is still full after reclaiming any completed descriptors
1044 * we suspend it and have the last WR wake it up.
1046 static void ctrlq_check_stop(struct sge_ctrl_txq
*q
, struct fw_wr_hdr
*wr
)
1048 reclaim_completed_tx_imm(&q
->q
);
1049 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
)) {
1050 wr
->lo
|= htonl(FW_WR_EQUEQ
| FW_WR_EQUIQ
);
1057 * ctrl_xmit - send a packet through an SGE control Tx queue
1058 * @q: the control queue
1061 * Send a packet through an SGE control Tx queue. Packets sent through
1062 * a control queue must fit entirely as immediate data.
1064 static int ctrl_xmit(struct sge_ctrl_txq
*q
, struct sk_buff
*skb
)
1067 struct fw_wr_hdr
*wr
;
1069 if (unlikely(!is_imm(skb
))) {
1072 return NET_XMIT_DROP
;
1075 ndesc
= DIV_ROUND_UP(skb
->len
, sizeof(struct tx_desc
));
1076 spin_lock(&q
->sendq
.lock
);
1078 if (unlikely(q
->full
)) {
1079 skb
->priority
= ndesc
; /* save for restart */
1080 __skb_queue_tail(&q
->sendq
, skb
);
1081 spin_unlock(&q
->sendq
.lock
);
1085 wr
= (struct fw_wr_hdr
*)&q
->q
.desc
[q
->q
.pidx
];
1086 inline_tx_skb(skb
, &q
->q
, wr
);
1088 txq_advance(&q
->q
, ndesc
);
1089 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
))
1090 ctrlq_check_stop(q
, wr
);
1092 ring_tx_db(q
->adap
, &q
->q
, ndesc
);
1093 spin_unlock(&q
->sendq
.lock
);
1096 return NET_XMIT_SUCCESS
;
1100 * restart_ctrlq - restart a suspended control queue
1101 * @data: the control queue to restart
1103 * Resumes transmission on a suspended Tx control queue.
1105 static void restart_ctrlq(unsigned long data
)
1107 struct sk_buff
*skb
;
1108 unsigned int written
= 0;
1109 struct sge_ctrl_txq
*q
= (struct sge_ctrl_txq
*)data
;
1111 spin_lock(&q
->sendq
.lock
);
1112 reclaim_completed_tx_imm(&q
->q
);
1113 BUG_ON(txq_avail(&q
->q
) < TXQ_STOP_THRES
); /* q should be empty */
1115 while ((skb
= __skb_dequeue(&q
->sendq
)) != NULL
) {
1116 struct fw_wr_hdr
*wr
;
1117 unsigned int ndesc
= skb
->priority
; /* previously saved */
1120 * Write descriptors and free skbs outside the lock to limit
1121 * wait times. q->full is still set so new skbs will be queued.
1123 spin_unlock(&q
->sendq
.lock
);
1125 wr
= (struct fw_wr_hdr
*)&q
->q
.desc
[q
->q
.pidx
];
1126 inline_tx_skb(skb
, &q
->q
, wr
);
1130 txq_advance(&q
->q
, ndesc
);
1131 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
)) {
1132 unsigned long old
= q
->q
.stops
;
1134 ctrlq_check_stop(q
, wr
);
1135 if (q
->q
.stops
!= old
) { /* suspended anew */
1136 spin_lock(&q
->sendq
.lock
);
1141 ring_tx_db(q
->adap
, &q
->q
, written
);
1144 spin_lock(&q
->sendq
.lock
);
1147 ringdb
: if (written
)
1148 ring_tx_db(q
->adap
, &q
->q
, written
);
1149 spin_unlock(&q
->sendq
.lock
);
1153 * t4_mgmt_tx - send a management message
1154 * @adap: the adapter
1155 * @skb: the packet containing the management message
1157 * Send a management message through control queue 0.
1159 int t4_mgmt_tx(struct adapter
*adap
, struct sk_buff
*skb
)
1164 ret
= ctrl_xmit(&adap
->sge
.ctrlq
[0], skb
);
1170 * is_ofld_imm - check whether a packet can be sent as immediate data
1173 * Returns true if a packet can be sent as an offload WR with immediate
1174 * data. We currently use the same limit as for Ethernet packets.
1176 static inline int is_ofld_imm(const struct sk_buff
*skb
)
1178 return skb
->len
<= MAX_IMM_TX_PKT_LEN
;
1182 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1185 * Returns the number of flits needed for the given offload packet.
1186 * These packets are already fully constructed and no additional headers
1189 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff
*skb
)
1191 unsigned int flits
, cnt
;
1193 if (is_ofld_imm(skb
))
1194 return DIV_ROUND_UP(skb
->len
, 8);
1196 flits
= skb_transport_offset(skb
) / 8U; /* headers */
1197 cnt
= skb_shinfo(skb
)->nr_frags
;
1198 if (skb
->tail
!= skb
->transport_header
)
1200 return flits
+ sgl_len(cnt
);
1204 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1205 * @adap: the adapter
1206 * @q: the queue to stop
1208 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1209 * inability to map packets. A periodic timer attempts to restart
1212 static void txq_stop_maperr(struct sge_ofld_txq
*q
)
1216 set_bit(q
->q
.cntxt_id
, q
->adap
->sge
.txq_maperr
);
1220 * ofldtxq_stop - stop an offload Tx queue that has become full
1221 * @q: the queue to stop
1222 * @skb: the packet causing the queue to become full
1224 * Stops an offload Tx queue that has become full and modifies the packet
1225 * being written to request a wakeup.
1227 static void ofldtxq_stop(struct sge_ofld_txq
*q
, struct sk_buff
*skb
)
1229 struct fw_wr_hdr
*wr
= (struct fw_wr_hdr
*)skb
->data
;
1231 wr
->lo
|= htonl(FW_WR_EQUEQ
| FW_WR_EQUIQ
);
1237 * service_ofldq - restart a suspended offload queue
1238 * @q: the offload queue
1240 * Services an offload Tx queue by moving packets from its packet queue
1241 * to the HW Tx ring. The function starts and ends with the queue locked.
1243 static void service_ofldq(struct sge_ofld_txq
*q
)
1247 struct sk_buff
*skb
;
1248 unsigned int written
= 0;
1249 unsigned int flits
, ndesc
;
1251 while ((skb
= skb_peek(&q
->sendq
)) != NULL
&& !q
->full
) {
1253 * We drop the lock but leave skb on sendq, thus retaining
1254 * exclusive access to the state of the queue.
1256 spin_unlock(&q
->sendq
.lock
);
1258 reclaim_completed_tx(q
->adap
, &q
->q
, false);
1260 flits
= skb
->priority
; /* previously saved */
1261 ndesc
= flits_to_desc(flits
);
1262 credits
= txq_avail(&q
->q
) - ndesc
;
1263 BUG_ON(credits
< 0);
1264 if (unlikely(credits
< TXQ_STOP_THRES
))
1265 ofldtxq_stop(q
, skb
);
1267 pos
= (u64
*)&q
->q
.desc
[q
->q
.pidx
];
1268 if (is_ofld_imm(skb
))
1269 inline_tx_skb(skb
, &q
->q
, pos
);
1270 else if (map_skb(q
->adap
->pdev_dev
, skb
,
1271 (dma_addr_t
*)skb
->head
)) {
1273 spin_lock(&q
->sendq
.lock
);
1276 int last_desc
, hdr_len
= skb_transport_offset(skb
);
1278 memcpy(pos
, skb
->data
, hdr_len
);
1279 write_sgl(skb
, &q
->q
, (void *)pos
+ hdr_len
,
1280 pos
+ flits
, hdr_len
,
1281 (dma_addr_t
*)skb
->head
);
1282 #ifdef CONFIG_NEED_DMA_MAP_STATE
1283 skb
->dev
= q
->adap
->port
[0];
1284 skb
->destructor
= deferred_unmap_destructor
;
1286 last_desc
= q
->q
.pidx
+ ndesc
- 1;
1287 if (last_desc
>= q
->q
.size
)
1288 last_desc
-= q
->q
.size
;
1289 q
->q
.sdesc
[last_desc
].skb
= skb
;
1292 txq_advance(&q
->q
, ndesc
);
1294 if (unlikely(written
> 32)) {
1295 ring_tx_db(q
->adap
, &q
->q
, written
);
1299 spin_lock(&q
->sendq
.lock
);
1300 __skb_unlink(skb
, &q
->sendq
);
1301 if (is_ofld_imm(skb
))
1304 if (likely(written
))
1305 ring_tx_db(q
->adap
, &q
->q
, written
);
1309 * ofld_xmit - send a packet through an offload queue
1310 * @q: the Tx offload queue
1313 * Send an offload packet through an SGE offload queue.
1315 static int ofld_xmit(struct sge_ofld_txq
*q
, struct sk_buff
*skb
)
1317 skb
->priority
= calc_tx_flits_ofld(skb
); /* save for restart */
1318 spin_lock(&q
->sendq
.lock
);
1319 __skb_queue_tail(&q
->sendq
, skb
);
1320 if (q
->sendq
.qlen
== 1)
1322 spin_unlock(&q
->sendq
.lock
);
1323 return NET_XMIT_SUCCESS
;
1327 * restart_ofldq - restart a suspended offload queue
1328 * @data: the offload queue to restart
1330 * Resumes transmission on a suspended Tx offload queue.
1332 static void restart_ofldq(unsigned long data
)
1334 struct sge_ofld_txq
*q
= (struct sge_ofld_txq
*)data
;
1336 spin_lock(&q
->sendq
.lock
);
1337 q
->full
= 0; /* the queue actually is completely empty now */
1339 spin_unlock(&q
->sendq
.lock
);
1343 * skb_txq - return the Tx queue an offload packet should use
1346 * Returns the Tx queue an offload packet should use as indicated by bits
1347 * 1-15 in the packet's queue_mapping.
1349 static inline unsigned int skb_txq(const struct sk_buff
*skb
)
1351 return skb
->queue_mapping
>> 1;
1355 * is_ctrl_pkt - return whether an offload packet is a control packet
1358 * Returns whether an offload packet should use an OFLD or a CTRL
1359 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1361 static inline unsigned int is_ctrl_pkt(const struct sk_buff
*skb
)
1363 return skb
->queue_mapping
& 1;
1366 static inline int ofld_send(struct adapter
*adap
, struct sk_buff
*skb
)
1368 unsigned int idx
= skb_txq(skb
);
1370 if (unlikely(is_ctrl_pkt(skb
)))
1371 return ctrl_xmit(&adap
->sge
.ctrlq
[idx
], skb
);
1372 return ofld_xmit(&adap
->sge
.ofldtxq
[idx
], skb
);
1376 * t4_ofld_send - send an offload packet
1377 * @adap: the adapter
1380 * Sends an offload packet. We use the packet queue_mapping to select the
1381 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1382 * should be sent as regular or control, bits 1-15 select the queue.
1384 int t4_ofld_send(struct adapter
*adap
, struct sk_buff
*skb
)
1389 ret
= ofld_send(adap
, skb
);
1395 * cxgb4_ofld_send - send an offload packet
1396 * @dev: the net device
1399 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1400 * intended for ULDs.
1402 int cxgb4_ofld_send(struct net_device
*dev
, struct sk_buff
*skb
)
1404 return t4_ofld_send(netdev2adap(dev
), skb
);
1406 EXPORT_SYMBOL(cxgb4_ofld_send
);
1408 static inline void copy_frags(struct skb_shared_info
*ssi
,
1409 const struct pkt_gl
*gl
, unsigned int offset
)
1413 /* usually there's just one frag */
1414 ssi
->frags
[0].page
= gl
->frags
[0].page
;
1415 ssi
->frags
[0].page_offset
= gl
->frags
[0].page_offset
+ offset
;
1416 ssi
->frags
[0].size
= gl
->frags
[0].size
- offset
;
1417 ssi
->nr_frags
= gl
->nfrags
;
1420 memcpy(&ssi
->frags
[1], &gl
->frags
[1], n
* sizeof(skb_frag_t
));
1422 /* get a reference to the last page, we don't own it */
1423 get_page(gl
->frags
[n
].page
);
1427 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1428 * @gl: the gather list
1429 * @skb_len: size of sk_buff main body if it carries fragments
1430 * @pull_len: amount of data to move to the sk_buff's main body
1432 * Builds an sk_buff from the given packet gather list. Returns the
1433 * sk_buff or %NULL if sk_buff allocation failed.
1435 struct sk_buff
*cxgb4_pktgl_to_skb(const struct pkt_gl
*gl
,
1436 unsigned int skb_len
, unsigned int pull_len
)
1438 struct sk_buff
*skb
;
1441 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1442 * size, which is expected since buffers are at least PAGE_SIZEd.
1443 * In this case packets up to RX_COPY_THRES have only one fragment.
1445 if (gl
->tot_len
<= RX_COPY_THRES
) {
1446 skb
= dev_alloc_skb(gl
->tot_len
);
1449 __skb_put(skb
, gl
->tot_len
);
1450 skb_copy_to_linear_data(skb
, gl
->va
, gl
->tot_len
);
1452 skb
= dev_alloc_skb(skb_len
);
1455 __skb_put(skb
, pull_len
);
1456 skb_copy_to_linear_data(skb
, gl
->va
, pull_len
);
1458 copy_frags(skb_shinfo(skb
), gl
, pull_len
);
1459 skb
->len
= gl
->tot_len
;
1460 skb
->data_len
= skb
->len
- pull_len
;
1461 skb
->truesize
+= skb
->data_len
;
1465 EXPORT_SYMBOL(cxgb4_pktgl_to_skb
);
1468 * t4_pktgl_free - free a packet gather list
1469 * @gl: the gather list
1471 * Releases the pages of a packet gather list. We do not own the last
1472 * page on the list and do not free it.
1474 static void t4_pktgl_free(const struct pkt_gl
*gl
)
1477 const skb_frag_t
*p
;
1479 for (p
= gl
->frags
, n
= gl
->nfrags
- 1; n
--; p
++)
1484 * Process an MPS trace packet. Give it an unused protocol number so it won't
1485 * be delivered to anyone and send it to the stack for capture.
1487 static noinline
int handle_trace_pkt(struct adapter
*adap
,
1488 const struct pkt_gl
*gl
)
1490 struct sk_buff
*skb
;
1491 struct cpl_trace_pkt
*p
;
1493 skb
= cxgb4_pktgl_to_skb(gl
, RX_PULL_LEN
, RX_PULL_LEN
);
1494 if (unlikely(!skb
)) {
1499 p
= (struct cpl_trace_pkt
*)skb
->data
;
1500 __skb_pull(skb
, sizeof(*p
));
1501 skb_reset_mac_header(skb
);
1502 skb
->protocol
= htons(0xffff);
1503 skb
->dev
= adap
->port
[0];
1504 netif_receive_skb(skb
);
1508 static void do_gro(struct sge_eth_rxq
*rxq
, const struct pkt_gl
*gl
,
1509 const struct cpl_rx_pkt
*pkt
)
1512 struct sk_buff
*skb
;
1514 skb
= napi_get_frags(&rxq
->rspq
.napi
);
1515 if (unlikely(!skb
)) {
1517 rxq
->stats
.rx_drops
++;
1521 copy_frags(skb_shinfo(skb
), gl
, RX_PKT_PAD
);
1522 skb
->len
= gl
->tot_len
- RX_PKT_PAD
;
1523 skb
->data_len
= skb
->len
;
1524 skb
->truesize
+= skb
->data_len
;
1525 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1526 skb_record_rx_queue(skb
, rxq
->rspq
.idx
);
1527 if (rxq
->rspq
.netdev
->features
& NETIF_F_RXHASH
)
1528 skb
->rxhash
= (__force u32
)pkt
->rsshdr
.hash_val
;
1530 if (unlikely(pkt
->vlan_ex
)) {
1531 struct port_info
*pi
= netdev_priv(rxq
->rspq
.netdev
);
1532 struct vlan_group
*grp
= pi
->vlan_grp
;
1534 rxq
->stats
.vlan_ex
++;
1536 ret
= vlan_gro_frags(&rxq
->rspq
.napi
, grp
,
1541 ret
= napi_gro_frags(&rxq
->rspq
.napi
);
1542 stats
: if (ret
== GRO_HELD
)
1543 rxq
->stats
.lro_pkts
++;
1544 else if (ret
== GRO_MERGED
|| ret
== GRO_MERGED_FREE
)
1545 rxq
->stats
.lro_merged
++;
1547 rxq
->stats
.rx_cso
++;
1551 * t4_ethrx_handler - process an ingress ethernet packet
1552 * @q: the response queue that received the packet
1553 * @rsp: the response queue descriptor holding the RX_PKT message
1554 * @si: the gather list of packet fragments
1556 * Process an ingress ethernet packet and deliver it to the stack.
1558 int t4_ethrx_handler(struct sge_rspq
*q
, const __be64
*rsp
,
1559 const struct pkt_gl
*si
)
1562 struct sk_buff
*skb
;
1563 struct port_info
*pi
;
1564 const struct cpl_rx_pkt
*pkt
;
1565 struct sge_eth_rxq
*rxq
= container_of(q
, struct sge_eth_rxq
, rspq
);
1567 if (unlikely(*(u8
*)rsp
== CPL_TRACE_PKT
))
1568 return handle_trace_pkt(q
->adap
, si
);
1570 pkt
= (const struct cpl_rx_pkt
*)rsp
;
1571 csum_ok
= pkt
->csum_calc
&& !pkt
->err_vec
;
1572 if ((pkt
->l2info
& htonl(RXF_TCP
)) &&
1573 (q
->netdev
->features
& NETIF_F_GRO
) && csum_ok
&& !pkt
->ip_frag
) {
1574 do_gro(rxq
, si
, pkt
);
1578 skb
= cxgb4_pktgl_to_skb(si
, RX_PKT_SKB_LEN
, RX_PULL_LEN
);
1579 if (unlikely(!skb
)) {
1581 rxq
->stats
.rx_drops
++;
1585 __skb_pull(skb
, RX_PKT_PAD
); /* remove ethernet header padding */
1586 skb
->protocol
= eth_type_trans(skb
, q
->netdev
);
1587 skb_record_rx_queue(skb
, q
->idx
);
1588 if (skb
->dev
->features
& NETIF_F_RXHASH
)
1589 skb
->rxhash
= (__force u32
)pkt
->rsshdr
.hash_val
;
1591 pi
= netdev_priv(skb
->dev
);
1594 if (csum_ok
&& (pi
->rx_offload
& RX_CSO
) &&
1595 (pkt
->l2info
& htonl(RXF_UDP
| RXF_TCP
))) {
1597 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1599 __sum16 c
= (__force __sum16
)pkt
->csum
;
1600 skb
->csum
= csum_unfold(c
);
1601 skb
->ip_summed
= CHECKSUM_COMPLETE
;
1603 rxq
->stats
.rx_cso
++;
1605 skb
->ip_summed
= CHECKSUM_NONE
;
1607 if (unlikely(pkt
->vlan_ex
)) {
1608 struct vlan_group
*grp
= pi
->vlan_grp
;
1610 rxq
->stats
.vlan_ex
++;
1612 vlan_hwaccel_receive_skb(skb
, grp
, ntohs(pkt
->vlan
));
1614 dev_kfree_skb_any(skb
);
1616 netif_receive_skb(skb
);
1622 * restore_rx_bufs - put back a packet's Rx buffers
1623 * @si: the packet gather list
1624 * @q: the SGE free list
1625 * @frags: number of FL buffers to restore
1627 * Puts back on an FL the Rx buffers associated with @si. The buffers
1628 * have already been unmapped and are left unmapped, we mark them so to
1629 * prevent further unmapping attempts.
1631 * This function undoes a series of @unmap_rx_buf calls when we find out
1632 * that the current packet can't be processed right away afterall and we
1633 * need to come back to it later. This is a very rare event and there's
1634 * no effort to make this particularly efficient.
1636 static void restore_rx_bufs(const struct pkt_gl
*si
, struct sge_fl
*q
,
1639 struct rx_sw_desc
*d
;
1643 q
->cidx
= q
->size
- 1;
1646 d
= &q
->sdesc
[q
->cidx
];
1647 d
->page
= si
->frags
[frags
].page
;
1648 d
->dma_addr
|= RX_UNMAPPED_BUF
;
1654 * is_new_response - check if a response is newly written
1655 * @r: the response descriptor
1656 * @q: the response queue
1658 * Returns true if a response descriptor contains a yet unprocessed
1661 static inline bool is_new_response(const struct rsp_ctrl
*r
,
1662 const struct sge_rspq
*q
)
1664 return RSPD_GEN(r
->type_gen
) == q
->gen
;
1668 * rspq_next - advance to the next entry in a response queue
1671 * Updates the state of a response queue to advance it to the next entry.
1673 static inline void rspq_next(struct sge_rspq
*q
)
1675 q
->cur_desc
= (void *)q
->cur_desc
+ q
->iqe_len
;
1676 if (unlikely(++q
->cidx
== q
->size
)) {
1679 q
->cur_desc
= q
->desc
;
1684 * process_responses - process responses from an SGE response queue
1685 * @q: the ingress queue to process
1686 * @budget: how many responses can be processed in this round
1688 * Process responses from an SGE response queue up to the supplied budget.
1689 * Responses include received packets as well as control messages from FW
1692 * Additionally choose the interrupt holdoff time for the next interrupt
1693 * on this queue. If the system is under memory shortage use a fairly
1694 * long delay to help recovery.
1696 static int process_responses(struct sge_rspq
*q
, int budget
)
1699 int budget_left
= budget
;
1700 const struct rsp_ctrl
*rc
;
1701 struct sge_eth_rxq
*rxq
= container_of(q
, struct sge_eth_rxq
, rspq
);
1703 while (likely(budget_left
)) {
1704 rc
= (void *)q
->cur_desc
+ (q
->iqe_len
- sizeof(*rc
));
1705 if (!is_new_response(rc
, q
))
1709 rsp_type
= RSPD_TYPE(rc
->type_gen
);
1710 if (likely(rsp_type
== RSP_TYPE_FLBUF
)) {
1713 const struct rx_sw_desc
*rsd
;
1714 u32 len
= ntohl(rc
->pldbuflen_qid
), bufsz
, frags
;
1716 if (len
& RSPD_NEWBUF
) {
1717 if (likely(q
->offset
> 0)) {
1718 free_rx_bufs(q
->adap
, &rxq
->fl
, 1);
1725 /* gather packet fragments */
1726 for (frags
= 0, fp
= si
.frags
; ; frags
++, fp
++) {
1727 rsd
= &rxq
->fl
.sdesc
[rxq
->fl
.cidx
];
1728 bufsz
= get_buf_size(rsd
);
1729 fp
->page
= rsd
->page
;
1730 fp
->page_offset
= q
->offset
;
1731 fp
->size
= min(bufsz
, len
);
1735 unmap_rx_buf(q
->adap
, &rxq
->fl
);
1739 * Last buffer remains mapped so explicitly make it
1740 * coherent for CPU access.
1742 dma_sync_single_for_cpu(q
->adap
->pdev_dev
,
1744 fp
->size
, DMA_FROM_DEVICE
);
1746 si
.va
= page_address(si
.frags
[0].page
) +
1747 si
.frags
[0].page_offset
;
1750 si
.nfrags
= frags
+ 1;
1751 ret
= q
->handler(q
, q
->cur_desc
, &si
);
1752 if (likely(ret
== 0))
1753 q
->offset
+= ALIGN(fp
->size
, FL_ALIGN
);
1755 restore_rx_bufs(&si
, &rxq
->fl
, frags
);
1756 } else if (likely(rsp_type
== RSP_TYPE_CPL
)) {
1757 ret
= q
->handler(q
, q
->cur_desc
, NULL
);
1759 ret
= q
->handler(q
, (const __be64
*)rc
, CXGB4_MSG_AN
);
1762 if (unlikely(ret
)) {
1763 /* couldn't process descriptor, back off for recovery */
1764 q
->next_intr_params
= QINTR_TIMER_IDX(NOMEM_TMR_IDX
);
1772 if (q
->offset
>= 0 && rxq
->fl
.size
- rxq
->fl
.avail
>= 16)
1773 __refill_fl(q
->adap
, &rxq
->fl
);
1774 return budget
- budget_left
;
1778 * napi_rx_handler - the NAPI handler for Rx processing
1779 * @napi: the napi instance
1780 * @budget: how many packets we can process in this round
1782 * Handler for new data events when using NAPI. This does not need any
1783 * locking or protection from interrupts as data interrupts are off at
1784 * this point and other adapter interrupts do not interfere (the latter
1785 * in not a concern at all with MSI-X as non-data interrupts then have
1786 * a separate handler).
1788 static int napi_rx_handler(struct napi_struct
*napi
, int budget
)
1790 unsigned int params
;
1791 struct sge_rspq
*q
= container_of(napi
, struct sge_rspq
, napi
);
1792 int work_done
= process_responses(q
, budget
);
1794 if (likely(work_done
< budget
)) {
1795 napi_complete(napi
);
1796 params
= q
->next_intr_params
;
1797 q
->next_intr_params
= q
->intr_params
;
1799 params
= QINTR_TIMER_IDX(7);
1801 t4_write_reg(q
->adap
, MYPF_REG(SGE_PF_GTS
), CIDXINC(work_done
) |
1802 INGRESSQID((u32
)q
->cntxt_id
) | SEINTARM(params
));
1807 * The MSI-X interrupt handler for an SGE response queue.
1809 irqreturn_t
t4_sge_intr_msix(int irq
, void *cookie
)
1811 struct sge_rspq
*q
= cookie
;
1813 napi_schedule(&q
->napi
);
1818 * Process the indirect interrupt entries in the interrupt queue and kick off
1819 * NAPI for each queue that has generated an entry.
1821 static unsigned int process_intrq(struct adapter
*adap
)
1823 unsigned int credits
;
1824 const struct rsp_ctrl
*rc
;
1825 struct sge_rspq
*q
= &adap
->sge
.intrq
;
1827 spin_lock(&adap
->sge
.intrq_lock
);
1828 for (credits
= 0; ; credits
++) {
1829 rc
= (void *)q
->cur_desc
+ (q
->iqe_len
- sizeof(*rc
));
1830 if (!is_new_response(rc
, q
))
1834 if (RSPD_TYPE(rc
->type_gen
) == RSP_TYPE_INTR
) {
1835 unsigned int qid
= ntohl(rc
->pldbuflen_qid
);
1837 napi_schedule(&adap
->sge
.ingr_map
[qid
]->napi
);
1843 t4_write_reg(adap
, MYPF_REG(SGE_PF_GTS
), CIDXINC(credits
) |
1844 INGRESSQID(q
->cntxt_id
) | SEINTARM(q
->intr_params
));
1845 spin_unlock(&adap
->sge
.intrq_lock
);
1850 * The MSI interrupt handler, which handles data events from SGE response queues
1851 * as well as error and other async events as they all use the same MSI vector.
1853 static irqreturn_t
t4_intr_msi(int irq
, void *cookie
)
1855 struct adapter
*adap
= cookie
;
1857 t4_slow_intr_handler(adap
);
1858 process_intrq(adap
);
1863 * Interrupt handler for legacy INTx interrupts.
1864 * Handles data events from SGE response queues as well as error and other
1865 * async events as they all use the same interrupt line.
1867 static irqreturn_t
t4_intr_intx(int irq
, void *cookie
)
1869 struct adapter
*adap
= cookie
;
1871 t4_write_reg(adap
, MYPF_REG(PCIE_PF_CLI
), 0);
1872 if (t4_slow_intr_handler(adap
) | process_intrq(adap
))
1874 return IRQ_NONE
; /* probably shared interrupt */
1878 * t4_intr_handler - select the top-level interrupt handler
1879 * @adap: the adapter
1881 * Selects the top-level interrupt handler based on the type of interrupts
1882 * (MSI-X, MSI, or INTx).
1884 irq_handler_t
t4_intr_handler(struct adapter
*adap
)
1886 if (adap
->flags
& USING_MSIX
)
1887 return t4_sge_intr_msix
;
1888 if (adap
->flags
& USING_MSI
)
1890 return t4_intr_intx
;
1893 static void sge_rx_timer_cb(unsigned long data
)
1896 unsigned int i
, cnt
[2];
1897 struct adapter
*adap
= (struct adapter
*)data
;
1898 struct sge
*s
= &adap
->sge
;
1900 for (i
= 0; i
< ARRAY_SIZE(s
->starving_fl
); i
++)
1901 for (m
= s
->starving_fl
[i
]; m
; m
&= m
- 1) {
1902 struct sge_eth_rxq
*rxq
;
1903 unsigned int id
= __ffs(m
) + i
* BITS_PER_LONG
;
1904 struct sge_fl
*fl
= s
->egr_map
[id
];
1906 clear_bit(id
, s
->starving_fl
);
1907 smp_mb__after_clear_bit();
1909 if (fl_starving(fl
)) {
1910 rxq
= container_of(fl
, struct sge_eth_rxq
, fl
);
1911 if (napi_reschedule(&rxq
->rspq
.napi
))
1914 set_bit(id
, s
->starving_fl
);
1918 t4_write_reg(adap
, SGE_DEBUG_INDEX
, 13);
1919 cnt
[0] = t4_read_reg(adap
, SGE_DEBUG_DATA_HIGH
);
1920 cnt
[1] = t4_read_reg(adap
, SGE_DEBUG_DATA_LOW
);
1922 for (i
= 0; i
< 2; i
++)
1923 if (cnt
[i
] >= s
->starve_thres
) {
1924 if (s
->idma_state
[i
] || cnt
[i
] == 0xffffffff)
1926 s
->idma_state
[i
] = 1;
1927 t4_write_reg(adap
, SGE_DEBUG_INDEX
, 11);
1928 m
= t4_read_reg(adap
, SGE_DEBUG_DATA_LOW
) >> (i
* 16);
1929 dev_warn(adap
->pdev_dev
,
1930 "SGE idma%u starvation detected for "
1931 "queue %lu\n", i
, m
& 0xffff);
1932 } else if (s
->idma_state
[i
])
1933 s
->idma_state
[i
] = 0;
1935 mod_timer(&s
->rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
1938 static void sge_tx_timer_cb(unsigned long data
)
1941 unsigned int i
, budget
;
1942 struct adapter
*adap
= (struct adapter
*)data
;
1943 struct sge
*s
= &adap
->sge
;
1945 for (i
= 0; i
< ARRAY_SIZE(s
->txq_maperr
); i
++)
1946 for (m
= s
->txq_maperr
[i
]; m
; m
&= m
- 1) {
1947 unsigned long id
= __ffs(m
) + i
* BITS_PER_LONG
;
1948 struct sge_ofld_txq
*txq
= s
->egr_map
[id
];
1950 clear_bit(id
, s
->txq_maperr
);
1951 tasklet_schedule(&txq
->qresume_tsk
);
1954 budget
= MAX_TIMER_TX_RECLAIM
;
1955 i
= s
->ethtxq_rover
;
1957 struct sge_eth_txq
*q
= &s
->ethtxq
[i
];
1960 time_after_eq(jiffies
, q
->txq
->trans_start
+ HZ
/ 100) &&
1961 __netif_tx_trylock(q
->txq
)) {
1962 int avail
= reclaimable(&q
->q
);
1968 free_tx_desc(adap
, &q
->q
, avail
, true);
1969 q
->q
.in_use
-= avail
;
1972 __netif_tx_unlock(q
->txq
);
1975 if (++i
>= s
->ethqsets
)
1977 } while (budget
&& i
!= s
->ethtxq_rover
);
1978 s
->ethtxq_rover
= i
;
1979 mod_timer(&s
->tx_timer
, jiffies
+ (budget
? TX_QCHECK_PERIOD
: 2));
1982 int t4_sge_alloc_rxq(struct adapter
*adap
, struct sge_rspq
*iq
, bool fwevtq
,
1983 struct net_device
*dev
, int intr_idx
,
1984 struct sge_fl
*fl
, rspq_handler_t hnd
)
1988 struct port_info
*pi
= netdev_priv(dev
);
1990 /* Size needs to be multiple of 16, including status entry. */
1991 iq
->size
= roundup(iq
->size
, 16);
1993 iq
->desc
= alloc_ring(adap
->pdev_dev
, iq
->size
, iq
->iqe_len
, 0,
1994 &iq
->phys_addr
, NULL
, 0);
1998 memset(&c
, 0, sizeof(c
));
1999 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_IQ_CMD
) | FW_CMD_REQUEST
|
2000 FW_CMD_WRITE
| FW_CMD_EXEC
|
2001 FW_IQ_CMD_PFN(0) | FW_IQ_CMD_VFN(0));
2002 c
.alloc_to_len16
= htonl(FW_IQ_CMD_ALLOC
| FW_IQ_CMD_IQSTART(1) |
2004 c
.type_to_iqandstindex
= htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP
) |
2005 FW_IQ_CMD_IQASYNCH(fwevtq
) | FW_IQ_CMD_VIID(pi
->viid
) |
2006 FW_IQ_CMD_IQANDST(intr_idx
< 0) | FW_IQ_CMD_IQANUD(1) |
2007 FW_IQ_CMD_IQANDSTINDEX(intr_idx
>= 0 ? intr_idx
:
2009 c
.iqdroprss_to_iqesize
= htons(FW_IQ_CMD_IQPCIECH(pi
->tx_chan
) |
2010 FW_IQ_CMD_IQGTSMODE
|
2011 FW_IQ_CMD_IQINTCNTTHRESH(iq
->pktcnt_idx
) |
2012 FW_IQ_CMD_IQESIZE(ilog2(iq
->iqe_len
) - 4));
2013 c
.iqsize
= htons(iq
->size
);
2014 c
.iqaddr
= cpu_to_be64(iq
->phys_addr
);
2017 fl
->size
= roundup(fl
->size
, 8);
2018 fl
->desc
= alloc_ring(adap
->pdev_dev
, fl
->size
, sizeof(__be64
),
2019 sizeof(struct rx_sw_desc
), &fl
->addr
,
2020 &fl
->sdesc
, STAT_LEN
);
2024 flsz
= fl
->size
/ 8 + STAT_LEN
/ sizeof(struct tx_desc
);
2025 c
.iqns_to_fl0congen
= htonl(FW_IQ_CMD_FL0PACKEN
|
2026 FW_IQ_CMD_FL0PADEN
);
2027 c
.fl0dcaen_to_fl0cidxfthresh
= htons(FW_IQ_CMD_FL0FBMIN(2) |
2028 FW_IQ_CMD_FL0FBMAX(3));
2029 c
.fl0size
= htons(flsz
);
2030 c
.fl0addr
= cpu_to_be64(fl
->addr
);
2033 ret
= t4_wr_mbox(adap
, 0, &c
, sizeof(c
), &c
);
2037 netif_napi_add(dev
, &iq
->napi
, napi_rx_handler
, 64);
2038 iq
->cur_desc
= iq
->desc
;
2041 iq
->next_intr_params
= iq
->intr_params
;
2042 iq
->cntxt_id
= ntohs(c
.iqid
);
2043 iq
->abs_id
= ntohs(c
.physiqid
);
2044 iq
->size
--; /* subtract status entry */
2049 /* set offset to -1 to distinguish ingress queues without FL */
2050 iq
->offset
= fl
? 0 : -1;
2052 adap
->sge
.ingr_map
[iq
->cntxt_id
] = iq
;
2055 fl
->cntxt_id
= ntohs(c
.fl0id
);
2056 fl
->avail
= fl
->pend_cred
= 0;
2057 fl
->pidx
= fl
->cidx
= 0;
2058 fl
->alloc_failed
= fl
->large_alloc_failed
= fl
->starving
= 0;
2059 adap
->sge
.egr_map
[fl
->cntxt_id
] = fl
;
2060 refill_fl(adap
, fl
, fl_cap(fl
), GFP_KERNEL
);
2068 dma_free_coherent(adap
->pdev_dev
, iq
->size
* iq
->iqe_len
,
2069 iq
->desc
, iq
->phys_addr
);
2072 if (fl
&& fl
->desc
) {
2075 dma_free_coherent(adap
->pdev_dev
, flsz
* sizeof(struct tx_desc
),
2076 fl
->desc
, fl
->addr
);
2082 static void init_txq(struct adapter
*adap
, struct sge_txq
*q
, unsigned int id
)
2085 q
->cidx
= q
->pidx
= 0;
2086 q
->stops
= q
->restarts
= 0;
2087 q
->stat
= (void *)&q
->desc
[q
->size
];
2089 adap
->sge
.egr_map
[id
] = q
;
2092 int t4_sge_alloc_eth_txq(struct adapter
*adap
, struct sge_eth_txq
*txq
,
2093 struct net_device
*dev
, struct netdev_queue
*netdevq
,
2097 struct fw_eq_eth_cmd c
;
2098 struct port_info
*pi
= netdev_priv(dev
);
2100 /* Add status entries */
2101 nentries
= txq
->q
.size
+ STAT_LEN
/ sizeof(struct tx_desc
);
2103 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, txq
->q
.size
,
2104 sizeof(struct tx_desc
), sizeof(struct tx_sw_desc
),
2105 &txq
->q
.phys_addr
, &txq
->q
.sdesc
, STAT_LEN
);
2109 memset(&c
, 0, sizeof(c
));
2110 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_ETH_CMD
) | FW_CMD_REQUEST
|
2111 FW_CMD_WRITE
| FW_CMD_EXEC
|
2112 FW_EQ_ETH_CMD_PFN(0) | FW_EQ_ETH_CMD_VFN(0));
2113 c
.alloc_to_len16
= htonl(FW_EQ_ETH_CMD_ALLOC
|
2114 FW_EQ_ETH_CMD_EQSTART
| FW_LEN16(c
));
2115 c
.viid_pkd
= htonl(FW_EQ_ETH_CMD_VIID(pi
->viid
));
2116 c
.fetchszm_to_iqid
= htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2117 FW_EQ_ETH_CMD_PCIECHN(pi
->tx_chan
) |
2118 FW_EQ_ETH_CMD_IQID(iqid
));
2119 c
.dcaen_to_eqsize
= htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2120 FW_EQ_ETH_CMD_FBMAX(3) |
2121 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2122 FW_EQ_ETH_CMD_EQSIZE(nentries
));
2123 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2125 ret
= t4_wr_mbox(adap
, 0, &c
, sizeof(c
), &c
);
2127 kfree(txq
->q
.sdesc
);
2128 txq
->q
.sdesc
= NULL
;
2129 dma_free_coherent(adap
->pdev_dev
,
2130 nentries
* sizeof(struct tx_desc
),
2131 txq
->q
.desc
, txq
->q
.phys_addr
);
2136 init_txq(adap
, &txq
->q
, FW_EQ_ETH_CMD_EQID_GET(ntohl(c
.eqid_pkd
)));
2138 txq
->tso
= txq
->tx_cso
= txq
->vlan_ins
= 0;
2139 txq
->mapping_err
= 0;
2143 int t4_sge_alloc_ctrl_txq(struct adapter
*adap
, struct sge_ctrl_txq
*txq
,
2144 struct net_device
*dev
, unsigned int iqid
,
2145 unsigned int cmplqid
)
2148 struct fw_eq_ctrl_cmd c
;
2149 struct port_info
*pi
= netdev_priv(dev
);
2151 /* Add status entries */
2152 nentries
= txq
->q
.size
+ STAT_LEN
/ sizeof(struct tx_desc
);
2154 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, nentries
,
2155 sizeof(struct tx_desc
), 0, &txq
->q
.phys_addr
,
2160 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_CTRL_CMD
) | FW_CMD_REQUEST
|
2161 FW_CMD_WRITE
| FW_CMD_EXEC
|
2162 FW_EQ_CTRL_CMD_PFN(0) | FW_EQ_CTRL_CMD_VFN(0));
2163 c
.alloc_to_len16
= htonl(FW_EQ_CTRL_CMD_ALLOC
|
2164 FW_EQ_CTRL_CMD_EQSTART
| FW_LEN16(c
));
2165 c
.cmpliqid_eqid
= htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid
));
2166 c
.physeqid_pkd
= htonl(0);
2167 c
.fetchszm_to_iqid
= htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2168 FW_EQ_CTRL_CMD_PCIECHN(pi
->tx_chan
) |
2169 FW_EQ_CTRL_CMD_IQID(iqid
));
2170 c
.dcaen_to_eqsize
= htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2171 FW_EQ_CTRL_CMD_FBMAX(3) |
2172 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2173 FW_EQ_CTRL_CMD_EQSIZE(nentries
));
2174 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2176 ret
= t4_wr_mbox(adap
, 0, &c
, sizeof(c
), &c
);
2178 dma_free_coherent(adap
->pdev_dev
,
2179 nentries
* sizeof(struct tx_desc
),
2180 txq
->q
.desc
, txq
->q
.phys_addr
);
2185 init_txq(adap
, &txq
->q
, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c
.cmpliqid_eqid
)));
2187 skb_queue_head_init(&txq
->sendq
);
2188 tasklet_init(&txq
->qresume_tsk
, restart_ctrlq
, (unsigned long)txq
);
2193 int t4_sge_alloc_ofld_txq(struct adapter
*adap
, struct sge_ofld_txq
*txq
,
2194 struct net_device
*dev
, unsigned int iqid
)
2197 struct fw_eq_ofld_cmd c
;
2198 struct port_info
*pi
= netdev_priv(dev
);
2200 /* Add status entries */
2201 nentries
= txq
->q
.size
+ STAT_LEN
/ sizeof(struct tx_desc
);
2203 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, txq
->q
.size
,
2204 sizeof(struct tx_desc
), sizeof(struct tx_sw_desc
),
2205 &txq
->q
.phys_addr
, &txq
->q
.sdesc
, STAT_LEN
);
2209 memset(&c
, 0, sizeof(c
));
2210 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_OFLD_CMD
) | FW_CMD_REQUEST
|
2211 FW_CMD_WRITE
| FW_CMD_EXEC
|
2212 FW_EQ_OFLD_CMD_PFN(0) | FW_EQ_OFLD_CMD_VFN(0));
2213 c
.alloc_to_len16
= htonl(FW_EQ_OFLD_CMD_ALLOC
|
2214 FW_EQ_OFLD_CMD_EQSTART
| FW_LEN16(c
));
2215 c
.fetchszm_to_iqid
= htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2216 FW_EQ_OFLD_CMD_PCIECHN(pi
->tx_chan
) |
2217 FW_EQ_OFLD_CMD_IQID(iqid
));
2218 c
.dcaen_to_eqsize
= htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2219 FW_EQ_OFLD_CMD_FBMAX(3) |
2220 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2221 FW_EQ_OFLD_CMD_EQSIZE(nentries
));
2222 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2224 ret
= t4_wr_mbox(adap
, 0, &c
, sizeof(c
), &c
);
2226 kfree(txq
->q
.sdesc
);
2227 txq
->q
.sdesc
= NULL
;
2228 dma_free_coherent(adap
->pdev_dev
,
2229 nentries
* sizeof(struct tx_desc
),
2230 txq
->q
.desc
, txq
->q
.phys_addr
);
2235 init_txq(adap
, &txq
->q
, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c
.eqid_pkd
)));
2237 skb_queue_head_init(&txq
->sendq
);
2238 tasklet_init(&txq
->qresume_tsk
, restart_ofldq
, (unsigned long)txq
);
2240 txq
->mapping_err
= 0;
2244 static void free_txq(struct adapter
*adap
, struct sge_txq
*q
)
2246 dma_free_coherent(adap
->pdev_dev
,
2247 q
->size
* sizeof(struct tx_desc
) + STAT_LEN
,
2248 q
->desc
, q
->phys_addr
);
2254 static void free_rspq_fl(struct adapter
*adap
, struct sge_rspq
*rq
,
2257 unsigned int fl_id
= fl
? fl
->cntxt_id
: 0xffff;
2259 adap
->sge
.ingr_map
[rq
->cntxt_id
] = NULL
;
2260 t4_iq_free(adap
, 0, 0, 0, FW_IQ_TYPE_FL_INT_CAP
, rq
->cntxt_id
, fl_id
,
2262 dma_free_coherent(adap
->pdev_dev
, (rq
->size
+ 1) * rq
->iqe_len
,
2263 rq
->desc
, rq
->phys_addr
);
2264 netif_napi_del(&rq
->napi
);
2266 rq
->cntxt_id
= rq
->abs_id
= 0;
2270 free_rx_bufs(adap
, fl
, fl
->avail
);
2271 dma_free_coherent(adap
->pdev_dev
, fl
->size
* 8 + STAT_LEN
,
2272 fl
->desc
, fl
->addr
);
2281 * t4_free_sge_resources - free SGE resources
2282 * @adap: the adapter
2284 * Frees resources used by the SGE queue sets.
2286 void t4_free_sge_resources(struct adapter
*adap
)
2289 struct sge_eth_rxq
*eq
= adap
->sge
.ethrxq
;
2290 struct sge_eth_txq
*etq
= adap
->sge
.ethtxq
;
2291 struct sge_ofld_rxq
*oq
= adap
->sge
.ofldrxq
;
2293 /* clean up Ethernet Tx/Rx queues */
2294 for (i
= 0; i
< adap
->sge
.ethqsets
; i
++, eq
++, etq
++) {
2296 free_rspq_fl(adap
, &eq
->rspq
, &eq
->fl
);
2298 t4_eth_eq_free(adap
, 0, 0, 0, etq
->q
.cntxt_id
);
2299 free_tx_desc(adap
, &etq
->q
, etq
->q
.in_use
, true);
2300 kfree(etq
->q
.sdesc
);
2301 free_txq(adap
, &etq
->q
);
2305 /* clean up RDMA and iSCSI Rx queues */
2306 for (i
= 0; i
< adap
->sge
.ofldqsets
; i
++, oq
++) {
2308 free_rspq_fl(adap
, &oq
->rspq
, &oq
->fl
);
2310 for (i
= 0, oq
= adap
->sge
.rdmarxq
; i
< adap
->sge
.rdmaqs
; i
++, oq
++) {
2312 free_rspq_fl(adap
, &oq
->rspq
, &oq
->fl
);
2315 /* clean up offload Tx queues */
2316 for (i
= 0; i
< ARRAY_SIZE(adap
->sge
.ofldtxq
); i
++) {
2317 struct sge_ofld_txq
*q
= &adap
->sge
.ofldtxq
[i
];
2320 tasklet_kill(&q
->qresume_tsk
);
2321 t4_ofld_eq_free(adap
, 0, 0, 0, q
->q
.cntxt_id
);
2322 free_tx_desc(adap
, &q
->q
, q
->q
.in_use
, false);
2324 __skb_queue_purge(&q
->sendq
);
2325 free_txq(adap
, &q
->q
);
2329 /* clean up control Tx queues */
2330 for (i
= 0; i
< ARRAY_SIZE(adap
->sge
.ctrlq
); i
++) {
2331 struct sge_ctrl_txq
*cq
= &adap
->sge
.ctrlq
[i
];
2334 tasklet_kill(&cq
->qresume_tsk
);
2335 t4_ctrl_eq_free(adap
, 0, 0, 0, cq
->q
.cntxt_id
);
2336 __skb_queue_purge(&cq
->sendq
);
2337 free_txq(adap
, &cq
->q
);
2341 if (adap
->sge
.fw_evtq
.desc
)
2342 free_rspq_fl(adap
, &adap
->sge
.fw_evtq
, NULL
);
2344 if (adap
->sge
.intrq
.desc
)
2345 free_rspq_fl(adap
, &adap
->sge
.intrq
, NULL
);
2347 /* clear the reverse egress queue map */
2348 memset(adap
->sge
.egr_map
, 0, sizeof(adap
->sge
.egr_map
));
2351 void t4_sge_start(struct adapter
*adap
)
2353 adap
->sge
.ethtxq_rover
= 0;
2354 mod_timer(&adap
->sge
.rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
2355 mod_timer(&adap
->sge
.tx_timer
, jiffies
+ TX_QCHECK_PERIOD
);
2359 * t4_sge_stop - disable SGE operation
2360 * @adap: the adapter
2362 * Stop tasklets and timers associated with the DMA engine. Note that
2363 * this is effective only if measures have been taken to disable any HW
2364 * events that may restart them.
2366 void t4_sge_stop(struct adapter
*adap
)
2369 struct sge
*s
= &adap
->sge
;
2371 if (in_interrupt()) /* actions below require waiting */
2374 if (s
->rx_timer
.function
)
2375 del_timer_sync(&s
->rx_timer
);
2376 if (s
->tx_timer
.function
)
2377 del_timer_sync(&s
->tx_timer
);
2379 for (i
= 0; i
< ARRAY_SIZE(s
->ofldtxq
); i
++) {
2380 struct sge_ofld_txq
*q
= &s
->ofldtxq
[i
];
2383 tasklet_kill(&q
->qresume_tsk
);
2385 for (i
= 0; i
< ARRAY_SIZE(s
->ctrlq
); i
++) {
2386 struct sge_ctrl_txq
*cq
= &s
->ctrlq
[i
];
2389 tasklet_kill(&cq
->qresume_tsk
);
2394 * t4_sge_init - initialize SGE
2395 * @adap: the adapter
2397 * Performs SGE initialization needed every time after a chip reset.
2398 * We do not initialize any of the queues here, instead the driver
2399 * top-level must request them individually.
2401 void t4_sge_init(struct adapter
*adap
)
2403 struct sge
*s
= &adap
->sge
;
2404 unsigned int fl_align_log
= ilog2(FL_ALIGN
);
2406 t4_set_reg_field(adap
, SGE_CONTROL
, PKTSHIFT_MASK
|
2407 INGPADBOUNDARY_MASK
| EGRSTATUSPAGESIZE
,
2408 INGPADBOUNDARY(fl_align_log
- 5) | PKTSHIFT(2) |
2410 (STAT_LEN
== 128 ? EGRSTATUSPAGESIZE
: 0));
2411 t4_set_reg_field(adap
, SGE_HOST_PAGE_SIZE
, HOSTPAGESIZEPF0_MASK
,
2412 HOSTPAGESIZEPF0(PAGE_SHIFT
- 10));
2413 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE0
, PAGE_SIZE
);
2415 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE1
, PAGE_SIZE
<< FL_PG_ORDER
);
2417 t4_write_reg(adap
, SGE_INGRESS_RX_THRESHOLD
,
2418 THRESHOLD_0(s
->counter_val
[0]) |
2419 THRESHOLD_1(s
->counter_val
[1]) |
2420 THRESHOLD_2(s
->counter_val
[2]) |
2421 THRESHOLD_3(s
->counter_val
[3]));
2422 t4_write_reg(adap
, SGE_TIMER_VALUE_0_AND_1
,
2423 TIMERVALUE0(us_to_core_ticks(adap
, s
->timer_val
[0])) |
2424 TIMERVALUE1(us_to_core_ticks(adap
, s
->timer_val
[1])));
2425 t4_write_reg(adap
, SGE_TIMER_VALUE_2_AND_3
,
2426 TIMERVALUE0(us_to_core_ticks(adap
, s
->timer_val
[2])) |
2427 TIMERVALUE1(us_to_core_ticks(adap
, s
->timer_val
[3])));
2428 t4_write_reg(adap
, SGE_TIMER_VALUE_4_AND_5
,
2429 TIMERVALUE0(us_to_core_ticks(adap
, s
->timer_val
[4])) |
2430 TIMERVALUE1(us_to_core_ticks(adap
, s
->timer_val
[5])));
2431 setup_timer(&s
->rx_timer
, sge_rx_timer_cb
, (unsigned long)adap
);
2432 setup_timer(&s
->tx_timer
, sge_tx_timer_cb
, (unsigned long)adap
);
2433 s
->starve_thres
= core_ticks_per_usec(adap
) * 1000000; /* 1 s */
2434 s
->idma_state
[0] = s
->idma_state
[1] = 0;
2435 spin_lock_init(&s
->intrq_lock
);