1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
17 #include <linux/dma-mapping.h>
19 static char version
[] __devinitdata
=
20 KERN_INFO DRV_NAME
" " DRV_VERSION
" " DRV_RELDATE
"\n";
22 static int mtu
[MAX_UNITS
];
23 static int vlan
[MAX_UNITS
];
24 static int jumbo
[MAX_UNITS
];
25 static char *media
[MAX_UNITS
];
26 static int tx_flow
=-1;
27 static int rx_flow
=-1;
28 static int copy_thresh
;
29 static int rx_coalesce
=10; /* Rx frame count each interrupt */
30 static int rx_timeout
=200; /* Rx DMA wait time in 640ns increments */
31 static int tx_coalesce
=16; /* HW xmit count each TxDMAComplete */
34 MODULE_AUTHOR ("Edward Peng");
35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
36 MODULE_LICENSE("GPL");
37 module_param_array(mtu
, int, NULL
, 0);
38 module_param_array(media
, charp
, NULL
, 0);
39 module_param_array(vlan
, int, NULL
, 0);
40 module_param_array(jumbo
, int, NULL
, 0);
41 module_param(tx_flow
, int, 0);
42 module_param(rx_flow
, int, 0);
43 module_param(copy_thresh
, int, 0);
44 module_param(rx_coalesce
, int, 0); /* Rx frame count each interrupt */
45 module_param(rx_timeout
, int, 0); /* Rx DMA wait time in 64ns increments */
46 module_param(tx_coalesce
, int, 0); /* HW xmit count each TxDMAComplete */
49 /* Enable the default interrupts */
50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
51 UpdateStats | LinkEvent)
53 writew(DEFAULT_INTR, ioaddr + IntEnable)
55 static const int max_intrloop
= 50;
56 static const int multicast_filter_limit
= 0x40;
58 static int rio_open (struct net_device
*dev
);
59 static void rio_timer (unsigned long data
);
60 static void rio_tx_timeout (struct net_device
*dev
);
61 static void alloc_list (struct net_device
*dev
);
62 static netdev_tx_t
start_xmit (struct sk_buff
*skb
, struct net_device
*dev
);
63 static irqreturn_t
rio_interrupt (int irq
, void *dev_instance
);
64 static void rio_free_tx (struct net_device
*dev
, int irq
);
65 static void tx_error (struct net_device
*dev
, int tx_status
);
66 static int receive_packet (struct net_device
*dev
);
67 static void rio_error (struct net_device
*dev
, int int_status
);
68 static int change_mtu (struct net_device
*dev
, int new_mtu
);
69 static void set_multicast (struct net_device
*dev
);
70 static struct net_device_stats
*get_stats (struct net_device
*dev
);
71 static int clear_stats (struct net_device
*dev
);
72 static int rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
73 static int rio_close (struct net_device
*dev
);
74 static int find_miiphy (struct net_device
*dev
);
75 static int parse_eeprom (struct net_device
*dev
);
76 static int read_eeprom (long ioaddr
, int eep_addr
);
77 static int mii_wait_link (struct net_device
*dev
, int wait
);
78 static int mii_set_media (struct net_device
*dev
);
79 static int mii_get_media (struct net_device
*dev
);
80 static int mii_set_media_pcs (struct net_device
*dev
);
81 static int mii_get_media_pcs (struct net_device
*dev
);
82 static int mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
);
83 static int mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
,
86 static const struct ethtool_ops ethtool_ops
;
88 static const struct net_device_ops netdev_ops
= {
90 .ndo_start_xmit
= start_xmit
,
91 .ndo_stop
= rio_close
,
92 .ndo_get_stats
= get_stats
,
93 .ndo_validate_addr
= eth_validate_addr
,
94 .ndo_set_mac_address
= eth_mac_addr
,
95 .ndo_set_multicast_list
= set_multicast
,
96 .ndo_do_ioctl
= rio_ioctl
,
97 .ndo_tx_timeout
= rio_tx_timeout
,
98 .ndo_change_mtu
= change_mtu
,
102 rio_probe1 (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
104 struct net_device
*dev
;
105 struct netdev_private
*np
;
107 int chip_idx
= ent
->driver_data
;
110 static int version_printed
;
114 if (!version_printed
++)
115 printk ("%s", version
);
117 err
= pci_enable_device (pdev
);
122 err
= pci_request_regions (pdev
, "dl2k");
124 goto err_out_disable
;
126 pci_set_master (pdev
);
127 dev
= alloc_etherdev (sizeof (*np
));
132 SET_NETDEV_DEV(dev
, &pdev
->dev
);
135 ioaddr
= pci_resource_start (pdev
, 1);
136 ioaddr
= (long) ioremap (ioaddr
, RIO_IO_SIZE
);
142 ioaddr
= pci_resource_start (pdev
, 0);
144 dev
->base_addr
= ioaddr
;
146 np
= netdev_priv(dev
);
147 np
->chip_id
= chip_idx
;
149 spin_lock_init (&np
->tx_lock
);
150 spin_lock_init (&np
->rx_lock
);
152 /* Parse manual configuration */
155 if (card_idx
< MAX_UNITS
) {
156 if (media
[card_idx
] != NULL
) {
158 if (strcmp (media
[card_idx
], "auto") == 0 ||
159 strcmp (media
[card_idx
], "autosense") == 0 ||
160 strcmp (media
[card_idx
], "0") == 0 ) {
162 } else if (strcmp (media
[card_idx
], "100mbps_fd") == 0 ||
163 strcmp (media
[card_idx
], "4") == 0) {
166 } else if (strcmp (media
[card_idx
], "100mbps_hd") == 0 ||
167 strcmp (media
[card_idx
], "3") == 0) {
170 } else if (strcmp (media
[card_idx
], "10mbps_fd") == 0 ||
171 strcmp (media
[card_idx
], "2") == 0) {
174 } else if (strcmp (media
[card_idx
], "10mbps_hd") == 0 ||
175 strcmp (media
[card_idx
], "1") == 0) {
178 } else if (strcmp (media
[card_idx
], "1000mbps_fd") == 0 ||
179 strcmp (media
[card_idx
], "6") == 0) {
182 } else if (strcmp (media
[card_idx
], "1000mbps_hd") == 0 ||
183 strcmp (media
[card_idx
], "5") == 0) {
190 if (jumbo
[card_idx
] != 0) {
192 dev
->mtu
= MAX_JUMBO
;
195 if (mtu
[card_idx
] > 0 && mtu
[card_idx
] < PACKET_SIZE
)
196 dev
->mtu
= mtu
[card_idx
];
198 np
->vlan
= (vlan
[card_idx
] > 0 && vlan
[card_idx
] < 4096) ?
200 if (rx_coalesce
> 0 && rx_timeout
> 0) {
201 np
->rx_coalesce
= rx_coalesce
;
202 np
->rx_timeout
= rx_timeout
;
205 np
->tx_flow
= (tx_flow
== 0) ? 0 : 1;
206 np
->rx_flow
= (rx_flow
== 0) ? 0 : 1;
210 else if (tx_coalesce
> TX_RING_SIZE
-1)
211 tx_coalesce
= TX_RING_SIZE
- 1;
213 dev
->netdev_ops
= &netdev_ops
;
214 dev
->watchdog_timeo
= TX_TIMEOUT
;
215 SET_ETHTOOL_OPS(dev
, ðtool_ops
);
217 dev
->features
= NETIF_F_IP_CSUM
;
219 pci_set_drvdata (pdev
, dev
);
221 ring_space
= pci_alloc_consistent (pdev
, TX_TOTAL_SIZE
, &ring_dma
);
223 goto err_out_iounmap
;
224 np
->tx_ring
= (struct netdev_desc
*) ring_space
;
225 np
->tx_ring_dma
= ring_dma
;
227 ring_space
= pci_alloc_consistent (pdev
, RX_TOTAL_SIZE
, &ring_dma
);
229 goto err_out_unmap_tx
;
230 np
->rx_ring
= (struct netdev_desc
*) ring_space
;
231 np
->rx_ring_dma
= ring_dma
;
233 /* Parse eeprom data */
236 /* Find PHY address */
237 err
= find_miiphy (dev
);
239 goto err_out_unmap_rx
;
242 np
->phy_media
= (readw(ioaddr
+ ASICCtrl
) & PhyMedia
) ? 1 : 0;
244 /* Set media and reset PHY */
246 /* default Auto-Negotiation for fiber deivices */
247 if (np
->an_enable
== 2) {
250 mii_set_media_pcs (dev
);
252 /* Auto-Negotiation is mandatory for 1000BASE-T,
253 IEEE 802.3ab Annex 28D page 14 */
254 if (np
->speed
== 1000)
259 err
= register_netdev (dev
);
261 goto err_out_unmap_rx
;
265 printk (KERN_INFO
"%s: %s, %pM, IRQ %d\n",
266 dev
->name
, np
->name
, dev
->dev_addr
, irq
);
268 printk(KERN_INFO
"tx_coalesce:\t%d packets\n",
272 "rx_coalesce:\t%d packets\n"
273 "rx_timeout: \t%d ns\n",
274 np
->rx_coalesce
, np
->rx_timeout
*640);
276 printk(KERN_INFO
"vlan(id):\t%d\n", np
->vlan
);
280 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
, np
->rx_ring_dma
);
282 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
, np
->tx_ring_dma
);
285 iounmap ((void *) ioaddr
);
292 pci_release_regions (pdev
);
295 pci_disable_device (pdev
);
300 find_miiphy (struct net_device
*dev
)
302 int i
, phy_found
= 0;
303 struct netdev_private
*np
;
305 np
= netdev_priv(dev
);
306 ioaddr
= dev
->base_addr
;
309 for (i
= 31; i
>= 0; i
--) {
310 int mii_status
= mii_read (dev
, i
, 1);
311 if (mii_status
!= 0xffff && mii_status
!= 0x0000) {
317 printk (KERN_ERR
"%s: No MII PHY found!\n", dev
->name
);
324 parse_eeprom (struct net_device
*dev
)
327 long ioaddr
= dev
->base_addr
;
331 PSROM_t psrom
= (PSROM_t
) sromdata
;
332 struct netdev_private
*np
= netdev_priv(dev
);
337 ioaddr
= pci_resource_start (np
->pdev
, 0);
340 for (i
= 0; i
< 128; i
++) {
341 ((__le16
*) sromdata
)[i
] = cpu_to_le16(read_eeprom (ioaddr
, i
));
344 ioaddr
= dev
->base_addr
;
346 if (np
->pdev
->vendor
== PCI_VENDOR_ID_DLINK
) { /* D-Link Only */
348 crc
= ~ether_crc_le (256 - 4, sromdata
);
349 if (psrom
->crc
!= crc
) {
350 printk (KERN_ERR
"%s: EEPROM data CRC error.\n",
356 /* Set MAC address */
357 for (i
= 0; i
< 6; i
++)
358 dev
->dev_addr
[i
] = psrom
->mac_addr
[i
];
360 if (np
->pdev
->vendor
!= PCI_VENDOR_ID_DLINK
) {
364 /* Parse Software Information Block */
366 psib
= (u8
*) sromdata
;
370 if ((cid
== 0 && next
== 0) || (cid
== 0xff && next
== 0xff)) {
371 printk (KERN_ERR
"Cell data error\n");
375 case 0: /* Format version */
377 case 1: /* End of cell */
379 case 2: /* Duplex Polarity */
380 np
->duplex_polarity
= psib
[i
];
381 writeb (readb (ioaddr
+ PhyCtrl
) | psib
[i
],
384 case 3: /* Wake Polarity */
385 np
->wake_polarity
= psib
[i
];
387 case 9: /* Adapter description */
388 j
= (next
- i
> 255) ? 255 : next
- i
;
389 memcpy (np
->name
, &(psib
[i
]), j
);
395 case 8: /* Reversed */
397 default: /* Unknown cell */
407 rio_open (struct net_device
*dev
)
409 struct netdev_private
*np
= netdev_priv(dev
);
410 long ioaddr
= dev
->base_addr
;
414 i
= request_irq (dev
->irq
, rio_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
418 /* Reset all logic functions */
419 writew (GlobalReset
| DMAReset
| FIFOReset
| NetworkReset
| HostReset
,
420 ioaddr
+ ASICCtrl
+ 2);
423 /* DebugCtrl bit 4, 5, 9 must set */
424 writel (readl (ioaddr
+ DebugCtrl
) | 0x0230, ioaddr
+ DebugCtrl
);
428 writew (MAX_JUMBO
+14, ioaddr
+ MaxFrameSize
);
432 /* Get station address */
433 for (i
= 0; i
< 6; i
++)
434 writeb (dev
->dev_addr
[i
], ioaddr
+ StationAddr0
+ i
);
438 writel (np
->rx_coalesce
| np
->rx_timeout
<< 16,
439 ioaddr
+ RxDMAIntCtrl
);
441 /* Set RIO to poll every N*320nsec. */
442 writeb (0x20, ioaddr
+ RxDMAPollPeriod
);
443 writeb (0xff, ioaddr
+ TxDMAPollPeriod
);
444 writeb (0x30, ioaddr
+ RxDMABurstThresh
);
445 writeb (0x30, ioaddr
+ RxDMAUrgentThresh
);
446 writel (0x0007ffff, ioaddr
+ RmonStatMask
);
447 /* clear statistics */
452 /* priority field in RxDMAIntCtrl */
453 writel (readl(ioaddr
+ RxDMAIntCtrl
) | 0x7 << 10,
454 ioaddr
+ RxDMAIntCtrl
);
456 writew (np
->vlan
, ioaddr
+ VLANId
);
457 /* Length/Type should be 0x8100 */
458 writel (0x8100 << 16 | np
->vlan
, ioaddr
+ VLANTag
);
459 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
460 VLAN information tagged by TFC' VID, CFI fields. */
461 writel (readl (ioaddr
+ MACCtrl
) | AutoVLANuntagging
,
465 init_timer (&np
->timer
);
466 np
->timer
.expires
= jiffies
+ 1*HZ
;
467 np
->timer
.data
= (unsigned long) dev
;
468 np
->timer
.function
= &rio_timer
;
469 add_timer (&np
->timer
);
472 writel (readl (ioaddr
+ MACCtrl
) | StatsEnable
| RxEnable
| TxEnable
,
476 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
477 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
478 macctrl
|= (np
->tx_flow
) ? TxFlowControlEnable
: 0;
479 macctrl
|= (np
->rx_flow
) ? RxFlowControlEnable
: 0;
480 writew(macctrl
, ioaddr
+ MACCtrl
);
482 netif_start_queue (dev
);
484 /* Enable default interrupts */
490 rio_timer (unsigned long data
)
492 struct net_device
*dev
= (struct net_device
*)data
;
493 struct netdev_private
*np
= netdev_priv(dev
);
495 int next_tick
= 1*HZ
;
498 spin_lock_irqsave(&np
->rx_lock
, flags
);
499 /* Recover rx ring exhausted error */
500 if (np
->cur_rx
- np
->old_rx
>= RX_RING_SIZE
) {
501 printk(KERN_INFO
"Try to recover rx ring exhausted...\n");
502 /* Re-allocate skbuffs to fill the descriptor ring */
503 for (; np
->cur_rx
- np
->old_rx
> 0; np
->old_rx
++) {
505 entry
= np
->old_rx
% RX_RING_SIZE
;
506 /* Dropped packets don't need to re-allocate */
507 if (np
->rx_skbuff
[entry
] == NULL
) {
508 skb
= netdev_alloc_skb_ip_align(dev
,
511 np
->rx_ring
[entry
].fraginfo
= 0;
513 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
517 np
->rx_skbuff
[entry
] = skb
;
518 np
->rx_ring
[entry
].fraginfo
=
519 cpu_to_le64 (pci_map_single
520 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
521 PCI_DMA_FROMDEVICE
));
523 np
->rx_ring
[entry
].fraginfo
|=
524 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
525 np
->rx_ring
[entry
].status
= 0;
528 spin_unlock_irqrestore (&np
->rx_lock
, flags
);
529 np
->timer
.expires
= jiffies
+ next_tick
;
530 add_timer(&np
->timer
);
534 rio_tx_timeout (struct net_device
*dev
)
536 long ioaddr
= dev
->base_addr
;
538 printk (KERN_INFO
"%s: Tx timed out (%4.4x), is buffer full?\n",
539 dev
->name
, readl (ioaddr
+ TxStatus
));
542 dev
->trans_start
= jiffies
; /* prevent tx timeout */
545 /* allocate and initialize Tx and Rx descriptors */
547 alloc_list (struct net_device
*dev
)
549 struct netdev_private
*np
= netdev_priv(dev
);
552 np
->cur_rx
= np
->cur_tx
= 0;
553 np
->old_rx
= np
->old_tx
= 0;
554 np
->rx_buf_sz
= (dev
->mtu
<= 1500 ? PACKET_SIZE
: dev
->mtu
+ 32);
556 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
557 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
558 np
->tx_skbuff
[i
] = NULL
;
559 np
->tx_ring
[i
].status
= cpu_to_le64 (TFDDone
);
560 np
->tx_ring
[i
].next_desc
= cpu_to_le64 (np
->tx_ring_dma
+
561 ((i
+1)%TX_RING_SIZE
) *
562 sizeof (struct netdev_desc
));
565 /* Initialize Rx descriptors */
566 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
567 np
->rx_ring
[i
].next_desc
= cpu_to_le64 (np
->rx_ring_dma
+
568 ((i
+ 1) % RX_RING_SIZE
) *
569 sizeof (struct netdev_desc
));
570 np
->rx_ring
[i
].status
= 0;
571 np
->rx_ring
[i
].fraginfo
= 0;
572 np
->rx_skbuff
[i
] = NULL
;
575 /* Allocate the rx buffers */
576 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
577 /* Allocated fixed size of skbuff */
580 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
581 np
->rx_skbuff
[i
] = skb
;
584 "%s: alloc_list: allocate Rx buffer error! ",
588 /* Rubicon now supports 40 bits of addressing space. */
589 np
->rx_ring
[i
].fraginfo
=
590 cpu_to_le64 ( pci_map_single (
591 np
->pdev
, skb
->data
, np
->rx_buf_sz
,
592 PCI_DMA_FROMDEVICE
));
593 np
->rx_ring
[i
].fraginfo
|= cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
597 writel (np
->rx_ring_dma
, dev
->base_addr
+ RFDListPtr0
);
598 writel (0, dev
->base_addr
+ RFDListPtr1
);
602 start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
604 struct netdev_private
*np
= netdev_priv(dev
);
605 struct netdev_desc
*txdesc
;
608 u64 tfc_vlan_tag
= 0;
610 if (np
->link_status
== 0) { /* Link Down */
614 ioaddr
= dev
->base_addr
;
615 entry
= np
->cur_tx
% TX_RING_SIZE
;
616 np
->tx_skbuff
[entry
] = skb
;
617 txdesc
= &np
->tx_ring
[entry
];
620 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
622 cpu_to_le64 (TCPChecksumEnable
| UDPChecksumEnable
|
627 tfc_vlan_tag
= VLANTagInsert
|
628 ((u64
)np
->vlan
<< 32) |
629 ((u64
)skb
->priority
<< 45);
631 txdesc
->fraginfo
= cpu_to_le64 (pci_map_single (np
->pdev
, skb
->data
,
634 txdesc
->fraginfo
|= cpu_to_le64((u64
)skb
->len
<< 48);
636 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
637 * Work around: Always use 1 descriptor in 10Mbps mode */
638 if (entry
% np
->tx_coalesce
== 0 || np
->speed
== 10)
639 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
642 (1 << FragCountShift
));
644 txdesc
->status
= cpu_to_le64 (entry
| tfc_vlan_tag
|
646 (1 << FragCountShift
));
649 writel (readl (ioaddr
+ DMACtrl
) | 0x00001000, ioaddr
+ DMACtrl
);
651 writel(10000, ioaddr
+ CountDown
);
652 np
->cur_tx
= (np
->cur_tx
+ 1) % TX_RING_SIZE
;
653 if ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
654 < TX_QUEUE_LEN
- 1 && np
->speed
!= 10) {
656 } else if (!netif_queue_stopped(dev
)) {
657 netif_stop_queue (dev
);
660 /* The first TFDListPtr */
661 if (readl (dev
->base_addr
+ TFDListPtr0
) == 0) {
662 writel (np
->tx_ring_dma
+ entry
* sizeof (struct netdev_desc
),
663 dev
->base_addr
+ TFDListPtr0
);
664 writel (0, dev
->base_addr
+ TFDListPtr1
);
671 rio_interrupt (int irq
, void *dev_instance
)
673 struct net_device
*dev
= dev_instance
;
674 struct netdev_private
*np
;
677 int cnt
= max_intrloop
;
680 ioaddr
= dev
->base_addr
;
681 np
= netdev_priv(dev
);
683 int_status
= readw (ioaddr
+ IntStatus
);
684 writew (int_status
, ioaddr
+ IntStatus
);
685 int_status
&= DEFAULT_INTR
;
686 if (int_status
== 0 || --cnt
< 0)
689 /* Processing received packets */
690 if (int_status
& RxDMAComplete
)
691 receive_packet (dev
);
692 /* TxDMAComplete interrupt */
693 if ((int_status
& (TxDMAComplete
|IntRequested
))) {
695 tx_status
= readl (ioaddr
+ TxStatus
);
696 if (tx_status
& 0x01)
697 tx_error (dev
, tx_status
);
698 /* Free used tx skbuffs */
699 rio_free_tx (dev
, 1);
702 /* Handle uncommon events */
704 (HostError
| LinkEvent
| UpdateStats
))
705 rio_error (dev
, int_status
);
707 if (np
->cur_tx
!= np
->old_tx
)
708 writel (100, ioaddr
+ CountDown
);
709 return IRQ_RETVAL(handled
);
712 static inline dma_addr_t
desc_to_dma(struct netdev_desc
*desc
)
714 return le64_to_cpu(desc
->fraginfo
) & DMA_BIT_MASK(48);
718 rio_free_tx (struct net_device
*dev
, int irq
)
720 struct netdev_private
*np
= netdev_priv(dev
);
721 int entry
= np
->old_tx
% TX_RING_SIZE
;
723 unsigned long flag
= 0;
726 spin_lock(&np
->tx_lock
);
728 spin_lock_irqsave(&np
->tx_lock
, flag
);
730 /* Free used tx skbuffs */
731 while (entry
!= np
->cur_tx
) {
734 if (!(np
->tx_ring
[entry
].status
& cpu_to_le64(TFDDone
)))
736 skb
= np
->tx_skbuff
[entry
];
737 pci_unmap_single (np
->pdev
,
738 desc_to_dma(&np
->tx_ring
[entry
]),
739 skb
->len
, PCI_DMA_TODEVICE
);
741 dev_kfree_skb_irq (skb
);
745 np
->tx_skbuff
[entry
] = NULL
;
746 entry
= (entry
+ 1) % TX_RING_SIZE
;
750 spin_unlock(&np
->tx_lock
);
752 spin_unlock_irqrestore(&np
->tx_lock
, flag
);
755 /* If the ring is no longer full, clear tx_full and
756 call netif_wake_queue() */
758 if (netif_queue_stopped(dev
) &&
759 ((np
->cur_tx
- np
->old_tx
+ TX_RING_SIZE
) % TX_RING_SIZE
760 < TX_QUEUE_LEN
- 1 || np
->speed
== 10)) {
761 netif_wake_queue (dev
);
766 tx_error (struct net_device
*dev
, int tx_status
)
768 struct netdev_private
*np
;
769 long ioaddr
= dev
->base_addr
;
773 np
= netdev_priv(dev
);
775 frame_id
= (tx_status
& 0xffff0000);
776 printk (KERN_ERR
"%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
777 dev
->name
, tx_status
, frame_id
);
778 np
->stats
.tx_errors
++;
779 /* Ttransmit Underrun */
780 if (tx_status
& 0x10) {
781 np
->stats
.tx_fifo_errors
++;
782 writew (readw (ioaddr
+ TxStartThresh
) + 0x10,
783 ioaddr
+ TxStartThresh
);
784 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
785 writew (TxReset
| DMAReset
| FIFOReset
| NetworkReset
,
786 ioaddr
+ ASICCtrl
+ 2);
787 /* Wait for ResetBusy bit clear */
788 for (i
= 50; i
> 0; i
--) {
789 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
793 rio_free_tx (dev
, 1);
794 /* Reset TFDListPtr */
795 writel (np
->tx_ring_dma
+
796 np
->old_tx
* sizeof (struct netdev_desc
),
797 dev
->base_addr
+ TFDListPtr0
);
798 writel (0, dev
->base_addr
+ TFDListPtr1
);
800 /* Let TxStartThresh stay default value */
803 if (tx_status
& 0x04) {
804 np
->stats
.tx_fifo_errors
++;
805 /* TxReset and clear FIFO */
806 writew (TxReset
| FIFOReset
, ioaddr
+ ASICCtrl
+ 2);
807 /* Wait reset done */
808 for (i
= 50; i
> 0; i
--) {
809 if ((readw (ioaddr
+ ASICCtrl
+ 2) & ResetBusy
) == 0)
813 /* Let TxStartThresh stay default value */
815 /* Maximum Collisions */
817 if (tx_status
& 0x08)
818 np
->stats
.collisions16
++;
820 if (tx_status
& 0x08)
821 np
->stats
.collisions
++;
824 writel (readw (dev
->base_addr
+ MACCtrl
) | TxEnable
, ioaddr
+ MACCtrl
);
828 receive_packet (struct net_device
*dev
)
830 struct netdev_private
*np
= netdev_priv(dev
);
831 int entry
= np
->cur_rx
% RX_RING_SIZE
;
834 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
836 struct netdev_desc
*desc
= &np
->rx_ring
[entry
];
840 if (!(desc
->status
& cpu_to_le64(RFDDone
)) ||
841 !(desc
->status
& cpu_to_le64(FrameStart
)) ||
842 !(desc
->status
& cpu_to_le64(FrameEnd
)))
845 /* Chip omits the CRC. */
846 frame_status
= le64_to_cpu(desc
->status
);
847 pkt_len
= frame_status
& 0xffff;
850 /* Update rx error statistics, drop packet. */
851 if (frame_status
& RFS_Errors
) {
852 np
->stats
.rx_errors
++;
853 if (frame_status
& (RxRuntFrame
| RxLengthError
))
854 np
->stats
.rx_length_errors
++;
855 if (frame_status
& RxFCSError
)
856 np
->stats
.rx_crc_errors
++;
857 if (frame_status
& RxAlignmentError
&& np
->speed
!= 1000)
858 np
->stats
.rx_frame_errors
++;
859 if (frame_status
& RxFIFOOverrun
)
860 np
->stats
.rx_fifo_errors
++;
864 /* Small skbuffs for short packets */
865 if (pkt_len
> copy_thresh
) {
866 pci_unmap_single (np
->pdev
,
870 skb_put (skb
= np
->rx_skbuff
[entry
], pkt_len
);
871 np
->rx_skbuff
[entry
] = NULL
;
872 } else if ((skb
= netdev_alloc_skb_ip_align(dev
, pkt_len
))) {
873 pci_dma_sync_single_for_cpu(np
->pdev
,
877 skb_copy_to_linear_data (skb
,
878 np
->rx_skbuff
[entry
]->data
,
880 skb_put (skb
, pkt_len
);
881 pci_dma_sync_single_for_device(np
->pdev
,
886 skb
->protocol
= eth_type_trans (skb
, dev
);
888 /* Checksum done by hw, but csum value unavailable. */
889 if (np
->pdev
->pci_rev_id
>= 0x0c &&
890 !(frame_status
& (TCPError
| UDPError
| IPError
))) {
891 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
896 entry
= (entry
+ 1) % RX_RING_SIZE
;
898 spin_lock(&np
->rx_lock
);
900 /* Re-allocate skbuffs to fill the descriptor ring */
902 while (entry
!= np
->cur_rx
) {
904 /* Dropped packets don't need to re-allocate */
905 if (np
->rx_skbuff
[entry
] == NULL
) {
906 skb
= netdev_alloc_skb_ip_align(dev
, np
->rx_buf_sz
);
908 np
->rx_ring
[entry
].fraginfo
= 0;
910 "%s: receive_packet: "
911 "Unable to re-allocate Rx skbuff.#%d\n",
915 np
->rx_skbuff
[entry
] = skb
;
916 np
->rx_ring
[entry
].fraginfo
=
917 cpu_to_le64 (pci_map_single
918 (np
->pdev
, skb
->data
, np
->rx_buf_sz
,
919 PCI_DMA_FROMDEVICE
));
921 np
->rx_ring
[entry
].fraginfo
|=
922 cpu_to_le64((u64
)np
->rx_buf_sz
<< 48);
923 np
->rx_ring
[entry
].status
= 0;
924 entry
= (entry
+ 1) % RX_RING_SIZE
;
927 spin_unlock(&np
->rx_lock
);
932 rio_error (struct net_device
*dev
, int int_status
)
934 long ioaddr
= dev
->base_addr
;
935 struct netdev_private
*np
= netdev_priv(dev
);
938 /* Link change event */
939 if (int_status
& LinkEvent
) {
940 if (mii_wait_link (dev
, 10) == 0) {
941 printk (KERN_INFO
"%s: Link up\n", dev
->name
);
943 mii_get_media_pcs (dev
);
946 if (np
->speed
== 1000)
947 np
->tx_coalesce
= tx_coalesce
;
951 macctrl
|= (np
->vlan
) ? AutoVLANuntagging
: 0;
952 macctrl
|= (np
->full_duplex
) ? DuplexSelect
: 0;
953 macctrl
|= (np
->tx_flow
) ?
954 TxFlowControlEnable
: 0;
955 macctrl
|= (np
->rx_flow
) ?
956 RxFlowControlEnable
: 0;
957 writew(macctrl
, ioaddr
+ MACCtrl
);
959 netif_carrier_on(dev
);
961 printk (KERN_INFO
"%s: Link off\n", dev
->name
);
963 netif_carrier_off(dev
);
967 /* UpdateStats statistics registers */
968 if (int_status
& UpdateStats
) {
972 /* PCI Error, a catastronphic error related to the bus interface
973 occurs, set GlobalReset and HostReset to reset. */
974 if (int_status
& HostError
) {
975 printk (KERN_ERR
"%s: HostError! IntStatus %4.4x.\n",
976 dev
->name
, int_status
);
977 writew (GlobalReset
| HostReset
, ioaddr
+ ASICCtrl
+ 2);
982 static struct net_device_stats
*
983 get_stats (struct net_device
*dev
)
985 long ioaddr
= dev
->base_addr
;
986 struct netdev_private
*np
= netdev_priv(dev
);
990 unsigned int stat_reg
;
992 /* All statistics registers need to be acknowledged,
993 else statistic overflow could cause problems */
995 np
->stats
.rx_packets
+= readl (ioaddr
+ FramesRcvOk
);
996 np
->stats
.tx_packets
+= readl (ioaddr
+ FramesXmtOk
);
997 np
->stats
.rx_bytes
+= readl (ioaddr
+ OctetRcvOk
);
998 np
->stats
.tx_bytes
+= readl (ioaddr
+ OctetXmtOk
);
1000 np
->stats
.multicast
= readl (ioaddr
+ McstFramesRcvdOk
);
1001 np
->stats
.collisions
+= readl (ioaddr
+ SingleColFrames
)
1002 + readl (ioaddr
+ MultiColFrames
);
1004 /* detailed tx errors */
1005 stat_reg
= readw (ioaddr
+ FramesAbortXSColls
);
1006 np
->stats
.tx_aborted_errors
+= stat_reg
;
1007 np
->stats
.tx_errors
+= stat_reg
;
1009 stat_reg
= readw (ioaddr
+ CarrierSenseErrors
);
1010 np
->stats
.tx_carrier_errors
+= stat_reg
;
1011 np
->stats
.tx_errors
+= stat_reg
;
1013 /* Clear all other statistic register. */
1014 readl (ioaddr
+ McstOctetXmtOk
);
1015 readw (ioaddr
+ BcstFramesXmtdOk
);
1016 readl (ioaddr
+ McstFramesXmtdOk
);
1017 readw (ioaddr
+ BcstFramesRcvdOk
);
1018 readw (ioaddr
+ MacControlFramesRcvd
);
1019 readw (ioaddr
+ FrameTooLongErrors
);
1020 readw (ioaddr
+ InRangeLengthErrors
);
1021 readw (ioaddr
+ FramesCheckSeqErrors
);
1022 readw (ioaddr
+ FramesLostRxErrors
);
1023 readl (ioaddr
+ McstOctetXmtOk
);
1024 readl (ioaddr
+ BcstOctetXmtOk
);
1025 readl (ioaddr
+ McstFramesXmtdOk
);
1026 readl (ioaddr
+ FramesWDeferredXmt
);
1027 readl (ioaddr
+ LateCollisions
);
1028 readw (ioaddr
+ BcstFramesXmtdOk
);
1029 readw (ioaddr
+ MacControlFramesXmtd
);
1030 readw (ioaddr
+ FramesWEXDeferal
);
1033 for (i
= 0x100; i
<= 0x150; i
+= 4)
1036 readw (ioaddr
+ TxJumboFrames
);
1037 readw (ioaddr
+ RxJumboFrames
);
1038 readw (ioaddr
+ TCPCheckSumErrors
);
1039 readw (ioaddr
+ UDPCheckSumErrors
);
1040 readw (ioaddr
+ IPCheckSumErrors
);
1045 clear_stats (struct net_device
*dev
)
1047 long ioaddr
= dev
->base_addr
;
1052 /* All statistics registers need to be acknowledged,
1053 else statistic overflow could cause problems */
1054 readl (ioaddr
+ FramesRcvOk
);
1055 readl (ioaddr
+ FramesXmtOk
);
1056 readl (ioaddr
+ OctetRcvOk
);
1057 readl (ioaddr
+ OctetXmtOk
);
1059 readl (ioaddr
+ McstFramesRcvdOk
);
1060 readl (ioaddr
+ SingleColFrames
);
1061 readl (ioaddr
+ MultiColFrames
);
1062 readl (ioaddr
+ LateCollisions
);
1063 /* detailed rx errors */
1064 readw (ioaddr
+ FrameTooLongErrors
);
1065 readw (ioaddr
+ InRangeLengthErrors
);
1066 readw (ioaddr
+ FramesCheckSeqErrors
);
1067 readw (ioaddr
+ FramesLostRxErrors
);
1069 /* detailed tx errors */
1070 readw (ioaddr
+ FramesAbortXSColls
);
1071 readw (ioaddr
+ CarrierSenseErrors
);
1073 /* Clear all other statistic register. */
1074 readl (ioaddr
+ McstOctetXmtOk
);
1075 readw (ioaddr
+ BcstFramesXmtdOk
);
1076 readl (ioaddr
+ McstFramesXmtdOk
);
1077 readw (ioaddr
+ BcstFramesRcvdOk
);
1078 readw (ioaddr
+ MacControlFramesRcvd
);
1079 readl (ioaddr
+ McstOctetXmtOk
);
1080 readl (ioaddr
+ BcstOctetXmtOk
);
1081 readl (ioaddr
+ McstFramesXmtdOk
);
1082 readl (ioaddr
+ FramesWDeferredXmt
);
1083 readw (ioaddr
+ BcstFramesXmtdOk
);
1084 readw (ioaddr
+ MacControlFramesXmtd
);
1085 readw (ioaddr
+ FramesWEXDeferal
);
1087 for (i
= 0x100; i
<= 0x150; i
+= 4)
1090 readw (ioaddr
+ TxJumboFrames
);
1091 readw (ioaddr
+ RxJumboFrames
);
1092 readw (ioaddr
+ TCPCheckSumErrors
);
1093 readw (ioaddr
+ UDPCheckSumErrors
);
1094 readw (ioaddr
+ IPCheckSumErrors
);
1100 change_mtu (struct net_device
*dev
, int new_mtu
)
1102 struct netdev_private
*np
= netdev_priv(dev
);
1103 int max
= (np
->jumbo
) ? MAX_JUMBO
: 1536;
1105 if ((new_mtu
< 68) || (new_mtu
> max
)) {
1115 set_multicast (struct net_device
*dev
)
1117 long ioaddr
= dev
->base_addr
;
1120 struct netdev_private
*np
= netdev_priv(dev
);
1122 hash_table
[0] = hash_table
[1] = 0;
1123 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1124 hash_table
[1] |= 0x02000000;
1125 if (dev
->flags
& IFF_PROMISC
) {
1126 /* Receive all frames promiscuously. */
1127 rx_mode
= ReceiveAllFrames
;
1128 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
1129 (netdev_mc_count(dev
) > multicast_filter_limit
)) {
1130 /* Receive broadcast and multicast frames */
1131 rx_mode
= ReceiveBroadcast
| ReceiveMulticast
| ReceiveUnicast
;
1132 } else if (!netdev_mc_empty(dev
)) {
1133 struct netdev_hw_addr
*ha
;
1134 /* Receive broadcast frames and multicast frames filtering
1137 ReceiveBroadcast
| ReceiveMulticastHash
| ReceiveUnicast
;
1138 netdev_for_each_mc_addr(ha
, dev
) {
1140 int crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
1141 /* The inverted high significant 6 bits of CRC are
1142 used as an index to hashtable */
1143 for (bit
= 0; bit
< 6; bit
++)
1144 if (crc
& (1 << (31 - bit
)))
1145 index
|= (1 << bit
);
1146 hash_table
[index
/ 32] |= (1 << (index
% 32));
1149 rx_mode
= ReceiveBroadcast
| ReceiveUnicast
;
1152 /* ReceiveVLANMatch field in ReceiveMode */
1153 rx_mode
|= ReceiveVLANMatch
;
1156 writel (hash_table
[0], ioaddr
+ HashTable0
);
1157 writel (hash_table
[1], ioaddr
+ HashTable1
);
1158 writew (rx_mode
, ioaddr
+ ReceiveMode
);
1161 static void rio_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1163 struct netdev_private
*np
= netdev_priv(dev
);
1164 strcpy(info
->driver
, "dl2k");
1165 strcpy(info
->version
, DRV_VERSION
);
1166 strcpy(info
->bus_info
, pci_name(np
->pdev
));
1169 static int rio_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1171 struct netdev_private
*np
= netdev_priv(dev
);
1172 if (np
->phy_media
) {
1174 cmd
->supported
= SUPPORTED_Autoneg
| SUPPORTED_FIBRE
;
1175 cmd
->advertising
= ADVERTISED_Autoneg
| ADVERTISED_FIBRE
;
1176 cmd
->port
= PORT_FIBRE
;
1177 cmd
->transceiver
= XCVR_INTERNAL
;
1180 cmd
->supported
= SUPPORTED_10baseT_Half
|
1181 SUPPORTED_10baseT_Full
| SUPPORTED_100baseT_Half
1182 | SUPPORTED_100baseT_Full
| SUPPORTED_1000baseT_Full
|
1183 SUPPORTED_Autoneg
| SUPPORTED_MII
;
1184 cmd
->advertising
= ADVERTISED_10baseT_Half
|
1185 ADVERTISED_10baseT_Full
| ADVERTISED_100baseT_Half
|
1186 ADVERTISED_100baseT_Full
| ADVERTISED_1000baseT_Full
|
1187 ADVERTISED_Autoneg
| ADVERTISED_MII
;
1188 cmd
->port
= PORT_MII
;
1189 cmd
->transceiver
= XCVR_INTERNAL
;
1191 if ( np
->link_status
) {
1192 cmd
->speed
= np
->speed
;
1193 cmd
->duplex
= np
->full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
1199 cmd
->autoneg
= AUTONEG_ENABLE
;
1201 cmd
->autoneg
= AUTONEG_DISABLE
;
1203 cmd
->phy_address
= np
->phy_addr
;
1207 static int rio_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1209 struct netdev_private
*np
= netdev_priv(dev
);
1210 netif_carrier_off(dev
);
1211 if (cmd
->autoneg
== AUTONEG_ENABLE
) {
1221 if (np
->speed
== 1000) {
1222 cmd
->speed
= SPEED_100
;
1223 cmd
->duplex
= DUPLEX_FULL
;
1224 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1226 switch(cmd
->speed
+ cmd
->duplex
) {
1228 case SPEED_10
+ DUPLEX_HALF
:
1230 np
->full_duplex
= 0;
1233 case SPEED_10
+ DUPLEX_FULL
:
1235 np
->full_duplex
= 1;
1237 case SPEED_100
+ DUPLEX_HALF
:
1239 np
->full_duplex
= 0;
1241 case SPEED_100
+ DUPLEX_FULL
:
1243 np
->full_duplex
= 1;
1245 case SPEED_1000
+ DUPLEX_HALF
:/* not supported */
1246 case SPEED_1000
+ DUPLEX_FULL
:/* not supported */
1255 static u32
rio_get_link(struct net_device
*dev
)
1257 struct netdev_private
*np
= netdev_priv(dev
);
1258 return np
->link_status
;
1261 static const struct ethtool_ops ethtool_ops
= {
1262 .get_drvinfo
= rio_get_drvinfo
,
1263 .get_settings
= rio_get_settings
,
1264 .set_settings
= rio_set_settings
,
1265 .get_link
= rio_get_link
,
1269 rio_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1272 struct netdev_private
*np
= netdev_priv(dev
);
1273 struct mii_data
*miidata
= (struct mii_data
*) &rq
->ifr_ifru
;
1275 struct netdev_desc
*desc
;
1278 phy_addr
= np
->phy_addr
;
1280 case SIOCDEVPRIVATE
:
1283 case SIOCDEVPRIVATE
+ 1:
1284 miidata
->out_value
= mii_read (dev
, phy_addr
, miidata
->reg_num
);
1286 case SIOCDEVPRIVATE
+ 2:
1287 mii_write (dev
, phy_addr
, miidata
->reg_num
, miidata
->in_value
);
1289 case SIOCDEVPRIVATE
+ 3:
1291 case SIOCDEVPRIVATE
+ 4:
1293 case SIOCDEVPRIVATE
+ 5:
1294 netif_stop_queue (dev
);
1296 case SIOCDEVPRIVATE
+ 6:
1297 netif_wake_queue (dev
);
1299 case SIOCDEVPRIVATE
+ 7:
1301 ("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
1302 netif_queue_stopped(dev
), np
->cur_tx
, np
->old_tx
, np
->cur_rx
,
1305 case SIOCDEVPRIVATE
+ 8:
1306 printk("TX ring:\n");
1307 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1308 desc
= &np
->tx_ring
[i
];
1310 ("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
1312 (u32
) (np
->tx_ring_dma
+ i
* sizeof (*desc
)),
1313 (u32
)le64_to_cpu(desc
->next_desc
),
1314 (u32
)le64_to_cpu(desc
->status
),
1315 (u32
)(le64_to_cpu(desc
->fraginfo
) >> 32),
1316 (u32
)le64_to_cpu(desc
->fraginfo
));
1328 #define EEP_READ 0x0200
1329 #define EEP_BUSY 0x8000
1330 /* Read the EEPROM word */
1331 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1333 read_eeprom (long ioaddr
, int eep_addr
)
1336 outw (EEP_READ
| (eep_addr
& 0xff), ioaddr
+ EepromCtrl
);
1338 if (!(inw (ioaddr
+ EepromCtrl
) & EEP_BUSY
)) {
1339 return inw (ioaddr
+ EepromData
);
1345 enum phy_ctrl_bits
{
1346 MII_READ
= 0x00, MII_CLK
= 0x01, MII_DATA1
= 0x02, MII_WRITE
= 0x04,
1350 #define mii_delay() readb(ioaddr)
1352 mii_sendbit (struct net_device
*dev
, u32 data
)
1354 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1355 data
= (data
) ? MII_DATA1
: 0;
1357 data
|= (readb (ioaddr
) & 0xf8) | MII_WRITE
;
1358 writeb (data
, ioaddr
);
1360 writeb (data
| MII_CLK
, ioaddr
);
1365 mii_getbit (struct net_device
*dev
)
1367 long ioaddr
= dev
->base_addr
+ PhyCtrl
;
1370 data
= (readb (ioaddr
) & 0xf8) | MII_READ
;
1371 writeb (data
, ioaddr
);
1373 writeb (data
| MII_CLK
, ioaddr
);
1375 return ((readb (ioaddr
) >> 1) & 1);
1379 mii_send_bits (struct net_device
*dev
, u32 data
, int len
)
1382 for (i
= len
- 1; i
>= 0; i
--) {
1383 mii_sendbit (dev
, data
& (1 << i
));
1388 mii_read (struct net_device
*dev
, int phy_addr
, int reg_num
)
1395 mii_send_bits (dev
, 0xffffffff, 32);
1396 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1397 /* ST,OP = 0110'b for read operation */
1398 cmd
= (0x06 << 10 | phy_addr
<< 5 | reg_num
);
1399 mii_send_bits (dev
, cmd
, 14);
1401 if (mii_getbit (dev
))
1404 for (i
= 0; i
< 16; i
++) {
1405 retval
|= mii_getbit (dev
);
1410 return (retval
>> 1) & 0xffff;
1416 mii_write (struct net_device
*dev
, int phy_addr
, int reg_num
, u16 data
)
1421 mii_send_bits (dev
, 0xffffffff, 32);
1422 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1423 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1424 cmd
= (0x5002 << 16) | (phy_addr
<< 23) | (reg_num
<< 18) | data
;
1425 mii_send_bits (dev
, cmd
, 32);
1431 mii_wait_link (struct net_device
*dev
, int wait
)
1435 struct netdev_private
*np
;
1437 np
= netdev_priv(dev
);
1438 phy_addr
= np
->phy_addr
;
1441 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1442 if (bmsr
& MII_BMSR_LINK_STATUS
)
1445 } while (--wait
> 0);
1449 mii_get_media (struct net_device
*dev
)
1456 struct netdev_private
*np
;
1458 np
= netdev_priv(dev
);
1459 phy_addr
= np
->phy_addr
;
1461 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1462 if (np
->an_enable
) {
1463 if (!(bmsr
& MII_BMSR_AN_COMPLETE
)) {
1464 /* Auto-Negotiation not completed */
1467 negotiate
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1468 mii_read (dev
, phy_addr
, MII_ANLPAR
);
1469 mscr
= mii_read (dev
, phy_addr
, MII_MSCR
);
1470 mssr
= mii_read (dev
, phy_addr
, MII_MSSR
);
1471 if (mscr
& MII_MSCR_1000BT_FD
&& mssr
& MII_MSSR_LP_1000BT_FD
) {
1473 np
->full_duplex
= 1;
1474 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1475 } else if (mscr
& MII_MSCR_1000BT_HD
&& mssr
& MII_MSSR_LP_1000BT_HD
) {
1477 np
->full_duplex
= 0;
1478 printk (KERN_INFO
"Auto 1000 Mbps, Half duplex\n");
1479 } else if (negotiate
& MII_ANAR_100BX_FD
) {
1481 np
->full_duplex
= 1;
1482 printk (KERN_INFO
"Auto 100 Mbps, Full duplex\n");
1483 } else if (negotiate
& MII_ANAR_100BX_HD
) {
1485 np
->full_duplex
= 0;
1486 printk (KERN_INFO
"Auto 100 Mbps, Half duplex\n");
1487 } else if (negotiate
& MII_ANAR_10BT_FD
) {
1489 np
->full_duplex
= 1;
1490 printk (KERN_INFO
"Auto 10 Mbps, Full duplex\n");
1491 } else if (negotiate
& MII_ANAR_10BT_HD
) {
1493 np
->full_duplex
= 0;
1494 printk (KERN_INFO
"Auto 10 Mbps, Half duplex\n");
1496 if (negotiate
& MII_ANAR_PAUSE
) {
1499 } else if (negotiate
& MII_ANAR_ASYMMETRIC
) {
1503 /* else tx_flow, rx_flow = user select */
1505 __u16 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1506 switch (bmcr
& (MII_BMCR_SPEED_100
| MII_BMCR_SPEED_1000
)) {
1507 case MII_BMCR_SPEED_1000
:
1508 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1510 case MII_BMCR_SPEED_100
:
1511 printk (KERN_INFO
"Operating at 100 Mbps, ");
1514 printk (KERN_INFO
"Operating at 10 Mbps, ");
1516 if (bmcr
& MII_BMCR_DUPLEX_MODE
) {
1517 printk (KERN_CONT
"Full duplex\n");
1519 printk (KERN_CONT
"Half duplex\n");
1523 printk(KERN_INFO
"Enable Tx Flow Control\n");
1525 printk(KERN_INFO
"Disable Tx Flow Control\n");
1527 printk(KERN_INFO
"Enable Rx Flow Control\n");
1529 printk(KERN_INFO
"Disable Rx Flow Control\n");
1535 mii_set_media (struct net_device
*dev
)
1542 struct netdev_private
*np
;
1543 np
= netdev_priv(dev
);
1544 phy_addr
= np
->phy_addr
;
1546 /* Does user set speed? */
1547 if (np
->an_enable
) {
1548 /* Advertise capabilities */
1549 bmsr
= mii_read (dev
, phy_addr
, MII_BMSR
);
1550 anar
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1551 ~MII_ANAR_100BX_FD
&
1552 ~MII_ANAR_100BX_HD
&
1556 if (bmsr
& MII_BMSR_100BX_FD
)
1557 anar
|= MII_ANAR_100BX_FD
;
1558 if (bmsr
& MII_BMSR_100BX_HD
)
1559 anar
|= MII_ANAR_100BX_HD
;
1560 if (bmsr
& MII_BMSR_100BT4
)
1561 anar
|= MII_ANAR_100BT4
;
1562 if (bmsr
& MII_BMSR_10BT_FD
)
1563 anar
|= MII_ANAR_10BT_FD
;
1564 if (bmsr
& MII_BMSR_10BT_HD
)
1565 anar
|= MII_ANAR_10BT_HD
;
1566 anar
|= MII_ANAR_PAUSE
| MII_ANAR_ASYMMETRIC
;
1567 mii_write (dev
, phy_addr
, MII_ANAR
, anar
);
1569 /* Enable Auto crossover */
1570 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1571 pscr
|= 3 << 5; /* 11'b */
1572 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1574 /* Soft reset PHY */
1575 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1576 bmcr
= MII_BMCR_AN_ENABLE
| MII_BMCR_RESTART_AN
| MII_BMCR_RESET
;
1577 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1580 /* Force speed setting */
1581 /* 1) Disable Auto crossover */
1582 pscr
= mii_read (dev
, phy_addr
, MII_PHY_SCR
);
1584 mii_write (dev
, phy_addr
, MII_PHY_SCR
, pscr
);
1587 bmcr
= mii_read (dev
, phy_addr
, MII_BMCR
);
1588 bmcr
|= MII_BMCR_RESET
;
1589 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1592 bmcr
= 0x1940; /* must be 0x1940 */
1593 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1594 mdelay (100); /* wait a certain time */
1596 /* 4) Advertise nothing */
1597 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1599 /* 5) Set media and Power Up */
1600 bmcr
= MII_BMCR_POWER_DOWN
;
1601 if (np
->speed
== 100) {
1602 bmcr
|= MII_BMCR_SPEED_100
;
1603 printk (KERN_INFO
"Manual 100 Mbps, ");
1604 } else if (np
->speed
== 10) {
1605 printk (KERN_INFO
"Manual 10 Mbps, ");
1607 if (np
->full_duplex
) {
1608 bmcr
|= MII_BMCR_DUPLEX_MODE
;
1609 printk (KERN_CONT
"Full duplex\n");
1611 printk (KERN_CONT
"Half duplex\n");
1614 /* Set 1000BaseT Master/Slave setting */
1615 mscr
= mii_read (dev
, phy_addr
, MII_MSCR
);
1616 mscr
|= MII_MSCR_CFG_ENABLE
;
1617 mscr
&= ~MII_MSCR_CFG_VALUE
= 0;
1619 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1626 mii_get_media_pcs (struct net_device
*dev
)
1631 struct netdev_private
*np
;
1633 np
= netdev_priv(dev
);
1634 phy_addr
= np
->phy_addr
;
1636 bmsr
= mii_read (dev
, phy_addr
, PCS_BMSR
);
1637 if (np
->an_enable
) {
1638 if (!(bmsr
& MII_BMSR_AN_COMPLETE
)) {
1639 /* Auto-Negotiation not completed */
1642 negotiate
= mii_read (dev
, phy_addr
, PCS_ANAR
) &
1643 mii_read (dev
, phy_addr
, PCS_ANLPAR
);
1645 if (negotiate
& PCS_ANAR_FULL_DUPLEX
) {
1646 printk (KERN_INFO
"Auto 1000 Mbps, Full duplex\n");
1647 np
->full_duplex
= 1;
1649 printk (KERN_INFO
"Auto 1000 Mbps, half duplex\n");
1650 np
->full_duplex
= 0;
1652 if (negotiate
& PCS_ANAR_PAUSE
) {
1655 } else if (negotiate
& PCS_ANAR_ASYMMETRIC
) {
1659 /* else tx_flow, rx_flow = user select */
1661 __u16 bmcr
= mii_read (dev
, phy_addr
, PCS_BMCR
);
1662 printk (KERN_INFO
"Operating at 1000 Mbps, ");
1663 if (bmcr
& MII_BMCR_DUPLEX_MODE
) {
1664 printk (KERN_CONT
"Full duplex\n");
1666 printk (KERN_CONT
"Half duplex\n");
1670 printk(KERN_INFO
"Enable Tx Flow Control\n");
1672 printk(KERN_INFO
"Disable Tx Flow Control\n");
1674 printk(KERN_INFO
"Enable Rx Flow Control\n");
1676 printk(KERN_INFO
"Disable Rx Flow Control\n");
1682 mii_set_media_pcs (struct net_device
*dev
)
1688 struct netdev_private
*np
;
1689 np
= netdev_priv(dev
);
1690 phy_addr
= np
->phy_addr
;
1692 /* Auto-Negotiation? */
1693 if (np
->an_enable
) {
1694 /* Advertise capabilities */
1695 esr
= mii_read (dev
, phy_addr
, PCS_ESR
);
1696 anar
= mii_read (dev
, phy_addr
, MII_ANAR
) &
1697 ~PCS_ANAR_HALF_DUPLEX
&
1698 ~PCS_ANAR_FULL_DUPLEX
;
1699 if (esr
& (MII_ESR_1000BT_HD
| MII_ESR_1000BX_HD
))
1700 anar
|= PCS_ANAR_HALF_DUPLEX
;
1701 if (esr
& (MII_ESR_1000BT_FD
| MII_ESR_1000BX_FD
))
1702 anar
|= PCS_ANAR_FULL_DUPLEX
;
1703 anar
|= PCS_ANAR_PAUSE
| PCS_ANAR_ASYMMETRIC
;
1704 mii_write (dev
, phy_addr
, MII_ANAR
, anar
);
1706 /* Soft reset PHY */
1707 mii_write (dev
, phy_addr
, MII_BMCR
, MII_BMCR_RESET
);
1708 bmcr
= MII_BMCR_AN_ENABLE
| MII_BMCR_RESTART_AN
|
1710 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1713 /* Force speed setting */
1715 bmcr
= MII_BMCR_RESET
;
1716 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1718 if (np
->full_duplex
) {
1719 bmcr
= MII_BMCR_DUPLEX_MODE
;
1720 printk (KERN_INFO
"Manual full duplex\n");
1723 printk (KERN_INFO
"Manual half duplex\n");
1725 mii_write (dev
, phy_addr
, MII_BMCR
, bmcr
);
1728 /* Advertise nothing */
1729 mii_write (dev
, phy_addr
, MII_ANAR
, 0);
1736 rio_close (struct net_device
*dev
)
1738 long ioaddr
= dev
->base_addr
;
1739 struct netdev_private
*np
= netdev_priv(dev
);
1740 struct sk_buff
*skb
;
1743 netif_stop_queue (dev
);
1745 /* Disable interrupts */
1746 writew (0, ioaddr
+ IntEnable
);
1748 /* Stop Tx and Rx logics */
1749 writel (TxDisable
| RxDisable
| StatsDisable
, ioaddr
+ MACCtrl
);
1751 free_irq (dev
->irq
, dev
);
1752 del_timer_sync (&np
->timer
);
1754 /* Free all the skbuffs in the queue. */
1755 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1756 np
->rx_ring
[i
].status
= 0;
1757 np
->rx_ring
[i
].fraginfo
= 0;
1758 skb
= np
->rx_skbuff
[i
];
1760 pci_unmap_single(np
->pdev
,
1761 desc_to_dma(&np
->rx_ring
[i
]),
1762 skb
->len
, PCI_DMA_FROMDEVICE
);
1763 dev_kfree_skb (skb
);
1764 np
->rx_skbuff
[i
] = NULL
;
1767 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1768 skb
= np
->tx_skbuff
[i
];
1770 pci_unmap_single(np
->pdev
,
1771 desc_to_dma(&np
->tx_ring
[i
]),
1772 skb
->len
, PCI_DMA_TODEVICE
);
1773 dev_kfree_skb (skb
);
1774 np
->tx_skbuff
[i
] = NULL
;
1781 static void __devexit
1782 rio_remove1 (struct pci_dev
*pdev
)
1784 struct net_device
*dev
= pci_get_drvdata (pdev
);
1787 struct netdev_private
*np
= netdev_priv(dev
);
1789 unregister_netdev (dev
);
1790 pci_free_consistent (pdev
, RX_TOTAL_SIZE
, np
->rx_ring
,
1792 pci_free_consistent (pdev
, TX_TOTAL_SIZE
, np
->tx_ring
,
1795 iounmap ((char *) (dev
->base_addr
));
1798 pci_release_regions (pdev
);
1799 pci_disable_device (pdev
);
1801 pci_set_drvdata (pdev
, NULL
);
1804 static struct pci_driver rio_driver
= {
1806 .id_table
= rio_pci_tbl
,
1807 .probe
= rio_probe1
,
1808 .remove
= __devexit_p(rio_remove1
),
1814 return pci_register_driver(&rio_driver
);
1820 pci_unregister_driver (&rio_driver
);
1823 module_init (rio_init
);
1824 module_exit (rio_exit
);
1830 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1832 Read Documentation/networking/dl2k.txt for details.