Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux/fpc-iii.git] / drivers / net / ipg.c
blob72e3d2da9e9fd3174bea52c1d9feaf57e0423316
1 /*
2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
6 * Original Author:
8 * Craig Rich
9 * Sundance Technology, Inc.
10 * www.sundanceti.com
11 * craig_rich@sundanceti.com
13 * Current Maintainer:
15 * Sorbica Shieh.
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
19 * Jesse Huang
20 * http://www.icplus.com.tw
21 * jesse@icplus.com.tw
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/gfp.h>
26 #include <linux/mii.h>
27 #include <linux/mutex.h>
29 #include <asm/div64.h>
31 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
32 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
33 #define IPG_RESET_MASK \
34 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
35 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
36 IPG_AC_AUTO_INIT)
38 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
39 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
40 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
42 #define ipg_r32(reg) ioread32(ioaddr + (reg))
43 #define ipg_r16(reg) ioread16(ioaddr + (reg))
44 #define ipg_r8(reg) ioread8(ioaddr + (reg))
46 enum {
47 netdev_io_size = 128
50 #include "ipg.h"
51 #define DRV_NAME "ipg"
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
55 MODULE_LICENSE("GPL");
58 * Defaults
60 #define IPG_MAX_RXFRAME_SIZE 0x0600
61 #define IPG_RXFRAG_SIZE 0x0600
62 #define IPG_RXSUPPORT_SIZE 0x0600
63 #define IPG_IS_JUMBO false
66 * Variable record -- index by leading revision/length
67 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
69 static unsigned short DefaultPhyParam[] = {
70 /* 11/12/03 IP1000A v1-3 rev=0x40 */
71 /*--------------------------------------------------------------------------
72 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
73 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
74 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
75 --------------------------------------------------------------------------*/
76 /* 12/17/03 IP1000A v1-4 rev=0x40 */
77 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
78 0x0000,
79 30, 0x005e, 9, 0x0700,
80 /* 01/09/04 IP1000A v1-5 rev=0x41 */
81 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
82 0x0000,
83 30, 0x005e, 9, 0x0700,
84 0x0000
87 static const char *ipg_brand_name[] = {
88 "IC PLUS IP1000 1000/100/10 based NIC",
89 "Sundance Technology ST2021 based NIC",
90 "Tamarack Microelectronics TC9020/9021 based NIC",
91 "Tamarack Microelectronics TC9020/9021 based NIC",
92 "D-Link NIC IP1000A"
95 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl) = {
96 { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
97 { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
98 { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
99 { PCI_VDEVICE(DLINK, 0x9021), 3 },
100 { PCI_VDEVICE(DLINK, 0x4020), 4 },
101 { 0, }
104 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
106 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
108 struct ipg_nic_private *sp = netdev_priv(dev);
109 return sp->ioaddr;
112 #ifdef IPG_DEBUG
113 static void ipg_dump_rfdlist(struct net_device *dev)
115 struct ipg_nic_private *sp = netdev_priv(dev);
116 void __iomem *ioaddr = sp->ioaddr;
117 unsigned int i;
118 u32 offset;
120 IPG_DEBUG_MSG("_dump_rfdlist\n");
122 printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
123 printk(KERN_INFO "rx_dirty = %2.2x\n", sp->rx_dirty);
124 printk(KERN_INFO "RFDList start address = %16.16lx\n",
125 (unsigned long) sp->rxd_map);
126 printk(KERN_INFO "RFDListPtr register = %8.8x%8.8x\n",
127 ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
129 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
130 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
131 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
132 offset, (unsigned long) sp->rxd[i].next_desc);
133 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
134 printk(KERN_INFO "%2.2x %4.4x RFS = %16.16lx\n", i,
135 offset, (unsigned long) sp->rxd[i].rfs);
136 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
137 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
138 offset, (unsigned long) sp->rxd[i].frag_info);
142 static void ipg_dump_tfdlist(struct net_device *dev)
144 struct ipg_nic_private *sp = netdev_priv(dev);
145 void __iomem *ioaddr = sp->ioaddr;
146 unsigned int i;
147 u32 offset;
149 IPG_DEBUG_MSG("_dump_tfdlist\n");
151 printk(KERN_INFO "tx_current = %2.2x\n", sp->tx_current);
152 printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
153 printk(KERN_INFO "TFDList start address = %16.16lx\n",
154 (unsigned long) sp->txd_map);
155 printk(KERN_INFO "TFDListPtr register = %8.8x%8.8x\n",
156 ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
158 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
159 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
160 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
161 offset, (unsigned long) sp->txd[i].next_desc);
163 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
164 printk(KERN_INFO "%2.2x %4.4x TFC = %16.16lx\n", i,
165 offset, (unsigned long) sp->txd[i].tfc);
166 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
167 printk(KERN_INFO "%2.2x %4.4x frag_info = %16.16lx\n", i,
168 offset, (unsigned long) sp->txd[i].frag_info);
171 #endif
173 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
175 ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
176 ndelay(IPG_PC_PHYCTRLWAIT_NS);
179 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
181 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
182 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
185 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
187 phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
189 ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
192 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
194 ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
195 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
198 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
200 u16 bit_data;
202 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
204 bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
206 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
208 return bit_data;
212 * Read a register from the Physical Layer device located
213 * on the IPG NIC, using the IPG PHYCTRL register.
215 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
217 void __iomem *ioaddr = ipg_ioaddr(dev);
219 * The GMII mangement frame structure for a read is as follows:
221 * |Preamble|st|op|phyad|regad|ta| data |idle|
222 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
224 * <32 1s> = 32 consecutive logic 1 values
225 * A = bit of Physical Layer device address (MSB first)
226 * R = bit of register address (MSB first)
227 * z = High impedance state
228 * D = bit of read data (MSB first)
230 * Transmission order is 'Preamble' field first, bits transmitted
231 * left to right (first to last).
233 struct {
234 u32 field;
235 unsigned int len;
236 } p[] = {
237 { GMII_PREAMBLE, 32 }, /* Preamble */
238 { GMII_ST, 2 }, /* ST */
239 { GMII_READ, 2 }, /* OP */
240 { phy_id, 5 }, /* PHYAD */
241 { phy_reg, 5 }, /* REGAD */
242 { 0x0000, 2 }, /* TA */
243 { 0x0000, 16 }, /* DATA */
244 { 0x0000, 1 } /* IDLE */
246 unsigned int i, j;
247 u8 polarity, data;
249 polarity = ipg_r8(PHY_CTRL);
250 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
252 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
253 for (j = 0; j < 5; j++) {
254 for (i = 0; i < p[j].len; i++) {
255 /* For each variable length field, the MSB must be
256 * transmitted first. Rotate through the field bits,
257 * starting with the MSB, and move each bit into the
258 * the 1st (2^1) bit position (this is the bit position
259 * corresponding to the MgmtData bit of the PhyCtrl
260 * register for the IPG).
262 * Example: ST = 01;
264 * First write a '0' to bit 1 of the PhyCtrl
265 * register, then write a '1' to bit 1 of the
266 * PhyCtrl register.
268 * To do this, right shift the MSB of ST by the value:
269 * [field length - 1 - #ST bits already written]
270 * then left shift this result by 1.
272 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
273 data &= IPG_PC_MGMTDATA;
274 data |= polarity | IPG_PC_MGMTDIR;
276 ipg_drive_phy_ctl_low_high(ioaddr, data);
280 send_three_state(ioaddr, polarity);
282 read_phy_bit(ioaddr, polarity);
285 * For a read cycle, the bits for the next two fields (TA and
286 * DATA) are driven by the PHY (the IPG reads these bits).
288 for (i = 0; i < p[6].len; i++) {
289 p[6].field |=
290 (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
293 send_three_state(ioaddr, polarity);
294 send_three_state(ioaddr, polarity);
295 send_three_state(ioaddr, polarity);
296 send_end(ioaddr, polarity);
298 /* Return the value of the DATA field. */
299 return p[6].field;
303 * Write to a register from the Physical Layer device located
304 * on the IPG NIC, using the IPG PHYCTRL register.
306 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
308 void __iomem *ioaddr = ipg_ioaddr(dev);
310 * The GMII mangement frame structure for a read is as follows:
312 * |Preamble|st|op|phyad|regad|ta| data |idle|
313 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
315 * <32 1s> = 32 consecutive logic 1 values
316 * A = bit of Physical Layer device address (MSB first)
317 * R = bit of register address (MSB first)
318 * z = High impedance state
319 * D = bit of write data (MSB first)
321 * Transmission order is 'Preamble' field first, bits transmitted
322 * left to right (first to last).
324 struct {
325 u32 field;
326 unsigned int len;
327 } p[] = {
328 { GMII_PREAMBLE, 32 }, /* Preamble */
329 { GMII_ST, 2 }, /* ST */
330 { GMII_WRITE, 2 }, /* OP */
331 { phy_id, 5 }, /* PHYAD */
332 { phy_reg, 5 }, /* REGAD */
333 { 0x0002, 2 }, /* TA */
334 { val & 0xffff, 16 }, /* DATA */
335 { 0x0000, 1 } /* IDLE */
337 unsigned int i, j;
338 u8 polarity, data;
340 polarity = ipg_r8(PHY_CTRL);
341 polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
343 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
344 for (j = 0; j < 7; j++) {
345 for (i = 0; i < p[j].len; i++) {
346 /* For each variable length field, the MSB must be
347 * transmitted first. Rotate through the field bits,
348 * starting with the MSB, and move each bit into the
349 * the 1st (2^1) bit position (this is the bit position
350 * corresponding to the MgmtData bit of the PhyCtrl
351 * register for the IPG).
353 * Example: ST = 01;
355 * First write a '0' to bit 1 of the PhyCtrl
356 * register, then write a '1' to bit 1 of the
357 * PhyCtrl register.
359 * To do this, right shift the MSB of ST by the value:
360 * [field length - 1 - #ST bits already written]
361 * then left shift this result by 1.
363 data = (p[j].field >> (p[j].len - 1 - i)) << 1;
364 data &= IPG_PC_MGMTDATA;
365 data |= polarity | IPG_PC_MGMTDIR;
367 ipg_drive_phy_ctl_low_high(ioaddr, data);
371 /* The last cycle is a tri-state, so read from the PHY. */
372 for (j = 7; j < 8; j++) {
373 for (i = 0; i < p[j].len; i++) {
374 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
376 p[j].field |= ((ipg_r8(PHY_CTRL) &
377 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
379 ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
384 static void ipg_set_led_mode(struct net_device *dev)
386 struct ipg_nic_private *sp = netdev_priv(dev);
387 void __iomem *ioaddr = sp->ioaddr;
388 u32 mode;
390 mode = ipg_r32(ASIC_CTRL);
391 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
393 if ((sp->led_mode & 0x03) > 1)
394 mode |= IPG_AC_LED_MODE_BIT_1; /* Write Asic Control Bit 29 */
396 if ((sp->led_mode & 0x01) == 1)
397 mode |= IPG_AC_LED_MODE; /* Write Asic Control Bit 14 */
399 if ((sp->led_mode & 0x08) == 8)
400 mode |= IPG_AC_LED_SPEED; /* Write Asic Control Bit 27 */
402 ipg_w32(mode, ASIC_CTRL);
405 static void ipg_set_phy_set(struct net_device *dev)
407 struct ipg_nic_private *sp = netdev_priv(dev);
408 void __iomem *ioaddr = sp->ioaddr;
409 int physet;
411 physet = ipg_r8(PHY_SET);
412 physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
413 physet |= ((sp->led_mode & 0x70) >> 4);
414 ipg_w8(physet, PHY_SET);
417 static int ipg_reset(struct net_device *dev, u32 resetflags)
419 /* Assert functional resets via the IPG AsicCtrl
420 * register as specified by the 'resetflags' input
421 * parameter.
423 void __iomem *ioaddr = ipg_ioaddr(dev);
424 unsigned int timeout_count = 0;
426 IPG_DEBUG_MSG("_reset\n");
428 ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
430 /* Delay added to account for problem with 10Mbps reset. */
431 mdelay(IPG_AC_RESETWAIT);
433 while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
434 mdelay(IPG_AC_RESETWAIT);
435 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
436 return -ETIME;
438 /* Set LED Mode in Asic Control */
439 ipg_set_led_mode(dev);
441 /* Set PHYSet Register Value */
442 ipg_set_phy_set(dev);
443 return 0;
446 /* Find the GMII PHY address. */
447 static int ipg_find_phyaddr(struct net_device *dev)
449 unsigned int phyaddr, i;
451 for (i = 0; i < 32; i++) {
452 u32 status;
454 /* Search for the correct PHY address among 32 possible. */
455 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
457 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
458 GMII_PHY_ID1
461 status = mdio_read(dev, phyaddr, MII_BMSR);
463 if ((status != 0xFFFF) && (status != 0))
464 return phyaddr;
467 return 0x1f;
471 * Configure IPG based on result of IEEE 802.3 PHY
472 * auto-negotiation.
474 static int ipg_config_autoneg(struct net_device *dev)
476 struct ipg_nic_private *sp = netdev_priv(dev);
477 void __iomem *ioaddr = sp->ioaddr;
478 unsigned int txflowcontrol;
479 unsigned int rxflowcontrol;
480 unsigned int fullduplex;
481 u32 mac_ctrl_val;
482 u32 asicctrl;
483 u8 phyctrl;
485 IPG_DEBUG_MSG("_config_autoneg\n");
487 asicctrl = ipg_r32(ASIC_CTRL);
488 phyctrl = ipg_r8(PHY_CTRL);
489 mac_ctrl_val = ipg_r32(MAC_CTRL);
491 /* Set flags for use in resolving auto-negotation, assuming
492 * non-1000Mbps, half duplex, no flow control.
494 fullduplex = 0;
495 txflowcontrol = 0;
496 rxflowcontrol = 0;
498 /* To accomodate a problem in 10Mbps operation,
499 * set a global flag if PHY running in 10Mbps mode.
501 sp->tenmbpsmode = 0;
503 printk(KERN_INFO "%s: Link speed = ", dev->name);
505 /* Determine actual speed of operation. */
506 switch (phyctrl & IPG_PC_LINK_SPEED) {
507 case IPG_PC_LINK_SPEED_10MBPS:
508 printk("10Mbps.\n");
509 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
510 dev->name);
511 sp->tenmbpsmode = 1;
512 break;
513 case IPG_PC_LINK_SPEED_100MBPS:
514 printk("100Mbps.\n");
515 break;
516 case IPG_PC_LINK_SPEED_1000MBPS:
517 printk("1000Mbps.\n");
518 break;
519 default:
520 printk("undefined!\n");
521 return 0;
524 if (phyctrl & IPG_PC_DUPLEX_STATUS) {
525 fullduplex = 1;
526 txflowcontrol = 1;
527 rxflowcontrol = 1;
530 /* Configure full duplex, and flow control. */
531 if (fullduplex == 1) {
532 /* Configure IPG for full duplex operation. */
533 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
535 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537 if (txflowcontrol == 1) {
538 printk("TX flow control");
539 mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
540 } else {
541 printk("no TX flow control");
542 mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
545 if (rxflowcontrol == 1) {
546 printk(", RX flow control.");
547 mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
548 } else {
549 printk(", no RX flow control.");
550 mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
553 printk("\n");
554 } else {
555 /* Configure IPG for half duplex operation. */
556 printk(KERN_INFO "%s: setting half duplex, "
557 "no TX flow control, no RX flow control.\n", dev->name);
559 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
560 ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
561 ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
563 ipg_w32(mac_ctrl_val, MAC_CTRL);
564 return 0;
567 /* Determine and configure multicast operation and set
568 * receive mode for IPG.
570 static void ipg_nic_set_multicast_list(struct net_device *dev)
572 void __iomem *ioaddr = ipg_ioaddr(dev);
573 struct netdev_hw_addr *ha;
574 unsigned int hashindex;
575 u32 hashtable[2];
576 u8 receivemode;
578 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
580 receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
582 if (dev->flags & IFF_PROMISC) {
583 /* NIC to be configured in promiscuous mode. */
584 receivemode = IPG_RM_RECEIVEALLFRAMES;
585 } else if ((dev->flags & IFF_ALLMULTI) ||
586 ((dev->flags & IFF_MULTICAST) &&
587 (netdev_mc_count(dev) > IPG_MULTICAST_HASHTABLE_SIZE))) {
588 /* NIC to be configured to receive all multicast
589 * frames. */
590 receivemode |= IPG_RM_RECEIVEMULTICAST;
591 } else if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
592 /* NIC to be configured to receive selected
593 * multicast addresses. */
594 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
597 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
598 * The IPG applies a cyclic-redundancy-check (the same CRC
599 * used to calculate the frame data FCS) to the destination
600 * address all incoming multicast frames whose destination
601 * address has the multicast bit set. The least significant
602 * 6 bits of the CRC result are used as an addressing index
603 * into the hash table. If the value of the bit addressed by
604 * this index is a 1, the frame is passed to the host system.
607 /* Clear hashtable. */
608 hashtable[0] = 0x00000000;
609 hashtable[1] = 0x00000000;
611 /* Cycle through all multicast addresses to filter. */
612 netdev_for_each_mc_addr(ha, dev) {
613 /* Calculate CRC result for each multicast address. */
614 hashindex = crc32_le(0xffffffff, ha->addr,
615 ETH_ALEN);
617 /* Use only the least significant 6 bits. */
618 hashindex = hashindex & 0x3F;
620 /* Within "hashtable", set bit number "hashindex"
621 * to a logic 1.
623 set_bit(hashindex, (void *)hashtable);
626 /* Write the value of the hashtable, to the 4, 16 bit
627 * HASHTABLE IPG registers.
629 ipg_w32(hashtable[0], HASHTABLE_0);
630 ipg_w32(hashtable[1], HASHTABLE_1);
632 ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
634 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637 static int ipg_io_config(struct net_device *dev)
639 struct ipg_nic_private *sp = netdev_priv(dev);
640 void __iomem *ioaddr = ipg_ioaddr(dev);
641 u32 origmacctrl;
642 u32 restoremacctrl;
644 IPG_DEBUG_MSG("_io_config\n");
646 origmacctrl = ipg_r32(MAC_CTRL);
648 restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
650 /* Based on compilation option, determine if FCS is to be
651 * stripped on receive frames by IPG.
653 if (!IPG_STRIP_FCS_ON_RX)
654 restoremacctrl |= IPG_MC_RCV_FCS;
656 /* Determine if transmitter and/or receiver are
657 * enabled so we may restore MACCTRL correctly.
659 if (origmacctrl & IPG_MC_TX_ENABLED)
660 restoremacctrl |= IPG_MC_TX_ENABLE;
662 if (origmacctrl & IPG_MC_RX_ENABLED)
663 restoremacctrl |= IPG_MC_RX_ENABLE;
665 /* Transmitter and receiver must be disabled before setting
666 * IFSSelect.
668 ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
669 IPG_MC_RSVD_MASK, MAC_CTRL);
671 /* Now that transmitter and receiver are disabled, write
672 * to IFSSelect.
674 ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
676 /* Set RECEIVEMODE register. */
677 ipg_nic_set_multicast_list(dev);
679 ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
681 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE, RX_DMA_POLL_PERIOD);
682 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
683 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE, RX_DMA_BURST_THRESH);
684 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE, TX_DMA_POLL_PERIOD);
685 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
686 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE, TX_DMA_BURST_THRESH);
687 ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
688 IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
689 IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
690 IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
691 ipg_w16(IPG_FLOWONTHRESH_VALUE, FLOW_ON_THRESH);
692 ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
694 /* IPG multi-frag frame bug workaround.
695 * Per silicon revision B3 eratta.
697 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
699 /* IPG TX poll now bug workaround.
700 * Per silicon revision B3 eratta.
702 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
704 /* IPG RX poll now bug workaround.
705 * Per silicon revision B3 eratta.
707 ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
709 /* Now restore MACCTRL to original setting. */
710 ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
712 /* Disable unused RMON statistics. */
713 ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
715 /* Disable unused MIB statistics. */
716 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
717 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
718 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
719 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
720 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
721 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
723 return 0;
727 * Create a receive buffer within system memory and update
728 * NIC private structure appropriately.
730 static int ipg_get_rxbuff(struct net_device *dev, int entry)
732 struct ipg_nic_private *sp = netdev_priv(dev);
733 struct ipg_rx *rxfd = sp->rxd + entry;
734 struct sk_buff *skb;
735 u64 rxfragsize;
737 IPG_DEBUG_MSG("_get_rxbuff\n");
739 skb = netdev_alloc_skb_ip_align(dev, sp->rxsupport_size);
740 if (!skb) {
741 sp->rx_buff[entry] = NULL;
742 return -ENOMEM;
745 /* Associate the receive buffer with the IPG NIC. */
746 skb->dev = dev;
748 /* Save the address of the sk_buff structure. */
749 sp->rx_buff[entry] = skb;
751 rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
752 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
754 /* Set the RFD fragment length. */
755 rxfragsize = sp->rxfrag_size;
756 rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
758 return 0;
761 static int init_rfdlist(struct net_device *dev)
763 struct ipg_nic_private *sp = netdev_priv(dev);
764 void __iomem *ioaddr = sp->ioaddr;
765 unsigned int i;
767 IPG_DEBUG_MSG("_init_rfdlist\n");
769 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
770 struct ipg_rx *rxfd = sp->rxd + i;
772 if (sp->rx_buff[i]) {
773 pci_unmap_single(sp->pdev,
774 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
775 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
776 dev_kfree_skb_irq(sp->rx_buff[i]);
777 sp->rx_buff[i] = NULL;
780 /* Clear out the RFS field. */
781 rxfd->rfs = 0x0000000000000000;
783 if (ipg_get_rxbuff(dev, i) < 0) {
785 * A receive buffer was not ready, break the
786 * RFD list here.
788 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
790 /* Just in case we cannot allocate a single RFD.
791 * Should not occur.
793 if (i == 0) {
794 printk(KERN_ERR "%s: No memory available"
795 " for RFD list.\n", dev->name);
796 return -ENOMEM;
800 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
801 sizeof(struct ipg_rx)*(i + 1));
803 sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
805 sp->rx_current = 0;
806 sp->rx_dirty = 0;
808 /* Write the location of the RFDList to the IPG. */
809 ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
810 ipg_w32(0x00000000, RFD_LIST_PTR_1);
812 return 0;
815 static void init_tfdlist(struct net_device *dev)
817 struct ipg_nic_private *sp = netdev_priv(dev);
818 void __iomem *ioaddr = sp->ioaddr;
819 unsigned int i;
821 IPG_DEBUG_MSG("_init_tfdlist\n");
823 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
824 struct ipg_tx *txfd = sp->txd + i;
826 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
828 if (sp->tx_buff[i]) {
829 dev_kfree_skb_irq(sp->tx_buff[i]);
830 sp->tx_buff[i] = NULL;
833 txfd->next_desc = cpu_to_le64(sp->txd_map +
834 sizeof(struct ipg_tx)*(i + 1));
836 sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
838 sp->tx_current = 0;
839 sp->tx_dirty = 0;
841 /* Write the location of the TFDList to the IPG. */
842 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
843 (u32) sp->txd_map);
844 ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
845 ipg_w32(0x00000000, TFD_LIST_PTR_1);
847 sp->reset_current_tfd = 1;
851 * Free all transmit buffers which have already been transfered
852 * via DMA to the IPG.
854 static void ipg_nic_txfree(struct net_device *dev)
856 struct ipg_nic_private *sp = netdev_priv(dev);
857 unsigned int released, pending, dirty;
859 IPG_DEBUG_MSG("_nic_txfree\n");
861 pending = sp->tx_current - sp->tx_dirty;
862 dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
864 for (released = 0; released < pending; released++) {
865 struct sk_buff *skb = sp->tx_buff[dirty];
866 struct ipg_tx *txfd = sp->txd + dirty;
868 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
870 /* Look at each TFD's TFC field beginning
871 * at the last freed TFD up to the current TFD.
872 * If the TFDDone bit is set, free the associated
873 * buffer.
875 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
876 break;
878 /* Free the transmit buffer. */
879 if (skb) {
880 pci_unmap_single(sp->pdev,
881 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
882 skb->len, PCI_DMA_TODEVICE);
884 dev_kfree_skb_irq(skb);
886 sp->tx_buff[dirty] = NULL;
888 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
891 sp->tx_dirty += released;
893 if (netif_queue_stopped(dev) &&
894 (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
895 netif_wake_queue(dev);
899 static void ipg_tx_timeout(struct net_device *dev)
901 struct ipg_nic_private *sp = netdev_priv(dev);
902 void __iomem *ioaddr = sp->ioaddr;
904 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
905 IPG_AC_FIFO);
907 spin_lock_irq(&sp->lock);
909 /* Re-configure after DMA reset. */
910 if (ipg_io_config(dev) < 0) {
911 printk(KERN_INFO "%s: Error during re-configuration.\n",
912 dev->name);
915 init_tfdlist(dev);
917 spin_unlock_irq(&sp->lock);
919 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
920 MAC_CTRL);
924 * For TxComplete interrupts, free all transmit
925 * buffers which have already been transfered via DMA
926 * to the IPG.
928 static void ipg_nic_txcleanup(struct net_device *dev)
930 struct ipg_nic_private *sp = netdev_priv(dev);
931 void __iomem *ioaddr = sp->ioaddr;
932 unsigned int i;
934 IPG_DEBUG_MSG("_nic_txcleanup\n");
936 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
937 /* Reading the TXSTATUS register clears the
938 * TX_COMPLETE interrupt.
940 u32 txstatusdword = ipg_r32(TX_STATUS);
942 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
944 /* Check for Transmit errors. Error bits only valid if
945 * TX_COMPLETE bit in the TXSTATUS register is a 1.
947 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
948 break;
950 /* If in 10Mbps mode, indicate transmit is ready. */
951 if (sp->tenmbpsmode) {
952 netif_wake_queue(dev);
955 /* Transmit error, increment stat counters. */
956 if (txstatusdword & IPG_TS_TX_ERROR) {
957 IPG_DEBUG_MSG("Transmit error.\n");
958 sp->stats.tx_errors++;
961 /* Late collision, re-enable transmitter. */
962 if (txstatusdword & IPG_TS_LATE_COLLISION) {
963 IPG_DEBUG_MSG("Late collision on transmit.\n");
964 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
965 IPG_MC_RSVD_MASK, MAC_CTRL);
968 /* Maximum collisions, re-enable transmitter. */
969 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
970 IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
971 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
972 IPG_MC_RSVD_MASK, MAC_CTRL);
975 /* Transmit underrun, reset and re-enable
976 * transmitter.
978 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
979 IPG_DEBUG_MSG("Transmitter underrun.\n");
980 sp->stats.tx_fifo_errors++;
981 ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
982 IPG_AC_NETWORK | IPG_AC_FIFO);
984 /* Re-configure after DMA reset. */
985 if (ipg_io_config(dev) < 0) {
986 printk(KERN_INFO
987 "%s: Error during re-configuration.\n",
988 dev->name);
990 init_tfdlist(dev);
992 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
993 IPG_MC_RSVD_MASK, MAC_CTRL);
997 ipg_nic_txfree(dev);
1000 /* Provides statistical information about the IPG NIC. */
1001 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1003 struct ipg_nic_private *sp = netdev_priv(dev);
1004 void __iomem *ioaddr = sp->ioaddr;
1005 u16 temp1;
1006 u16 temp2;
1008 IPG_DEBUG_MSG("_nic_get_stats\n");
1010 /* Check to see if the NIC has been initialized via nic_open,
1011 * before trying to read statistic registers.
1013 if (!test_bit(__LINK_STATE_START, &dev->state))
1014 return &sp->stats;
1016 sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1017 sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1018 sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1019 sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1020 temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1021 sp->stats.rx_errors += temp1;
1022 sp->stats.rx_missed_errors += temp1;
1023 temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1024 ipg_r32(IPG_LATECOLLISIONS);
1025 temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1026 sp->stats.collisions += temp1;
1027 sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1028 sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1029 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1030 sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1032 /* detailed tx_errors */
1033 sp->stats.tx_carrier_errors += temp2;
1035 /* detailed rx_errors */
1036 sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1037 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1038 sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1040 /* Unutilized IPG statistic registers. */
1041 ipg_r32(IPG_MCSTFRAMESRCVDOK);
1043 return &sp->stats;
1046 /* Restore used receive buffers. */
1047 static int ipg_nic_rxrestore(struct net_device *dev)
1049 struct ipg_nic_private *sp = netdev_priv(dev);
1050 const unsigned int curr = sp->rx_current;
1051 unsigned int dirty = sp->rx_dirty;
1053 IPG_DEBUG_MSG("_nic_rxrestore\n");
1055 for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1056 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1058 /* rx_copybreak may poke hole here and there. */
1059 if (sp->rx_buff[entry])
1060 continue;
1062 /* Generate a new receive buffer to replace the
1063 * current buffer (which will be released by the
1064 * Linux system).
1066 if (ipg_get_rxbuff(dev, entry) < 0) {
1067 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1069 break;
1072 /* Reset the RFS field. */
1073 sp->rxd[entry].rfs = 0x0000000000000000;
1075 sp->rx_dirty = dirty;
1077 return 0;
1080 /* use jumboindex and jumbosize to control jumbo frame status
1081 * initial status is jumboindex=-1 and jumbosize=0
1082 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1083 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1084 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1085 * previous receiving and need to continue dumping the current one
1087 enum {
1088 NORMAL_PACKET,
1089 ERROR_PACKET
1092 enum {
1093 FRAME_NO_START_NO_END = 0,
1094 FRAME_WITH_START = 1,
1095 FRAME_WITH_END = 10,
1096 FRAME_WITH_START_WITH_END = 11
1099 static void ipg_nic_rx_free_skb(struct net_device *dev)
1101 struct ipg_nic_private *sp = netdev_priv(dev);
1102 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1104 if (sp->rx_buff[entry]) {
1105 struct ipg_rx *rxfd = sp->rxd + entry;
1107 pci_unmap_single(sp->pdev,
1108 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1109 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1110 dev_kfree_skb_irq(sp->rx_buff[entry]);
1111 sp->rx_buff[entry] = NULL;
1115 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1117 struct ipg_nic_private *sp = netdev_priv(dev);
1118 struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1119 int type = FRAME_NO_START_NO_END;
1121 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1122 type += FRAME_WITH_START;
1123 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1124 type += FRAME_WITH_END;
1125 return type;
1128 static int ipg_nic_rx_check_error(struct net_device *dev)
1130 struct ipg_nic_private *sp = netdev_priv(dev);
1131 unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1132 struct ipg_rx *rxfd = sp->rxd + entry;
1134 if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1135 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1136 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1137 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1138 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1139 (unsigned long) rxfd->rfs);
1141 /* Increment general receive error statistic. */
1142 sp->stats.rx_errors++;
1144 /* Increment detailed receive error statistics. */
1145 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1146 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1148 sp->stats.rx_fifo_errors++;
1151 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1152 IPG_DEBUG_MSG("RX runt occured.\n");
1153 sp->stats.rx_length_errors++;
1156 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1157 * error count handled by a IPG statistic register.
1160 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1161 IPG_DEBUG_MSG("RX alignment error occured.\n");
1162 sp->stats.rx_frame_errors++;
1165 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1166 * handled by a IPG statistic register.
1169 /* Free the memory associated with the RX
1170 * buffer since it is erroneous and we will
1171 * not pass it to higher layer processes.
1173 if (sp->rx_buff[entry]) {
1174 pci_unmap_single(sp->pdev,
1175 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1176 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1178 dev_kfree_skb_irq(sp->rx_buff[entry]);
1179 sp->rx_buff[entry] = NULL;
1181 return ERROR_PACKET;
1183 return NORMAL_PACKET;
1186 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1187 struct ipg_nic_private *sp,
1188 struct ipg_rx *rxfd, unsigned entry)
1190 struct ipg_jumbo *jumbo = &sp->jumbo;
1191 struct sk_buff *skb;
1192 int framelen;
1194 if (jumbo->found_start) {
1195 dev_kfree_skb_irq(jumbo->skb);
1196 jumbo->found_start = 0;
1197 jumbo->current_size = 0;
1198 jumbo->skb = NULL;
1201 /* 1: found error, 0 no error */
1202 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1203 return;
1205 skb = sp->rx_buff[entry];
1206 if (!skb)
1207 return;
1209 /* accept this frame and send to upper layer */
1210 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1211 if (framelen > sp->rxfrag_size)
1212 framelen = sp->rxfrag_size;
1214 skb_put(skb, framelen);
1215 skb->protocol = eth_type_trans(skb, dev);
1216 skb->ip_summed = CHECKSUM_NONE;
1217 netif_rx(skb);
1218 sp->rx_buff[entry] = NULL;
1221 static void ipg_nic_rx_with_start(struct net_device *dev,
1222 struct ipg_nic_private *sp,
1223 struct ipg_rx *rxfd, unsigned entry)
1225 struct ipg_jumbo *jumbo = &sp->jumbo;
1226 struct pci_dev *pdev = sp->pdev;
1227 struct sk_buff *skb;
1229 /* 1: found error, 0 no error */
1230 if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1231 return;
1233 /* accept this frame and send to upper layer */
1234 skb = sp->rx_buff[entry];
1235 if (!skb)
1236 return;
1238 if (jumbo->found_start)
1239 dev_kfree_skb_irq(jumbo->skb);
1241 pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1242 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1244 skb_put(skb, sp->rxfrag_size);
1246 jumbo->found_start = 1;
1247 jumbo->current_size = sp->rxfrag_size;
1248 jumbo->skb = skb;
1250 sp->rx_buff[entry] = NULL;
1253 static void ipg_nic_rx_with_end(struct net_device *dev,
1254 struct ipg_nic_private *sp,
1255 struct ipg_rx *rxfd, unsigned entry)
1257 struct ipg_jumbo *jumbo = &sp->jumbo;
1259 /* 1: found error, 0 no error */
1260 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1261 struct sk_buff *skb = sp->rx_buff[entry];
1263 if (!skb)
1264 return;
1266 if (jumbo->found_start) {
1267 int framelen, endframelen;
1269 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1271 endframelen = framelen - jumbo->current_size;
1272 if (framelen > sp->rxsupport_size)
1273 dev_kfree_skb_irq(jumbo->skb);
1274 else {
1275 memcpy(skb_put(jumbo->skb, endframelen),
1276 skb->data, endframelen);
1278 jumbo->skb->protocol =
1279 eth_type_trans(jumbo->skb, dev);
1281 jumbo->skb->ip_summed = CHECKSUM_NONE;
1282 netif_rx(jumbo->skb);
1286 jumbo->found_start = 0;
1287 jumbo->current_size = 0;
1288 jumbo->skb = NULL;
1290 ipg_nic_rx_free_skb(dev);
1291 } else {
1292 dev_kfree_skb_irq(jumbo->skb);
1293 jumbo->found_start = 0;
1294 jumbo->current_size = 0;
1295 jumbo->skb = NULL;
1299 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1300 struct ipg_nic_private *sp,
1301 struct ipg_rx *rxfd, unsigned entry)
1303 struct ipg_jumbo *jumbo = &sp->jumbo;
1305 /* 1: found error, 0 no error */
1306 if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1307 struct sk_buff *skb = sp->rx_buff[entry];
1309 if (skb) {
1310 if (jumbo->found_start) {
1311 jumbo->current_size += sp->rxfrag_size;
1312 if (jumbo->current_size <= sp->rxsupport_size) {
1313 memcpy(skb_put(jumbo->skb,
1314 sp->rxfrag_size),
1315 skb->data, sp->rxfrag_size);
1318 ipg_nic_rx_free_skb(dev);
1320 } else {
1321 dev_kfree_skb_irq(jumbo->skb);
1322 jumbo->found_start = 0;
1323 jumbo->current_size = 0;
1324 jumbo->skb = NULL;
1328 static int ipg_nic_rx_jumbo(struct net_device *dev)
1330 struct ipg_nic_private *sp = netdev_priv(dev);
1331 unsigned int curr = sp->rx_current;
1332 void __iomem *ioaddr = sp->ioaddr;
1333 unsigned int i;
1335 IPG_DEBUG_MSG("_nic_rx\n");
1337 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1338 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1339 struct ipg_rx *rxfd = sp->rxd + entry;
1341 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1342 break;
1344 switch (ipg_nic_rx_check_frame_type(dev)) {
1345 case FRAME_WITH_START_WITH_END:
1346 ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1347 break;
1348 case FRAME_WITH_START:
1349 ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1350 break;
1351 case FRAME_WITH_END:
1352 ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1353 break;
1354 case FRAME_NO_START_NO_END:
1355 ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1356 break;
1360 sp->rx_current = curr;
1362 if (i == IPG_MAXRFDPROCESS_COUNT) {
1363 /* There are more RFDs to process, however the
1364 * allocated amount of RFD processing time has
1365 * expired. Assert Interrupt Requested to make
1366 * sure we come back to process the remaining RFDs.
1368 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1371 ipg_nic_rxrestore(dev);
1373 return 0;
1376 static int ipg_nic_rx(struct net_device *dev)
1378 /* Transfer received Ethernet frames to higher network layers. */
1379 struct ipg_nic_private *sp = netdev_priv(dev);
1380 unsigned int curr = sp->rx_current;
1381 void __iomem *ioaddr = sp->ioaddr;
1382 struct ipg_rx *rxfd;
1383 unsigned int i;
1385 IPG_DEBUG_MSG("_nic_rx\n");
1387 #define __RFS_MASK \
1388 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1390 for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1391 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1392 struct sk_buff *skb = sp->rx_buff[entry];
1393 unsigned int framelen;
1395 rxfd = sp->rxd + entry;
1397 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1398 break;
1400 /* Get received frame length. */
1401 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1403 /* Check for jumbo frame arrival with too small
1404 * RXFRAG_SIZE.
1406 if (framelen > sp->rxfrag_size) {
1407 IPG_DEBUG_MSG
1408 ("RFS FrameLen > allocated fragment size.\n");
1410 framelen = sp->rxfrag_size;
1413 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1414 (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1415 IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1416 IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1418 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1419 (unsigned long int) rxfd->rfs);
1421 /* Increment general receive error statistic. */
1422 sp->stats.rx_errors++;
1424 /* Increment detailed receive error statistics. */
1425 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1426 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1427 sp->stats.rx_fifo_errors++;
1430 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1431 IPG_DEBUG_MSG("RX runt occured.\n");
1432 sp->stats.rx_length_errors++;
1435 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1436 /* Do nothing, error count handled by a IPG
1437 * statistic register.
1440 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1441 IPG_DEBUG_MSG("RX alignment error occured.\n");
1442 sp->stats.rx_frame_errors++;
1445 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1446 /* Do nothing, error count handled by a IPG
1447 * statistic register.
1450 /* Free the memory associated with the RX
1451 * buffer since it is erroneous and we will
1452 * not pass it to higher layer processes.
1454 if (skb) {
1455 __le64 info = rxfd->frag_info;
1457 pci_unmap_single(sp->pdev,
1458 le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1459 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1461 dev_kfree_skb_irq(skb);
1463 } else {
1465 /* Adjust the new buffer length to accomodate the size
1466 * of the received frame.
1468 skb_put(skb, framelen);
1470 /* Set the buffer's protocol field to Ethernet. */
1471 skb->protocol = eth_type_trans(skb, dev);
1473 /* The IPG encountered an error with (or
1474 * there were no) IP/TCP/UDP checksums.
1475 * This may or may not indicate an invalid
1476 * IP/TCP/UDP frame was received. Let the
1477 * upper layer decide.
1479 skb->ip_summed = CHECKSUM_NONE;
1481 /* Hand off frame for higher layer processing.
1482 * The function netif_rx() releases the sk_buff
1483 * when processing completes.
1485 netif_rx(skb);
1488 /* Assure RX buffer is not reused by IPG. */
1489 sp->rx_buff[entry] = NULL;
1493 * If there are more RFDs to proces and the allocated amount of RFD
1494 * processing time has expired, assert Interrupt Requested to make
1495 * sure we come back to process the remaining RFDs.
1497 if (i == IPG_MAXRFDPROCESS_COUNT)
1498 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1500 #ifdef IPG_DEBUG
1501 /* Check if the RFD list contained no receive frame data. */
1502 if (!i)
1503 sp->EmptyRFDListCount++;
1504 #endif
1505 while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1506 !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1507 (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1508 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1510 rxfd = sp->rxd + entry;
1512 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1514 /* An unexpected event, additional code needed to handle
1515 * properly. So for the time being, just disregard the
1516 * frame.
1519 /* Free the memory associated with the RX
1520 * buffer since it is erroneous and we will
1521 * not pass it to higher layer processes.
1523 if (sp->rx_buff[entry]) {
1524 pci_unmap_single(sp->pdev,
1525 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1526 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1527 dev_kfree_skb_irq(sp->rx_buff[entry]);
1530 /* Assure RX buffer is not reused by IPG. */
1531 sp->rx_buff[entry] = NULL;
1534 sp->rx_current = curr;
1536 /* Check to see if there are a minimum number of used
1537 * RFDs before restoring any (should improve performance.)
1539 if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1540 ipg_nic_rxrestore(dev);
1542 return 0;
1545 static void ipg_reset_after_host_error(struct work_struct *work)
1547 struct ipg_nic_private *sp =
1548 container_of(work, struct ipg_nic_private, task.work);
1549 struct net_device *dev = sp->dev;
1552 * Acknowledge HostError interrupt by resetting
1553 * IPG DMA and HOST.
1555 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1557 init_rfdlist(dev);
1558 init_tfdlist(dev);
1560 if (ipg_io_config(dev) < 0) {
1561 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1562 dev->name);
1563 schedule_delayed_work(&sp->task, HZ);
1567 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1569 struct net_device *dev = dev_inst;
1570 struct ipg_nic_private *sp = netdev_priv(dev);
1571 void __iomem *ioaddr = sp->ioaddr;
1572 unsigned int handled = 0;
1573 u16 status;
1575 IPG_DEBUG_MSG("_interrupt_handler\n");
1577 if (sp->is_jumbo)
1578 ipg_nic_rxrestore(dev);
1580 spin_lock(&sp->lock);
1582 /* Get interrupt source information, and acknowledge
1583 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1584 * IntRequested, MacControlFrame, LinkEvent) interrupts
1585 * if issued. Also, all IPG interrupts are disabled by
1586 * reading IntStatusAck.
1588 status = ipg_r16(INT_STATUS_ACK);
1590 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1592 /* Shared IRQ of remove event. */
1593 if (!(status & IPG_IS_RSVD_MASK))
1594 goto out_enable;
1596 handled = 1;
1598 if (unlikely(!netif_running(dev)))
1599 goto out_unlock;
1601 /* If RFDListEnd interrupt, restore all used RFDs. */
1602 if (status & IPG_IS_RFD_LIST_END) {
1603 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1605 /* The RFD list end indicates an RFD was encountered
1606 * with a 0 NextPtr, or with an RFDDone bit set to 1
1607 * (indicating the RFD is not read for use by the
1608 * IPG.) Try to restore all RFDs.
1610 ipg_nic_rxrestore(dev);
1612 #ifdef IPG_DEBUG
1613 /* Increment the RFDlistendCount counter. */
1614 sp->RFDlistendCount++;
1615 #endif
1618 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1619 * IntRequested interrupt, process received frames. */
1620 if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1621 (status & IPG_IS_RFD_LIST_END) ||
1622 (status & IPG_IS_RX_DMA_COMPLETE) ||
1623 (status & IPG_IS_INT_REQUESTED)) {
1624 #ifdef IPG_DEBUG
1625 /* Increment the RFD list checked counter if interrupted
1626 * only to check the RFD list. */
1627 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1628 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1629 (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1630 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1631 IPG_IS_UPDATE_STATS)))
1632 sp->RFDListCheckedCount++;
1633 #endif
1635 if (sp->is_jumbo)
1636 ipg_nic_rx_jumbo(dev);
1637 else
1638 ipg_nic_rx(dev);
1641 /* If TxDMAComplete interrupt, free used TFDs. */
1642 if (status & IPG_IS_TX_DMA_COMPLETE)
1643 ipg_nic_txfree(dev);
1645 /* TxComplete interrupts indicate one of numerous actions.
1646 * Determine what action to take based on TXSTATUS register.
1648 if (status & IPG_IS_TX_COMPLETE)
1649 ipg_nic_txcleanup(dev);
1651 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1652 if (status & IPG_IS_UPDATE_STATS)
1653 ipg_nic_get_stats(dev);
1655 /* If HostError interrupt, reset IPG. */
1656 if (status & IPG_IS_HOST_ERROR) {
1657 IPG_DDEBUG_MSG("HostError Interrupt\n");
1659 schedule_delayed_work(&sp->task, 0);
1662 /* If LinkEvent interrupt, resolve autonegotiation. */
1663 if (status & IPG_IS_LINK_EVENT) {
1664 if (ipg_config_autoneg(dev) < 0)
1665 printk(KERN_INFO "%s: Auto-negotiation error.\n",
1666 dev->name);
1669 /* If MACCtrlFrame interrupt, do nothing. */
1670 if (status & IPG_IS_MAC_CTRL_FRAME)
1671 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1673 /* If RxComplete interrupt, do nothing. */
1674 if (status & IPG_IS_RX_COMPLETE)
1675 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1677 /* If RxEarly interrupt, do nothing. */
1678 if (status & IPG_IS_RX_EARLY)
1679 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1681 out_enable:
1682 /* Re-enable IPG interrupts. */
1683 ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1684 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1685 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1686 out_unlock:
1687 spin_unlock(&sp->lock);
1689 return IRQ_RETVAL(handled);
1692 static void ipg_rx_clear(struct ipg_nic_private *sp)
1694 unsigned int i;
1696 for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1697 if (sp->rx_buff[i]) {
1698 struct ipg_rx *rxfd = sp->rxd + i;
1700 dev_kfree_skb_irq(sp->rx_buff[i]);
1701 sp->rx_buff[i] = NULL;
1702 pci_unmap_single(sp->pdev,
1703 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1704 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1709 static void ipg_tx_clear(struct ipg_nic_private *sp)
1711 unsigned int i;
1713 for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1714 if (sp->tx_buff[i]) {
1715 struct ipg_tx *txfd = sp->txd + i;
1717 pci_unmap_single(sp->pdev,
1718 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1719 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1721 dev_kfree_skb_irq(sp->tx_buff[i]);
1723 sp->tx_buff[i] = NULL;
1728 static int ipg_nic_open(struct net_device *dev)
1730 struct ipg_nic_private *sp = netdev_priv(dev);
1731 void __iomem *ioaddr = sp->ioaddr;
1732 struct pci_dev *pdev = sp->pdev;
1733 int rc;
1735 IPG_DEBUG_MSG("_nic_open\n");
1737 sp->rx_buf_sz = sp->rxsupport_size;
1739 /* Check for interrupt line conflicts, and request interrupt
1740 * line for IPG.
1742 * IMPORTANT: Disable IPG interrupts prior to registering
1743 * IRQ.
1745 ipg_w16(0x0000, INT_ENABLE);
1747 /* Register the interrupt line to be used by the IPG within
1748 * the Linux system.
1750 rc = request_irq(pdev->irq, ipg_interrupt_handler, IRQF_SHARED,
1751 dev->name, dev);
1752 if (rc < 0) {
1753 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1754 dev->name);
1755 goto out;
1758 dev->irq = pdev->irq;
1760 rc = -ENOMEM;
1762 sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1763 &sp->rxd_map, GFP_KERNEL);
1764 if (!sp->rxd)
1765 goto err_free_irq_0;
1767 sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1768 &sp->txd_map, GFP_KERNEL);
1769 if (!sp->txd)
1770 goto err_free_rx_1;
1772 rc = init_rfdlist(dev);
1773 if (rc < 0) {
1774 printk(KERN_INFO "%s: Error during configuration.\n",
1775 dev->name);
1776 goto err_free_tx_2;
1779 init_tfdlist(dev);
1781 rc = ipg_io_config(dev);
1782 if (rc < 0) {
1783 printk(KERN_INFO "%s: Error during configuration.\n",
1784 dev->name);
1785 goto err_release_tfdlist_3;
1788 /* Resolve autonegotiation. */
1789 if (ipg_config_autoneg(dev) < 0)
1790 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1792 /* initialize JUMBO Frame control variable */
1793 sp->jumbo.found_start = 0;
1794 sp->jumbo.current_size = 0;
1795 sp->jumbo.skb = NULL;
1797 /* Enable transmit and receive operation of the IPG. */
1798 ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1799 IPG_MC_RSVD_MASK, MAC_CTRL);
1801 netif_start_queue(dev);
1802 out:
1803 return rc;
1805 err_release_tfdlist_3:
1806 ipg_tx_clear(sp);
1807 ipg_rx_clear(sp);
1808 err_free_tx_2:
1809 dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1810 err_free_rx_1:
1811 dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1812 err_free_irq_0:
1813 free_irq(pdev->irq, dev);
1814 goto out;
1817 static int ipg_nic_stop(struct net_device *dev)
1819 struct ipg_nic_private *sp = netdev_priv(dev);
1820 void __iomem *ioaddr = sp->ioaddr;
1821 struct pci_dev *pdev = sp->pdev;
1823 IPG_DEBUG_MSG("_nic_stop\n");
1825 netif_stop_queue(dev);
1827 IPG_DUMPTFDLIST(dev);
1829 do {
1830 (void) ipg_r16(INT_STATUS_ACK);
1832 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1834 synchronize_irq(pdev->irq);
1835 } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1837 ipg_rx_clear(sp);
1839 ipg_tx_clear(sp);
1841 pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1842 pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1844 free_irq(pdev->irq, dev);
1846 return 0;
1849 static netdev_tx_t ipg_nic_hard_start_xmit(struct sk_buff *skb,
1850 struct net_device *dev)
1852 struct ipg_nic_private *sp = netdev_priv(dev);
1853 void __iomem *ioaddr = sp->ioaddr;
1854 unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1855 unsigned long flags;
1856 struct ipg_tx *txfd;
1858 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1860 /* If in 10Mbps mode, stop the transmit queue so
1861 * no more transmit frames are accepted.
1863 if (sp->tenmbpsmode)
1864 netif_stop_queue(dev);
1866 if (sp->reset_current_tfd) {
1867 sp->reset_current_tfd = 0;
1868 entry = 0;
1871 txfd = sp->txd + entry;
1873 sp->tx_buff[entry] = skb;
1875 /* Clear all TFC fields, except TFDDONE. */
1876 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1878 /* Specify the TFC field within the TFD. */
1879 txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1880 (IPG_TFC_FRAMEID & sp->tx_current) |
1881 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1883 * 16--17 (WordAlign) <- 3 (disable),
1884 * 0--15 (FrameId) <- sp->tx_current,
1885 * 24--27 (FragCount) <- 1
1888 /* Request TxComplete interrupts at an interval defined
1889 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1890 * Request TxComplete interrupt for every frame
1891 * if in 10Mbps mode to accomodate problem with 10Mbps
1892 * processing.
1894 if (sp->tenmbpsmode)
1895 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1896 txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1897 /* Based on compilation option, determine if FCS is to be
1898 * appended to transmit frame by IPG.
1900 if (!(IPG_APPEND_FCS_ON_TX))
1901 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1903 /* Based on compilation option, determine if IP, TCP and/or
1904 * UDP checksums are to be added to transmit frame by IPG.
1906 if (IPG_ADD_IPCHECKSUM_ON_TX)
1907 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1909 if (IPG_ADD_TCPCHECKSUM_ON_TX)
1910 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1912 if (IPG_ADD_UDPCHECKSUM_ON_TX)
1913 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1915 /* Based on compilation option, determine if VLAN tag info is to be
1916 * inserted into transmit frame by IPG.
1918 if (IPG_INSERT_MANUAL_VLAN_TAG) {
1919 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1920 ((u64) IPG_MANUAL_VLAN_VID << 32) |
1921 ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1922 ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1925 /* The fragment start location within system memory is defined
1926 * by the sk_buff structure's data field. The physical address
1927 * of this location within the system's virtual memory space
1928 * is determined using the IPG_HOST2BUS_MAP function.
1930 txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1931 skb->len, PCI_DMA_TODEVICE));
1933 /* The length of the fragment within system memory is defined by
1934 * the sk_buff structure's len field.
1936 txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1937 ((u64) (skb->len & 0xffff) << 48));
1939 /* Clear the TFDDone bit last to indicate the TFD is ready
1940 * for transfer to the IPG.
1942 txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1944 spin_lock_irqsave(&sp->lock, flags);
1946 sp->tx_current++;
1948 mmiowb();
1950 ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1952 if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1953 netif_stop_queue(dev);
1955 spin_unlock_irqrestore(&sp->lock, flags);
1957 return NETDEV_TX_OK;
1960 static void ipg_set_phy_default_param(unsigned char rev,
1961 struct net_device *dev, int phy_address)
1963 unsigned short length;
1964 unsigned char revision;
1965 unsigned short *phy_param;
1966 unsigned short address, value;
1968 phy_param = &DefaultPhyParam[0];
1969 length = *phy_param & 0x00FF;
1970 revision = (unsigned char)((*phy_param) >> 8);
1971 phy_param++;
1972 while (length != 0) {
1973 if (rev == revision) {
1974 while (length > 1) {
1975 address = *phy_param;
1976 value = *(phy_param + 1);
1977 phy_param += 2;
1978 mdio_write(dev, phy_address, address, value);
1979 length -= 4;
1981 break;
1982 } else {
1983 phy_param += length / 2;
1984 length = *phy_param & 0x00FF;
1985 revision = (unsigned char)((*phy_param) >> 8);
1986 phy_param++;
1991 static int read_eeprom(struct net_device *dev, int eep_addr)
1993 void __iomem *ioaddr = ipg_ioaddr(dev);
1994 unsigned int i;
1995 int ret = 0;
1996 u16 value;
1998 value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
1999 ipg_w16(value, EEPROM_CTRL);
2001 for (i = 0; i < 1000; i++) {
2002 u16 data;
2004 mdelay(10);
2005 data = ipg_r16(EEPROM_CTRL);
2006 if (!(data & IPG_EC_EEPROM_BUSY)) {
2007 ret = ipg_r16(EEPROM_DATA);
2008 break;
2011 return ret;
2014 static void ipg_init_mii(struct net_device *dev)
2016 struct ipg_nic_private *sp = netdev_priv(dev);
2017 struct mii_if_info *mii_if = &sp->mii_if;
2018 int phyaddr;
2020 mii_if->dev = dev;
2021 mii_if->mdio_read = mdio_read;
2022 mii_if->mdio_write = mdio_write;
2023 mii_if->phy_id_mask = 0x1f;
2024 mii_if->reg_num_mask = 0x1f;
2026 mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2028 if (phyaddr != 0x1f) {
2029 u16 mii_phyctrl, mii_1000cr;
2030 u8 revisionid = 0;
2032 mii_1000cr = mdio_read(dev, phyaddr, MII_CTRL1000);
2033 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2034 GMII_PHY_1000BASETCONTROL_PreferMaster;
2035 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2037 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2039 /* Set default phyparam */
2040 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2041 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2043 /* Reset PHY */
2044 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2045 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2050 static int ipg_hw_init(struct net_device *dev)
2052 struct ipg_nic_private *sp = netdev_priv(dev);
2053 void __iomem *ioaddr = sp->ioaddr;
2054 unsigned int i;
2055 int rc;
2057 /* Read/Write and Reset EEPROM Value */
2058 /* Read LED Mode Configuration from EEPROM */
2059 sp->led_mode = read_eeprom(dev, 6);
2061 /* Reset all functions within the IPG. Do not assert
2062 * RST_OUT as not compatible with some PHYs.
2064 rc = ipg_reset(dev, IPG_RESET_MASK);
2065 if (rc < 0)
2066 goto out;
2068 ipg_init_mii(dev);
2070 /* Read MAC Address from EEPROM */
2071 for (i = 0; i < 3; i++)
2072 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2074 for (i = 0; i < 3; i++)
2075 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2077 /* Set station address in ethernet_device structure. */
2078 dev->dev_addr[0] = ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2079 dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2080 dev->dev_addr[2] = ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2081 dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2082 dev->dev_addr[4] = ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2083 dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2084 out:
2085 return rc;
2088 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2090 struct ipg_nic_private *sp = netdev_priv(dev);
2091 int rc;
2093 mutex_lock(&sp->mii_mutex);
2094 rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2095 mutex_unlock(&sp->mii_mutex);
2097 return rc;
2100 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2102 struct ipg_nic_private *sp = netdev_priv(dev);
2103 int err;
2105 /* Function to accomodate changes to Maximum Transfer Unit
2106 * (or MTU) of IPG NIC. Cannot use default function since
2107 * the default will not allow for MTU > 1500 bytes.
2110 IPG_DEBUG_MSG("_nic_change_mtu\n");
2113 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2114 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2116 if (new_mtu < 68 || new_mtu > 10240)
2117 return -EINVAL;
2119 err = ipg_nic_stop(dev);
2120 if (err)
2121 return err;
2123 dev->mtu = new_mtu;
2125 sp->max_rxframe_size = new_mtu;
2127 sp->rxfrag_size = new_mtu;
2128 if (sp->rxfrag_size > 4088)
2129 sp->rxfrag_size = 4088;
2131 sp->rxsupport_size = sp->max_rxframe_size;
2133 if (new_mtu > 0x0600)
2134 sp->is_jumbo = true;
2135 else
2136 sp->is_jumbo = false;
2138 return ipg_nic_open(dev);
2141 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2143 struct ipg_nic_private *sp = netdev_priv(dev);
2144 int rc;
2146 mutex_lock(&sp->mii_mutex);
2147 rc = mii_ethtool_gset(&sp->mii_if, cmd);
2148 mutex_unlock(&sp->mii_mutex);
2150 return rc;
2153 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2155 struct ipg_nic_private *sp = netdev_priv(dev);
2156 int rc;
2158 mutex_lock(&sp->mii_mutex);
2159 rc = mii_ethtool_sset(&sp->mii_if, cmd);
2160 mutex_unlock(&sp->mii_mutex);
2162 return rc;
2165 static int ipg_nway_reset(struct net_device *dev)
2167 struct ipg_nic_private *sp = netdev_priv(dev);
2168 int rc;
2170 mutex_lock(&sp->mii_mutex);
2171 rc = mii_nway_restart(&sp->mii_if);
2172 mutex_unlock(&sp->mii_mutex);
2174 return rc;
2177 static const struct ethtool_ops ipg_ethtool_ops = {
2178 .get_settings = ipg_get_settings,
2179 .set_settings = ipg_set_settings,
2180 .nway_reset = ipg_nway_reset,
2183 static void __devexit ipg_remove(struct pci_dev *pdev)
2185 struct net_device *dev = pci_get_drvdata(pdev);
2186 struct ipg_nic_private *sp = netdev_priv(dev);
2188 IPG_DEBUG_MSG("_remove\n");
2190 /* Un-register Ethernet device. */
2191 unregister_netdev(dev);
2193 pci_iounmap(pdev, sp->ioaddr);
2195 pci_release_regions(pdev);
2197 free_netdev(dev);
2198 pci_disable_device(pdev);
2199 pci_set_drvdata(pdev, NULL);
2202 static const struct net_device_ops ipg_netdev_ops = {
2203 .ndo_open = ipg_nic_open,
2204 .ndo_stop = ipg_nic_stop,
2205 .ndo_start_xmit = ipg_nic_hard_start_xmit,
2206 .ndo_get_stats = ipg_nic_get_stats,
2207 .ndo_set_multicast_list = ipg_nic_set_multicast_list,
2208 .ndo_do_ioctl = ipg_ioctl,
2209 .ndo_tx_timeout = ipg_tx_timeout,
2210 .ndo_change_mtu = ipg_nic_change_mtu,
2211 .ndo_set_mac_address = eth_mac_addr,
2212 .ndo_validate_addr = eth_validate_addr,
2215 static int __devinit ipg_probe(struct pci_dev *pdev,
2216 const struct pci_device_id *id)
2218 unsigned int i = id->driver_data;
2219 struct ipg_nic_private *sp;
2220 struct net_device *dev;
2221 void __iomem *ioaddr;
2222 int rc;
2224 rc = pci_enable_device(pdev);
2225 if (rc < 0)
2226 goto out;
2228 printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2230 pci_set_master(pdev);
2232 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2233 if (rc < 0) {
2234 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2235 if (rc < 0) {
2236 printk(KERN_ERR "%s: DMA config failed.\n",
2237 pci_name(pdev));
2238 goto err_disable_0;
2243 * Initialize net device.
2245 dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2246 if (!dev) {
2247 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2248 rc = -ENOMEM;
2249 goto err_disable_0;
2252 sp = netdev_priv(dev);
2253 spin_lock_init(&sp->lock);
2254 mutex_init(&sp->mii_mutex);
2256 sp->is_jumbo = IPG_IS_JUMBO;
2257 sp->rxfrag_size = IPG_RXFRAG_SIZE;
2258 sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2259 sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2261 /* Declare IPG NIC functions for Ethernet device methods.
2263 dev->netdev_ops = &ipg_netdev_ops;
2264 SET_NETDEV_DEV(dev, &pdev->dev);
2265 SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2267 rc = pci_request_regions(pdev, DRV_NAME);
2268 if (rc)
2269 goto err_free_dev_1;
2271 ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2272 if (!ioaddr) {
2273 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2274 rc = -EIO;
2275 goto err_release_regions_2;
2278 /* Save the pointer to the PCI device information. */
2279 sp->ioaddr = ioaddr;
2280 sp->pdev = pdev;
2281 sp->dev = dev;
2283 INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2285 pci_set_drvdata(pdev, dev);
2287 rc = ipg_hw_init(dev);
2288 if (rc < 0)
2289 goto err_unmap_3;
2291 rc = register_netdev(dev);
2292 if (rc < 0)
2293 goto err_unmap_3;
2295 printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2296 out:
2297 return rc;
2299 err_unmap_3:
2300 pci_iounmap(pdev, ioaddr);
2301 err_release_regions_2:
2302 pci_release_regions(pdev);
2303 err_free_dev_1:
2304 free_netdev(dev);
2305 err_disable_0:
2306 pci_disable_device(pdev);
2307 goto out;
2310 static struct pci_driver ipg_pci_driver = {
2311 .name = IPG_DRIVER_NAME,
2312 .id_table = ipg_pci_tbl,
2313 .probe = ipg_probe,
2314 .remove = __devexit_p(ipg_remove),
2317 static int __init ipg_init_module(void)
2319 return pci_register_driver(&ipg_pci_driver);
2322 static void __exit ipg_exit_module(void)
2324 pci_unregister_driver(&ipg_pci_driver);
2327 module_init(ipg_init_module);
2328 module_exit(ipg_exit_module);