2 * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
4 * Copyright (C) 2003, 2007 IC Plus Corp
9 * Sundance Technology, Inc.
11 * craig_rich@sundanceti.com
16 * http://www.icplus.com.tw
17 * sorbica@icplus.com.tw
20 * http://www.icplus.com.tw
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/gfp.h>
26 #include <linux/mii.h>
27 #include <linux/mutex.h>
29 #include <asm/div64.h>
31 #define IPG_RX_RING_BYTES (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
32 #define IPG_TX_RING_BYTES (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
33 #define IPG_RESET_MASK \
34 (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
35 IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
38 #define ipg_w32(val32, reg) iowrite32((val32), ioaddr + (reg))
39 #define ipg_w16(val16, reg) iowrite16((val16), ioaddr + (reg))
40 #define ipg_w8(val8, reg) iowrite8((val8), ioaddr + (reg))
42 #define ipg_r32(reg) ioread32(ioaddr + (reg))
43 #define ipg_r16(reg) ioread16(ioaddr + (reg))
44 #define ipg_r8(reg) ioread8(ioaddr + (reg))
51 #define DRV_NAME "ipg"
53 MODULE_AUTHOR("IC Plus Corp. 2003");
54 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
55 MODULE_LICENSE("GPL");
60 #define IPG_MAX_RXFRAME_SIZE 0x0600
61 #define IPG_RXFRAG_SIZE 0x0600
62 #define IPG_RXSUPPORT_SIZE 0x0600
63 #define IPG_IS_JUMBO false
66 * Variable record -- index by leading revision/length
67 * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
69 static unsigned short DefaultPhyParam
[] = {
70 /* 11/12/03 IP1000A v1-3 rev=0x40 */
71 /*--------------------------------------------------------------------------
72 (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
73 27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
74 31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7, 9, 0x0700,
75 --------------------------------------------------------------------------*/
76 /* 12/17/03 IP1000A v1-4 rev=0x40 */
77 (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
79 30, 0x005e, 9, 0x0700,
80 /* 01/09/04 IP1000A v1-5 rev=0x41 */
81 (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
83 30, 0x005e, 9, 0x0700,
87 static const char *ipg_brand_name
[] = {
88 "IC PLUS IP1000 1000/100/10 based NIC",
89 "Sundance Technology ST2021 based NIC",
90 "Tamarack Microelectronics TC9020/9021 based NIC",
91 "Tamarack Microelectronics TC9020/9021 based NIC",
95 static DEFINE_PCI_DEVICE_TABLE(ipg_pci_tbl
) = {
96 { PCI_VDEVICE(SUNDANCE
, 0x1023), 0 },
97 { PCI_VDEVICE(SUNDANCE
, 0x2021), 1 },
98 { PCI_VDEVICE(SUNDANCE
, 0x1021), 2 },
99 { PCI_VDEVICE(DLINK
, 0x9021), 3 },
100 { PCI_VDEVICE(DLINK
, 0x4020), 4 },
104 MODULE_DEVICE_TABLE(pci
, ipg_pci_tbl
);
106 static inline void __iomem
*ipg_ioaddr(struct net_device
*dev
)
108 struct ipg_nic_private
*sp
= netdev_priv(dev
);
113 static void ipg_dump_rfdlist(struct net_device
*dev
)
115 struct ipg_nic_private
*sp
= netdev_priv(dev
);
116 void __iomem
*ioaddr
= sp
->ioaddr
;
120 IPG_DEBUG_MSG("_dump_rfdlist\n");
122 printk(KERN_INFO
"rx_current = %2.2x\n", sp
->rx_current
);
123 printk(KERN_INFO
"rx_dirty = %2.2x\n", sp
->rx_dirty
);
124 printk(KERN_INFO
"RFDList start address = %16.16lx\n",
125 (unsigned long) sp
->rxd_map
);
126 printk(KERN_INFO
"RFDListPtr register = %8.8x%8.8x\n",
127 ipg_r32(IPG_RFDLISTPTR1
), ipg_r32(IPG_RFDLISTPTR0
));
129 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
130 offset
= (u32
) &sp
->rxd
[i
].next_desc
- (u32
) sp
->rxd
;
131 printk(KERN_INFO
"%2.2x %4.4x RFDNextPtr = %16.16lx\n", i
,
132 offset
, (unsigned long) sp
->rxd
[i
].next_desc
);
133 offset
= (u32
) &sp
->rxd
[i
].rfs
- (u32
) sp
->rxd
;
134 printk(KERN_INFO
"%2.2x %4.4x RFS = %16.16lx\n", i
,
135 offset
, (unsigned long) sp
->rxd
[i
].rfs
);
136 offset
= (u32
) &sp
->rxd
[i
].frag_info
- (u32
) sp
->rxd
;
137 printk(KERN_INFO
"%2.2x %4.4x frag_info = %16.16lx\n", i
,
138 offset
, (unsigned long) sp
->rxd
[i
].frag_info
);
142 static void ipg_dump_tfdlist(struct net_device
*dev
)
144 struct ipg_nic_private
*sp
= netdev_priv(dev
);
145 void __iomem
*ioaddr
= sp
->ioaddr
;
149 IPG_DEBUG_MSG("_dump_tfdlist\n");
151 printk(KERN_INFO
"tx_current = %2.2x\n", sp
->tx_current
);
152 printk(KERN_INFO
"tx_dirty = %2.2x\n", sp
->tx_dirty
);
153 printk(KERN_INFO
"TFDList start address = %16.16lx\n",
154 (unsigned long) sp
->txd_map
);
155 printk(KERN_INFO
"TFDListPtr register = %8.8x%8.8x\n",
156 ipg_r32(IPG_TFDLISTPTR1
), ipg_r32(IPG_TFDLISTPTR0
));
158 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
159 offset
= (u32
) &sp
->txd
[i
].next_desc
- (u32
) sp
->txd
;
160 printk(KERN_INFO
"%2.2x %4.4x TFDNextPtr = %16.16lx\n", i
,
161 offset
, (unsigned long) sp
->txd
[i
].next_desc
);
163 offset
= (u32
) &sp
->txd
[i
].tfc
- (u32
) sp
->txd
;
164 printk(KERN_INFO
"%2.2x %4.4x TFC = %16.16lx\n", i
,
165 offset
, (unsigned long) sp
->txd
[i
].tfc
);
166 offset
= (u32
) &sp
->txd
[i
].frag_info
- (u32
) sp
->txd
;
167 printk(KERN_INFO
"%2.2x %4.4x frag_info = %16.16lx\n", i
,
168 offset
, (unsigned long) sp
->txd
[i
].frag_info
);
173 static void ipg_write_phy_ctl(void __iomem
*ioaddr
, u8 data
)
175 ipg_w8(IPG_PC_RSVD_MASK
& data
, PHY_CTRL
);
176 ndelay(IPG_PC_PHYCTRLWAIT_NS
);
179 static void ipg_drive_phy_ctl_low_high(void __iomem
*ioaddr
, u8 data
)
181 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| data
);
182 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| data
);
185 static void send_three_state(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
187 phyctrlpolarity
|= (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
;
189 ipg_drive_phy_ctl_low_high(ioaddr
, phyctrlpolarity
);
192 static void send_end(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
194 ipg_w8((IPG_PC_MGMTCLK_LO
| (IPG_PC_MGMTDATA
& 0) | IPG_PC_MGMTDIR
|
195 phyctrlpolarity
) & IPG_PC_RSVD_MASK
, PHY_CTRL
);
198 static u16
read_phy_bit(void __iomem
*ioaddr
, u8 phyctrlpolarity
)
202 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| phyctrlpolarity
);
204 bit_data
= ((ipg_r8(PHY_CTRL
) & IPG_PC_MGMTDATA
) >> 1) & 1;
206 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| phyctrlpolarity
);
212 * Read a register from the Physical Layer device located
213 * on the IPG NIC, using the IPG PHYCTRL register.
215 static int mdio_read(struct net_device
*dev
, int phy_id
, int phy_reg
)
217 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
219 * The GMII mangement frame structure for a read is as follows:
221 * |Preamble|st|op|phyad|regad|ta| data |idle|
222 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
224 * <32 1s> = 32 consecutive logic 1 values
225 * A = bit of Physical Layer device address (MSB first)
226 * R = bit of register address (MSB first)
227 * z = High impedance state
228 * D = bit of read data (MSB first)
230 * Transmission order is 'Preamble' field first, bits transmitted
231 * left to right (first to last).
237 { GMII_PREAMBLE
, 32 }, /* Preamble */
238 { GMII_ST
, 2 }, /* ST */
239 { GMII_READ
, 2 }, /* OP */
240 { phy_id
, 5 }, /* PHYAD */
241 { phy_reg
, 5 }, /* REGAD */
242 { 0x0000, 2 }, /* TA */
243 { 0x0000, 16 }, /* DATA */
244 { 0x0000, 1 } /* IDLE */
249 polarity
= ipg_r8(PHY_CTRL
);
250 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
252 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
253 for (j
= 0; j
< 5; j
++) {
254 for (i
= 0; i
< p
[j
].len
; i
++) {
255 /* For each variable length field, the MSB must be
256 * transmitted first. Rotate through the field bits,
257 * starting with the MSB, and move each bit into the
258 * the 1st (2^1) bit position (this is the bit position
259 * corresponding to the MgmtData bit of the PhyCtrl
260 * register for the IPG).
264 * First write a '0' to bit 1 of the PhyCtrl
265 * register, then write a '1' to bit 1 of the
268 * To do this, right shift the MSB of ST by the value:
269 * [field length - 1 - #ST bits already written]
270 * then left shift this result by 1.
272 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
273 data
&= IPG_PC_MGMTDATA
;
274 data
|= polarity
| IPG_PC_MGMTDIR
;
276 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
280 send_three_state(ioaddr
, polarity
);
282 read_phy_bit(ioaddr
, polarity
);
285 * For a read cycle, the bits for the next two fields (TA and
286 * DATA) are driven by the PHY (the IPG reads these bits).
288 for (i
= 0; i
< p
[6].len
; i
++) {
290 (read_phy_bit(ioaddr
, polarity
) << (p
[6].len
- 1 - i
));
293 send_three_state(ioaddr
, polarity
);
294 send_three_state(ioaddr
, polarity
);
295 send_three_state(ioaddr
, polarity
);
296 send_end(ioaddr
, polarity
);
298 /* Return the value of the DATA field. */
303 * Write to a register from the Physical Layer device located
304 * on the IPG NIC, using the IPG PHYCTRL register.
306 static void mdio_write(struct net_device
*dev
, int phy_id
, int phy_reg
, int val
)
308 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
310 * The GMII mangement frame structure for a read is as follows:
312 * |Preamble|st|op|phyad|regad|ta| data |idle|
313 * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z |
315 * <32 1s> = 32 consecutive logic 1 values
316 * A = bit of Physical Layer device address (MSB first)
317 * R = bit of register address (MSB first)
318 * z = High impedance state
319 * D = bit of write data (MSB first)
321 * Transmission order is 'Preamble' field first, bits transmitted
322 * left to right (first to last).
328 { GMII_PREAMBLE
, 32 }, /* Preamble */
329 { GMII_ST
, 2 }, /* ST */
330 { GMII_WRITE
, 2 }, /* OP */
331 { phy_id
, 5 }, /* PHYAD */
332 { phy_reg
, 5 }, /* REGAD */
333 { 0x0002, 2 }, /* TA */
334 { val
& 0xffff, 16 }, /* DATA */
335 { 0x0000, 1 } /* IDLE */
340 polarity
= ipg_r8(PHY_CTRL
);
341 polarity
&= (IPG_PC_DUPLEX_POLARITY
| IPG_PC_LINK_POLARITY
);
343 /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
344 for (j
= 0; j
< 7; j
++) {
345 for (i
= 0; i
< p
[j
].len
; i
++) {
346 /* For each variable length field, the MSB must be
347 * transmitted first. Rotate through the field bits,
348 * starting with the MSB, and move each bit into the
349 * the 1st (2^1) bit position (this is the bit position
350 * corresponding to the MgmtData bit of the PhyCtrl
351 * register for the IPG).
355 * First write a '0' to bit 1 of the PhyCtrl
356 * register, then write a '1' to bit 1 of the
359 * To do this, right shift the MSB of ST by the value:
360 * [field length - 1 - #ST bits already written]
361 * then left shift this result by 1.
363 data
= (p
[j
].field
>> (p
[j
].len
- 1 - i
)) << 1;
364 data
&= IPG_PC_MGMTDATA
;
365 data
|= polarity
| IPG_PC_MGMTDIR
;
367 ipg_drive_phy_ctl_low_high(ioaddr
, data
);
371 /* The last cycle is a tri-state, so read from the PHY. */
372 for (j
= 7; j
< 8; j
++) {
373 for (i
= 0; i
< p
[j
].len
; i
++) {
374 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_LO
| polarity
);
376 p
[j
].field
|= ((ipg_r8(PHY_CTRL
) &
377 IPG_PC_MGMTDATA
) >> 1) << (p
[j
].len
- 1 - i
);
379 ipg_write_phy_ctl(ioaddr
, IPG_PC_MGMTCLK_HI
| polarity
);
384 static void ipg_set_led_mode(struct net_device
*dev
)
386 struct ipg_nic_private
*sp
= netdev_priv(dev
);
387 void __iomem
*ioaddr
= sp
->ioaddr
;
390 mode
= ipg_r32(ASIC_CTRL
);
391 mode
&= ~(IPG_AC_LED_MODE_BIT_1
| IPG_AC_LED_MODE
| IPG_AC_LED_SPEED
);
393 if ((sp
->led_mode
& 0x03) > 1)
394 mode
|= IPG_AC_LED_MODE_BIT_1
; /* Write Asic Control Bit 29 */
396 if ((sp
->led_mode
& 0x01) == 1)
397 mode
|= IPG_AC_LED_MODE
; /* Write Asic Control Bit 14 */
399 if ((sp
->led_mode
& 0x08) == 8)
400 mode
|= IPG_AC_LED_SPEED
; /* Write Asic Control Bit 27 */
402 ipg_w32(mode
, ASIC_CTRL
);
405 static void ipg_set_phy_set(struct net_device
*dev
)
407 struct ipg_nic_private
*sp
= netdev_priv(dev
);
408 void __iomem
*ioaddr
= sp
->ioaddr
;
411 physet
= ipg_r8(PHY_SET
);
412 physet
&= ~(IPG_PS_MEM_LENB9B
| IPG_PS_MEM_LEN9
| IPG_PS_NON_COMPDET
);
413 physet
|= ((sp
->led_mode
& 0x70) >> 4);
414 ipg_w8(physet
, PHY_SET
);
417 static int ipg_reset(struct net_device
*dev
, u32 resetflags
)
419 /* Assert functional resets via the IPG AsicCtrl
420 * register as specified by the 'resetflags' input
423 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
424 unsigned int timeout_count
= 0;
426 IPG_DEBUG_MSG("_reset\n");
428 ipg_w32(ipg_r32(ASIC_CTRL
) | resetflags
, ASIC_CTRL
);
430 /* Delay added to account for problem with 10Mbps reset. */
431 mdelay(IPG_AC_RESETWAIT
);
433 while (IPG_AC_RESET_BUSY
& ipg_r32(ASIC_CTRL
)) {
434 mdelay(IPG_AC_RESETWAIT
);
435 if (++timeout_count
> IPG_AC_RESET_TIMEOUT
)
438 /* Set LED Mode in Asic Control */
439 ipg_set_led_mode(dev
);
441 /* Set PHYSet Register Value */
442 ipg_set_phy_set(dev
);
446 /* Find the GMII PHY address. */
447 static int ipg_find_phyaddr(struct net_device
*dev
)
449 unsigned int phyaddr
, i
;
451 for (i
= 0; i
< 32; i
++) {
454 /* Search for the correct PHY address among 32 possible. */
455 phyaddr
= (IPG_NIC_PHY_ADDRESS
+ i
) % 32;
457 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
461 status
= mdio_read(dev
, phyaddr
, MII_BMSR
);
463 if ((status
!= 0xFFFF) && (status
!= 0))
471 * Configure IPG based on result of IEEE 802.3 PHY
474 static int ipg_config_autoneg(struct net_device
*dev
)
476 struct ipg_nic_private
*sp
= netdev_priv(dev
);
477 void __iomem
*ioaddr
= sp
->ioaddr
;
478 unsigned int txflowcontrol
;
479 unsigned int rxflowcontrol
;
480 unsigned int fullduplex
;
485 IPG_DEBUG_MSG("_config_autoneg\n");
487 asicctrl
= ipg_r32(ASIC_CTRL
);
488 phyctrl
= ipg_r8(PHY_CTRL
);
489 mac_ctrl_val
= ipg_r32(MAC_CTRL
);
491 /* Set flags for use in resolving auto-negotation, assuming
492 * non-1000Mbps, half duplex, no flow control.
498 /* To accomodate a problem in 10Mbps operation,
499 * set a global flag if PHY running in 10Mbps mode.
503 printk(KERN_INFO
"%s: Link speed = ", dev
->name
);
505 /* Determine actual speed of operation. */
506 switch (phyctrl
& IPG_PC_LINK_SPEED
) {
507 case IPG_PC_LINK_SPEED_10MBPS
:
509 printk(KERN_INFO
"%s: 10Mbps operational mode enabled.\n",
513 case IPG_PC_LINK_SPEED_100MBPS
:
514 printk("100Mbps.\n");
516 case IPG_PC_LINK_SPEED_1000MBPS
:
517 printk("1000Mbps.\n");
520 printk("undefined!\n");
524 if (phyctrl
& IPG_PC_DUPLEX_STATUS
) {
530 /* Configure full duplex, and flow control. */
531 if (fullduplex
== 1) {
532 /* Configure IPG for full duplex operation. */
533 printk(KERN_INFO
"%s: setting full duplex, ", dev
->name
);
535 mac_ctrl_val
|= IPG_MC_DUPLEX_SELECT_FD
;
537 if (txflowcontrol
== 1) {
538 printk("TX flow control");
539 mac_ctrl_val
|= IPG_MC_TX_FLOW_CONTROL_ENABLE
;
541 printk("no TX flow control");
542 mac_ctrl_val
&= ~IPG_MC_TX_FLOW_CONTROL_ENABLE
;
545 if (rxflowcontrol
== 1) {
546 printk(", RX flow control.");
547 mac_ctrl_val
|= IPG_MC_RX_FLOW_CONTROL_ENABLE
;
549 printk(", no RX flow control.");
550 mac_ctrl_val
&= ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
555 /* Configure IPG for half duplex operation. */
556 printk(KERN_INFO
"%s: setting half duplex, "
557 "no TX flow control, no RX flow control.\n", dev
->name
);
559 mac_ctrl_val
&= ~IPG_MC_DUPLEX_SELECT_FD
&
560 ~IPG_MC_TX_FLOW_CONTROL_ENABLE
&
561 ~IPG_MC_RX_FLOW_CONTROL_ENABLE
;
563 ipg_w32(mac_ctrl_val
, MAC_CTRL
);
567 /* Determine and configure multicast operation and set
568 * receive mode for IPG.
570 static void ipg_nic_set_multicast_list(struct net_device
*dev
)
572 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
573 struct netdev_hw_addr
*ha
;
574 unsigned int hashindex
;
578 IPG_DEBUG_MSG("_nic_set_multicast_list\n");
580 receivemode
= IPG_RM_RECEIVEUNICAST
| IPG_RM_RECEIVEBROADCAST
;
582 if (dev
->flags
& IFF_PROMISC
) {
583 /* NIC to be configured in promiscuous mode. */
584 receivemode
= IPG_RM_RECEIVEALLFRAMES
;
585 } else if ((dev
->flags
& IFF_ALLMULTI
) ||
586 ((dev
->flags
& IFF_MULTICAST
) &&
587 (netdev_mc_count(dev
) > IPG_MULTICAST_HASHTABLE_SIZE
))) {
588 /* NIC to be configured to receive all multicast
590 receivemode
|= IPG_RM_RECEIVEMULTICAST
;
591 } else if ((dev
->flags
& IFF_MULTICAST
) && !netdev_mc_empty(dev
)) {
592 /* NIC to be configured to receive selected
593 * multicast addresses. */
594 receivemode
|= IPG_RM_RECEIVEMULTICASTHASH
;
597 /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
598 * The IPG applies a cyclic-redundancy-check (the same CRC
599 * used to calculate the frame data FCS) to the destination
600 * address all incoming multicast frames whose destination
601 * address has the multicast bit set. The least significant
602 * 6 bits of the CRC result are used as an addressing index
603 * into the hash table. If the value of the bit addressed by
604 * this index is a 1, the frame is passed to the host system.
607 /* Clear hashtable. */
608 hashtable
[0] = 0x00000000;
609 hashtable
[1] = 0x00000000;
611 /* Cycle through all multicast addresses to filter. */
612 netdev_for_each_mc_addr(ha
, dev
) {
613 /* Calculate CRC result for each multicast address. */
614 hashindex
= crc32_le(0xffffffff, ha
->addr
,
617 /* Use only the least significant 6 bits. */
618 hashindex
= hashindex
& 0x3F;
620 /* Within "hashtable", set bit number "hashindex"
623 set_bit(hashindex
, (void *)hashtable
);
626 /* Write the value of the hashtable, to the 4, 16 bit
627 * HASHTABLE IPG registers.
629 ipg_w32(hashtable
[0], HASHTABLE_0
);
630 ipg_w32(hashtable
[1], HASHTABLE_1
);
632 ipg_w8(IPG_RM_RSVD_MASK
& receivemode
, RECEIVE_MODE
);
634 IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE
));
637 static int ipg_io_config(struct net_device
*dev
)
639 struct ipg_nic_private
*sp
= netdev_priv(dev
);
640 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
644 IPG_DEBUG_MSG("_io_config\n");
646 origmacctrl
= ipg_r32(MAC_CTRL
);
648 restoremacctrl
= origmacctrl
| IPG_MC_STATISTICS_ENABLE
;
650 /* Based on compilation option, determine if FCS is to be
651 * stripped on receive frames by IPG.
653 if (!IPG_STRIP_FCS_ON_RX
)
654 restoremacctrl
|= IPG_MC_RCV_FCS
;
656 /* Determine if transmitter and/or receiver are
657 * enabled so we may restore MACCTRL correctly.
659 if (origmacctrl
& IPG_MC_TX_ENABLED
)
660 restoremacctrl
|= IPG_MC_TX_ENABLE
;
662 if (origmacctrl
& IPG_MC_RX_ENABLED
)
663 restoremacctrl
|= IPG_MC_RX_ENABLE
;
665 /* Transmitter and receiver must be disabled before setting
668 ipg_w32((origmacctrl
& (IPG_MC_RX_DISABLE
| IPG_MC_TX_DISABLE
)) &
669 IPG_MC_RSVD_MASK
, MAC_CTRL
);
671 /* Now that transmitter and receiver are disabled, write
674 ipg_w32((origmacctrl
& IPG_MC_IFS_96BIT
) & IPG_MC_RSVD_MASK
, MAC_CTRL
);
676 /* Set RECEIVEMODE register. */
677 ipg_nic_set_multicast_list(dev
);
679 ipg_w16(sp
->max_rxframe_size
, MAX_FRAME_SIZE
);
681 ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE
, RX_DMA_POLL_PERIOD
);
682 ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE
, RX_DMA_URGENT_THRESH
);
683 ipg_w8(IPG_RXDMABURSTTHRESH_VALUE
, RX_DMA_BURST_THRESH
);
684 ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE
, TX_DMA_POLL_PERIOD
);
685 ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE
, TX_DMA_URGENT_THRESH
);
686 ipg_w8(IPG_TXDMABURSTTHRESH_VALUE
, TX_DMA_BURST_THRESH
);
687 ipg_w16((IPG_IE_HOST_ERROR
| IPG_IE_TX_DMA_COMPLETE
|
688 IPG_IE_TX_COMPLETE
| IPG_IE_INT_REQUESTED
|
689 IPG_IE_UPDATE_STATS
| IPG_IE_LINK_EVENT
|
690 IPG_IE_RX_DMA_COMPLETE
| IPG_IE_RX_DMA_PRIORITY
), INT_ENABLE
);
691 ipg_w16(IPG_FLOWONTHRESH_VALUE
, FLOW_ON_THRESH
);
692 ipg_w16(IPG_FLOWOFFTHRESH_VALUE
, FLOW_OFF_THRESH
);
694 /* IPG multi-frag frame bug workaround.
695 * Per silicon revision B3 eratta.
697 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0200, DEBUG_CTRL
);
699 /* IPG TX poll now bug workaround.
700 * Per silicon revision B3 eratta.
702 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0010, DEBUG_CTRL
);
704 /* IPG RX poll now bug workaround.
705 * Per silicon revision B3 eratta.
707 ipg_w16(ipg_r16(DEBUG_CTRL
) | 0x0020, DEBUG_CTRL
);
709 /* Now restore MACCTRL to original setting. */
710 ipg_w32(IPG_MC_RSVD_MASK
& restoremacctrl
, MAC_CTRL
);
712 /* Disable unused RMON statistics. */
713 ipg_w32(IPG_RZ_ALL
, RMON_STATISTICS_MASK
);
715 /* Disable unused MIB statistics. */
716 ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD
| IPG_SM_MACCONTROLFRAMESRCVD
|
717 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK
| IPG_SM_TXJUMBOFRAMES
|
718 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK
| IPG_SM_RXJUMBOFRAMES
|
719 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK
|
720 IPG_SM_UDPCHECKSUMERRORS
| IPG_SM_TCPCHECKSUMERRORS
|
721 IPG_SM_IPCHECKSUMERRORS
, STATISTICS_MASK
);
727 * Create a receive buffer within system memory and update
728 * NIC private structure appropriately.
730 static int ipg_get_rxbuff(struct net_device
*dev
, int entry
)
732 struct ipg_nic_private
*sp
= netdev_priv(dev
);
733 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
737 IPG_DEBUG_MSG("_get_rxbuff\n");
739 skb
= netdev_alloc_skb_ip_align(dev
, sp
->rxsupport_size
);
741 sp
->rx_buff
[entry
] = NULL
;
745 /* Associate the receive buffer with the IPG NIC. */
748 /* Save the address of the sk_buff structure. */
749 sp
->rx_buff
[entry
] = skb
;
751 rxfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
752 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
));
754 /* Set the RFD fragment length. */
755 rxfragsize
= sp
->rxfrag_size
;
756 rxfd
->frag_info
|= cpu_to_le64((rxfragsize
<< 48) & IPG_RFI_FRAGLEN
);
761 static int init_rfdlist(struct net_device
*dev
)
763 struct ipg_nic_private
*sp
= netdev_priv(dev
);
764 void __iomem
*ioaddr
= sp
->ioaddr
;
767 IPG_DEBUG_MSG("_init_rfdlist\n");
769 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
770 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
772 if (sp
->rx_buff
[i
]) {
773 pci_unmap_single(sp
->pdev
,
774 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
775 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
776 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
777 sp
->rx_buff
[i
] = NULL
;
780 /* Clear out the RFS field. */
781 rxfd
->rfs
= 0x0000000000000000;
783 if (ipg_get_rxbuff(dev
, i
) < 0) {
785 * A receive buffer was not ready, break the
788 IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
790 /* Just in case we cannot allocate a single RFD.
794 printk(KERN_ERR
"%s: No memory available"
795 " for RFD list.\n", dev
->name
);
800 rxfd
->next_desc
= cpu_to_le64(sp
->rxd_map
+
801 sizeof(struct ipg_rx
)*(i
+ 1));
803 sp
->rxd
[i
- 1].next_desc
= cpu_to_le64(sp
->rxd_map
);
808 /* Write the location of the RFDList to the IPG. */
809 ipg_w32((u32
) sp
->rxd_map
, RFD_LIST_PTR_0
);
810 ipg_w32(0x00000000, RFD_LIST_PTR_1
);
815 static void init_tfdlist(struct net_device
*dev
)
817 struct ipg_nic_private
*sp
= netdev_priv(dev
);
818 void __iomem
*ioaddr
= sp
->ioaddr
;
821 IPG_DEBUG_MSG("_init_tfdlist\n");
823 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
824 struct ipg_tx
*txfd
= sp
->txd
+ i
;
826 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
828 if (sp
->tx_buff
[i
]) {
829 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
830 sp
->tx_buff
[i
] = NULL
;
833 txfd
->next_desc
= cpu_to_le64(sp
->txd_map
+
834 sizeof(struct ipg_tx
)*(i
+ 1));
836 sp
->txd
[i
- 1].next_desc
= cpu_to_le64(sp
->txd_map
);
841 /* Write the location of the TFDList to the IPG. */
842 IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
844 ipg_w32((u32
) sp
->txd_map
, TFD_LIST_PTR_0
);
845 ipg_w32(0x00000000, TFD_LIST_PTR_1
);
847 sp
->reset_current_tfd
= 1;
851 * Free all transmit buffers which have already been transfered
852 * via DMA to the IPG.
854 static void ipg_nic_txfree(struct net_device
*dev
)
856 struct ipg_nic_private
*sp
= netdev_priv(dev
);
857 unsigned int released
, pending
, dirty
;
859 IPG_DEBUG_MSG("_nic_txfree\n");
861 pending
= sp
->tx_current
- sp
->tx_dirty
;
862 dirty
= sp
->tx_dirty
% IPG_TFDLIST_LENGTH
;
864 for (released
= 0; released
< pending
; released
++) {
865 struct sk_buff
*skb
= sp
->tx_buff
[dirty
];
866 struct ipg_tx
*txfd
= sp
->txd
+ dirty
;
868 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd
->tfc
);
870 /* Look at each TFD's TFC field beginning
871 * at the last freed TFD up to the current TFD.
872 * If the TFDDone bit is set, free the associated
875 if (!(txfd
->tfc
& cpu_to_le64(IPG_TFC_TFDDONE
)))
878 /* Free the transmit buffer. */
880 pci_unmap_single(sp
->pdev
,
881 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
882 skb
->len
, PCI_DMA_TODEVICE
);
884 dev_kfree_skb_irq(skb
);
886 sp
->tx_buff
[dirty
] = NULL
;
888 dirty
= (dirty
+ 1) % IPG_TFDLIST_LENGTH
;
891 sp
->tx_dirty
+= released
;
893 if (netif_queue_stopped(dev
) &&
894 (sp
->tx_current
!= (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))) {
895 netif_wake_queue(dev
);
899 static void ipg_tx_timeout(struct net_device
*dev
)
901 struct ipg_nic_private
*sp
= netdev_priv(dev
);
902 void __iomem
*ioaddr
= sp
->ioaddr
;
904 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
| IPG_AC_NETWORK
|
907 spin_lock_irq(&sp
->lock
);
909 /* Re-configure after DMA reset. */
910 if (ipg_io_config(dev
) < 0) {
911 printk(KERN_INFO
"%s: Error during re-configuration.\n",
917 spin_unlock_irq(&sp
->lock
);
919 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) & IPG_MC_RSVD_MASK
,
924 * For TxComplete interrupts, free all transmit
925 * buffers which have already been transfered via DMA
928 static void ipg_nic_txcleanup(struct net_device
*dev
)
930 struct ipg_nic_private
*sp
= netdev_priv(dev
);
931 void __iomem
*ioaddr
= sp
->ioaddr
;
934 IPG_DEBUG_MSG("_nic_txcleanup\n");
936 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
937 /* Reading the TXSTATUS register clears the
938 * TX_COMPLETE interrupt.
940 u32 txstatusdword
= ipg_r32(TX_STATUS
);
942 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword
);
944 /* Check for Transmit errors. Error bits only valid if
945 * TX_COMPLETE bit in the TXSTATUS register is a 1.
947 if (!(txstatusdword
& IPG_TS_TX_COMPLETE
))
950 /* If in 10Mbps mode, indicate transmit is ready. */
951 if (sp
->tenmbpsmode
) {
952 netif_wake_queue(dev
);
955 /* Transmit error, increment stat counters. */
956 if (txstatusdword
& IPG_TS_TX_ERROR
) {
957 IPG_DEBUG_MSG("Transmit error.\n");
958 sp
->stats
.tx_errors
++;
961 /* Late collision, re-enable transmitter. */
962 if (txstatusdword
& IPG_TS_LATE_COLLISION
) {
963 IPG_DEBUG_MSG("Late collision on transmit.\n");
964 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
965 IPG_MC_RSVD_MASK
, MAC_CTRL
);
968 /* Maximum collisions, re-enable transmitter. */
969 if (txstatusdword
& IPG_TS_TX_MAX_COLL
) {
970 IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
971 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
972 IPG_MC_RSVD_MASK
, MAC_CTRL
);
975 /* Transmit underrun, reset and re-enable
978 if (txstatusdword
& IPG_TS_TX_UNDERRUN
) {
979 IPG_DEBUG_MSG("Transmitter underrun.\n");
980 sp
->stats
.tx_fifo_errors
++;
981 ipg_reset(dev
, IPG_AC_TX_RESET
| IPG_AC_DMA
|
982 IPG_AC_NETWORK
| IPG_AC_FIFO
);
984 /* Re-configure after DMA reset. */
985 if (ipg_io_config(dev
) < 0) {
987 "%s: Error during re-configuration.\n",
992 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_TX_ENABLE
) &
993 IPG_MC_RSVD_MASK
, MAC_CTRL
);
1000 /* Provides statistical information about the IPG NIC. */
1001 static struct net_device_stats
*ipg_nic_get_stats(struct net_device
*dev
)
1003 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1004 void __iomem
*ioaddr
= sp
->ioaddr
;
1008 IPG_DEBUG_MSG("_nic_get_stats\n");
1010 /* Check to see if the NIC has been initialized via nic_open,
1011 * before trying to read statistic registers.
1013 if (!test_bit(__LINK_STATE_START
, &dev
->state
))
1016 sp
->stats
.rx_packets
+= ipg_r32(IPG_FRAMESRCVDOK
);
1017 sp
->stats
.tx_packets
+= ipg_r32(IPG_FRAMESXMTDOK
);
1018 sp
->stats
.rx_bytes
+= ipg_r32(IPG_OCTETRCVOK
);
1019 sp
->stats
.tx_bytes
+= ipg_r32(IPG_OCTETXMTOK
);
1020 temp1
= ipg_r16(IPG_FRAMESLOSTRXERRORS
);
1021 sp
->stats
.rx_errors
+= temp1
;
1022 sp
->stats
.rx_missed_errors
+= temp1
;
1023 temp1
= ipg_r32(IPG_SINGLECOLFRAMES
) + ipg_r32(IPG_MULTICOLFRAMES
) +
1024 ipg_r32(IPG_LATECOLLISIONS
);
1025 temp2
= ipg_r16(IPG_CARRIERSENSEERRORS
);
1026 sp
->stats
.collisions
+= temp1
;
1027 sp
->stats
.tx_dropped
+= ipg_r16(IPG_FRAMESABORTXSCOLLS
);
1028 sp
->stats
.tx_errors
+= ipg_r16(IPG_FRAMESWEXDEFERRAL
) +
1029 ipg_r32(IPG_FRAMESWDEFERREDXMT
) + temp1
+ temp2
;
1030 sp
->stats
.multicast
+= ipg_r32(IPG_MCSTOCTETRCVDOK
);
1032 /* detailed tx_errors */
1033 sp
->stats
.tx_carrier_errors
+= temp2
;
1035 /* detailed rx_errors */
1036 sp
->stats
.rx_length_errors
+= ipg_r16(IPG_INRANGELENGTHERRORS
) +
1037 ipg_r16(IPG_FRAMETOOLONGERRRORS
);
1038 sp
->stats
.rx_crc_errors
+= ipg_r16(IPG_FRAMECHECKSEQERRORS
);
1040 /* Unutilized IPG statistic registers. */
1041 ipg_r32(IPG_MCSTFRAMESRCVDOK
);
1046 /* Restore used receive buffers. */
1047 static int ipg_nic_rxrestore(struct net_device
*dev
)
1049 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1050 const unsigned int curr
= sp
->rx_current
;
1051 unsigned int dirty
= sp
->rx_dirty
;
1053 IPG_DEBUG_MSG("_nic_rxrestore\n");
1055 for (dirty
= sp
->rx_dirty
; curr
- dirty
> 0; dirty
++) {
1056 unsigned int entry
= dirty
% IPG_RFDLIST_LENGTH
;
1058 /* rx_copybreak may poke hole here and there. */
1059 if (sp
->rx_buff
[entry
])
1062 /* Generate a new receive buffer to replace the
1063 * current buffer (which will be released by the
1066 if (ipg_get_rxbuff(dev
, entry
) < 0) {
1067 IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1072 /* Reset the RFS field. */
1073 sp
->rxd
[entry
].rfs
= 0x0000000000000000;
1075 sp
->rx_dirty
= dirty
;
1080 /* use jumboindex and jumbosize to control jumbo frame status
1081 * initial status is jumboindex=-1 and jumbosize=0
1082 * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1083 * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1084 * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1085 * previous receiving and need to continue dumping the current one
1093 FRAME_NO_START_NO_END
= 0,
1094 FRAME_WITH_START
= 1,
1095 FRAME_WITH_END
= 10,
1096 FRAME_WITH_START_WITH_END
= 11
1099 static void ipg_nic_rx_free_skb(struct net_device
*dev
)
1101 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1102 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1104 if (sp
->rx_buff
[entry
]) {
1105 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1107 pci_unmap_single(sp
->pdev
,
1108 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1109 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1110 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1111 sp
->rx_buff
[entry
] = NULL
;
1115 static int ipg_nic_rx_check_frame_type(struct net_device
*dev
)
1117 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1118 struct ipg_rx
*rxfd
= sp
->rxd
+ (sp
->rx_current
% IPG_RFDLIST_LENGTH
);
1119 int type
= FRAME_NO_START_NO_END
;
1121 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
)
1122 type
+= FRAME_WITH_START
;
1123 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
)
1124 type
+= FRAME_WITH_END
;
1128 static int ipg_nic_rx_check_error(struct net_device
*dev
)
1130 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1131 unsigned int entry
= sp
->rx_current
% IPG_RFDLIST_LENGTH
;
1132 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1134 if (IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1135 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1136 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1137 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
))) {
1138 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1139 (unsigned long) rxfd
->rfs
);
1141 /* Increment general receive error statistic. */
1142 sp
->stats
.rx_errors
++;
1144 /* Increment detailed receive error statistics. */
1145 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1146 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1148 sp
->stats
.rx_fifo_errors
++;
1151 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1152 IPG_DEBUG_MSG("RX runt occured.\n");
1153 sp
->stats
.rx_length_errors
++;
1156 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1157 * error count handled by a IPG statistic register.
1160 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1161 IPG_DEBUG_MSG("RX alignment error occured.\n");
1162 sp
->stats
.rx_frame_errors
++;
1165 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1166 * handled by a IPG statistic register.
1169 /* Free the memory associated with the RX
1170 * buffer since it is erroneous and we will
1171 * not pass it to higher layer processes.
1173 if (sp
->rx_buff
[entry
]) {
1174 pci_unmap_single(sp
->pdev
,
1175 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1176 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1178 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1179 sp
->rx_buff
[entry
] = NULL
;
1181 return ERROR_PACKET
;
1183 return NORMAL_PACKET
;
1186 static void ipg_nic_rx_with_start_and_end(struct net_device
*dev
,
1187 struct ipg_nic_private
*sp
,
1188 struct ipg_rx
*rxfd
, unsigned entry
)
1190 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1191 struct sk_buff
*skb
;
1194 if (jumbo
->found_start
) {
1195 dev_kfree_skb_irq(jumbo
->skb
);
1196 jumbo
->found_start
= 0;
1197 jumbo
->current_size
= 0;
1201 /* 1: found error, 0 no error */
1202 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1205 skb
= sp
->rx_buff
[entry
];
1209 /* accept this frame and send to upper layer */
1210 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1211 if (framelen
> sp
->rxfrag_size
)
1212 framelen
= sp
->rxfrag_size
;
1214 skb_put(skb
, framelen
);
1215 skb
->protocol
= eth_type_trans(skb
, dev
);
1216 skb
->ip_summed
= CHECKSUM_NONE
;
1218 sp
->rx_buff
[entry
] = NULL
;
1221 static void ipg_nic_rx_with_start(struct net_device
*dev
,
1222 struct ipg_nic_private
*sp
,
1223 struct ipg_rx
*rxfd
, unsigned entry
)
1225 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1226 struct pci_dev
*pdev
= sp
->pdev
;
1227 struct sk_buff
*skb
;
1229 /* 1: found error, 0 no error */
1230 if (ipg_nic_rx_check_error(dev
) != NORMAL_PACKET
)
1233 /* accept this frame and send to upper layer */
1234 skb
= sp
->rx_buff
[entry
];
1238 if (jumbo
->found_start
)
1239 dev_kfree_skb_irq(jumbo
->skb
);
1241 pci_unmap_single(pdev
, le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1242 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1244 skb_put(skb
, sp
->rxfrag_size
);
1246 jumbo
->found_start
= 1;
1247 jumbo
->current_size
= sp
->rxfrag_size
;
1250 sp
->rx_buff
[entry
] = NULL
;
1253 static void ipg_nic_rx_with_end(struct net_device
*dev
,
1254 struct ipg_nic_private
*sp
,
1255 struct ipg_rx
*rxfd
, unsigned entry
)
1257 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1259 /* 1: found error, 0 no error */
1260 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1261 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1266 if (jumbo
->found_start
) {
1267 int framelen
, endframelen
;
1269 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1271 endframelen
= framelen
- jumbo
->current_size
;
1272 if (framelen
> sp
->rxsupport_size
)
1273 dev_kfree_skb_irq(jumbo
->skb
);
1275 memcpy(skb_put(jumbo
->skb
, endframelen
),
1276 skb
->data
, endframelen
);
1278 jumbo
->skb
->protocol
=
1279 eth_type_trans(jumbo
->skb
, dev
);
1281 jumbo
->skb
->ip_summed
= CHECKSUM_NONE
;
1282 netif_rx(jumbo
->skb
);
1286 jumbo
->found_start
= 0;
1287 jumbo
->current_size
= 0;
1290 ipg_nic_rx_free_skb(dev
);
1292 dev_kfree_skb_irq(jumbo
->skb
);
1293 jumbo
->found_start
= 0;
1294 jumbo
->current_size
= 0;
1299 static void ipg_nic_rx_no_start_no_end(struct net_device
*dev
,
1300 struct ipg_nic_private
*sp
,
1301 struct ipg_rx
*rxfd
, unsigned entry
)
1303 struct ipg_jumbo
*jumbo
= &sp
->jumbo
;
1305 /* 1: found error, 0 no error */
1306 if (ipg_nic_rx_check_error(dev
) == NORMAL_PACKET
) {
1307 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1310 if (jumbo
->found_start
) {
1311 jumbo
->current_size
+= sp
->rxfrag_size
;
1312 if (jumbo
->current_size
<= sp
->rxsupport_size
) {
1313 memcpy(skb_put(jumbo
->skb
,
1315 skb
->data
, sp
->rxfrag_size
);
1318 ipg_nic_rx_free_skb(dev
);
1321 dev_kfree_skb_irq(jumbo
->skb
);
1322 jumbo
->found_start
= 0;
1323 jumbo
->current_size
= 0;
1328 static int ipg_nic_rx_jumbo(struct net_device
*dev
)
1330 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1331 unsigned int curr
= sp
->rx_current
;
1332 void __iomem
*ioaddr
= sp
->ioaddr
;
1335 IPG_DEBUG_MSG("_nic_rx\n");
1337 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1338 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1339 struct ipg_rx
*rxfd
= sp
->rxd
+ entry
;
1341 if (!(rxfd
->rfs
& cpu_to_le64(IPG_RFS_RFDDONE
)))
1344 switch (ipg_nic_rx_check_frame_type(dev
)) {
1345 case FRAME_WITH_START_WITH_END
:
1346 ipg_nic_rx_with_start_and_end(dev
, sp
, rxfd
, entry
);
1348 case FRAME_WITH_START
:
1349 ipg_nic_rx_with_start(dev
, sp
, rxfd
, entry
);
1351 case FRAME_WITH_END
:
1352 ipg_nic_rx_with_end(dev
, sp
, rxfd
, entry
);
1354 case FRAME_NO_START_NO_END
:
1355 ipg_nic_rx_no_start_no_end(dev
, sp
, rxfd
, entry
);
1360 sp
->rx_current
= curr
;
1362 if (i
== IPG_MAXRFDPROCESS_COUNT
) {
1363 /* There are more RFDs to process, however the
1364 * allocated amount of RFD processing time has
1365 * expired. Assert Interrupt Requested to make
1366 * sure we come back to process the remaining RFDs.
1368 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1371 ipg_nic_rxrestore(dev
);
1376 static int ipg_nic_rx(struct net_device
*dev
)
1378 /* Transfer received Ethernet frames to higher network layers. */
1379 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1380 unsigned int curr
= sp
->rx_current
;
1381 void __iomem
*ioaddr
= sp
->ioaddr
;
1382 struct ipg_rx
*rxfd
;
1385 IPG_DEBUG_MSG("_nic_rx\n");
1387 #define __RFS_MASK \
1388 cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1390 for (i
= 0; i
< IPG_MAXRFDPROCESS_COUNT
; i
++, curr
++) {
1391 unsigned int entry
= curr
% IPG_RFDLIST_LENGTH
;
1392 struct sk_buff
*skb
= sp
->rx_buff
[entry
];
1393 unsigned int framelen
;
1395 rxfd
= sp
->rxd
+ entry
;
1397 if (((rxfd
->rfs
& __RFS_MASK
) != __RFS_MASK
) || !skb
)
1400 /* Get received frame length. */
1401 framelen
= le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFRAMELEN
;
1403 /* Check for jumbo frame arrival with too small
1406 if (framelen
> sp
->rxfrag_size
) {
1408 ("RFS FrameLen > allocated fragment size.\n");
1410 framelen
= sp
->rxfrag_size
;
1413 if ((IPG_DROP_ON_RX_ETH_ERRORS
&& (le64_to_cpu(rxfd
->rfs
) &
1414 (IPG_RFS_RXFIFOOVERRUN
| IPG_RFS_RXRUNTFRAME
|
1415 IPG_RFS_RXALIGNMENTERROR
| IPG_RFS_RXFCSERROR
|
1416 IPG_RFS_RXOVERSIZEDFRAME
| IPG_RFS_RXLENGTHERROR
)))) {
1418 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1419 (unsigned long int) rxfd
->rfs
);
1421 /* Increment general receive error statistic. */
1422 sp
->stats
.rx_errors
++;
1424 /* Increment detailed receive error statistics. */
1425 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFIFOOVERRUN
) {
1426 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1427 sp
->stats
.rx_fifo_errors
++;
1430 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXRUNTFRAME
) {
1431 IPG_DEBUG_MSG("RX runt occured.\n");
1432 sp
->stats
.rx_length_errors
++;
1435 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXOVERSIZEDFRAME
) ;
1436 /* Do nothing, error count handled by a IPG
1437 * statistic register.
1440 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXALIGNMENTERROR
) {
1441 IPG_DEBUG_MSG("RX alignment error occured.\n");
1442 sp
->stats
.rx_frame_errors
++;
1445 if (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RXFCSERROR
) ;
1446 /* Do nothing, error count handled by a IPG
1447 * statistic register.
1450 /* Free the memory associated with the RX
1451 * buffer since it is erroneous and we will
1452 * not pass it to higher layer processes.
1455 __le64 info
= rxfd
->frag_info
;
1457 pci_unmap_single(sp
->pdev
,
1458 le64_to_cpu(info
) & ~IPG_RFI_FRAGLEN
,
1459 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1461 dev_kfree_skb_irq(skb
);
1465 /* Adjust the new buffer length to accomodate the size
1466 * of the received frame.
1468 skb_put(skb
, framelen
);
1470 /* Set the buffer's protocol field to Ethernet. */
1471 skb
->protocol
= eth_type_trans(skb
, dev
);
1473 /* The IPG encountered an error with (or
1474 * there were no) IP/TCP/UDP checksums.
1475 * This may or may not indicate an invalid
1476 * IP/TCP/UDP frame was received. Let the
1477 * upper layer decide.
1479 skb
->ip_summed
= CHECKSUM_NONE
;
1481 /* Hand off frame for higher layer processing.
1482 * The function netif_rx() releases the sk_buff
1483 * when processing completes.
1488 /* Assure RX buffer is not reused by IPG. */
1489 sp
->rx_buff
[entry
] = NULL
;
1493 * If there are more RFDs to proces and the allocated amount of RFD
1494 * processing time has expired, assert Interrupt Requested to make
1495 * sure we come back to process the remaining RFDs.
1497 if (i
== IPG_MAXRFDPROCESS_COUNT
)
1498 ipg_w32(ipg_r32(ASIC_CTRL
) | IPG_AC_INT_REQUEST
, ASIC_CTRL
);
1501 /* Check if the RFD list contained no receive frame data. */
1503 sp
->EmptyRFDListCount
++;
1505 while ((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_RFDDONE
) &&
1506 !((le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMESTART
) &&
1507 (le64_to_cpu(rxfd
->rfs
) & IPG_RFS_FRAMEEND
))) {
1508 unsigned int entry
= curr
++ % IPG_RFDLIST_LENGTH
;
1510 rxfd
= sp
->rxd
+ entry
;
1512 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1514 /* An unexpected event, additional code needed to handle
1515 * properly. So for the time being, just disregard the
1519 /* Free the memory associated with the RX
1520 * buffer since it is erroneous and we will
1521 * not pass it to higher layer processes.
1523 if (sp
->rx_buff
[entry
]) {
1524 pci_unmap_single(sp
->pdev
,
1525 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1526 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1527 dev_kfree_skb_irq(sp
->rx_buff
[entry
]);
1530 /* Assure RX buffer is not reused by IPG. */
1531 sp
->rx_buff
[entry
] = NULL
;
1534 sp
->rx_current
= curr
;
1536 /* Check to see if there are a minimum number of used
1537 * RFDs before restoring any (should improve performance.)
1539 if ((curr
- sp
->rx_dirty
) >= IPG_MINUSEDRFDSTOFREE
)
1540 ipg_nic_rxrestore(dev
);
1545 static void ipg_reset_after_host_error(struct work_struct
*work
)
1547 struct ipg_nic_private
*sp
=
1548 container_of(work
, struct ipg_nic_private
, task
.work
);
1549 struct net_device
*dev
= sp
->dev
;
1552 * Acknowledge HostError interrupt by resetting
1555 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1560 if (ipg_io_config(dev
) < 0) {
1561 printk(KERN_INFO
"%s: Cannot recover from PCI error.\n",
1563 schedule_delayed_work(&sp
->task
, HZ
);
1567 static irqreturn_t
ipg_interrupt_handler(int irq
, void *dev_inst
)
1569 struct net_device
*dev
= dev_inst
;
1570 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1571 void __iomem
*ioaddr
= sp
->ioaddr
;
1572 unsigned int handled
= 0;
1575 IPG_DEBUG_MSG("_interrupt_handler\n");
1578 ipg_nic_rxrestore(dev
);
1580 spin_lock(&sp
->lock
);
1582 /* Get interrupt source information, and acknowledge
1583 * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1584 * IntRequested, MacControlFrame, LinkEvent) interrupts
1585 * if issued. Also, all IPG interrupts are disabled by
1586 * reading IntStatusAck.
1588 status
= ipg_r16(INT_STATUS_ACK
);
1590 IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status
);
1592 /* Shared IRQ of remove event. */
1593 if (!(status
& IPG_IS_RSVD_MASK
))
1598 if (unlikely(!netif_running(dev
)))
1601 /* If RFDListEnd interrupt, restore all used RFDs. */
1602 if (status
& IPG_IS_RFD_LIST_END
) {
1603 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1605 /* The RFD list end indicates an RFD was encountered
1606 * with a 0 NextPtr, or with an RFDDone bit set to 1
1607 * (indicating the RFD is not read for use by the
1608 * IPG.) Try to restore all RFDs.
1610 ipg_nic_rxrestore(dev
);
1613 /* Increment the RFDlistendCount counter. */
1614 sp
->RFDlistendCount
++;
1618 /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1619 * IntRequested interrupt, process received frames. */
1620 if ((status
& IPG_IS_RX_DMA_PRIORITY
) ||
1621 (status
& IPG_IS_RFD_LIST_END
) ||
1622 (status
& IPG_IS_RX_DMA_COMPLETE
) ||
1623 (status
& IPG_IS_INT_REQUESTED
)) {
1625 /* Increment the RFD list checked counter if interrupted
1626 * only to check the RFD list. */
1627 if (status
& (~(IPG_IS_RX_DMA_PRIORITY
| IPG_IS_RFD_LIST_END
|
1628 IPG_IS_RX_DMA_COMPLETE
| IPG_IS_INT_REQUESTED
) &
1629 (IPG_IS_HOST_ERROR
| IPG_IS_TX_DMA_COMPLETE
|
1630 IPG_IS_LINK_EVENT
| IPG_IS_TX_COMPLETE
|
1631 IPG_IS_UPDATE_STATS
)))
1632 sp
->RFDListCheckedCount
++;
1636 ipg_nic_rx_jumbo(dev
);
1641 /* If TxDMAComplete interrupt, free used TFDs. */
1642 if (status
& IPG_IS_TX_DMA_COMPLETE
)
1643 ipg_nic_txfree(dev
);
1645 /* TxComplete interrupts indicate one of numerous actions.
1646 * Determine what action to take based on TXSTATUS register.
1648 if (status
& IPG_IS_TX_COMPLETE
)
1649 ipg_nic_txcleanup(dev
);
1651 /* If UpdateStats interrupt, update Linux Ethernet statistics */
1652 if (status
& IPG_IS_UPDATE_STATS
)
1653 ipg_nic_get_stats(dev
);
1655 /* If HostError interrupt, reset IPG. */
1656 if (status
& IPG_IS_HOST_ERROR
) {
1657 IPG_DDEBUG_MSG("HostError Interrupt\n");
1659 schedule_delayed_work(&sp
->task
, 0);
1662 /* If LinkEvent interrupt, resolve autonegotiation. */
1663 if (status
& IPG_IS_LINK_EVENT
) {
1664 if (ipg_config_autoneg(dev
) < 0)
1665 printk(KERN_INFO
"%s: Auto-negotiation error.\n",
1669 /* If MACCtrlFrame interrupt, do nothing. */
1670 if (status
& IPG_IS_MAC_CTRL_FRAME
)
1671 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1673 /* If RxComplete interrupt, do nothing. */
1674 if (status
& IPG_IS_RX_COMPLETE
)
1675 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1677 /* If RxEarly interrupt, do nothing. */
1678 if (status
& IPG_IS_RX_EARLY
)
1679 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1682 /* Re-enable IPG interrupts. */
1683 ipg_w16(IPG_IE_TX_DMA_COMPLETE
| IPG_IE_RX_DMA_COMPLETE
|
1684 IPG_IE_HOST_ERROR
| IPG_IE_INT_REQUESTED
| IPG_IE_TX_COMPLETE
|
1685 IPG_IE_LINK_EVENT
| IPG_IE_UPDATE_STATS
, INT_ENABLE
);
1687 spin_unlock(&sp
->lock
);
1689 return IRQ_RETVAL(handled
);
1692 static void ipg_rx_clear(struct ipg_nic_private
*sp
)
1696 for (i
= 0; i
< IPG_RFDLIST_LENGTH
; i
++) {
1697 if (sp
->rx_buff
[i
]) {
1698 struct ipg_rx
*rxfd
= sp
->rxd
+ i
;
1700 dev_kfree_skb_irq(sp
->rx_buff
[i
]);
1701 sp
->rx_buff
[i
] = NULL
;
1702 pci_unmap_single(sp
->pdev
,
1703 le64_to_cpu(rxfd
->frag_info
) & ~IPG_RFI_FRAGLEN
,
1704 sp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1709 static void ipg_tx_clear(struct ipg_nic_private
*sp
)
1713 for (i
= 0; i
< IPG_TFDLIST_LENGTH
; i
++) {
1714 if (sp
->tx_buff
[i
]) {
1715 struct ipg_tx
*txfd
= sp
->txd
+ i
;
1717 pci_unmap_single(sp
->pdev
,
1718 le64_to_cpu(txfd
->frag_info
) & ~IPG_TFI_FRAGLEN
,
1719 sp
->tx_buff
[i
]->len
, PCI_DMA_TODEVICE
);
1721 dev_kfree_skb_irq(sp
->tx_buff
[i
]);
1723 sp
->tx_buff
[i
] = NULL
;
1728 static int ipg_nic_open(struct net_device
*dev
)
1730 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1731 void __iomem
*ioaddr
= sp
->ioaddr
;
1732 struct pci_dev
*pdev
= sp
->pdev
;
1735 IPG_DEBUG_MSG("_nic_open\n");
1737 sp
->rx_buf_sz
= sp
->rxsupport_size
;
1739 /* Check for interrupt line conflicts, and request interrupt
1742 * IMPORTANT: Disable IPG interrupts prior to registering
1745 ipg_w16(0x0000, INT_ENABLE
);
1747 /* Register the interrupt line to be used by the IPG within
1750 rc
= request_irq(pdev
->irq
, ipg_interrupt_handler
, IRQF_SHARED
,
1753 printk(KERN_INFO
"%s: Error when requesting interrupt.\n",
1758 dev
->irq
= pdev
->irq
;
1762 sp
->rxd
= dma_alloc_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
,
1763 &sp
->rxd_map
, GFP_KERNEL
);
1765 goto err_free_irq_0
;
1767 sp
->txd
= dma_alloc_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
,
1768 &sp
->txd_map
, GFP_KERNEL
);
1772 rc
= init_rfdlist(dev
);
1774 printk(KERN_INFO
"%s: Error during configuration.\n",
1781 rc
= ipg_io_config(dev
);
1783 printk(KERN_INFO
"%s: Error during configuration.\n",
1785 goto err_release_tfdlist_3
;
1788 /* Resolve autonegotiation. */
1789 if (ipg_config_autoneg(dev
) < 0)
1790 printk(KERN_INFO
"%s: Auto-negotiation error.\n", dev
->name
);
1792 /* initialize JUMBO Frame control variable */
1793 sp
->jumbo
.found_start
= 0;
1794 sp
->jumbo
.current_size
= 0;
1795 sp
->jumbo
.skb
= NULL
;
1797 /* Enable transmit and receive operation of the IPG. */
1798 ipg_w32((ipg_r32(MAC_CTRL
) | IPG_MC_RX_ENABLE
| IPG_MC_TX_ENABLE
) &
1799 IPG_MC_RSVD_MASK
, MAC_CTRL
);
1801 netif_start_queue(dev
);
1805 err_release_tfdlist_3
:
1809 dma_free_coherent(&pdev
->dev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1811 dma_free_coherent(&pdev
->dev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1813 free_irq(pdev
->irq
, dev
);
1817 static int ipg_nic_stop(struct net_device
*dev
)
1819 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1820 void __iomem
*ioaddr
= sp
->ioaddr
;
1821 struct pci_dev
*pdev
= sp
->pdev
;
1823 IPG_DEBUG_MSG("_nic_stop\n");
1825 netif_stop_queue(dev
);
1827 IPG_DUMPTFDLIST(dev
);
1830 (void) ipg_r16(INT_STATUS_ACK
);
1832 ipg_reset(dev
, IPG_AC_GLOBAL_RESET
| IPG_AC_HOST
| IPG_AC_DMA
);
1834 synchronize_irq(pdev
->irq
);
1835 } while (ipg_r16(INT_ENABLE
) & IPG_IE_RSVD_MASK
);
1841 pci_free_consistent(pdev
, IPG_RX_RING_BYTES
, sp
->rxd
, sp
->rxd_map
);
1842 pci_free_consistent(pdev
, IPG_TX_RING_BYTES
, sp
->txd
, sp
->txd_map
);
1844 free_irq(pdev
->irq
, dev
);
1849 static netdev_tx_t
ipg_nic_hard_start_xmit(struct sk_buff
*skb
,
1850 struct net_device
*dev
)
1852 struct ipg_nic_private
*sp
= netdev_priv(dev
);
1853 void __iomem
*ioaddr
= sp
->ioaddr
;
1854 unsigned int entry
= sp
->tx_current
% IPG_TFDLIST_LENGTH
;
1855 unsigned long flags
;
1856 struct ipg_tx
*txfd
;
1858 IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1860 /* If in 10Mbps mode, stop the transmit queue so
1861 * no more transmit frames are accepted.
1863 if (sp
->tenmbpsmode
)
1864 netif_stop_queue(dev
);
1866 if (sp
->reset_current_tfd
) {
1867 sp
->reset_current_tfd
= 0;
1871 txfd
= sp
->txd
+ entry
;
1873 sp
->tx_buff
[entry
] = skb
;
1875 /* Clear all TFC fields, except TFDDONE. */
1876 txfd
->tfc
= cpu_to_le64(IPG_TFC_TFDDONE
);
1878 /* Specify the TFC field within the TFD. */
1879 txfd
->tfc
|= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED
|
1880 (IPG_TFC_FRAMEID
& sp
->tx_current
) |
1881 (IPG_TFC_FRAGCOUNT
& (1 << 24)));
1883 * 16--17 (WordAlign) <- 3 (disable),
1884 * 0--15 (FrameId) <- sp->tx_current,
1885 * 24--27 (FragCount) <- 1
1888 /* Request TxComplete interrupts at an interval defined
1889 * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1890 * Request TxComplete interrupt for every frame
1891 * if in 10Mbps mode to accomodate problem with 10Mbps
1894 if (sp
->tenmbpsmode
)
1895 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXINDICATE
);
1896 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TXDMAINDICATE
);
1897 /* Based on compilation option, determine if FCS is to be
1898 * appended to transmit frame by IPG.
1900 if (!(IPG_APPEND_FCS_ON_TX
))
1901 txfd
->tfc
|= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE
);
1903 /* Based on compilation option, determine if IP, TCP and/or
1904 * UDP checksums are to be added to transmit frame by IPG.
1906 if (IPG_ADD_IPCHECKSUM_ON_TX
)
1907 txfd
->tfc
|= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE
);
1909 if (IPG_ADD_TCPCHECKSUM_ON_TX
)
1910 txfd
->tfc
|= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE
);
1912 if (IPG_ADD_UDPCHECKSUM_ON_TX
)
1913 txfd
->tfc
|= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE
);
1915 /* Based on compilation option, determine if VLAN tag info is to be
1916 * inserted into transmit frame by IPG.
1918 if (IPG_INSERT_MANUAL_VLAN_TAG
) {
1919 txfd
->tfc
|= cpu_to_le64(IPG_TFC_VLANTAGINSERT
|
1920 ((u64
) IPG_MANUAL_VLAN_VID
<< 32) |
1921 ((u64
) IPG_MANUAL_VLAN_CFI
<< 44) |
1922 ((u64
) IPG_MANUAL_VLAN_USERPRIORITY
<< 45));
1925 /* The fragment start location within system memory is defined
1926 * by the sk_buff structure's data field. The physical address
1927 * of this location within the system's virtual memory space
1928 * is determined using the IPG_HOST2BUS_MAP function.
1930 txfd
->frag_info
= cpu_to_le64(pci_map_single(sp
->pdev
, skb
->data
,
1931 skb
->len
, PCI_DMA_TODEVICE
));
1933 /* The length of the fragment within system memory is defined by
1934 * the sk_buff structure's len field.
1936 txfd
->frag_info
|= cpu_to_le64(IPG_TFI_FRAGLEN
&
1937 ((u64
) (skb
->len
& 0xffff) << 48));
1939 /* Clear the TFDDone bit last to indicate the TFD is ready
1940 * for transfer to the IPG.
1942 txfd
->tfc
&= cpu_to_le64(~IPG_TFC_TFDDONE
);
1944 spin_lock_irqsave(&sp
->lock
, flags
);
1950 ipg_w32(IPG_DC_TX_DMA_POLL_NOW
, DMA_CTRL
);
1952 if (sp
->tx_current
== (sp
->tx_dirty
+ IPG_TFDLIST_LENGTH
))
1953 netif_stop_queue(dev
);
1955 spin_unlock_irqrestore(&sp
->lock
, flags
);
1957 return NETDEV_TX_OK
;
1960 static void ipg_set_phy_default_param(unsigned char rev
,
1961 struct net_device
*dev
, int phy_address
)
1963 unsigned short length
;
1964 unsigned char revision
;
1965 unsigned short *phy_param
;
1966 unsigned short address
, value
;
1968 phy_param
= &DefaultPhyParam
[0];
1969 length
= *phy_param
& 0x00FF;
1970 revision
= (unsigned char)((*phy_param
) >> 8);
1972 while (length
!= 0) {
1973 if (rev
== revision
) {
1974 while (length
> 1) {
1975 address
= *phy_param
;
1976 value
= *(phy_param
+ 1);
1978 mdio_write(dev
, phy_address
, address
, value
);
1983 phy_param
+= length
/ 2;
1984 length
= *phy_param
& 0x00FF;
1985 revision
= (unsigned char)((*phy_param
) >> 8);
1991 static int read_eeprom(struct net_device
*dev
, int eep_addr
)
1993 void __iomem
*ioaddr
= ipg_ioaddr(dev
);
1998 value
= IPG_EC_EEPROM_READOPCODE
| (eep_addr
& 0xff);
1999 ipg_w16(value
, EEPROM_CTRL
);
2001 for (i
= 0; i
< 1000; i
++) {
2005 data
= ipg_r16(EEPROM_CTRL
);
2006 if (!(data
& IPG_EC_EEPROM_BUSY
)) {
2007 ret
= ipg_r16(EEPROM_DATA
);
2014 static void ipg_init_mii(struct net_device
*dev
)
2016 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2017 struct mii_if_info
*mii_if
= &sp
->mii_if
;
2021 mii_if
->mdio_read
= mdio_read
;
2022 mii_if
->mdio_write
= mdio_write
;
2023 mii_if
->phy_id_mask
= 0x1f;
2024 mii_if
->reg_num_mask
= 0x1f;
2026 mii_if
->phy_id
= phyaddr
= ipg_find_phyaddr(dev
);
2028 if (phyaddr
!= 0x1f) {
2029 u16 mii_phyctrl
, mii_1000cr
;
2032 mii_1000cr
= mdio_read(dev
, phyaddr
, MII_CTRL1000
);
2033 mii_1000cr
|= ADVERTISE_1000FULL
| ADVERTISE_1000HALF
|
2034 GMII_PHY_1000BASETCONTROL_PreferMaster
;
2035 mdio_write(dev
, phyaddr
, MII_CTRL1000
, mii_1000cr
);
2037 mii_phyctrl
= mdio_read(dev
, phyaddr
, MII_BMCR
);
2039 /* Set default phyparam */
2040 pci_read_config_byte(sp
->pdev
, PCI_REVISION_ID
, &revisionid
);
2041 ipg_set_phy_default_param(revisionid
, dev
, phyaddr
);
2044 mii_phyctrl
|= BMCR_RESET
| BMCR_ANRESTART
;
2045 mdio_write(dev
, phyaddr
, MII_BMCR
, mii_phyctrl
);
2050 static int ipg_hw_init(struct net_device
*dev
)
2052 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2053 void __iomem
*ioaddr
= sp
->ioaddr
;
2057 /* Read/Write and Reset EEPROM Value */
2058 /* Read LED Mode Configuration from EEPROM */
2059 sp
->led_mode
= read_eeprom(dev
, 6);
2061 /* Reset all functions within the IPG. Do not assert
2062 * RST_OUT as not compatible with some PHYs.
2064 rc
= ipg_reset(dev
, IPG_RESET_MASK
);
2070 /* Read MAC Address from EEPROM */
2071 for (i
= 0; i
< 3; i
++)
2072 sp
->station_addr
[i
] = read_eeprom(dev
, 16 + i
);
2074 for (i
= 0; i
< 3; i
++)
2075 ipg_w16(sp
->station_addr
[i
], STATION_ADDRESS_0
+ 2*i
);
2077 /* Set station address in ethernet_device structure. */
2078 dev
->dev_addr
[0] = ipg_r16(STATION_ADDRESS_0
) & 0x00ff;
2079 dev
->dev_addr
[1] = (ipg_r16(STATION_ADDRESS_0
) & 0xff00) >> 8;
2080 dev
->dev_addr
[2] = ipg_r16(STATION_ADDRESS_1
) & 0x00ff;
2081 dev
->dev_addr
[3] = (ipg_r16(STATION_ADDRESS_1
) & 0xff00) >> 8;
2082 dev
->dev_addr
[4] = ipg_r16(STATION_ADDRESS_2
) & 0x00ff;
2083 dev
->dev_addr
[5] = (ipg_r16(STATION_ADDRESS_2
) & 0xff00) >> 8;
2088 static int ipg_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2090 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2093 mutex_lock(&sp
->mii_mutex
);
2094 rc
= generic_mii_ioctl(&sp
->mii_if
, if_mii(ifr
), cmd
, NULL
);
2095 mutex_unlock(&sp
->mii_mutex
);
2100 static int ipg_nic_change_mtu(struct net_device
*dev
, int new_mtu
)
2102 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2105 /* Function to accomodate changes to Maximum Transfer Unit
2106 * (or MTU) of IPG NIC. Cannot use default function since
2107 * the default will not allow for MTU > 1500 bytes.
2110 IPG_DEBUG_MSG("_nic_change_mtu\n");
2113 * Check that the new MTU value is between 68 (14 byte header, 46 byte
2114 * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2116 if (new_mtu
< 68 || new_mtu
> 10240)
2119 err
= ipg_nic_stop(dev
);
2125 sp
->max_rxframe_size
= new_mtu
;
2127 sp
->rxfrag_size
= new_mtu
;
2128 if (sp
->rxfrag_size
> 4088)
2129 sp
->rxfrag_size
= 4088;
2131 sp
->rxsupport_size
= sp
->max_rxframe_size
;
2133 if (new_mtu
> 0x0600)
2134 sp
->is_jumbo
= true;
2136 sp
->is_jumbo
= false;
2138 return ipg_nic_open(dev
);
2141 static int ipg_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2143 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2146 mutex_lock(&sp
->mii_mutex
);
2147 rc
= mii_ethtool_gset(&sp
->mii_if
, cmd
);
2148 mutex_unlock(&sp
->mii_mutex
);
2153 static int ipg_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2155 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2158 mutex_lock(&sp
->mii_mutex
);
2159 rc
= mii_ethtool_sset(&sp
->mii_if
, cmd
);
2160 mutex_unlock(&sp
->mii_mutex
);
2165 static int ipg_nway_reset(struct net_device
*dev
)
2167 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2170 mutex_lock(&sp
->mii_mutex
);
2171 rc
= mii_nway_restart(&sp
->mii_if
);
2172 mutex_unlock(&sp
->mii_mutex
);
2177 static const struct ethtool_ops ipg_ethtool_ops
= {
2178 .get_settings
= ipg_get_settings
,
2179 .set_settings
= ipg_set_settings
,
2180 .nway_reset
= ipg_nway_reset
,
2183 static void __devexit
ipg_remove(struct pci_dev
*pdev
)
2185 struct net_device
*dev
= pci_get_drvdata(pdev
);
2186 struct ipg_nic_private
*sp
= netdev_priv(dev
);
2188 IPG_DEBUG_MSG("_remove\n");
2190 /* Un-register Ethernet device. */
2191 unregister_netdev(dev
);
2193 pci_iounmap(pdev
, sp
->ioaddr
);
2195 pci_release_regions(pdev
);
2198 pci_disable_device(pdev
);
2199 pci_set_drvdata(pdev
, NULL
);
2202 static const struct net_device_ops ipg_netdev_ops
= {
2203 .ndo_open
= ipg_nic_open
,
2204 .ndo_stop
= ipg_nic_stop
,
2205 .ndo_start_xmit
= ipg_nic_hard_start_xmit
,
2206 .ndo_get_stats
= ipg_nic_get_stats
,
2207 .ndo_set_multicast_list
= ipg_nic_set_multicast_list
,
2208 .ndo_do_ioctl
= ipg_ioctl
,
2209 .ndo_tx_timeout
= ipg_tx_timeout
,
2210 .ndo_change_mtu
= ipg_nic_change_mtu
,
2211 .ndo_set_mac_address
= eth_mac_addr
,
2212 .ndo_validate_addr
= eth_validate_addr
,
2215 static int __devinit
ipg_probe(struct pci_dev
*pdev
,
2216 const struct pci_device_id
*id
)
2218 unsigned int i
= id
->driver_data
;
2219 struct ipg_nic_private
*sp
;
2220 struct net_device
*dev
;
2221 void __iomem
*ioaddr
;
2224 rc
= pci_enable_device(pdev
);
2228 printk(KERN_INFO
"%s: %s\n", pci_name(pdev
), ipg_brand_name
[i
]);
2230 pci_set_master(pdev
);
2232 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(40));
2234 rc
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2236 printk(KERN_ERR
"%s: DMA config failed.\n",
2243 * Initialize net device.
2245 dev
= alloc_etherdev(sizeof(struct ipg_nic_private
));
2247 printk(KERN_ERR
"%s: alloc_etherdev failed\n", pci_name(pdev
));
2252 sp
= netdev_priv(dev
);
2253 spin_lock_init(&sp
->lock
);
2254 mutex_init(&sp
->mii_mutex
);
2256 sp
->is_jumbo
= IPG_IS_JUMBO
;
2257 sp
->rxfrag_size
= IPG_RXFRAG_SIZE
;
2258 sp
->rxsupport_size
= IPG_RXSUPPORT_SIZE
;
2259 sp
->max_rxframe_size
= IPG_MAX_RXFRAME_SIZE
;
2261 /* Declare IPG NIC functions for Ethernet device methods.
2263 dev
->netdev_ops
= &ipg_netdev_ops
;
2264 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2265 SET_ETHTOOL_OPS(dev
, &ipg_ethtool_ops
);
2267 rc
= pci_request_regions(pdev
, DRV_NAME
);
2269 goto err_free_dev_1
;
2271 ioaddr
= pci_iomap(pdev
, 1, pci_resource_len(pdev
, 1));
2273 printk(KERN_ERR
"%s cannot map MMIO\n", pci_name(pdev
));
2275 goto err_release_regions_2
;
2278 /* Save the pointer to the PCI device information. */
2279 sp
->ioaddr
= ioaddr
;
2283 INIT_DELAYED_WORK(&sp
->task
, ipg_reset_after_host_error
);
2285 pci_set_drvdata(pdev
, dev
);
2287 rc
= ipg_hw_init(dev
);
2291 rc
= register_netdev(dev
);
2295 printk(KERN_INFO
"Ethernet device registered as: %s\n", dev
->name
);
2300 pci_iounmap(pdev
, ioaddr
);
2301 err_release_regions_2
:
2302 pci_release_regions(pdev
);
2306 pci_disable_device(pdev
);
2310 static struct pci_driver ipg_pci_driver
= {
2311 .name
= IPG_DRIVER_NAME
,
2312 .id_table
= ipg_pci_tbl
,
2314 .remove
= __devexit_p(ipg_remove
),
2317 static int __init
ipg_init_module(void)
2319 return pci_register_driver(&ipg_pci_driver
);
2322 static void __exit
ipg_exit_module(void)
2324 pci_unregister_driver(&ipg_pci_driver
);
2327 module_init(ipg_init_module
);
2328 module_exit(ipg_exit_module
);