Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux/fpc-iii.git] / drivers / net / qla3xxx.c
blob54ebb65ada1863ecdc7ff97b15587d6516b1e3c7
1 /*
2 * QLogic QLA3xxx NIC HBA Driver
3 * Copyright (c) 2003-2006 QLogic Corporation
5 * See LICENSE.qla3xxx for copyright and licensing details.
6 */
8 #include <linux/kernel.h>
9 #include <linux/init.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
37 #include "qla3xxx.h"
39 #define DRV_NAME "qla3xxx"
40 #define DRV_STRING "QLogic ISP3XXX Network Driver"
41 #define DRV_VERSION "v2.03.00-k5"
42 #define PFX DRV_NAME " "
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
47 MODULE_AUTHOR("QLogic Corporation");
48 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(DRV_VERSION);
52 static const u32 default_msg
53 = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
54 | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
56 static int debug = -1; /* defaults above */
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
60 static int msi;
61 module_param(msi, int, 0);
62 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
64 static DEFINE_PCI_DEVICE_TABLE(ql3xxx_pci_tbl) = {
65 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
66 {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
67 /* required last entry */
68 {0,}
71 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
74 * These are the known PHY's which are used
76 typedef enum {
77 PHY_TYPE_UNKNOWN = 0,
78 PHY_VITESSE_VSC8211,
79 PHY_AGERE_ET1011C,
80 MAX_PHY_DEV_TYPES
81 } PHY_DEVICE_et;
83 typedef struct {
84 PHY_DEVICE_et phyDevice;
85 u32 phyIdOUI;
86 u16 phyIdModel;
87 char *name;
88 } PHY_DEVICE_INFO_t;
90 static const PHY_DEVICE_INFO_t PHY_DEVICES[] =
91 {{PHY_TYPE_UNKNOWN, 0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
92 {PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
93 {PHY_AGERE_ET1011C, 0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
98 * Caller must take hw_lock.
100 static int ql_sem_spinlock(struct ql3_adapter *qdev,
101 u32 sem_mask, u32 sem_bits)
103 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
104 u32 value;
105 unsigned int seconds = 3;
107 do {
108 writel((sem_mask | sem_bits),
109 &port_regs->CommonRegs.semaphoreReg);
110 value = readl(&port_regs->CommonRegs.semaphoreReg);
111 if ((value & (sem_mask >> 16)) == sem_bits)
112 return 0;
113 ssleep(1);
114 } while(--seconds);
115 return -1;
118 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
120 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
121 writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
122 readl(&port_regs->CommonRegs.semaphoreReg);
125 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
127 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
128 u32 value;
130 writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
131 value = readl(&port_regs->CommonRegs.semaphoreReg);
132 return ((value & (sem_mask >> 16)) == sem_bits);
136 * Caller holds hw_lock.
138 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
140 int i = 0;
142 while (1) {
143 if (!ql_sem_lock(qdev,
144 QL_DRVR_SEM_MASK,
145 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
146 * 2) << 1)) {
147 if (i < 10) {
148 ssleep(1);
149 i++;
150 } else {
151 printk(KERN_ERR PFX "%s: Timed out waiting for "
152 "driver lock...\n",
153 qdev->ndev->name);
154 return 0;
156 } else {
157 printk(KERN_DEBUG PFX
158 "%s: driver lock acquired.\n",
159 qdev->ndev->name);
160 return 1;
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
167 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
169 writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 &port_regs->CommonRegs.ispControlStatus);
171 readl(&port_regs->CommonRegs.ispControlStatus);
172 qdev->current_page = page;
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev,
176 u32 __iomem * reg)
178 u32 value;
179 unsigned long hw_flags;
181 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 value = readl(reg);
183 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
185 return value;
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev,
189 u32 __iomem * reg)
191 return readl(reg);
194 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
196 u32 value;
197 unsigned long hw_flags;
199 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
201 if (qdev->current_page != 0)
202 ql_set_register_page(qdev,0);
203 value = readl(reg);
205 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
206 return value;
209 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
211 if (qdev->current_page != 0)
212 ql_set_register_page(qdev,0);
213 return readl(reg);
216 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
217 u32 __iomem *reg, u32 value)
219 unsigned long hw_flags;
221 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
222 writel(value, reg);
223 readl(reg);
224 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
227 static void ql_write_common_reg(struct ql3_adapter *qdev,
228 u32 __iomem *reg, u32 value)
230 writel(value, reg);
231 readl(reg);
234 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
235 u32 __iomem *reg, u32 value)
237 writel(value, reg);
238 readl(reg);
239 udelay(1);
242 static void ql_write_page0_reg(struct ql3_adapter *qdev,
243 u32 __iomem *reg, u32 value)
245 if (qdev->current_page != 0)
246 ql_set_register_page(qdev,0);
247 writel(value, reg);
248 readl(reg);
252 * Caller holds hw_lock. Only called during init.
254 static void ql_write_page1_reg(struct ql3_adapter *qdev,
255 u32 __iomem *reg, u32 value)
257 if (qdev->current_page != 1)
258 ql_set_register_page(qdev,1);
259 writel(value, reg);
260 readl(reg);
264 * Caller holds hw_lock. Only called during init.
266 static void ql_write_page2_reg(struct ql3_adapter *qdev,
267 u32 __iomem *reg, u32 value)
269 if (qdev->current_page != 2)
270 ql_set_register_page(qdev,2);
271 writel(value, reg);
272 readl(reg);
275 static void ql_disable_interrupts(struct ql3_adapter *qdev)
277 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
279 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
280 (ISP_IMR_ENABLE_INT << 16));
284 static void ql_enable_interrupts(struct ql3_adapter *qdev)
286 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
288 ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
289 ((0xff << 16) | ISP_IMR_ENABLE_INT));
293 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
294 struct ql_rcv_buf_cb *lrg_buf_cb)
296 dma_addr_t map;
297 int err;
298 lrg_buf_cb->next = NULL;
300 if (qdev->lrg_buf_free_tail == NULL) { /* The list is empty */
301 qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
302 } else {
303 qdev->lrg_buf_free_tail->next = lrg_buf_cb;
304 qdev->lrg_buf_free_tail = lrg_buf_cb;
307 if (!lrg_buf_cb->skb) {
308 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
309 qdev->lrg_buffer_len);
310 if (unlikely(!lrg_buf_cb->skb)) {
311 printk(KERN_ERR PFX "%s: failed netdev_alloc_skb().\n",
312 qdev->ndev->name);
313 qdev->lrg_buf_skb_check++;
314 } else {
316 * We save some space to copy the ethhdr from first
317 * buffer
319 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
320 map = pci_map_single(qdev->pdev,
321 lrg_buf_cb->skb->data,
322 qdev->lrg_buffer_len -
323 QL_HEADER_SPACE,
324 PCI_DMA_FROMDEVICE);
325 err = pci_dma_mapping_error(qdev->pdev, map);
326 if(err) {
327 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
328 qdev->ndev->name, err);
329 dev_kfree_skb(lrg_buf_cb->skb);
330 lrg_buf_cb->skb = NULL;
332 qdev->lrg_buf_skb_check++;
333 return;
336 lrg_buf_cb->buf_phy_addr_low =
337 cpu_to_le32(LS_64BITS(map));
338 lrg_buf_cb->buf_phy_addr_high =
339 cpu_to_le32(MS_64BITS(map));
340 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
341 dma_unmap_len_set(lrg_buf_cb, maplen,
342 qdev->lrg_buffer_len -
343 QL_HEADER_SPACE);
347 qdev->lrg_buf_free_count++;
350 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
351 *qdev)
353 struct ql_rcv_buf_cb *lrg_buf_cb;
355 if ((lrg_buf_cb = qdev->lrg_buf_free_head) != NULL) {
356 if ((qdev->lrg_buf_free_head = lrg_buf_cb->next) == NULL)
357 qdev->lrg_buf_free_tail = NULL;
358 qdev->lrg_buf_free_count--;
361 return lrg_buf_cb;
364 static u32 addrBits = EEPROM_NO_ADDR_BITS;
365 static u32 dataBits = EEPROM_NO_DATA_BITS;
367 static void fm93c56a_deselect(struct ql3_adapter *qdev);
368 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
369 unsigned short *value);
372 * Caller holds hw_lock.
374 static void fm93c56a_select(struct ql3_adapter *qdev)
376 struct ql3xxx_port_registers __iomem *port_regs =
377 qdev->mem_map_registers;
379 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
380 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
381 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
382 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
383 ((ISP_NVRAM_MASK << 16) | qdev->eeprom_cmd_data));
387 * Caller holds hw_lock.
389 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
391 int i;
392 u32 mask;
393 u32 dataBit;
394 u32 previousBit;
395 struct ql3xxx_port_registers __iomem *port_regs =
396 qdev->mem_map_registers;
398 /* Clock in a zero, then do the start bit */
399 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
400 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
401 AUBURN_EEPROM_DO_1);
402 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
403 ISP_NVRAM_MASK | qdev->
404 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
405 AUBURN_EEPROM_CLK_RISE);
406 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
407 ISP_NVRAM_MASK | qdev->
408 eeprom_cmd_data | AUBURN_EEPROM_DO_1 |
409 AUBURN_EEPROM_CLK_FALL);
411 mask = 1 << (FM93C56A_CMD_BITS - 1);
412 /* Force the previous data bit to be different */
413 previousBit = 0xffff;
414 for (i = 0; i < FM93C56A_CMD_BITS; i++) {
415 dataBit =
416 (cmd & mask) ? AUBURN_EEPROM_DO_1 : AUBURN_EEPROM_DO_0;
417 if (previousBit != dataBit) {
419 * If the bit changed, then change the DO state to
420 * match
422 ql_write_nvram_reg(qdev,
423 &port_regs->CommonRegs.
424 serialPortInterfaceReg,
425 ISP_NVRAM_MASK | qdev->
426 eeprom_cmd_data | dataBit);
427 previousBit = dataBit;
429 ql_write_nvram_reg(qdev,
430 &port_regs->CommonRegs.
431 serialPortInterfaceReg,
432 ISP_NVRAM_MASK | qdev->
433 eeprom_cmd_data | dataBit |
434 AUBURN_EEPROM_CLK_RISE);
435 ql_write_nvram_reg(qdev,
436 &port_regs->CommonRegs.
437 serialPortInterfaceReg,
438 ISP_NVRAM_MASK | qdev->
439 eeprom_cmd_data | dataBit |
440 AUBURN_EEPROM_CLK_FALL);
441 cmd = cmd << 1;
444 mask = 1 << (addrBits - 1);
445 /* Force the previous data bit to be different */
446 previousBit = 0xffff;
447 for (i = 0; i < addrBits; i++) {
448 dataBit =
449 (eepromAddr & mask) ? AUBURN_EEPROM_DO_1 :
450 AUBURN_EEPROM_DO_0;
451 if (previousBit != dataBit) {
453 * If the bit changed, then change the DO state to
454 * match
456 ql_write_nvram_reg(qdev,
457 &port_regs->CommonRegs.
458 serialPortInterfaceReg,
459 ISP_NVRAM_MASK | qdev->
460 eeprom_cmd_data | dataBit);
461 previousBit = dataBit;
463 ql_write_nvram_reg(qdev,
464 &port_regs->CommonRegs.
465 serialPortInterfaceReg,
466 ISP_NVRAM_MASK | qdev->
467 eeprom_cmd_data | dataBit |
468 AUBURN_EEPROM_CLK_RISE);
469 ql_write_nvram_reg(qdev,
470 &port_regs->CommonRegs.
471 serialPortInterfaceReg,
472 ISP_NVRAM_MASK | qdev->
473 eeprom_cmd_data | dataBit |
474 AUBURN_EEPROM_CLK_FALL);
475 eepromAddr = eepromAddr << 1;
480 * Caller holds hw_lock.
482 static void fm93c56a_deselect(struct ql3_adapter *qdev)
484 struct ql3xxx_port_registers __iomem *port_regs =
485 qdev->mem_map_registers;
486 qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
487 ql_write_nvram_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
488 ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
492 * Caller holds hw_lock.
494 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
496 int i;
497 u32 data = 0;
498 u32 dataBit;
499 struct ql3xxx_port_registers __iomem *port_regs =
500 qdev->mem_map_registers;
502 /* Read the data bits */
503 /* The first bit is a dummy. Clock right over it. */
504 for (i = 0; i < dataBits; i++) {
505 ql_write_nvram_reg(qdev,
506 &port_regs->CommonRegs.
507 serialPortInterfaceReg,
508 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
509 AUBURN_EEPROM_CLK_RISE);
510 ql_write_nvram_reg(qdev,
511 &port_regs->CommonRegs.
512 serialPortInterfaceReg,
513 ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
514 AUBURN_EEPROM_CLK_FALL);
515 dataBit =
516 (ql_read_common_reg
517 (qdev,
518 &port_regs->CommonRegs.
519 serialPortInterfaceReg) & AUBURN_EEPROM_DI_1) ? 1 : 0;
520 data = (data << 1) | dataBit;
522 *value = (u16) data;
526 * Caller holds hw_lock.
528 static void eeprom_readword(struct ql3_adapter *qdev,
529 u32 eepromAddr, unsigned short *value)
531 fm93c56a_select(qdev);
532 fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
533 fm93c56a_datain(qdev, value);
534 fm93c56a_deselect(qdev);
537 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
539 __le16 *p = (__le16 *)ndev->dev_addr;
540 p[0] = cpu_to_le16(addr[0]);
541 p[1] = cpu_to_le16(addr[1]);
542 p[2] = cpu_to_le16(addr[2]);
545 static int ql_get_nvram_params(struct ql3_adapter *qdev)
547 u16 *pEEPROMData;
548 u16 checksum = 0;
549 u32 index;
550 unsigned long hw_flags;
552 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
554 pEEPROMData = (u16 *) & qdev->nvram_data;
555 qdev->eeprom_cmd_data = 0;
556 if(ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
557 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
558 2) << 10)) {
559 printk(KERN_ERR PFX"%s: Failed ql_sem_spinlock().\n",
560 __func__);
561 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
562 return -1;
565 for (index = 0; index < EEPROM_SIZE; index++) {
566 eeprom_readword(qdev, index, pEEPROMData);
567 checksum += *pEEPROMData;
568 pEEPROMData++;
570 ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
572 if (checksum != 0) {
573 printk(KERN_ERR PFX "%s: checksum should be zero, is %x!!\n",
574 qdev->ndev->name, checksum);
575 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
576 return -1;
579 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
580 return checksum;
583 static const u32 PHYAddr[2] = {
584 PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
587 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
589 struct ql3xxx_port_registers __iomem *port_regs =
590 qdev->mem_map_registers;
591 u32 temp;
592 int count = 1000;
594 while (count) {
595 temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
596 if (!(temp & MAC_MII_STATUS_BSY))
597 return 0;
598 udelay(10);
599 count--;
601 return -1;
604 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
606 struct ql3xxx_port_registers __iomem *port_regs =
607 qdev->mem_map_registers;
608 u32 scanControl;
610 if (qdev->numPorts > 1) {
611 /* Auto scan will cycle through multiple ports */
612 scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
613 } else {
614 scanControl = MAC_MII_CONTROL_SC;
618 * Scan register 1 of PHY/PETBI,
619 * Set up to scan both devices
620 * The autoscan starts from the first register, completes
621 * the last one before rolling over to the first
623 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
624 PHYAddr[0] | MII_SCAN_REGISTER);
626 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
627 (scanControl) |
628 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
631 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
633 u8 ret;
634 struct ql3xxx_port_registers __iomem *port_regs =
635 qdev->mem_map_registers;
637 /* See if scan mode is enabled before we turn it off */
638 if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
639 (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
640 /* Scan is enabled */
641 ret = 1;
642 } else {
643 /* Scan is disabled */
644 ret = 0;
648 * When disabling scan mode you must first change the MII register
649 * address
651 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
652 PHYAddr[0] | MII_SCAN_REGISTER);
654 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
655 ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
656 MAC_MII_CONTROL_RC) << 16));
658 return ret;
661 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
662 u16 regAddr, u16 value, u32 phyAddr)
664 struct ql3xxx_port_registers __iomem *port_regs =
665 qdev->mem_map_registers;
666 u8 scanWasEnabled;
668 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
670 if (ql_wait_for_mii_ready(qdev)) {
671 if (netif_msg_link(qdev))
672 printk(KERN_WARNING PFX
673 "%s Timed out waiting for management port to "
674 "get free before issuing command.\n",
675 qdev->ndev->name);
676 return -1;
679 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
680 phyAddr | regAddr);
682 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
684 /* Wait for write to complete 9/10/04 SJP */
685 if (ql_wait_for_mii_ready(qdev)) {
686 if (netif_msg_link(qdev))
687 printk(KERN_WARNING PFX
688 "%s: Timed out waiting for management port to "
689 "get free before issuing command.\n",
690 qdev->ndev->name);
691 return -1;
694 if (scanWasEnabled)
695 ql_mii_enable_scan_mode(qdev);
697 return 0;
700 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
701 u16 * value, u32 phyAddr)
703 struct ql3xxx_port_registers __iomem *port_regs =
704 qdev->mem_map_registers;
705 u8 scanWasEnabled;
706 u32 temp;
708 scanWasEnabled = ql_mii_disable_scan_mode(qdev);
710 if (ql_wait_for_mii_ready(qdev)) {
711 if (netif_msg_link(qdev))
712 printk(KERN_WARNING PFX
713 "%s: Timed out waiting for management port to "
714 "get free before issuing command.\n",
715 qdev->ndev->name);
716 return -1;
719 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
720 phyAddr | regAddr);
722 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
723 (MAC_MII_CONTROL_RC << 16));
725 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
726 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
728 /* Wait for the read to complete */
729 if (ql_wait_for_mii_ready(qdev)) {
730 if (netif_msg_link(qdev))
731 printk(KERN_WARNING PFX
732 "%s: Timed out waiting for management port to "
733 "get free after issuing command.\n",
734 qdev->ndev->name);
735 return -1;
738 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
739 *value = (u16) temp;
741 if (scanWasEnabled)
742 ql_mii_enable_scan_mode(qdev);
744 return 0;
747 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
749 struct ql3xxx_port_registers __iomem *port_regs =
750 qdev->mem_map_registers;
752 ql_mii_disable_scan_mode(qdev);
754 if (ql_wait_for_mii_ready(qdev)) {
755 if (netif_msg_link(qdev))
756 printk(KERN_WARNING PFX
757 "%s: Timed out waiting for management port to "
758 "get free before issuing command.\n",
759 qdev->ndev->name);
760 return -1;
763 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
764 qdev->PHYAddr | regAddr);
766 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
768 /* Wait for write to complete. */
769 if (ql_wait_for_mii_ready(qdev)) {
770 if (netif_msg_link(qdev))
771 printk(KERN_WARNING PFX
772 "%s: Timed out waiting for management port to "
773 "get free before issuing command.\n",
774 qdev->ndev->name);
775 return -1;
778 ql_mii_enable_scan_mode(qdev);
780 return 0;
783 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
785 u32 temp;
786 struct ql3xxx_port_registers __iomem *port_regs =
787 qdev->mem_map_registers;
789 ql_mii_disable_scan_mode(qdev);
791 if (ql_wait_for_mii_ready(qdev)) {
792 if (netif_msg_link(qdev))
793 printk(KERN_WARNING PFX
794 "%s: Timed out waiting for management port to "
795 "get free before issuing command.\n",
796 qdev->ndev->name);
797 return -1;
800 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
801 qdev->PHYAddr | regAddr);
803 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
804 (MAC_MII_CONTROL_RC << 16));
806 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
807 (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
809 /* Wait for the read to complete */
810 if (ql_wait_for_mii_ready(qdev)) {
811 if (netif_msg_link(qdev))
812 printk(KERN_WARNING PFX
813 "%s: Timed out waiting for management port to "
814 "get free before issuing command.\n",
815 qdev->ndev->name);
816 return -1;
819 temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
820 *value = (u16) temp;
822 ql_mii_enable_scan_mode(qdev);
824 return 0;
827 static void ql_petbi_reset(struct ql3_adapter *qdev)
829 ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
832 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
834 u16 reg;
836 /* Enable Auto-negotiation sense */
837 ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
838 reg |= PETBI_TBI_AUTO_SENSE;
839 ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
841 ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
842 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
844 ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
845 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
846 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
850 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
852 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
853 PHYAddr[qdev->mac_index]);
856 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
858 u16 reg;
860 /* Enable Auto-negotiation sense */
861 ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
862 PHYAddr[qdev->mac_index]);
863 reg |= PETBI_TBI_AUTO_SENSE;
864 ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
865 PHYAddr[qdev->mac_index]);
867 ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
868 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
869 PHYAddr[qdev->mac_index]);
871 ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
872 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
873 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
874 PHYAddr[qdev->mac_index]);
877 static void ql_petbi_init(struct ql3_adapter *qdev)
879 ql_petbi_reset(qdev);
880 ql_petbi_start_neg(qdev);
883 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
885 ql_petbi_reset_ex(qdev);
886 ql_petbi_start_neg_ex(qdev);
889 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
891 u16 reg;
893 if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
894 return 0;
896 return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
899 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
901 printk(KERN_INFO "%s: enabling Agere specific PHY\n", qdev->ndev->name);
902 /* power down device bit 11 = 1 */
903 ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
904 /* enable diagnostic mode bit 2 = 1 */
905 ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
906 /* 1000MB amplitude adjust (see Agere errata) */
907 ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
908 /* 1000MB amplitude adjust (see Agere errata) */
909 ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
910 /* 100MB amplitude adjust (see Agere errata) */
911 ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
912 /* 100MB amplitude adjust (see Agere errata) */
913 ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
914 /* 10MB amplitude adjust (see Agere errata) */
915 ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
916 /* 10MB amplitude adjust (see Agere errata) */
917 ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
918 /* point to hidden reg 0x2806 */
919 ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
920 /* Write new PHYAD w/bit 5 set */
921 ql_mii_write_reg_ex(qdev, 0x11, 0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
923 * Disable diagnostic mode bit 2 = 0
924 * Power up device bit 11 = 0
925 * Link up (on) and activity (blink)
927 ql_mii_write_reg(qdev, 0x12, 0x840a);
928 ql_mii_write_reg(qdev, 0x00, 0x1140);
929 ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
932 static PHY_DEVICE_et getPhyType (struct ql3_adapter *qdev,
933 u16 phyIdReg0, u16 phyIdReg1)
935 PHY_DEVICE_et result = PHY_TYPE_UNKNOWN;
936 u32 oui;
937 u16 model;
938 int i;
940 if (phyIdReg0 == 0xffff) {
941 return result;
944 if (phyIdReg1 == 0xffff) {
945 return result;
948 /* oui is split between two registers */
949 oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
951 model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
953 /* Scan table for this PHY */
954 for(i = 0; i < MAX_PHY_DEV_TYPES; i++) {
955 if ((oui == PHY_DEVICES[i].phyIdOUI) && (model == PHY_DEVICES[i].phyIdModel))
957 result = PHY_DEVICES[i].phyDevice;
959 printk(KERN_INFO "%s: Phy: %s\n",
960 qdev->ndev->name, PHY_DEVICES[i].name);
962 break;
966 return result;
969 static int ql_phy_get_speed(struct ql3_adapter *qdev)
971 u16 reg;
973 switch(qdev->phyType) {
974 case PHY_AGERE_ET1011C:
976 if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
977 return 0;
979 reg = (reg >> 8) & 3;
980 break;
982 default:
983 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
984 return 0;
986 reg = (((reg & 0x18) >> 3) & 3);
989 switch(reg) {
990 case 2:
991 return SPEED_1000;
992 case 1:
993 return SPEED_100;
994 case 0:
995 return SPEED_10;
996 default:
997 return -1;
1001 static int ql_is_full_dup(struct ql3_adapter *qdev)
1003 u16 reg;
1005 switch(qdev->phyType) {
1006 case PHY_AGERE_ET1011C:
1008 if (ql_mii_read_reg(qdev, 0x1A, &reg))
1009 return 0;
1011 return ((reg & 0x0080) && (reg & 0x1000)) != 0;
1013 case PHY_VITESSE_VSC8211:
1014 default:
1016 if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
1017 return 0;
1018 return (reg & PHY_AUX_DUPLEX_STAT) != 0;
1023 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
1025 u16 reg;
1027 if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
1028 return 0;
1030 return (reg & PHY_NEG_PAUSE) != 0;
1033 static int PHY_Setup(struct ql3_adapter *qdev)
1035 u16 reg1;
1036 u16 reg2;
1037 bool agereAddrChangeNeeded = false;
1038 u32 miiAddr = 0;
1039 int err;
1041 /* Determine the PHY we are using by reading the ID's */
1042 err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
1043 if(err != 0) {
1044 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1045 qdev->ndev->name);
1046 return err;
1049 err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
1050 if(err != 0) {
1051 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG\n",
1052 qdev->ndev->name);
1053 return err;
1056 /* Check if we have a Agere PHY */
1057 if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
1059 /* Determine which MII address we should be using
1060 determined by the index of the card */
1061 if (qdev->mac_index == 0) {
1062 miiAddr = MII_AGERE_ADDR_1;
1063 } else {
1064 miiAddr = MII_AGERE_ADDR_2;
1067 err =ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1068 if(err != 0) {
1069 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1070 qdev->ndev->name);
1071 return err;
1074 err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1075 if(err != 0) {
1076 printk(KERN_ERR "%s: Could not read from reg PHY_ID_0_REG after Agere detected\n",
1077 qdev->ndev->name);
1078 return err;
1081 /* We need to remember to initialize the Agere PHY */
1082 agereAddrChangeNeeded = true;
1085 /* Determine the particular PHY we have on board to apply
1086 PHY specific initializations */
1087 qdev->phyType = getPhyType(qdev, reg1, reg2);
1089 if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1090 /* need this here so address gets changed */
1091 phyAgereSpecificInit(qdev, miiAddr);
1092 } else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1093 printk(KERN_ERR "%s: PHY is unknown\n", qdev->ndev->name);
1094 return -EIO;
1097 return 0;
1101 * Caller holds hw_lock.
1103 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1105 struct ql3xxx_port_registers __iomem *port_regs =
1106 qdev->mem_map_registers;
1107 u32 value;
1109 if (enable)
1110 value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1111 else
1112 value = (MAC_CONFIG_REG_PE << 16);
1114 if (qdev->mac_index)
1115 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1116 else
1117 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1121 * Caller holds hw_lock.
1123 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1125 struct ql3xxx_port_registers __iomem *port_regs =
1126 qdev->mem_map_registers;
1127 u32 value;
1129 if (enable)
1130 value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1131 else
1132 value = (MAC_CONFIG_REG_SR << 16);
1134 if (qdev->mac_index)
1135 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1136 else
1137 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1141 * Caller holds hw_lock.
1143 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1145 struct ql3xxx_port_registers __iomem *port_regs =
1146 qdev->mem_map_registers;
1147 u32 value;
1149 if (enable)
1150 value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1151 else
1152 value = (MAC_CONFIG_REG_GM << 16);
1154 if (qdev->mac_index)
1155 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1156 else
1157 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1161 * Caller holds hw_lock.
1163 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1165 struct ql3xxx_port_registers __iomem *port_regs =
1166 qdev->mem_map_registers;
1167 u32 value;
1169 if (enable)
1170 value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1171 else
1172 value = (MAC_CONFIG_REG_FD << 16);
1174 if (qdev->mac_index)
1175 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1176 else
1177 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1181 * Caller holds hw_lock.
1183 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1185 struct ql3xxx_port_registers __iomem *port_regs =
1186 qdev->mem_map_registers;
1187 u32 value;
1189 if (enable)
1190 value =
1191 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1192 ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1193 else
1194 value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1196 if (qdev->mac_index)
1197 ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1198 else
1199 ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1203 * Caller holds hw_lock.
1205 static int ql_is_fiber(struct ql3_adapter *qdev)
1207 struct ql3xxx_port_registers __iomem *port_regs =
1208 qdev->mem_map_registers;
1209 u32 bitToCheck = 0;
1210 u32 temp;
1212 switch (qdev->mac_index) {
1213 case 0:
1214 bitToCheck = PORT_STATUS_SM0;
1215 break;
1216 case 1:
1217 bitToCheck = PORT_STATUS_SM1;
1218 break;
1221 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1222 return (temp & bitToCheck) != 0;
1225 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1227 u16 reg;
1228 ql_mii_read_reg(qdev, 0x00, &reg);
1229 return (reg & 0x1000) != 0;
1233 * Caller holds hw_lock.
1235 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1237 struct ql3xxx_port_registers __iomem *port_regs =
1238 qdev->mem_map_registers;
1239 u32 bitToCheck = 0;
1240 u32 temp;
1242 switch (qdev->mac_index) {
1243 case 0:
1244 bitToCheck = PORT_STATUS_AC0;
1245 break;
1246 case 1:
1247 bitToCheck = PORT_STATUS_AC1;
1248 break;
1251 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1252 if (temp & bitToCheck) {
1253 if (netif_msg_link(qdev))
1254 printk(KERN_INFO PFX
1255 "%s: Auto-Negotiate complete.\n",
1256 qdev->ndev->name);
1257 return 1;
1258 } else {
1259 if (netif_msg_link(qdev))
1260 printk(KERN_WARNING PFX
1261 "%s: Auto-Negotiate incomplete.\n",
1262 qdev->ndev->name);
1263 return 0;
1268 * ql_is_neg_pause() returns 1 if pause was negotiated to be on
1270 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1272 if (ql_is_fiber(qdev))
1273 return ql_is_petbi_neg_pause(qdev);
1274 else
1275 return ql_is_phy_neg_pause(qdev);
1278 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1280 struct ql3xxx_port_registers __iomem *port_regs =
1281 qdev->mem_map_registers;
1282 u32 bitToCheck = 0;
1283 u32 temp;
1285 switch (qdev->mac_index) {
1286 case 0:
1287 bitToCheck = PORT_STATUS_AE0;
1288 break;
1289 case 1:
1290 bitToCheck = PORT_STATUS_AE1;
1291 break;
1293 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1294 return (temp & bitToCheck) != 0;
1297 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1299 if (ql_is_fiber(qdev))
1300 return SPEED_1000;
1301 else
1302 return ql_phy_get_speed(qdev);
1305 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1307 if (ql_is_fiber(qdev))
1308 return 1;
1309 else
1310 return ql_is_full_dup(qdev);
1314 * Caller holds hw_lock.
1316 static int ql_link_down_detect(struct ql3_adapter *qdev)
1318 struct ql3xxx_port_registers __iomem *port_regs =
1319 qdev->mem_map_registers;
1320 u32 bitToCheck = 0;
1321 u32 temp;
1323 switch (qdev->mac_index) {
1324 case 0:
1325 bitToCheck = ISP_CONTROL_LINK_DN_0;
1326 break;
1327 case 1:
1328 bitToCheck = ISP_CONTROL_LINK_DN_1;
1329 break;
1332 temp =
1333 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1334 return (temp & bitToCheck) != 0;
1338 * Caller holds hw_lock.
1340 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1342 struct ql3xxx_port_registers __iomem *port_regs =
1343 qdev->mem_map_registers;
1345 switch (qdev->mac_index) {
1346 case 0:
1347 ql_write_common_reg(qdev,
1348 &port_regs->CommonRegs.ispControlStatus,
1349 (ISP_CONTROL_LINK_DN_0) |
1350 (ISP_CONTROL_LINK_DN_0 << 16));
1351 break;
1353 case 1:
1354 ql_write_common_reg(qdev,
1355 &port_regs->CommonRegs.ispControlStatus,
1356 (ISP_CONTROL_LINK_DN_1) |
1357 (ISP_CONTROL_LINK_DN_1 << 16));
1358 break;
1360 default:
1361 return 1;
1364 return 0;
1368 * Caller holds hw_lock.
1370 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1372 struct ql3xxx_port_registers __iomem *port_regs =
1373 qdev->mem_map_registers;
1374 u32 bitToCheck = 0;
1375 u32 temp;
1377 switch (qdev->mac_index) {
1378 case 0:
1379 bitToCheck = PORT_STATUS_F1_ENABLED;
1380 break;
1381 case 1:
1382 bitToCheck = PORT_STATUS_F3_ENABLED;
1383 break;
1384 default:
1385 break;
1388 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1389 if (temp & bitToCheck) {
1390 if (netif_msg_link(qdev))
1391 printk(KERN_DEBUG PFX
1392 "%s: is not link master.\n", qdev->ndev->name);
1393 return 0;
1394 } else {
1395 if (netif_msg_link(qdev))
1396 printk(KERN_DEBUG PFX
1397 "%s: is link master.\n", qdev->ndev->name);
1398 return 1;
1402 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1404 ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1405 PHYAddr[qdev->mac_index]);
1408 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1410 u16 reg;
1411 u16 portConfiguration;
1413 if(qdev->phyType == PHY_AGERE_ET1011C) {
1414 /* turn off external loopback */
1415 ql_mii_write_reg(qdev, 0x13, 0x0000);
1418 if(qdev->mac_index == 0)
1419 portConfiguration = qdev->nvram_data.macCfg_port0.portConfiguration;
1420 else
1421 portConfiguration = qdev->nvram_data.macCfg_port1.portConfiguration;
1423 /* Some HBA's in the field are set to 0 and they need to
1424 be reinterpreted with a default value */
1425 if(portConfiguration == 0)
1426 portConfiguration = PORT_CONFIG_DEFAULT;
1428 /* Set the 1000 advertisements */
1429 ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1430 PHYAddr[qdev->mac_index]);
1431 reg &= ~PHY_GIG_ALL_PARAMS;
1433 if(portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1434 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1435 reg |= PHY_GIG_ADV_1000F;
1436 else
1437 reg |= PHY_GIG_ADV_1000H;
1440 ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1441 PHYAddr[qdev->mac_index]);
1443 /* Set the 10/100 & pause negotiation advertisements */
1444 ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1445 PHYAddr[qdev->mac_index]);
1446 reg &= ~PHY_NEG_ALL_PARAMS;
1448 if(portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1449 reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1451 if(portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1452 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1453 reg |= PHY_NEG_ADV_100F;
1455 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1456 reg |= PHY_NEG_ADV_10F;
1459 if(portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1460 if(portConfiguration & PORT_CONFIG_100MB_SPEED)
1461 reg |= PHY_NEG_ADV_100H;
1463 if(portConfiguration & PORT_CONFIG_10MB_SPEED)
1464 reg |= PHY_NEG_ADV_10H;
1467 if(portConfiguration &
1468 PORT_CONFIG_1000MB_SPEED) {
1469 reg |= 1;
1472 ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1473 PHYAddr[qdev->mac_index]);
1475 ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1477 ql_mii_write_reg_ex(qdev, CONTROL_REG,
1478 reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1479 PHYAddr[qdev->mac_index]);
1482 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1484 ql_phy_reset_ex(qdev);
1485 PHY_Setup(qdev);
1486 ql_phy_start_neg_ex(qdev);
1490 * Caller holds hw_lock.
1492 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1494 struct ql3xxx_port_registers __iomem *port_regs =
1495 qdev->mem_map_registers;
1496 u32 bitToCheck = 0;
1497 u32 temp, linkState;
1499 switch (qdev->mac_index) {
1500 case 0:
1501 bitToCheck = PORT_STATUS_UP0;
1502 break;
1503 case 1:
1504 bitToCheck = PORT_STATUS_UP1;
1505 break;
1507 temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1508 if (temp & bitToCheck) {
1509 linkState = LS_UP;
1510 } else {
1511 linkState = LS_DOWN;
1513 return linkState;
1516 static int ql_port_start(struct ql3_adapter *qdev)
1518 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1519 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1520 2) << 7)) {
1521 printk(KERN_ERR "%s: Could not get hw lock for GIO\n",
1522 qdev->ndev->name);
1523 return -1;
1526 if (ql_is_fiber(qdev)) {
1527 ql_petbi_init(qdev);
1528 } else {
1529 /* Copper port */
1530 ql_phy_init_ex(qdev);
1533 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1534 return 0;
1537 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1540 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1541 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1542 2) << 7))
1543 return -1;
1545 if (!ql_auto_neg_error(qdev)) {
1546 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1547 /* configure the MAC */
1548 if (netif_msg_link(qdev))
1549 printk(KERN_DEBUG PFX
1550 "%s: Configuring link.\n",
1551 qdev->ndev->
1552 name);
1553 ql_mac_cfg_soft_reset(qdev, 1);
1554 ql_mac_cfg_gig(qdev,
1555 (ql_get_link_speed
1556 (qdev) ==
1557 SPEED_1000));
1558 ql_mac_cfg_full_dup(qdev,
1559 ql_is_link_full_dup
1560 (qdev));
1561 ql_mac_cfg_pause(qdev,
1562 ql_is_neg_pause
1563 (qdev));
1564 ql_mac_cfg_soft_reset(qdev, 0);
1566 /* enable the MAC */
1567 if (netif_msg_link(qdev))
1568 printk(KERN_DEBUG PFX
1569 "%s: Enabling mac.\n",
1570 qdev->ndev->
1571 name);
1572 ql_mac_enable(qdev, 1);
1575 qdev->port_link_state = LS_UP;
1576 netif_start_queue(qdev->ndev);
1577 netif_carrier_on(qdev->ndev);
1578 if (netif_msg_link(qdev))
1579 printk(KERN_INFO PFX
1580 "%s: Link is up at %d Mbps, %s duplex.\n",
1581 qdev->ndev->name,
1582 ql_get_link_speed(qdev),
1583 ql_is_link_full_dup(qdev)
1584 ? "full" : "half");
1586 } else { /* Remote error detected */
1588 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1589 if (netif_msg_link(qdev))
1590 printk(KERN_DEBUG PFX
1591 "%s: Remote error detected. "
1592 "Calling ql_port_start().\n",
1593 qdev->ndev->
1594 name);
1596 * ql_port_start() is shared code and needs
1597 * to lock the PHY on it's own.
1599 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1600 if(ql_port_start(qdev)) {/* Restart port */
1601 return -1;
1602 } else
1603 return 0;
1606 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1607 return 0;
1610 static void ql_link_state_machine_work(struct work_struct *work)
1612 struct ql3_adapter *qdev =
1613 container_of(work, struct ql3_adapter, link_state_work.work);
1615 u32 curr_link_state;
1616 unsigned long hw_flags;
1618 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1620 curr_link_state = ql_get_link_state(qdev);
1622 if (test_bit(QL_RESET_ACTIVE,&qdev->flags)) {
1623 if (netif_msg_link(qdev))
1624 printk(KERN_INFO PFX
1625 "%s: Reset in progress, skip processing link "
1626 "state.\n", qdev->ndev->name);
1628 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1630 /* Restart timer on 2 second interval. */
1631 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);\
1633 return;
1636 switch (qdev->port_link_state) {
1637 default:
1638 if (test_bit(QL_LINK_MASTER,&qdev->flags)) {
1639 ql_port_start(qdev);
1641 qdev->port_link_state = LS_DOWN;
1642 /* Fall Through */
1644 case LS_DOWN:
1645 if (curr_link_state == LS_UP) {
1646 if (netif_msg_link(qdev))
1647 printk(KERN_INFO PFX "%s: Link is up.\n",
1648 qdev->ndev->name);
1649 if (ql_is_auto_neg_complete(qdev))
1650 ql_finish_auto_neg(qdev);
1652 if (qdev->port_link_state == LS_UP)
1653 ql_link_down_detect_clear(qdev);
1655 qdev->port_link_state = LS_UP;
1657 break;
1659 case LS_UP:
1661 * See if the link is currently down or went down and came
1662 * back up
1664 if (curr_link_state == LS_DOWN) {
1665 if (netif_msg_link(qdev))
1666 printk(KERN_INFO PFX "%s: Link is down.\n",
1667 qdev->ndev->name);
1668 qdev->port_link_state = LS_DOWN;
1670 if (ql_link_down_detect(qdev))
1671 qdev->port_link_state = LS_DOWN;
1672 break;
1674 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1676 /* Restart timer on 2 second interval. */
1677 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1681 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1683 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1685 if (ql_this_adapter_controls_port(qdev))
1686 set_bit(QL_LINK_MASTER,&qdev->flags);
1687 else
1688 clear_bit(QL_LINK_MASTER,&qdev->flags);
1692 * Caller must take hw_lock and QL_PHY_GIO_SEM.
1694 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1696 ql_mii_enable_scan_mode(qdev);
1698 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1699 if (ql_this_adapter_controls_port(qdev))
1700 ql_petbi_init_ex(qdev);
1701 } else {
1702 if (ql_this_adapter_controls_port(qdev))
1703 ql_phy_init_ex(qdev);
1708 * MII_Setup needs to be called before taking the PHY out of reset so that the
1709 * management interface clock speed can be set properly. It would be better if
1710 * we had a way to disable MDC until after the PHY is out of reset, but we
1711 * don't have that capability.
1713 static int ql_mii_setup(struct ql3_adapter *qdev)
1715 u32 reg;
1716 struct ql3xxx_port_registers __iomem *port_regs =
1717 qdev->mem_map_registers;
1719 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1720 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1721 2) << 7))
1722 return -1;
1724 if (qdev->device_id == QL3032_DEVICE_ID)
1725 ql_write_page0_reg(qdev,
1726 &port_regs->macMIIMgmtControlReg, 0x0f00000);
1728 /* Divide 125MHz clock by 28 to meet PHY timing requirements */
1729 reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1731 ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1732 reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1734 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1735 return 0;
1738 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1740 u32 supported;
1742 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1743 supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
1744 | SUPPORTED_Autoneg;
1745 } else {
1746 supported = SUPPORTED_10baseT_Half
1747 | SUPPORTED_10baseT_Full
1748 | SUPPORTED_100baseT_Half
1749 | SUPPORTED_100baseT_Full
1750 | SUPPORTED_1000baseT_Half
1751 | SUPPORTED_1000baseT_Full
1752 | SUPPORTED_Autoneg | SUPPORTED_TP;
1755 return supported;
1758 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1760 int status;
1761 unsigned long hw_flags;
1762 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1763 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1764 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1765 2) << 7)) {
1766 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1767 return 0;
1769 status = ql_is_auto_cfg(qdev);
1770 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1771 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1772 return status;
1775 static u32 ql_get_speed(struct ql3_adapter *qdev)
1777 u32 status;
1778 unsigned long hw_flags;
1779 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1780 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1781 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1782 2) << 7)) {
1783 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1784 return 0;
1786 status = ql_get_link_speed(qdev);
1787 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1788 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1789 return status;
1792 static int ql_get_full_dup(struct ql3_adapter *qdev)
1794 int status;
1795 unsigned long hw_flags;
1796 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1797 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1798 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1799 2) << 7)) {
1800 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1801 return 0;
1803 status = ql_is_link_full_dup(qdev);
1804 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1805 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1806 return status;
1810 static int ql_get_settings(struct net_device *ndev, struct ethtool_cmd *ecmd)
1812 struct ql3_adapter *qdev = netdev_priv(ndev);
1814 ecmd->transceiver = XCVR_INTERNAL;
1815 ecmd->supported = ql_supported_modes(qdev);
1817 if (test_bit(QL_LINK_OPTICAL,&qdev->flags)) {
1818 ecmd->port = PORT_FIBRE;
1819 } else {
1820 ecmd->port = PORT_TP;
1821 ecmd->phy_address = qdev->PHYAddr;
1823 ecmd->advertising = ql_supported_modes(qdev);
1824 ecmd->autoneg = ql_get_auto_cfg_status(qdev);
1825 ecmd->speed = ql_get_speed(qdev);
1826 ecmd->duplex = ql_get_full_dup(qdev);
1827 return 0;
1830 static void ql_get_drvinfo(struct net_device *ndev,
1831 struct ethtool_drvinfo *drvinfo)
1833 struct ql3_adapter *qdev = netdev_priv(ndev);
1834 strncpy(drvinfo->driver, ql3xxx_driver_name, 32);
1835 strncpy(drvinfo->version, ql3xxx_driver_version, 32);
1836 strncpy(drvinfo->fw_version, "N/A", 32);
1837 strncpy(drvinfo->bus_info, pci_name(qdev->pdev), 32);
1838 drvinfo->regdump_len = 0;
1839 drvinfo->eedump_len = 0;
1842 static u32 ql_get_msglevel(struct net_device *ndev)
1844 struct ql3_adapter *qdev = netdev_priv(ndev);
1845 return qdev->msg_enable;
1848 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1850 struct ql3_adapter *qdev = netdev_priv(ndev);
1851 qdev->msg_enable = value;
1854 static void ql_get_pauseparam(struct net_device *ndev,
1855 struct ethtool_pauseparam *pause)
1857 struct ql3_adapter *qdev = netdev_priv(ndev);
1858 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1860 u32 reg;
1861 if(qdev->mac_index == 0)
1862 reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1863 else
1864 reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1866 pause->autoneg = ql_get_auto_cfg_status(qdev);
1867 pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1868 pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1871 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1872 .get_settings = ql_get_settings,
1873 .get_drvinfo = ql_get_drvinfo,
1874 .get_link = ethtool_op_get_link,
1875 .get_msglevel = ql_get_msglevel,
1876 .set_msglevel = ql_set_msglevel,
1877 .get_pauseparam = ql_get_pauseparam,
1880 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1882 struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1883 dma_addr_t map;
1884 int err;
1886 while (lrg_buf_cb) {
1887 if (!lrg_buf_cb->skb) {
1888 lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
1889 qdev->lrg_buffer_len);
1890 if (unlikely(!lrg_buf_cb->skb)) {
1891 printk(KERN_DEBUG PFX
1892 "%s: Failed netdev_alloc_skb().\n",
1893 qdev->ndev->name);
1894 break;
1895 } else {
1897 * We save some space to copy the ethhdr from
1898 * first buffer
1900 skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1901 map = pci_map_single(qdev->pdev,
1902 lrg_buf_cb->skb->data,
1903 qdev->lrg_buffer_len -
1904 QL_HEADER_SPACE,
1905 PCI_DMA_FROMDEVICE);
1907 err = pci_dma_mapping_error(qdev->pdev, map);
1908 if(err) {
1909 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
1910 qdev->ndev->name, err);
1911 dev_kfree_skb(lrg_buf_cb->skb);
1912 lrg_buf_cb->skb = NULL;
1913 break;
1917 lrg_buf_cb->buf_phy_addr_low =
1918 cpu_to_le32(LS_64BITS(map));
1919 lrg_buf_cb->buf_phy_addr_high =
1920 cpu_to_le32(MS_64BITS(map));
1921 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1922 dma_unmap_len_set(lrg_buf_cb, maplen,
1923 qdev->lrg_buffer_len -
1924 QL_HEADER_SPACE);
1925 --qdev->lrg_buf_skb_check;
1926 if (!qdev->lrg_buf_skb_check)
1927 return 1;
1930 lrg_buf_cb = lrg_buf_cb->next;
1932 return 0;
1936 * Caller holds hw_lock.
1938 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1940 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1941 if (qdev->small_buf_release_cnt >= 16) {
1942 while (qdev->small_buf_release_cnt >= 16) {
1943 qdev->small_buf_q_producer_index++;
1945 if (qdev->small_buf_q_producer_index ==
1946 NUM_SBUFQ_ENTRIES)
1947 qdev->small_buf_q_producer_index = 0;
1948 qdev->small_buf_release_cnt -= 8;
1950 wmb();
1951 writel(qdev->small_buf_q_producer_index,
1952 &port_regs->CommonRegs.rxSmallQProducerIndex);
1957 * Caller holds hw_lock.
1959 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1961 struct bufq_addr_element *lrg_buf_q_ele;
1962 int i;
1963 struct ql_rcv_buf_cb *lrg_buf_cb;
1964 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
1966 if ((qdev->lrg_buf_free_count >= 8) &&
1967 (qdev->lrg_buf_release_cnt >= 16)) {
1969 if (qdev->lrg_buf_skb_check)
1970 if (!ql_populate_free_queue(qdev))
1971 return;
1973 lrg_buf_q_ele = qdev->lrg_buf_next_free;
1975 while ((qdev->lrg_buf_release_cnt >= 16) &&
1976 (qdev->lrg_buf_free_count >= 8)) {
1978 for (i = 0; i < 8; i++) {
1979 lrg_buf_cb =
1980 ql_get_from_lrg_buf_free_list(qdev);
1981 lrg_buf_q_ele->addr_high =
1982 lrg_buf_cb->buf_phy_addr_high;
1983 lrg_buf_q_ele->addr_low =
1984 lrg_buf_cb->buf_phy_addr_low;
1985 lrg_buf_q_ele++;
1987 qdev->lrg_buf_release_cnt--;
1990 qdev->lrg_buf_q_producer_index++;
1992 if (qdev->lrg_buf_q_producer_index == qdev->num_lbufq_entries)
1993 qdev->lrg_buf_q_producer_index = 0;
1995 if (qdev->lrg_buf_q_producer_index ==
1996 (qdev->num_lbufq_entries - 1)) {
1997 lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
2000 wmb();
2001 qdev->lrg_buf_next_free = lrg_buf_q_ele;
2002 writel(qdev->lrg_buf_q_producer_index,
2003 &port_regs->CommonRegs.rxLargeQProducerIndex);
2007 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
2008 struct ob_mac_iocb_rsp *mac_rsp)
2010 struct ql_tx_buf_cb *tx_cb;
2011 int i;
2012 int retval = 0;
2014 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2015 printk(KERN_WARNING "Frame short but, frame was padded and sent.\n");
2018 tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
2020 /* Check the transmit response flags for any errors */
2021 if(mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
2022 printk(KERN_ERR "Frame too short to be legal, frame not sent.\n");
2024 qdev->ndev->stats.tx_errors++;
2025 retval = -EIO;
2026 goto frame_not_sent;
2029 if(tx_cb->seg_count == 0) {
2030 printk(KERN_ERR "tx_cb->seg_count == 0: %d\n", mac_rsp->transaction_id);
2032 qdev->ndev->stats.tx_errors++;
2033 retval = -EIO;
2034 goto invalid_seg_count;
2037 pci_unmap_single(qdev->pdev,
2038 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2039 dma_unmap_len(&tx_cb->map[0], maplen),
2040 PCI_DMA_TODEVICE);
2041 tx_cb->seg_count--;
2042 if (tx_cb->seg_count) {
2043 for (i = 1; i < tx_cb->seg_count; i++) {
2044 pci_unmap_page(qdev->pdev,
2045 dma_unmap_addr(&tx_cb->map[i],
2046 mapaddr),
2047 dma_unmap_len(&tx_cb->map[i], maplen),
2048 PCI_DMA_TODEVICE);
2051 qdev->ndev->stats.tx_packets++;
2052 qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
2054 frame_not_sent:
2055 dev_kfree_skb_irq(tx_cb->skb);
2056 tx_cb->skb = NULL;
2058 invalid_seg_count:
2059 atomic_inc(&qdev->tx_count);
2062 static void ql_get_sbuf(struct ql3_adapter *qdev)
2064 if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
2065 qdev->small_buf_index = 0;
2066 qdev->small_buf_release_cnt++;
2069 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
2071 struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
2072 lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
2073 qdev->lrg_buf_release_cnt++;
2074 if (++qdev->lrg_buf_index == qdev->num_large_buffers)
2075 qdev->lrg_buf_index = 0;
2076 return(lrg_buf_cb);
2080 * The difference between 3022 and 3032 for inbound completions:
2081 * 3022 uses two buffers per completion. The first buffer contains
2082 * (some) header info, the second the remainder of the headers plus
2083 * the data. For this chip we reserve some space at the top of the
2084 * receive buffer so that the header info in buffer one can be
2085 * prepended to the buffer two. Buffer two is the sent up while
2086 * buffer one is returned to the hardware to be reused.
2087 * 3032 receives all of it's data and headers in one buffer for a
2088 * simpler process. 3032 also supports checksum verification as
2089 * can be seen in ql_process_macip_rx_intr().
2091 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2092 struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2094 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2095 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2096 struct sk_buff *skb;
2097 u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2100 * Get the inbound address list (small buffer).
2102 ql_get_sbuf(qdev);
2104 if (qdev->device_id == QL3022_DEVICE_ID)
2105 lrg_buf_cb1 = ql_get_lbuf(qdev);
2107 /* start of second buffer */
2108 lrg_buf_cb2 = ql_get_lbuf(qdev);
2109 skb = lrg_buf_cb2->skb;
2111 qdev->ndev->stats.rx_packets++;
2112 qdev->ndev->stats.rx_bytes += length;
2114 skb_put(skb, length);
2115 pci_unmap_single(qdev->pdev,
2116 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2117 dma_unmap_len(lrg_buf_cb2, maplen),
2118 PCI_DMA_FROMDEVICE);
2119 prefetch(skb->data);
2120 skb->ip_summed = CHECKSUM_NONE;
2121 skb->protocol = eth_type_trans(skb, qdev->ndev);
2123 netif_receive_skb(skb);
2124 lrg_buf_cb2->skb = NULL;
2126 if (qdev->device_id == QL3022_DEVICE_ID)
2127 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2128 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2131 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2132 struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2134 struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2135 struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2136 struct sk_buff *skb1 = NULL, *skb2;
2137 struct net_device *ndev = qdev->ndev;
2138 u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2139 u16 size = 0;
2142 * Get the inbound address list (small buffer).
2145 ql_get_sbuf(qdev);
2147 if (qdev->device_id == QL3022_DEVICE_ID) {
2148 /* start of first buffer on 3022 */
2149 lrg_buf_cb1 = ql_get_lbuf(qdev);
2150 skb1 = lrg_buf_cb1->skb;
2151 size = ETH_HLEN;
2152 if (*((u16 *) skb1->data) != 0xFFFF)
2153 size += VLAN_ETH_HLEN - ETH_HLEN;
2156 /* start of second buffer */
2157 lrg_buf_cb2 = ql_get_lbuf(qdev);
2158 skb2 = lrg_buf_cb2->skb;
2160 skb_put(skb2, length); /* Just the second buffer length here. */
2161 pci_unmap_single(qdev->pdev,
2162 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2163 dma_unmap_len(lrg_buf_cb2, maplen),
2164 PCI_DMA_FROMDEVICE);
2165 prefetch(skb2->data);
2167 skb2->ip_summed = CHECKSUM_NONE;
2168 if (qdev->device_id == QL3022_DEVICE_ID) {
2170 * Copy the ethhdr from first buffer to second. This
2171 * is necessary for 3022 IP completions.
2173 skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2174 skb_push(skb2, size), size);
2175 } else {
2176 u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2177 if (checksum &
2178 (IB_IP_IOCB_RSP_3032_ICE |
2179 IB_IP_IOCB_RSP_3032_CE)) {
2180 printk(KERN_ERR
2181 "%s: Bad checksum for this %s packet, checksum = %x.\n",
2182 __func__,
2183 ((checksum &
2184 IB_IP_IOCB_RSP_3032_TCP) ? "TCP" :
2185 "UDP"),checksum);
2186 } else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2187 (checksum & IB_IP_IOCB_RSP_3032_UDP &&
2188 !(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2189 skb2->ip_summed = CHECKSUM_UNNECESSARY;
2192 skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2194 netif_receive_skb(skb2);
2195 ndev->stats.rx_packets++;
2196 ndev->stats.rx_bytes += length;
2197 lrg_buf_cb2->skb = NULL;
2199 if (qdev->device_id == QL3022_DEVICE_ID)
2200 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2201 ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2204 static int ql_tx_rx_clean(struct ql3_adapter *qdev,
2205 int *tx_cleaned, int *rx_cleaned, int work_to_do)
2207 struct net_rsp_iocb *net_rsp;
2208 struct net_device *ndev = qdev->ndev;
2209 int work_done = 0;
2211 /* While there are entries in the completion queue. */
2212 while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2213 qdev->rsp_consumer_index) && (work_done < work_to_do)) {
2215 net_rsp = qdev->rsp_current;
2216 rmb();
2218 * Fix 4032 chipe undocumented "feature" where bit-8 is set if the
2219 * inbound completion is for a VLAN.
2221 if (qdev->device_id == QL3032_DEVICE_ID)
2222 net_rsp->opcode &= 0x7f;
2223 switch (net_rsp->opcode) {
2225 case OPCODE_OB_MAC_IOCB_FN0:
2226 case OPCODE_OB_MAC_IOCB_FN2:
2227 ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2228 net_rsp);
2229 (*tx_cleaned)++;
2230 break;
2232 case OPCODE_IB_MAC_IOCB:
2233 case OPCODE_IB_3032_MAC_IOCB:
2234 ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2235 net_rsp);
2236 (*rx_cleaned)++;
2237 break;
2239 case OPCODE_IB_IP_IOCB:
2240 case OPCODE_IB_3032_IP_IOCB:
2241 ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2242 net_rsp);
2243 (*rx_cleaned)++;
2244 break;
2245 default:
2247 u32 *tmp = (u32 *) net_rsp;
2248 printk(KERN_ERR PFX
2249 "%s: Hit default case, not "
2250 "handled!\n"
2251 " dropping the packet, opcode = "
2252 "%x.\n",
2253 ndev->name, net_rsp->opcode);
2254 printk(KERN_ERR PFX
2255 "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2256 (unsigned long int)tmp[0],
2257 (unsigned long int)tmp[1],
2258 (unsigned long int)tmp[2],
2259 (unsigned long int)tmp[3]);
2263 qdev->rsp_consumer_index++;
2265 if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2266 qdev->rsp_consumer_index = 0;
2267 qdev->rsp_current = qdev->rsp_q_virt_addr;
2268 } else {
2269 qdev->rsp_current++;
2272 work_done = *tx_cleaned + *rx_cleaned;
2275 return work_done;
2278 static int ql_poll(struct napi_struct *napi, int budget)
2280 struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2281 int rx_cleaned = 0, tx_cleaned = 0;
2282 unsigned long hw_flags;
2283 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2285 ql_tx_rx_clean(qdev, &tx_cleaned, &rx_cleaned, budget);
2287 if (tx_cleaned + rx_cleaned != budget) {
2288 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
2289 __napi_complete(napi);
2290 ql_update_small_bufq_prod_index(qdev);
2291 ql_update_lrg_bufq_prod_index(qdev);
2292 writel(qdev->rsp_consumer_index,
2293 &port_regs->CommonRegs.rspQConsumerIndex);
2294 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
2296 ql_enable_interrupts(qdev);
2298 return tx_cleaned + rx_cleaned;
2301 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2304 struct net_device *ndev = dev_id;
2305 struct ql3_adapter *qdev = netdev_priv(ndev);
2306 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2307 u32 value;
2308 int handled = 1;
2309 u32 var;
2311 port_regs = qdev->mem_map_registers;
2313 value =
2314 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
2316 if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2317 spin_lock(&qdev->adapter_lock);
2318 netif_stop_queue(qdev->ndev);
2319 netif_carrier_off(qdev->ndev);
2320 ql_disable_interrupts(qdev);
2321 qdev->port_link_state = LS_DOWN;
2322 set_bit(QL_RESET_ACTIVE,&qdev->flags) ;
2324 if (value & ISP_CONTROL_FE) {
2326 * Chip Fatal Error.
2328 var =
2329 ql_read_page0_reg_l(qdev,
2330 &port_regs->PortFatalErrStatus);
2331 printk(KERN_WARNING PFX
2332 "%s: Resetting chip. PortFatalErrStatus "
2333 "register = 0x%x\n", ndev->name, var);
2334 set_bit(QL_RESET_START,&qdev->flags) ;
2335 } else {
2337 * Soft Reset Requested.
2339 set_bit(QL_RESET_PER_SCSI,&qdev->flags) ;
2340 printk(KERN_ERR PFX
2341 "%s: Another function issued a reset to the "
2342 "chip. ISR value = %x.\n", ndev->name, value);
2344 queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2345 spin_unlock(&qdev->adapter_lock);
2346 } else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2347 ql_disable_interrupts(qdev);
2348 if (likely(napi_schedule_prep(&qdev->napi))) {
2349 __napi_schedule(&qdev->napi);
2351 } else {
2352 return IRQ_NONE;
2355 return IRQ_RETVAL(handled);
2359 * Get the total number of segments needed for the
2360 * given number of fragments. This is necessary because
2361 * outbound address lists (OAL) will be used when more than
2362 * two frags are given. Each address list has 5 addr/len
2363 * pairs. The 5th pair in each AOL is used to point to
2364 * the next AOL if more frags are coming.
2365 * That is why the frags:segment count ratio is not linear.
2367 static int ql_get_seg_count(struct ql3_adapter *qdev,
2368 unsigned short frags)
2370 if (qdev->device_id == QL3022_DEVICE_ID)
2371 return 1;
2373 switch(frags) {
2374 case 0: return 1; /* just the skb->data seg */
2375 case 1: return 2; /* skb->data + 1 frag */
2376 case 2: return 3; /* skb->data + 2 frags */
2377 case 3: return 5; /* skb->data + 1 frag + 1 AOL containting 2 frags */
2378 case 4: return 6;
2379 case 5: return 7;
2380 case 6: return 8;
2381 case 7: return 10;
2382 case 8: return 11;
2383 case 9: return 12;
2384 case 10: return 13;
2385 case 11: return 15;
2386 case 12: return 16;
2387 case 13: return 17;
2388 case 14: return 18;
2389 case 15: return 20;
2390 case 16: return 21;
2391 case 17: return 22;
2392 case 18: return 23;
2394 return -1;
2397 static void ql_hw_csum_setup(const struct sk_buff *skb,
2398 struct ob_mac_iocb_req *mac_iocb_ptr)
2400 const struct iphdr *ip = ip_hdr(skb);
2402 mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2403 mac_iocb_ptr->ip_hdr_len = ip->ihl;
2405 if (ip->protocol == IPPROTO_TCP) {
2406 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2407 OB_3032MAC_IOCB_REQ_IC;
2408 } else {
2409 mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2410 OB_3032MAC_IOCB_REQ_IC;
2416 * Map the buffers for this transmit. This will return
2417 * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2419 static int ql_send_map(struct ql3_adapter *qdev,
2420 struct ob_mac_iocb_req *mac_iocb_ptr,
2421 struct ql_tx_buf_cb *tx_cb,
2422 struct sk_buff *skb)
2424 struct oal *oal;
2425 struct oal_entry *oal_entry;
2426 int len = skb_headlen(skb);
2427 dma_addr_t map;
2428 int err;
2429 int completed_segs, i;
2430 int seg_cnt, seg = 0;
2431 int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2433 seg_cnt = tx_cb->seg_count;
2435 * Map the skb buffer first.
2437 map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2439 err = pci_dma_mapping_error(qdev->pdev, map);
2440 if(err) {
2441 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2442 qdev->ndev->name, err);
2444 return NETDEV_TX_BUSY;
2447 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2448 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2449 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2450 oal_entry->len = cpu_to_le32(len);
2451 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2452 dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2453 seg++;
2455 if (seg_cnt == 1) {
2456 /* Terminate the last segment. */
2457 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2458 } else {
2459 oal = tx_cb->oal;
2460 for (completed_segs=0; completed_segs<frag_cnt; completed_segs++,seg++) {
2461 skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2462 oal_entry++;
2463 if ((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2464 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2465 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2466 (seg == 17 && seg_cnt > 18)) {
2467 /* Continuation entry points to outbound address list. */
2468 map = pci_map_single(qdev->pdev, oal,
2469 sizeof(struct oal),
2470 PCI_DMA_TODEVICE);
2472 err = pci_dma_mapping_error(qdev->pdev, map);
2473 if(err) {
2475 printk(KERN_ERR "%s: PCI mapping outbound address list with error: %d\n",
2476 qdev->ndev->name, err);
2477 goto map_error;
2480 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2481 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2482 oal_entry->len =
2483 cpu_to_le32(sizeof(struct oal) |
2484 OAL_CONT_ENTRY);
2485 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr,
2486 map);
2487 dma_unmap_len_set(&tx_cb->map[seg], maplen,
2488 sizeof(struct oal));
2489 oal_entry = (struct oal_entry *)oal;
2490 oal++;
2491 seg++;
2494 map =
2495 pci_map_page(qdev->pdev, frag->page,
2496 frag->page_offset, frag->size,
2497 PCI_DMA_TODEVICE);
2499 err = pci_dma_mapping_error(qdev->pdev, map);
2500 if(err) {
2501 printk(KERN_ERR "%s: PCI mapping frags failed with error: %d\n",
2502 qdev->ndev->name, err);
2503 goto map_error;
2506 oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2507 oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2508 oal_entry->len = cpu_to_le32(frag->size);
2509 dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2510 dma_unmap_len_set(&tx_cb->map[seg], maplen,
2511 frag->size);
2513 /* Terminate the last segment. */
2514 oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2517 return NETDEV_TX_OK;
2519 map_error:
2520 /* A PCI mapping failed and now we will need to back out
2521 * We need to traverse through the oal's and associated pages which
2522 * have been mapped and now we must unmap them to clean up properly
2525 seg = 1;
2526 oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2527 oal = tx_cb->oal;
2528 for (i=0; i<completed_segs; i++,seg++) {
2529 oal_entry++;
2531 if((seg == 2 && seg_cnt > 3) || /* Check for continuation */
2532 (seg == 7 && seg_cnt > 8) || /* requirements. It's strange */
2533 (seg == 12 && seg_cnt > 13) || /* but necessary. */
2534 (seg == 17 && seg_cnt > 18)) {
2535 pci_unmap_single(qdev->pdev,
2536 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2537 dma_unmap_len(&tx_cb->map[seg], maplen),
2538 PCI_DMA_TODEVICE);
2539 oal++;
2540 seg++;
2543 pci_unmap_page(qdev->pdev,
2544 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2545 dma_unmap_len(&tx_cb->map[seg], maplen),
2546 PCI_DMA_TODEVICE);
2549 pci_unmap_single(qdev->pdev,
2550 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2551 dma_unmap_addr(&tx_cb->map[0], maplen),
2552 PCI_DMA_TODEVICE);
2554 return NETDEV_TX_BUSY;
2559 * The difference between 3022 and 3032 sends:
2560 * 3022 only supports a simple single segment transmission.
2561 * 3032 supports checksumming and scatter/gather lists (fragments).
2562 * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2563 * in the IOCB plus a chain of outbound address lists (OAL) that
2564 * each contain 5 ALPs. The last ALP of the IOCB (3rd) or OAL (5th)
2565 * will used to point to an OAL when more ALP entries are required.
2566 * The IOCB is always the top of the chain followed by one or more
2567 * OALs (when necessary).
2569 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2570 struct net_device *ndev)
2572 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
2573 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
2574 struct ql_tx_buf_cb *tx_cb;
2575 u32 tot_len = skb->len;
2576 struct ob_mac_iocb_req *mac_iocb_ptr;
2578 if (unlikely(atomic_read(&qdev->tx_count) < 2)) {
2579 return NETDEV_TX_BUSY;
2582 tx_cb = &qdev->tx_buf[qdev->req_producer_index] ;
2583 if((tx_cb->seg_count = ql_get_seg_count(qdev,
2584 (skb_shinfo(skb)->nr_frags))) == -1) {
2585 printk(KERN_ERR PFX"%s: invalid segment count!\n",__func__);
2586 return NETDEV_TX_OK;
2589 mac_iocb_ptr = tx_cb->queue_entry;
2590 memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2591 mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2592 mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2593 mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2594 mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2595 mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2596 tx_cb->skb = skb;
2597 if (qdev->device_id == QL3032_DEVICE_ID &&
2598 skb->ip_summed == CHECKSUM_PARTIAL)
2599 ql_hw_csum_setup(skb, mac_iocb_ptr);
2601 if(ql_send_map(qdev,mac_iocb_ptr,tx_cb,skb) != NETDEV_TX_OK) {
2602 printk(KERN_ERR PFX"%s: Could not map the segments!\n",__func__);
2603 return NETDEV_TX_BUSY;
2606 wmb();
2607 qdev->req_producer_index++;
2608 if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2609 qdev->req_producer_index = 0;
2610 wmb();
2611 ql_write_common_reg_l(qdev,
2612 &port_regs->CommonRegs.reqQProducerIndex,
2613 qdev->req_producer_index);
2615 if (netif_msg_tx_queued(qdev))
2616 printk(KERN_DEBUG PFX "%s: tx queued, slot %d, len %d\n",
2617 ndev->name, qdev->req_producer_index, skb->len);
2619 atomic_dec(&qdev->tx_count);
2620 return NETDEV_TX_OK;
2623 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2625 qdev->req_q_size =
2626 (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2628 qdev->req_q_virt_addr =
2629 pci_alloc_consistent(qdev->pdev,
2630 (size_t) qdev->req_q_size,
2631 &qdev->req_q_phy_addr);
2633 if ((qdev->req_q_virt_addr == NULL) ||
2634 LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2635 printk(KERN_ERR PFX "%s: reqQ failed.\n",
2636 qdev->ndev->name);
2637 return -ENOMEM;
2640 qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2642 qdev->rsp_q_virt_addr =
2643 pci_alloc_consistent(qdev->pdev,
2644 (size_t) qdev->rsp_q_size,
2645 &qdev->rsp_q_phy_addr);
2647 if ((qdev->rsp_q_virt_addr == NULL) ||
2648 LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2649 printk(KERN_ERR PFX
2650 "%s: rspQ allocation failed\n",
2651 qdev->ndev->name);
2652 pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2653 qdev->req_q_virt_addr,
2654 qdev->req_q_phy_addr);
2655 return -ENOMEM;
2658 set_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2660 return 0;
2663 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2665 if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags)) {
2666 printk(KERN_INFO PFX
2667 "%s: Already done.\n", qdev->ndev->name);
2668 return;
2671 pci_free_consistent(qdev->pdev,
2672 qdev->req_q_size,
2673 qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2675 qdev->req_q_virt_addr = NULL;
2677 pci_free_consistent(qdev->pdev,
2678 qdev->rsp_q_size,
2679 qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2681 qdev->rsp_q_virt_addr = NULL;
2683 clear_bit(QL_ALLOC_REQ_RSP_Q_DONE,&qdev->flags);
2686 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2688 /* Create Large Buffer Queue */
2689 qdev->lrg_buf_q_size =
2690 qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2691 if (qdev->lrg_buf_q_size < PAGE_SIZE)
2692 qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2693 else
2694 qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2696 qdev->lrg_buf = kmalloc(qdev->num_large_buffers * sizeof(struct ql_rcv_buf_cb),GFP_KERNEL);
2697 if (qdev->lrg_buf == NULL) {
2698 printk(KERN_ERR PFX
2699 "%s: qdev->lrg_buf alloc failed.\n", qdev->ndev->name);
2700 return -ENOMEM;
2703 qdev->lrg_buf_q_alloc_virt_addr =
2704 pci_alloc_consistent(qdev->pdev,
2705 qdev->lrg_buf_q_alloc_size,
2706 &qdev->lrg_buf_q_alloc_phy_addr);
2708 if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2709 printk(KERN_ERR PFX
2710 "%s: lBufQ failed\n", qdev->ndev->name);
2711 return -ENOMEM;
2713 qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2714 qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2716 /* Create Small Buffer Queue */
2717 qdev->small_buf_q_size =
2718 NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2719 if (qdev->small_buf_q_size < PAGE_SIZE)
2720 qdev->small_buf_q_alloc_size = PAGE_SIZE;
2721 else
2722 qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2724 qdev->small_buf_q_alloc_virt_addr =
2725 pci_alloc_consistent(qdev->pdev,
2726 qdev->small_buf_q_alloc_size,
2727 &qdev->small_buf_q_alloc_phy_addr);
2729 if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2730 printk(KERN_ERR PFX
2731 "%s: Small Buffer Queue allocation failed.\n",
2732 qdev->ndev->name);
2733 pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2734 qdev->lrg_buf_q_alloc_virt_addr,
2735 qdev->lrg_buf_q_alloc_phy_addr);
2736 return -ENOMEM;
2739 qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2740 qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2741 set_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2742 return 0;
2745 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2747 if (!test_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags)) {
2748 printk(KERN_INFO PFX
2749 "%s: Already done.\n", qdev->ndev->name);
2750 return;
2752 if(qdev->lrg_buf) kfree(qdev->lrg_buf);
2753 pci_free_consistent(qdev->pdev,
2754 qdev->lrg_buf_q_alloc_size,
2755 qdev->lrg_buf_q_alloc_virt_addr,
2756 qdev->lrg_buf_q_alloc_phy_addr);
2758 qdev->lrg_buf_q_virt_addr = NULL;
2760 pci_free_consistent(qdev->pdev,
2761 qdev->small_buf_q_alloc_size,
2762 qdev->small_buf_q_alloc_virt_addr,
2763 qdev->small_buf_q_alloc_phy_addr);
2765 qdev->small_buf_q_virt_addr = NULL;
2767 clear_bit(QL_ALLOC_BUFQS_DONE,&qdev->flags);
2770 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2772 int i;
2773 struct bufq_addr_element *small_buf_q_entry;
2775 /* Currently we allocate on one of memory and use it for smallbuffers */
2776 qdev->small_buf_total_size =
2777 (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2778 QL_SMALL_BUFFER_SIZE);
2780 qdev->small_buf_virt_addr =
2781 pci_alloc_consistent(qdev->pdev,
2782 qdev->small_buf_total_size,
2783 &qdev->small_buf_phy_addr);
2785 if (qdev->small_buf_virt_addr == NULL) {
2786 printk(KERN_ERR PFX
2787 "%s: Failed to get small buffer memory.\n",
2788 qdev->ndev->name);
2789 return -ENOMEM;
2792 qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2793 qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2795 small_buf_q_entry = qdev->small_buf_q_virt_addr;
2797 /* Initialize the small buffer queue. */
2798 for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2799 small_buf_q_entry->addr_high =
2800 cpu_to_le32(qdev->small_buf_phy_addr_high);
2801 small_buf_q_entry->addr_low =
2802 cpu_to_le32(qdev->small_buf_phy_addr_low +
2803 (i * QL_SMALL_BUFFER_SIZE));
2804 small_buf_q_entry++;
2806 qdev->small_buf_index = 0;
2807 set_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags);
2808 return 0;
2811 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2813 if (!test_bit(QL_ALLOC_SMALL_BUF_DONE,&qdev->flags)) {
2814 printk(KERN_INFO PFX
2815 "%s: Already done.\n", qdev->ndev->name);
2816 return;
2818 if (qdev->small_buf_virt_addr != NULL) {
2819 pci_free_consistent(qdev->pdev,
2820 qdev->small_buf_total_size,
2821 qdev->small_buf_virt_addr,
2822 qdev->small_buf_phy_addr);
2824 qdev->small_buf_virt_addr = NULL;
2828 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2830 int i = 0;
2831 struct ql_rcv_buf_cb *lrg_buf_cb;
2833 for (i = 0; i < qdev->num_large_buffers; i++) {
2834 lrg_buf_cb = &qdev->lrg_buf[i];
2835 if (lrg_buf_cb->skb) {
2836 dev_kfree_skb(lrg_buf_cb->skb);
2837 pci_unmap_single(qdev->pdev,
2838 dma_unmap_addr(lrg_buf_cb, mapaddr),
2839 dma_unmap_len(lrg_buf_cb, maplen),
2840 PCI_DMA_FROMDEVICE);
2841 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2842 } else {
2843 break;
2848 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2850 int i;
2851 struct ql_rcv_buf_cb *lrg_buf_cb;
2852 struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2854 for (i = 0; i < qdev->num_large_buffers; i++) {
2855 lrg_buf_cb = &qdev->lrg_buf[i];
2856 buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2857 buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2858 buf_addr_ele++;
2860 qdev->lrg_buf_index = 0;
2861 qdev->lrg_buf_skb_check = 0;
2864 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2866 int i;
2867 struct ql_rcv_buf_cb *lrg_buf_cb;
2868 struct sk_buff *skb;
2869 dma_addr_t map;
2870 int err;
2872 for (i = 0; i < qdev->num_large_buffers; i++) {
2873 skb = netdev_alloc_skb(qdev->ndev,
2874 qdev->lrg_buffer_len);
2875 if (unlikely(!skb)) {
2876 /* Better luck next round */
2877 printk(KERN_ERR PFX
2878 "%s: large buff alloc failed, "
2879 "for %d bytes at index %d.\n",
2880 qdev->ndev->name,
2881 qdev->lrg_buffer_len * 2, i);
2882 ql_free_large_buffers(qdev);
2883 return -ENOMEM;
2884 } else {
2886 lrg_buf_cb = &qdev->lrg_buf[i];
2887 memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2888 lrg_buf_cb->index = i;
2889 lrg_buf_cb->skb = skb;
2891 * We save some space to copy the ethhdr from first
2892 * buffer
2894 skb_reserve(skb, QL_HEADER_SPACE);
2895 map = pci_map_single(qdev->pdev,
2896 skb->data,
2897 qdev->lrg_buffer_len -
2898 QL_HEADER_SPACE,
2899 PCI_DMA_FROMDEVICE);
2901 err = pci_dma_mapping_error(qdev->pdev, map);
2902 if(err) {
2903 printk(KERN_ERR "%s: PCI mapping failed with error: %d\n",
2904 qdev->ndev->name, err);
2905 ql_free_large_buffers(qdev);
2906 return -ENOMEM;
2909 dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2910 dma_unmap_len_set(lrg_buf_cb, maplen,
2911 qdev->lrg_buffer_len -
2912 QL_HEADER_SPACE);
2913 lrg_buf_cb->buf_phy_addr_low =
2914 cpu_to_le32(LS_64BITS(map));
2915 lrg_buf_cb->buf_phy_addr_high =
2916 cpu_to_le32(MS_64BITS(map));
2919 return 0;
2922 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2924 struct ql_tx_buf_cb *tx_cb;
2925 int i;
2927 tx_cb = &qdev->tx_buf[0];
2928 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2929 if (tx_cb->oal) {
2930 kfree(tx_cb->oal);
2931 tx_cb->oal = NULL;
2933 tx_cb++;
2937 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2939 struct ql_tx_buf_cb *tx_cb;
2940 int i;
2941 struct ob_mac_iocb_req *req_q_curr =
2942 qdev->req_q_virt_addr;
2944 /* Create free list of transmit buffers */
2945 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2947 tx_cb = &qdev->tx_buf[i];
2948 tx_cb->skb = NULL;
2949 tx_cb->queue_entry = req_q_curr;
2950 req_q_curr++;
2951 tx_cb->oal = kmalloc(512, GFP_KERNEL);
2952 if (tx_cb->oal == NULL)
2953 return -1;
2955 return 0;
2958 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2960 if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2961 qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2962 qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2964 else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2966 * Bigger buffers, so less of them.
2968 qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2969 qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2970 } else {
2971 printk(KERN_ERR PFX
2972 "%s: Invalid mtu size. Only 1500 and 9000 are accepted.\n",
2973 qdev->ndev->name);
2974 return -ENOMEM;
2976 qdev->num_large_buffers = qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2977 qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2978 qdev->max_frame_size =
2979 (qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2982 * First allocate a page of shared memory and use it for shadow
2983 * locations of Network Request Queue Consumer Address Register and
2984 * Network Completion Queue Producer Index Register
2986 qdev->shadow_reg_virt_addr =
2987 pci_alloc_consistent(qdev->pdev,
2988 PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2990 if (qdev->shadow_reg_virt_addr != NULL) {
2991 qdev->preq_consumer_index = (u16 *) qdev->shadow_reg_virt_addr;
2992 qdev->req_consumer_index_phy_addr_high =
2993 MS_64BITS(qdev->shadow_reg_phy_addr);
2994 qdev->req_consumer_index_phy_addr_low =
2995 LS_64BITS(qdev->shadow_reg_phy_addr);
2997 qdev->prsp_producer_index =
2998 (__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2999 qdev->rsp_producer_index_phy_addr_high =
3000 qdev->req_consumer_index_phy_addr_high;
3001 qdev->rsp_producer_index_phy_addr_low =
3002 qdev->req_consumer_index_phy_addr_low + 8;
3003 } else {
3004 printk(KERN_ERR PFX
3005 "%s: shadowReg Alloc failed.\n", qdev->ndev->name);
3006 return -ENOMEM;
3009 if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
3010 printk(KERN_ERR PFX
3011 "%s: ql_alloc_net_req_rsp_queues failed.\n",
3012 qdev->ndev->name);
3013 goto err_req_rsp;
3016 if (ql_alloc_buffer_queues(qdev) != 0) {
3017 printk(KERN_ERR PFX
3018 "%s: ql_alloc_buffer_queues failed.\n",
3019 qdev->ndev->name);
3020 goto err_buffer_queues;
3023 if (ql_alloc_small_buffers(qdev) != 0) {
3024 printk(KERN_ERR PFX
3025 "%s: ql_alloc_small_buffers failed\n", qdev->ndev->name);
3026 goto err_small_buffers;
3029 if (ql_alloc_large_buffers(qdev) != 0) {
3030 printk(KERN_ERR PFX
3031 "%s: ql_alloc_large_buffers failed\n", qdev->ndev->name);
3032 goto err_small_buffers;
3035 /* Initialize the large buffer queue. */
3036 ql_init_large_buffers(qdev);
3037 if (ql_create_send_free_list(qdev))
3038 goto err_free_list;
3040 qdev->rsp_current = qdev->rsp_q_virt_addr;
3042 return 0;
3043 err_free_list:
3044 ql_free_send_free_list(qdev);
3045 err_small_buffers:
3046 ql_free_buffer_queues(qdev);
3047 err_buffer_queues:
3048 ql_free_net_req_rsp_queues(qdev);
3049 err_req_rsp:
3050 pci_free_consistent(qdev->pdev,
3051 PAGE_SIZE,
3052 qdev->shadow_reg_virt_addr,
3053 qdev->shadow_reg_phy_addr);
3055 return -ENOMEM;
3058 static void ql_free_mem_resources(struct ql3_adapter *qdev)
3060 ql_free_send_free_list(qdev);
3061 ql_free_large_buffers(qdev);
3062 ql_free_small_buffers(qdev);
3063 ql_free_buffer_queues(qdev);
3064 ql_free_net_req_rsp_queues(qdev);
3065 if (qdev->shadow_reg_virt_addr != NULL) {
3066 pci_free_consistent(qdev->pdev,
3067 PAGE_SIZE,
3068 qdev->shadow_reg_virt_addr,
3069 qdev->shadow_reg_phy_addr);
3070 qdev->shadow_reg_virt_addr = NULL;
3074 static int ql_init_misc_registers(struct ql3_adapter *qdev)
3076 struct ql3xxx_local_ram_registers __iomem *local_ram =
3077 (void __iomem *)qdev->mem_map_registers;
3079 if(ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
3080 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3081 2) << 4))
3082 return -1;
3084 ql_write_page2_reg(qdev,
3085 &local_ram->bufletSize, qdev->nvram_data.bufletSize);
3087 ql_write_page2_reg(qdev,
3088 &local_ram->maxBufletCount,
3089 qdev->nvram_data.bufletCount);
3091 ql_write_page2_reg(qdev,
3092 &local_ram->freeBufletThresholdLow,
3093 (qdev->nvram_data.tcpWindowThreshold25 << 16) |
3094 (qdev->nvram_data.tcpWindowThreshold0));
3096 ql_write_page2_reg(qdev,
3097 &local_ram->freeBufletThresholdHigh,
3098 qdev->nvram_data.tcpWindowThreshold50);
3100 ql_write_page2_reg(qdev,
3101 &local_ram->ipHashTableBase,
3102 (qdev->nvram_data.ipHashTableBaseHi << 16) |
3103 qdev->nvram_data.ipHashTableBaseLo);
3104 ql_write_page2_reg(qdev,
3105 &local_ram->ipHashTableCount,
3106 qdev->nvram_data.ipHashTableSize);
3107 ql_write_page2_reg(qdev,
3108 &local_ram->tcpHashTableBase,
3109 (qdev->nvram_data.tcpHashTableBaseHi << 16) |
3110 qdev->nvram_data.tcpHashTableBaseLo);
3111 ql_write_page2_reg(qdev,
3112 &local_ram->tcpHashTableCount,
3113 qdev->nvram_data.tcpHashTableSize);
3114 ql_write_page2_reg(qdev,
3115 &local_ram->ncbBase,
3116 (qdev->nvram_data.ncbTableBaseHi << 16) |
3117 qdev->nvram_data.ncbTableBaseLo);
3118 ql_write_page2_reg(qdev,
3119 &local_ram->maxNcbCount,
3120 qdev->nvram_data.ncbTableSize);
3121 ql_write_page2_reg(qdev,
3122 &local_ram->drbBase,
3123 (qdev->nvram_data.drbTableBaseHi << 16) |
3124 qdev->nvram_data.drbTableBaseLo);
3125 ql_write_page2_reg(qdev,
3126 &local_ram->maxDrbCount,
3127 qdev->nvram_data.drbTableSize);
3128 ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3129 return 0;
3132 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3134 u32 value;
3135 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3136 struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3137 (void __iomem *)port_regs;
3138 u32 delay = 10;
3139 int status = 0;
3140 unsigned long hw_flags = 0;
3142 if(ql_mii_setup(qdev))
3143 return -1;
3145 /* Bring out PHY out of reset */
3146 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3147 (ISP_SERIAL_PORT_IF_WE |
3148 (ISP_SERIAL_PORT_IF_WE << 16)));
3149 /* Give the PHY time to come out of reset. */
3150 mdelay(100);
3151 qdev->port_link_state = LS_DOWN;
3152 netif_carrier_off(qdev->ndev);
3154 /* V2 chip fix for ARS-39168. */
3155 ql_write_common_reg(qdev, &port_regs->CommonRegs.serialPortInterfaceReg,
3156 (ISP_SERIAL_PORT_IF_SDE |
3157 (ISP_SERIAL_PORT_IF_SDE << 16)));
3159 /* Request Queue Registers */
3160 *((u32 *) (qdev->preq_consumer_index)) = 0;
3161 atomic_set(&qdev->tx_count,NUM_REQ_Q_ENTRIES);
3162 qdev->req_producer_index = 0;
3164 ql_write_page1_reg(qdev,
3165 &hmem_regs->reqConsumerIndexAddrHigh,
3166 qdev->req_consumer_index_phy_addr_high);
3167 ql_write_page1_reg(qdev,
3168 &hmem_regs->reqConsumerIndexAddrLow,
3169 qdev->req_consumer_index_phy_addr_low);
3171 ql_write_page1_reg(qdev,
3172 &hmem_regs->reqBaseAddrHigh,
3173 MS_64BITS(qdev->req_q_phy_addr));
3174 ql_write_page1_reg(qdev,
3175 &hmem_regs->reqBaseAddrLow,
3176 LS_64BITS(qdev->req_q_phy_addr));
3177 ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3179 /* Response Queue Registers */
3180 *((__le16 *) (qdev->prsp_producer_index)) = 0;
3181 qdev->rsp_consumer_index = 0;
3182 qdev->rsp_current = qdev->rsp_q_virt_addr;
3184 ql_write_page1_reg(qdev,
3185 &hmem_regs->rspProducerIndexAddrHigh,
3186 qdev->rsp_producer_index_phy_addr_high);
3188 ql_write_page1_reg(qdev,
3189 &hmem_regs->rspProducerIndexAddrLow,
3190 qdev->rsp_producer_index_phy_addr_low);
3192 ql_write_page1_reg(qdev,
3193 &hmem_regs->rspBaseAddrHigh,
3194 MS_64BITS(qdev->rsp_q_phy_addr));
3196 ql_write_page1_reg(qdev,
3197 &hmem_regs->rspBaseAddrLow,
3198 LS_64BITS(qdev->rsp_q_phy_addr));
3200 ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3202 /* Large Buffer Queue */
3203 ql_write_page1_reg(qdev,
3204 &hmem_regs->rxLargeQBaseAddrHigh,
3205 MS_64BITS(qdev->lrg_buf_q_phy_addr));
3207 ql_write_page1_reg(qdev,
3208 &hmem_regs->rxLargeQBaseAddrLow,
3209 LS_64BITS(qdev->lrg_buf_q_phy_addr));
3211 ql_write_page1_reg(qdev, &hmem_regs->rxLargeQLength, qdev->num_lbufq_entries);
3213 ql_write_page1_reg(qdev,
3214 &hmem_regs->rxLargeBufferLength,
3215 qdev->lrg_buffer_len);
3217 /* Small Buffer Queue */
3218 ql_write_page1_reg(qdev,
3219 &hmem_regs->rxSmallQBaseAddrHigh,
3220 MS_64BITS(qdev->small_buf_q_phy_addr));
3222 ql_write_page1_reg(qdev,
3223 &hmem_regs->rxSmallQBaseAddrLow,
3224 LS_64BITS(qdev->small_buf_q_phy_addr));
3226 ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3227 ql_write_page1_reg(qdev,
3228 &hmem_regs->rxSmallBufferLength,
3229 QL_SMALL_BUFFER_SIZE);
3231 qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3232 qdev->small_buf_release_cnt = 8;
3233 qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3234 qdev->lrg_buf_release_cnt = 8;
3235 qdev->lrg_buf_next_free =
3236 (struct bufq_addr_element *)qdev->lrg_buf_q_virt_addr;
3237 qdev->small_buf_index = 0;
3238 qdev->lrg_buf_index = 0;
3239 qdev->lrg_buf_free_count = 0;
3240 qdev->lrg_buf_free_head = NULL;
3241 qdev->lrg_buf_free_tail = NULL;
3243 ql_write_common_reg(qdev,
3244 &port_regs->CommonRegs.
3245 rxSmallQProducerIndex,
3246 qdev->small_buf_q_producer_index);
3247 ql_write_common_reg(qdev,
3248 &port_regs->CommonRegs.
3249 rxLargeQProducerIndex,
3250 qdev->lrg_buf_q_producer_index);
3253 * Find out if the chip has already been initialized. If it has, then
3254 * we skip some of the initialization.
3256 clear_bit(QL_LINK_MASTER, &qdev->flags);
3257 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3258 if ((value & PORT_STATUS_IC) == 0) {
3260 /* Chip has not been configured yet, so let it rip. */
3261 if(ql_init_misc_registers(qdev)) {
3262 status = -1;
3263 goto out;
3266 value = qdev->nvram_data.tcpMaxWindowSize;
3267 ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3269 value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3271 if(ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3272 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3273 * 2) << 13)) {
3274 status = -1;
3275 goto out;
3277 ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3278 ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3279 (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3280 16) | (INTERNAL_CHIP_SD |
3281 INTERNAL_CHIP_WE)));
3282 ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3285 if (qdev->mac_index)
3286 ql_write_page0_reg(qdev,
3287 &port_regs->mac1MaxFrameLengthReg,
3288 qdev->max_frame_size);
3289 else
3290 ql_write_page0_reg(qdev,
3291 &port_regs->mac0MaxFrameLengthReg,
3292 qdev->max_frame_size);
3294 if(ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3295 (QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3296 2) << 7)) {
3297 status = -1;
3298 goto out;
3301 PHY_Setup(qdev);
3302 ql_init_scan_mode(qdev);
3303 ql_get_phy_owner(qdev);
3305 /* Load the MAC Configuration */
3307 /* Program lower 32 bits of the MAC address */
3308 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3309 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3310 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3311 ((qdev->ndev->dev_addr[2] << 24)
3312 | (qdev->ndev->dev_addr[3] << 16)
3313 | (qdev->ndev->dev_addr[4] << 8)
3314 | qdev->ndev->dev_addr[5]));
3316 /* Program top 16 bits of the MAC address */
3317 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3318 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3319 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3320 ((qdev->ndev->dev_addr[0] << 8)
3321 | qdev->ndev->dev_addr[1]));
3323 /* Enable Primary MAC */
3324 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3325 ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3326 MAC_ADDR_INDIRECT_PTR_REG_PE));
3328 /* Clear Primary and Secondary IP addresses */
3329 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3330 ((IP_ADDR_INDEX_REG_MASK << 16) |
3331 (qdev->mac_index << 2)));
3332 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3334 ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3335 ((IP_ADDR_INDEX_REG_MASK << 16) |
3336 ((qdev->mac_index << 2) + 1)));
3337 ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3339 ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3341 /* Indicate Configuration Complete */
3342 ql_write_page0_reg(qdev,
3343 &port_regs->portControl,
3344 ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3346 do {
3347 value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3348 if (value & PORT_STATUS_IC)
3349 break;
3350 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3351 msleep(500);
3352 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3353 } while (--delay);
3355 if (delay == 0) {
3356 printk(KERN_ERR PFX
3357 "%s: Hw Initialization timeout.\n", qdev->ndev->name);
3358 status = -1;
3359 goto out;
3362 /* Enable Ethernet Function */
3363 if (qdev->device_id == QL3032_DEVICE_ID) {
3364 value =
3365 (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3366 QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3367 QL3032_PORT_CONTROL_ET);
3368 ql_write_page0_reg(qdev, &port_regs->functionControl,
3369 ((value << 16) | value));
3370 } else {
3371 value =
3372 (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3373 PORT_CONTROL_HH);
3374 ql_write_page0_reg(qdev, &port_regs->portControl,
3375 ((value << 16) | value));
3379 out:
3380 return status;
3384 * Caller holds hw_lock.
3386 static int ql_adapter_reset(struct ql3_adapter *qdev)
3388 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3389 int status = 0;
3390 u16 value;
3391 int max_wait_time;
3393 set_bit(QL_RESET_ACTIVE, &qdev->flags);
3394 clear_bit(QL_RESET_DONE, &qdev->flags);
3397 * Issue soft reset to chip.
3399 printk(KERN_DEBUG PFX
3400 "%s: Issue soft reset to chip.\n",
3401 qdev->ndev->name);
3402 ql_write_common_reg(qdev,
3403 &port_regs->CommonRegs.ispControlStatus,
3404 ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3406 /* Wait 3 seconds for reset to complete. */
3407 printk(KERN_DEBUG PFX
3408 "%s: Wait 10 milliseconds for reset to complete.\n",
3409 qdev->ndev->name);
3411 /* Wait until the firmware tells us the Soft Reset is done */
3412 max_wait_time = 5;
3413 do {
3414 value =
3415 ql_read_common_reg(qdev,
3416 &port_regs->CommonRegs.ispControlStatus);
3417 if ((value & ISP_CONTROL_SR) == 0)
3418 break;
3420 ssleep(1);
3421 } while ((--max_wait_time));
3424 * Also, make sure that the Network Reset Interrupt bit has been
3425 * cleared after the soft reset has taken place.
3427 value =
3428 ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3429 if (value & ISP_CONTROL_RI) {
3430 printk(KERN_DEBUG PFX
3431 "ql_adapter_reset: clearing RI after reset.\n");
3432 ql_write_common_reg(qdev,
3433 &port_regs->CommonRegs.
3434 ispControlStatus,
3435 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3438 if (max_wait_time == 0) {
3439 /* Issue Force Soft Reset */
3440 ql_write_common_reg(qdev,
3441 &port_regs->CommonRegs.
3442 ispControlStatus,
3443 ((ISP_CONTROL_FSR << 16) |
3444 ISP_CONTROL_FSR));
3446 * Wait until the firmware tells us the Force Soft Reset is
3447 * done
3449 max_wait_time = 5;
3450 do {
3451 value =
3452 ql_read_common_reg(qdev,
3453 &port_regs->CommonRegs.
3454 ispControlStatus);
3455 if ((value & ISP_CONTROL_FSR) == 0) {
3456 break;
3458 ssleep(1);
3459 } while ((--max_wait_time));
3461 if (max_wait_time == 0)
3462 status = 1;
3464 clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3465 set_bit(QL_RESET_DONE, &qdev->flags);
3466 return status;
3469 static void ql_set_mac_info(struct ql3_adapter *qdev)
3471 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3472 u32 value, port_status;
3473 u8 func_number;
3475 /* Get the function number */
3476 value =
3477 ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3478 func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3479 port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3480 switch (value & ISP_CONTROL_FN_MASK) {
3481 case ISP_CONTROL_FN0_NET:
3482 qdev->mac_index = 0;
3483 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3484 qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3485 qdev->PHYAddr = PORT0_PHY_ADDRESS;
3486 if (port_status & PORT_STATUS_SM0)
3487 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3488 else
3489 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3490 break;
3492 case ISP_CONTROL_FN1_NET:
3493 qdev->mac_index = 1;
3494 qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3495 qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3496 qdev->PHYAddr = PORT1_PHY_ADDRESS;
3497 if (port_status & PORT_STATUS_SM1)
3498 set_bit(QL_LINK_OPTICAL,&qdev->flags);
3499 else
3500 clear_bit(QL_LINK_OPTICAL,&qdev->flags);
3501 break;
3503 case ISP_CONTROL_FN0_SCSI:
3504 case ISP_CONTROL_FN1_SCSI:
3505 default:
3506 printk(KERN_DEBUG PFX
3507 "%s: Invalid function number, ispControlStatus = 0x%x\n",
3508 qdev->ndev->name,value);
3509 break;
3511 qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3514 static void ql_display_dev_info(struct net_device *ndev)
3516 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3517 struct pci_dev *pdev = qdev->pdev;
3519 printk(KERN_INFO PFX
3520 "\n%s Adapter %d RevisionID %d found %s on PCI slot %d.\n",
3521 DRV_NAME, qdev->index, qdev->chip_rev_id,
3522 (qdev->device_id == QL3032_DEVICE_ID) ? "QLA3032" : "QLA3022",
3523 qdev->pci_slot);
3524 printk(KERN_INFO PFX
3525 "%s Interface.\n",
3526 test_bit(QL_LINK_OPTICAL,&qdev->flags) ? "OPTICAL" : "COPPER");
3529 * Print PCI bus width/type.
3531 printk(KERN_INFO PFX
3532 "Bus interface is %s %s.\n",
3533 ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3534 ((qdev->pci_x) ? "PCI-X" : "PCI"));
3536 printk(KERN_INFO PFX
3537 "mem IO base address adjusted = 0x%p\n",
3538 qdev->mem_map_registers);
3539 printk(KERN_INFO PFX "Interrupt number = %d\n", pdev->irq);
3541 if (netif_msg_probe(qdev))
3542 printk(KERN_INFO PFX
3543 "%s: MAC address %pM\n",
3544 ndev->name, ndev->dev_addr);
3547 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3549 struct net_device *ndev = qdev->ndev;
3550 int retval = 0;
3552 netif_stop_queue(ndev);
3553 netif_carrier_off(ndev);
3555 clear_bit(QL_ADAPTER_UP,&qdev->flags);
3556 clear_bit(QL_LINK_MASTER,&qdev->flags);
3558 ql_disable_interrupts(qdev);
3560 free_irq(qdev->pdev->irq, ndev);
3562 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3563 printk(KERN_INFO PFX
3564 "%s: calling pci_disable_msi().\n", qdev->ndev->name);
3565 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3566 pci_disable_msi(qdev->pdev);
3569 del_timer_sync(&qdev->adapter_timer);
3571 napi_disable(&qdev->napi);
3573 if (do_reset) {
3574 int soft_reset;
3575 unsigned long hw_flags;
3577 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3578 if (ql_wait_for_drvr_lock(qdev)) {
3579 if ((soft_reset = ql_adapter_reset(qdev))) {
3580 printk(KERN_ERR PFX
3581 "%s: ql_adapter_reset(%d) FAILED!\n",
3582 ndev->name, qdev->index);
3584 printk(KERN_ERR PFX
3585 "%s: Releaseing driver lock via chip reset.\n",ndev->name);
3586 } else {
3587 printk(KERN_ERR PFX
3588 "%s: Could not acquire driver lock to do "
3589 "reset!\n", ndev->name);
3590 retval = -1;
3592 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3594 ql_free_mem_resources(qdev);
3595 return retval;
3598 static int ql_adapter_up(struct ql3_adapter *qdev)
3600 struct net_device *ndev = qdev->ndev;
3601 int err;
3602 unsigned long irq_flags = IRQF_SAMPLE_RANDOM | IRQF_SHARED;
3603 unsigned long hw_flags;
3605 if (ql_alloc_mem_resources(qdev)) {
3606 printk(KERN_ERR PFX
3607 "%s Unable to allocate buffers.\n", ndev->name);
3608 return -ENOMEM;
3611 if (qdev->msi) {
3612 if (pci_enable_msi(qdev->pdev)) {
3613 printk(KERN_ERR PFX
3614 "%s: User requested MSI, but MSI failed to "
3615 "initialize. Continuing without MSI.\n",
3616 qdev->ndev->name);
3617 qdev->msi = 0;
3618 } else {
3619 printk(KERN_INFO PFX "%s: MSI Enabled...\n", qdev->ndev->name);
3620 set_bit(QL_MSI_ENABLED,&qdev->flags);
3621 irq_flags &= ~IRQF_SHARED;
3625 if ((err = request_irq(qdev->pdev->irq,
3626 ql3xxx_isr,
3627 irq_flags, ndev->name, ndev))) {
3628 printk(KERN_ERR PFX
3629 "%s: Failed to reserve interrupt %d already in use.\n",
3630 ndev->name, qdev->pdev->irq);
3631 goto err_irq;
3634 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3636 if ((err = ql_wait_for_drvr_lock(qdev))) {
3637 if ((err = ql_adapter_initialize(qdev))) {
3638 printk(KERN_ERR PFX
3639 "%s: Unable to initialize adapter.\n",
3640 ndev->name);
3641 goto err_init;
3643 printk(KERN_ERR PFX
3644 "%s: Releaseing driver lock.\n",ndev->name);
3645 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3646 } else {
3647 printk(KERN_ERR PFX
3648 "%s: Could not acquire driver lock.\n",
3649 ndev->name);
3650 goto err_lock;
3653 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3655 set_bit(QL_ADAPTER_UP,&qdev->flags);
3657 mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3659 napi_enable(&qdev->napi);
3660 ql_enable_interrupts(qdev);
3661 return 0;
3663 err_init:
3664 ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3665 err_lock:
3666 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3667 free_irq(qdev->pdev->irq, ndev);
3668 err_irq:
3669 if (qdev->msi && test_bit(QL_MSI_ENABLED,&qdev->flags)) {
3670 printk(KERN_INFO PFX
3671 "%s: calling pci_disable_msi().\n",
3672 qdev->ndev->name);
3673 clear_bit(QL_MSI_ENABLED,&qdev->flags);
3674 pci_disable_msi(qdev->pdev);
3676 return err;
3679 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3681 if( ql_adapter_down(qdev,reset) || ql_adapter_up(qdev)) {
3682 printk(KERN_ERR PFX
3683 "%s: Driver up/down cycle failed, "
3684 "closing device\n",qdev->ndev->name);
3685 rtnl_lock();
3686 dev_close(qdev->ndev);
3687 rtnl_unlock();
3688 return -1;
3690 return 0;
3693 static int ql3xxx_close(struct net_device *ndev)
3695 struct ql3_adapter *qdev = netdev_priv(ndev);
3698 * Wait for device to recover from a reset.
3699 * (Rarely happens, but possible.)
3701 while (!test_bit(QL_ADAPTER_UP,&qdev->flags))
3702 msleep(50);
3704 ql_adapter_down(qdev,QL_DO_RESET);
3705 return 0;
3708 static int ql3xxx_open(struct net_device *ndev)
3710 struct ql3_adapter *qdev = netdev_priv(ndev);
3711 return (ql_adapter_up(qdev));
3714 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3716 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3717 struct ql3xxx_port_registers __iomem *port_regs =
3718 qdev->mem_map_registers;
3719 struct sockaddr *addr = p;
3720 unsigned long hw_flags;
3722 if (netif_running(ndev))
3723 return -EBUSY;
3725 if (!is_valid_ether_addr(addr->sa_data))
3726 return -EADDRNOTAVAIL;
3728 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3730 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3731 /* Program lower 32 bits of the MAC address */
3732 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3733 (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3734 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3735 ((ndev->dev_addr[2] << 24) | (ndev->
3736 dev_addr[3] << 16) |
3737 (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3739 /* Program top 16 bits of the MAC address */
3740 ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3741 ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3742 ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3743 ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3744 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3746 return 0;
3749 static void ql3xxx_tx_timeout(struct net_device *ndev)
3751 struct ql3_adapter *qdev = (struct ql3_adapter *)netdev_priv(ndev);
3753 printk(KERN_ERR PFX "%s: Resetting...\n", ndev->name);
3755 * Stop the queues, we've got a problem.
3757 netif_stop_queue(ndev);
3760 * Wake up the worker to process this event.
3762 queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3765 static void ql_reset_work(struct work_struct *work)
3767 struct ql3_adapter *qdev =
3768 container_of(work, struct ql3_adapter, reset_work.work);
3769 struct net_device *ndev = qdev->ndev;
3770 u32 value;
3771 struct ql_tx_buf_cb *tx_cb;
3772 int max_wait_time, i;
3773 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3774 unsigned long hw_flags;
3776 if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START),&qdev->flags)) {
3777 clear_bit(QL_LINK_MASTER,&qdev->flags);
3780 * Loop through the active list and return the skb.
3782 for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3783 int j;
3784 tx_cb = &qdev->tx_buf[i];
3785 if (tx_cb->skb) {
3786 printk(KERN_DEBUG PFX
3787 "%s: Freeing lost SKB.\n",
3788 qdev->ndev->name);
3789 pci_unmap_single(qdev->pdev,
3790 dma_unmap_addr(&tx_cb->map[0], mapaddr),
3791 dma_unmap_len(&tx_cb->map[0], maplen),
3792 PCI_DMA_TODEVICE);
3793 for(j=1;j<tx_cb->seg_count;j++) {
3794 pci_unmap_page(qdev->pdev,
3795 dma_unmap_addr(&tx_cb->map[j],mapaddr),
3796 dma_unmap_len(&tx_cb->map[j],maplen),
3797 PCI_DMA_TODEVICE);
3799 dev_kfree_skb(tx_cb->skb);
3800 tx_cb->skb = NULL;
3804 printk(KERN_ERR PFX
3805 "%s: Clearing NRI after reset.\n", qdev->ndev->name);
3806 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3807 ql_write_common_reg(qdev,
3808 &port_regs->CommonRegs.
3809 ispControlStatus,
3810 ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3812 * Wait the for Soft Reset to Complete.
3814 max_wait_time = 10;
3815 do {
3816 value = ql_read_common_reg(qdev,
3817 &port_regs->CommonRegs.
3819 ispControlStatus);
3820 if ((value & ISP_CONTROL_SR) == 0) {
3821 printk(KERN_DEBUG PFX
3822 "%s: reset completed.\n",
3823 qdev->ndev->name);
3824 break;
3827 if (value & ISP_CONTROL_RI) {
3828 printk(KERN_DEBUG PFX
3829 "%s: clearing NRI after reset.\n",
3830 qdev->ndev->name);
3831 ql_write_common_reg(qdev,
3832 &port_regs->
3833 CommonRegs.
3834 ispControlStatus,
3835 ((ISP_CONTROL_RI <<
3836 16) | ISP_CONTROL_RI));
3839 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3840 ssleep(1);
3841 spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3842 } while (--max_wait_time);
3843 spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3845 if (value & ISP_CONTROL_SR) {
3848 * Set the reset flags and clear the board again.
3849 * Nothing else to do...
3851 printk(KERN_ERR PFX
3852 "%s: Timed out waiting for reset to "
3853 "complete.\n", ndev->name);
3854 printk(KERN_ERR PFX
3855 "%s: Do a reset.\n", ndev->name);
3856 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3857 clear_bit(QL_RESET_START,&qdev->flags);
3858 ql_cycle_adapter(qdev,QL_DO_RESET);
3859 return;
3862 clear_bit(QL_RESET_ACTIVE,&qdev->flags);
3863 clear_bit(QL_RESET_PER_SCSI,&qdev->flags);
3864 clear_bit(QL_RESET_START,&qdev->flags);
3865 ql_cycle_adapter(qdev,QL_NO_RESET);
3869 static void ql_tx_timeout_work(struct work_struct *work)
3871 struct ql3_adapter *qdev =
3872 container_of(work, struct ql3_adapter, tx_timeout_work.work);
3874 ql_cycle_adapter(qdev, QL_DO_RESET);
3877 static void ql_get_board_info(struct ql3_adapter *qdev)
3879 struct ql3xxx_port_registers __iomem *port_regs = qdev->mem_map_registers;
3880 u32 value;
3882 value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3884 qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3885 if (value & PORT_STATUS_64)
3886 qdev->pci_width = 64;
3887 else
3888 qdev->pci_width = 32;
3889 if (value & PORT_STATUS_X)
3890 qdev->pci_x = 1;
3891 else
3892 qdev->pci_x = 0;
3893 qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3896 static void ql3xxx_timer(unsigned long ptr)
3898 struct ql3_adapter *qdev = (struct ql3_adapter *)ptr;
3899 queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3902 static const struct net_device_ops ql3xxx_netdev_ops = {
3903 .ndo_open = ql3xxx_open,
3904 .ndo_start_xmit = ql3xxx_send,
3905 .ndo_stop = ql3xxx_close,
3906 .ndo_set_multicast_list = NULL, /* not allowed on NIC side */
3907 .ndo_change_mtu = eth_change_mtu,
3908 .ndo_validate_addr = eth_validate_addr,
3909 .ndo_set_mac_address = ql3xxx_set_mac_address,
3910 .ndo_tx_timeout = ql3xxx_tx_timeout,
3913 static int __devinit ql3xxx_probe(struct pci_dev *pdev,
3914 const struct pci_device_id *pci_entry)
3916 struct net_device *ndev = NULL;
3917 struct ql3_adapter *qdev = NULL;
3918 static int cards_found = 0;
3919 int uninitialized_var(pci_using_dac), err;
3921 err = pci_enable_device(pdev);
3922 if (err) {
3923 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3924 pci_name(pdev));
3925 goto err_out;
3928 err = pci_request_regions(pdev, DRV_NAME);
3929 if (err) {
3930 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3931 pci_name(pdev));
3932 goto err_out_disable_pdev;
3935 pci_set_master(pdev);
3937 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3938 pci_using_dac = 1;
3939 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3940 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3941 pci_using_dac = 0;
3942 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3945 if (err) {
3946 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3947 pci_name(pdev));
3948 goto err_out_free_regions;
3951 ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3952 if (!ndev) {
3953 printk(KERN_ERR PFX "%s could not alloc etherdev\n",
3954 pci_name(pdev));
3955 err = -ENOMEM;
3956 goto err_out_free_regions;
3959 SET_NETDEV_DEV(ndev, &pdev->dev);
3961 pci_set_drvdata(pdev, ndev);
3963 qdev = netdev_priv(ndev);
3964 qdev->index = cards_found;
3965 qdev->ndev = ndev;
3966 qdev->pdev = pdev;
3967 qdev->device_id = pci_entry->device;
3968 qdev->port_link_state = LS_DOWN;
3969 if (msi)
3970 qdev->msi = 1;
3972 qdev->msg_enable = netif_msg_init(debug, default_msg);
3974 if (pci_using_dac)
3975 ndev->features |= NETIF_F_HIGHDMA;
3976 if (qdev->device_id == QL3032_DEVICE_ID)
3977 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3979 qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3980 if (!qdev->mem_map_registers) {
3981 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3982 pci_name(pdev));
3983 err = -EIO;
3984 goto err_out_free_ndev;
3987 spin_lock_init(&qdev->adapter_lock);
3988 spin_lock_init(&qdev->hw_lock);
3990 /* Set driver entry points */
3991 ndev->netdev_ops = &ql3xxx_netdev_ops;
3992 SET_ETHTOOL_OPS(ndev, &ql3xxx_ethtool_ops);
3993 ndev->watchdog_timeo = 5 * HZ;
3995 netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3997 ndev->irq = pdev->irq;
3999 /* make sure the EEPROM is good */
4000 if (ql_get_nvram_params(qdev)) {
4001 printk(KERN_ALERT PFX
4002 "ql3xxx_probe: Adapter #%d, Invalid NVRAM parameters.\n",
4003 qdev->index);
4004 err = -EIO;
4005 goto err_out_iounmap;
4008 ql_set_mac_info(qdev);
4010 /* Validate and set parameters */
4011 if (qdev->mac_index) {
4012 ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
4013 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
4014 } else {
4015 ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
4016 ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
4018 memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
4020 ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
4022 /* Record PCI bus information. */
4023 ql_get_board_info(qdev);
4026 * Set the Maximum Memory Read Byte Count value. We do this to handle
4027 * jumbo frames.
4029 if (qdev->pci_x) {
4030 pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
4033 err = register_netdev(ndev);
4034 if (err) {
4035 printk(KERN_ERR PFX "%s: cannot register net device\n",
4036 pci_name(pdev));
4037 goto err_out_iounmap;
4040 /* we're going to reset, so assume we have no link for now */
4042 netif_carrier_off(ndev);
4043 netif_stop_queue(ndev);
4045 qdev->workqueue = create_singlethread_workqueue(ndev->name);
4046 INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
4047 INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
4048 INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
4050 init_timer(&qdev->adapter_timer);
4051 qdev->adapter_timer.function = ql3xxx_timer;
4052 qdev->adapter_timer.expires = jiffies + HZ * 2; /* two second delay */
4053 qdev->adapter_timer.data = (unsigned long)qdev;
4055 if(!cards_found) {
4056 printk(KERN_ALERT PFX "%s\n", DRV_STRING);
4057 printk(KERN_ALERT PFX "Driver name: %s, Version: %s.\n",
4058 DRV_NAME, DRV_VERSION);
4060 ql_display_dev_info(ndev);
4062 cards_found++;
4063 return 0;
4065 err_out_iounmap:
4066 iounmap(qdev->mem_map_registers);
4067 err_out_free_ndev:
4068 free_netdev(ndev);
4069 err_out_free_regions:
4070 pci_release_regions(pdev);
4071 err_out_disable_pdev:
4072 pci_disable_device(pdev);
4073 pci_set_drvdata(pdev, NULL);
4074 err_out:
4075 return err;
4078 static void __devexit ql3xxx_remove(struct pci_dev *pdev)
4080 struct net_device *ndev = pci_get_drvdata(pdev);
4081 struct ql3_adapter *qdev = netdev_priv(ndev);
4083 unregister_netdev(ndev);
4085 ql_disable_interrupts(qdev);
4087 if (qdev->workqueue) {
4088 cancel_delayed_work(&qdev->reset_work);
4089 cancel_delayed_work(&qdev->tx_timeout_work);
4090 destroy_workqueue(qdev->workqueue);
4091 qdev->workqueue = NULL;
4094 iounmap(qdev->mem_map_registers);
4095 pci_release_regions(pdev);
4096 pci_set_drvdata(pdev, NULL);
4097 free_netdev(ndev);
4100 static struct pci_driver ql3xxx_driver = {
4102 .name = DRV_NAME,
4103 .id_table = ql3xxx_pci_tbl,
4104 .probe = ql3xxx_probe,
4105 .remove = __devexit_p(ql3xxx_remove),
4108 static int __init ql3xxx_init_module(void)
4110 return pci_register_driver(&ql3xxx_driver);
4113 static void __exit ql3xxx_exit(void)
4115 pci_unregister_driver(&ql3xxx_driver);
4118 module_init(ql3xxx_init_module);
4119 module_exit(ql3xxx_exit);