2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
22 * This file implements early detection/parsing of Remapping Devices
23 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
26 * These routines are used by both DMA-remapping and Interrupt-remapping
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34 #include <linux/irq.h>
35 #include <linux/interrupt.h>
36 #include <linux/tboot.h>
37 #include <linux/dmi.h>
38 #include <linux/slab.h>
40 #define PREFIX "DMAR: "
42 /* No locks are needed as DMA remapping hardware unit
43 * list is constructed at boot time and hotplug of
44 * these units are not supported by the architecture.
46 LIST_HEAD(dmar_drhd_units
);
48 static struct acpi_table_header
* __initdata dmar_tbl
;
49 static acpi_size dmar_tbl_size
;
51 static void __init
dmar_register_drhd_unit(struct dmar_drhd_unit
*drhd
)
54 * add INCLUDE_ALL at the tail, so scan the list will find it at
57 if (drhd
->include_all
)
58 list_add_tail(&drhd
->list
, &dmar_drhd_units
);
60 list_add(&drhd
->list
, &dmar_drhd_units
);
63 static int __init
dmar_parse_one_dev_scope(struct acpi_dmar_device_scope
*scope
,
64 struct pci_dev
**dev
, u16 segment
)
67 struct pci_dev
*pdev
= NULL
;
68 struct acpi_dmar_pci_path
*path
;
71 bus
= pci_find_bus(segment
, scope
->bus
);
72 path
= (struct acpi_dmar_pci_path
*)(scope
+ 1);
73 count
= (scope
->length
- sizeof(struct acpi_dmar_device_scope
))
74 / sizeof(struct acpi_dmar_pci_path
);
80 * Some BIOSes list non-exist devices in DMAR table, just
85 PREFIX
"Device scope bus [%d] not found\n",
89 pdev
= pci_get_slot(bus
, PCI_DEVFN(path
->dev
, path
->fn
));
91 printk(KERN_WARNING PREFIX
92 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
93 segment
, bus
->number
, path
->dev
, path
->fn
);
98 bus
= pdev
->subordinate
;
101 printk(KERN_WARNING PREFIX
102 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
103 segment
, scope
->bus
, path
->dev
, path
->fn
);
107 if ((scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_ENDPOINT
&& \
108 pdev
->subordinate
) || (scope
->entry_type
== \
109 ACPI_DMAR_SCOPE_TYPE_BRIDGE
&& !pdev
->subordinate
)) {
111 printk(KERN_WARNING PREFIX
112 "Device scope type does not match for %s\n",
120 static int __init
dmar_parse_dev_scope(void *start
, void *end
, int *cnt
,
121 struct pci_dev
***devices
, u16 segment
)
123 struct acpi_dmar_device_scope
*scope
;
129 while (start
< end
) {
131 if (scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_ENDPOINT
||
132 scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_BRIDGE
)
134 else if (scope
->entry_type
!= ACPI_DMAR_SCOPE_TYPE_IOAPIC
) {
135 printk(KERN_WARNING PREFIX
136 "Unsupported device scope\n");
138 start
+= scope
->length
;
143 *devices
= kcalloc(*cnt
, sizeof(struct pci_dev
*), GFP_KERNEL
);
149 while (start
< end
) {
151 if (scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_ENDPOINT
||
152 scope
->entry_type
== ACPI_DMAR_SCOPE_TYPE_BRIDGE
) {
153 ret
= dmar_parse_one_dev_scope(scope
,
154 &(*devices
)[index
], segment
);
161 start
+= scope
->length
;
168 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
169 * structure which uniquely represent one DMA remapping hardware unit
170 * present in the platform
173 dmar_parse_one_drhd(struct acpi_dmar_header
*header
)
175 struct acpi_dmar_hardware_unit
*drhd
;
176 struct dmar_drhd_unit
*dmaru
;
179 drhd
= (struct acpi_dmar_hardware_unit
*)header
;
180 dmaru
= kzalloc(sizeof(*dmaru
), GFP_KERNEL
);
185 dmaru
->reg_base_addr
= drhd
->address
;
186 dmaru
->segment
= drhd
->segment
;
187 dmaru
->include_all
= drhd
->flags
& 0x1; /* BIT0: INCLUDE_ALL */
189 ret
= alloc_iommu(dmaru
);
194 dmar_register_drhd_unit(dmaru
);
198 static int __init
dmar_parse_dev(struct dmar_drhd_unit
*dmaru
)
200 struct acpi_dmar_hardware_unit
*drhd
;
203 drhd
= (struct acpi_dmar_hardware_unit
*) dmaru
->hdr
;
205 if (dmaru
->include_all
)
208 ret
= dmar_parse_dev_scope((void *)(drhd
+ 1),
209 ((void *)drhd
) + drhd
->header
.length
,
210 &dmaru
->devices_cnt
, &dmaru
->devices
,
213 list_del(&dmaru
->list
);
220 LIST_HEAD(dmar_rmrr_units
);
222 static void __init
dmar_register_rmrr_unit(struct dmar_rmrr_unit
*rmrr
)
224 list_add(&rmrr
->list
, &dmar_rmrr_units
);
229 dmar_parse_one_rmrr(struct acpi_dmar_header
*header
)
231 struct acpi_dmar_reserved_memory
*rmrr
;
232 struct dmar_rmrr_unit
*rmrru
;
234 rmrru
= kzalloc(sizeof(*rmrru
), GFP_KERNEL
);
239 rmrr
= (struct acpi_dmar_reserved_memory
*)header
;
240 rmrru
->base_address
= rmrr
->base_address
;
241 rmrru
->end_address
= rmrr
->end_address
;
243 dmar_register_rmrr_unit(rmrru
);
248 rmrr_parse_dev(struct dmar_rmrr_unit
*rmrru
)
250 struct acpi_dmar_reserved_memory
*rmrr
;
253 rmrr
= (struct acpi_dmar_reserved_memory
*) rmrru
->hdr
;
254 ret
= dmar_parse_dev_scope((void *)(rmrr
+ 1),
255 ((void *)rmrr
) + rmrr
->header
.length
,
256 &rmrru
->devices_cnt
, &rmrru
->devices
, rmrr
->segment
);
258 if (ret
|| (rmrru
->devices_cnt
== 0)) {
259 list_del(&rmrru
->list
);
265 static LIST_HEAD(dmar_atsr_units
);
267 static int __init
dmar_parse_one_atsr(struct acpi_dmar_header
*hdr
)
269 struct acpi_dmar_atsr
*atsr
;
270 struct dmar_atsr_unit
*atsru
;
272 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
273 atsru
= kzalloc(sizeof(*atsru
), GFP_KERNEL
);
278 atsru
->include_all
= atsr
->flags
& 0x1;
280 list_add(&atsru
->list
, &dmar_atsr_units
);
285 static int __init
atsr_parse_dev(struct dmar_atsr_unit
*atsru
)
288 struct acpi_dmar_atsr
*atsr
;
290 if (atsru
->include_all
)
293 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
294 rc
= dmar_parse_dev_scope((void *)(atsr
+ 1),
295 (void *)atsr
+ atsr
->header
.length
,
296 &atsru
->devices_cnt
, &atsru
->devices
,
298 if (rc
|| !atsru
->devices_cnt
) {
299 list_del(&atsru
->list
);
306 int dmar_find_matched_atsr_unit(struct pci_dev
*dev
)
310 struct acpi_dmar_atsr
*atsr
;
311 struct dmar_atsr_unit
*atsru
;
313 dev
= pci_physfn(dev
);
315 list_for_each_entry(atsru
, &dmar_atsr_units
, list
) {
316 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
317 if (atsr
->segment
== pci_domain_nr(dev
->bus
))
324 for (bus
= dev
->bus
; bus
; bus
= bus
->parent
) {
325 struct pci_dev
*bridge
= bus
->self
;
327 if (!bridge
|| !pci_is_pcie(bridge
) ||
328 bridge
->pcie_type
== PCI_EXP_TYPE_PCI_BRIDGE
)
331 if (bridge
->pcie_type
== PCI_EXP_TYPE_ROOT_PORT
) {
332 for (i
= 0; i
< atsru
->devices_cnt
; i
++)
333 if (atsru
->devices
[i
] == bridge
)
339 if (atsru
->include_all
)
346 #ifdef CONFIG_ACPI_NUMA
348 dmar_parse_one_rhsa(struct acpi_dmar_header
*header
)
350 struct acpi_dmar_rhsa
*rhsa
;
351 struct dmar_drhd_unit
*drhd
;
353 rhsa
= (struct acpi_dmar_rhsa
*)header
;
354 for_each_drhd_unit(drhd
) {
355 if (drhd
->reg_base_addr
== rhsa
->base_address
) {
356 int node
= acpi_map_pxm_to_node(rhsa
->proximity_domain
);
358 if (!node_online(node
))
360 drhd
->iommu
->node
= node
;
365 1, TAINT_FIRMWARE_WORKAROUND
,
366 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
367 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
369 dmi_get_system_info(DMI_BIOS_VENDOR
),
370 dmi_get_system_info(DMI_BIOS_VERSION
),
371 dmi_get_system_info(DMI_PRODUCT_VERSION
));
378 dmar_table_print_dmar_entry(struct acpi_dmar_header
*header
)
380 struct acpi_dmar_hardware_unit
*drhd
;
381 struct acpi_dmar_reserved_memory
*rmrr
;
382 struct acpi_dmar_atsr
*atsr
;
383 struct acpi_dmar_rhsa
*rhsa
;
385 switch (header
->type
) {
386 case ACPI_DMAR_TYPE_HARDWARE_UNIT
:
387 drhd
= container_of(header
, struct acpi_dmar_hardware_unit
,
389 printk (KERN_INFO PREFIX
390 "DRHD base: %#016Lx flags: %#x\n",
391 (unsigned long long)drhd
->address
, drhd
->flags
);
393 case ACPI_DMAR_TYPE_RESERVED_MEMORY
:
394 rmrr
= container_of(header
, struct acpi_dmar_reserved_memory
,
396 printk (KERN_INFO PREFIX
397 "RMRR base: %#016Lx end: %#016Lx\n",
398 (unsigned long long)rmrr
->base_address
,
399 (unsigned long long)rmrr
->end_address
);
401 case ACPI_DMAR_TYPE_ATSR
:
402 atsr
= container_of(header
, struct acpi_dmar_atsr
, header
);
403 printk(KERN_INFO PREFIX
"ATSR flags: %#x\n", atsr
->flags
);
405 case ACPI_DMAR_HARDWARE_AFFINITY
:
406 rhsa
= container_of(header
, struct acpi_dmar_rhsa
, header
);
407 printk(KERN_INFO PREFIX
"RHSA base: %#016Lx proximity domain: %#x\n",
408 (unsigned long long)rhsa
->base_address
,
409 rhsa
->proximity_domain
);
415 * dmar_table_detect - checks to see if the platform supports DMAR devices
417 static int __init
dmar_table_detect(void)
419 acpi_status status
= AE_OK
;
421 /* if we could find DMAR table, then there are DMAR devices */
422 status
= acpi_get_table_with_size(ACPI_SIG_DMAR
, 0,
423 (struct acpi_table_header
**)&dmar_tbl
,
426 if (ACPI_SUCCESS(status
) && !dmar_tbl
) {
427 printk (KERN_WARNING PREFIX
"Unable to map DMAR\n");
428 status
= AE_NOT_FOUND
;
431 return (ACPI_SUCCESS(status
) ? 1 : 0);
435 * parse_dmar_table - parses the DMA reporting table
438 parse_dmar_table(void)
440 struct acpi_table_dmar
*dmar
;
441 struct acpi_dmar_header
*entry_header
;
445 * Do it again, earlier dmar_tbl mapping could be mapped with
451 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
452 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
454 dmar_tbl
= tboot_get_dmar_table(dmar_tbl
);
456 dmar
= (struct acpi_table_dmar
*)dmar_tbl
;
460 if (dmar
->width
< PAGE_SHIFT
- 1) {
461 printk(KERN_WARNING PREFIX
"Invalid DMAR haw\n");
465 printk (KERN_INFO PREFIX
"Host address width %d\n",
468 entry_header
= (struct acpi_dmar_header
*)(dmar
+ 1);
469 while (((unsigned long)entry_header
) <
470 (((unsigned long)dmar
) + dmar_tbl
->length
)) {
471 /* Avoid looping forever on bad ACPI tables */
472 if (entry_header
->length
== 0) {
473 printk(KERN_WARNING PREFIX
474 "Invalid 0-length structure\n");
479 dmar_table_print_dmar_entry(entry_header
);
481 switch (entry_header
->type
) {
482 case ACPI_DMAR_TYPE_HARDWARE_UNIT
:
483 ret
= dmar_parse_one_drhd(entry_header
);
485 case ACPI_DMAR_TYPE_RESERVED_MEMORY
:
487 ret
= dmar_parse_one_rmrr(entry_header
);
490 case ACPI_DMAR_TYPE_ATSR
:
492 ret
= dmar_parse_one_atsr(entry_header
);
495 case ACPI_DMAR_HARDWARE_AFFINITY
:
496 #ifdef CONFIG_ACPI_NUMA
497 ret
= dmar_parse_one_rhsa(entry_header
);
501 printk(KERN_WARNING PREFIX
502 "Unknown DMAR structure type %d\n",
504 ret
= 0; /* for forward compatibility */
510 entry_header
= ((void *)entry_header
+ entry_header
->length
);
515 static int dmar_pci_device_match(struct pci_dev
*devices
[], int cnt
,
521 for (index
= 0; index
< cnt
; index
++)
522 if (dev
== devices
[index
])
525 /* Check our parent */
526 dev
= dev
->bus
->self
;
532 struct dmar_drhd_unit
*
533 dmar_find_matched_drhd_unit(struct pci_dev
*dev
)
535 struct dmar_drhd_unit
*dmaru
= NULL
;
536 struct acpi_dmar_hardware_unit
*drhd
;
538 dev
= pci_physfn(dev
);
540 list_for_each_entry(dmaru
, &dmar_drhd_units
, list
) {
541 drhd
= container_of(dmaru
->hdr
,
542 struct acpi_dmar_hardware_unit
,
545 if (dmaru
->include_all
&&
546 drhd
->segment
== pci_domain_nr(dev
->bus
))
549 if (dmar_pci_device_match(dmaru
->devices
,
550 dmaru
->devices_cnt
, dev
))
557 int __init
dmar_dev_scope_init(void)
559 struct dmar_drhd_unit
*drhd
, *drhd_n
;
562 list_for_each_entry_safe(drhd
, drhd_n
, &dmar_drhd_units
, list
) {
563 ret
= dmar_parse_dev(drhd
);
570 struct dmar_rmrr_unit
*rmrr
, *rmrr_n
;
571 struct dmar_atsr_unit
*atsr
, *atsr_n
;
573 list_for_each_entry_safe(rmrr
, rmrr_n
, &dmar_rmrr_units
, list
) {
574 ret
= rmrr_parse_dev(rmrr
);
579 list_for_each_entry_safe(atsr
, atsr_n
, &dmar_atsr_units
, list
) {
580 ret
= atsr_parse_dev(atsr
);
591 int __init
dmar_table_init(void)
593 static int dmar_table_initialized
;
596 if (dmar_table_initialized
)
599 dmar_table_initialized
= 1;
601 ret
= parse_dmar_table();
604 printk(KERN_INFO PREFIX
"parse DMAR table failure.\n");
608 if (list_empty(&dmar_drhd_units
)) {
609 printk(KERN_INFO PREFIX
"No DMAR devices found\n");
614 if (list_empty(&dmar_rmrr_units
))
615 printk(KERN_INFO PREFIX
"No RMRR found\n");
617 if (list_empty(&dmar_atsr_units
))
618 printk(KERN_INFO PREFIX
"No ATSR found\n");
624 static void warn_invalid_dmar(u64 addr
, const char *message
)
627 1, TAINT_FIRMWARE_WORKAROUND
,
628 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
629 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
631 dmi_get_system_info(DMI_BIOS_VENDOR
),
632 dmi_get_system_info(DMI_BIOS_VERSION
),
633 dmi_get_system_info(DMI_PRODUCT_VERSION
));
636 int __init
check_zero_address(void)
638 struct acpi_table_dmar
*dmar
;
639 struct acpi_dmar_header
*entry_header
;
640 struct acpi_dmar_hardware_unit
*drhd
;
642 dmar
= (struct acpi_table_dmar
*)dmar_tbl
;
643 entry_header
= (struct acpi_dmar_header
*)(dmar
+ 1);
645 while (((unsigned long)entry_header
) <
646 (((unsigned long)dmar
) + dmar_tbl
->length
)) {
647 /* Avoid looping forever on bad ACPI tables */
648 if (entry_header
->length
== 0) {
649 printk(KERN_WARNING PREFIX
650 "Invalid 0-length structure\n");
654 if (entry_header
->type
== ACPI_DMAR_TYPE_HARDWARE_UNIT
) {
658 drhd
= (void *)entry_header
;
659 if (!drhd
->address
) {
660 warn_invalid_dmar(0, "");
664 addr
= early_ioremap(drhd
->address
, VTD_PAGE_SIZE
);
666 printk("IOMMU: can't validate: %llx\n", drhd
->address
);
669 cap
= dmar_readq(addr
+ DMAR_CAP_REG
);
670 ecap
= dmar_readq(addr
+ DMAR_ECAP_REG
);
671 early_iounmap(addr
, VTD_PAGE_SIZE
);
672 if (cap
== (uint64_t)-1 && ecap
== (uint64_t)-1) {
673 warn_invalid_dmar(drhd
->address
,
674 " returns all ones");
679 entry_header
= ((void *)entry_header
+ entry_header
->length
);
690 void __init
detect_intel_iommu(void)
694 ret
= dmar_table_detect();
696 ret
= check_zero_address();
698 #ifdef CONFIG_INTR_REMAP
699 struct acpi_table_dmar
*dmar
;
701 * for now we will disable dma-remapping when interrupt
702 * remapping is enabled.
703 * When support for queued invalidation for IOTLB invalidation
704 * is added, we will not need this any more.
706 dmar
= (struct acpi_table_dmar
*) dmar_tbl
;
707 if (ret
&& cpu_has_x2apic
&& dmar
->flags
& 0x1)
709 "Queued invalidation will be enabled to support "
710 "x2apic and Intr-remapping.\n");
713 if (ret
&& !no_iommu
&& !iommu_detected
&& !dmar_disabled
) {
715 /* Make sure ACS will be enabled */
721 x86_init
.iommu
.iommu_init
= intel_iommu_init
;
724 early_acpi_os_unmap_memory(dmar_tbl
, dmar_tbl_size
);
729 int alloc_iommu(struct dmar_drhd_unit
*drhd
)
731 struct intel_iommu
*iommu
;
734 static int iommu_allocated
= 0;
738 if (!drhd
->reg_base_addr
) {
739 warn_invalid_dmar(0, "");
743 iommu
= kzalloc(sizeof(*iommu
), GFP_KERNEL
);
747 iommu
->seq_id
= iommu_allocated
++;
748 sprintf (iommu
->name
, "dmar%d", iommu
->seq_id
);
750 iommu
->reg
= ioremap(drhd
->reg_base_addr
, VTD_PAGE_SIZE
);
752 printk(KERN_ERR
"IOMMU: can't map the region\n");
755 iommu
->cap
= dmar_readq(iommu
->reg
+ DMAR_CAP_REG
);
756 iommu
->ecap
= dmar_readq(iommu
->reg
+ DMAR_ECAP_REG
);
758 if (iommu
->cap
== (uint64_t)-1 && iommu
->ecap
== (uint64_t)-1) {
759 warn_invalid_dmar(drhd
->reg_base_addr
, " returns all ones");
764 agaw
= iommu_calculate_agaw(iommu
);
767 "Cannot get a valid agaw for iommu (seq_id = %d)\n",
771 msagaw
= iommu_calculate_max_sagaw(iommu
);
774 "Cannot get a valid max agaw for iommu (seq_id = %d)\n",
780 iommu
->msagaw
= msagaw
;
784 /* the registers might be more than one page */
785 map_size
= max_t(int, ecap_max_iotlb_offset(iommu
->ecap
),
786 cap_max_fault_reg_offset(iommu
->cap
));
787 map_size
= VTD_PAGE_ALIGN(map_size
);
788 if (map_size
> VTD_PAGE_SIZE
) {
790 iommu
->reg
= ioremap(drhd
->reg_base_addr
, map_size
);
792 printk(KERN_ERR
"IOMMU: can't map the region\n");
797 ver
= readl(iommu
->reg
+ DMAR_VER_REG
);
798 pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
800 (unsigned long long)drhd
->reg_base_addr
,
801 DMAR_VER_MAJOR(ver
), DMAR_VER_MINOR(ver
),
802 (unsigned long long)iommu
->cap
,
803 (unsigned long long)iommu
->ecap
);
805 spin_lock_init(&iommu
->register_lock
);
817 void free_iommu(struct intel_iommu
*iommu
)
823 free_dmar_iommu(iommu
);
832 * Reclaim all the submitted descriptors which have completed its work.
834 static inline void reclaim_free_desc(struct q_inval
*qi
)
836 while (qi
->desc_status
[qi
->free_tail
] == QI_DONE
||
837 qi
->desc_status
[qi
->free_tail
] == QI_ABORT
) {
838 qi
->desc_status
[qi
->free_tail
] = QI_FREE
;
839 qi
->free_tail
= (qi
->free_tail
+ 1) % QI_LENGTH
;
844 static int qi_check_fault(struct intel_iommu
*iommu
, int index
)
848 struct q_inval
*qi
= iommu
->qi
;
849 int wait_index
= (index
+ 1) % QI_LENGTH
;
851 if (qi
->desc_status
[wait_index
] == QI_ABORT
)
854 fault
= readl(iommu
->reg
+ DMAR_FSTS_REG
);
857 * If IQE happens, the head points to the descriptor associated
858 * with the error. No new descriptors are fetched until the IQE
861 if (fault
& DMA_FSTS_IQE
) {
862 head
= readl(iommu
->reg
+ DMAR_IQH_REG
);
863 if ((head
>> DMAR_IQ_SHIFT
) == index
) {
864 printk(KERN_ERR
"VT-d detected invalid descriptor: "
865 "low=%llx, high=%llx\n",
866 (unsigned long long)qi
->desc
[index
].low
,
867 (unsigned long long)qi
->desc
[index
].high
);
868 memcpy(&qi
->desc
[index
], &qi
->desc
[wait_index
],
869 sizeof(struct qi_desc
));
870 __iommu_flush_cache(iommu
, &qi
->desc
[index
],
871 sizeof(struct qi_desc
));
872 writel(DMA_FSTS_IQE
, iommu
->reg
+ DMAR_FSTS_REG
);
878 * If ITE happens, all pending wait_desc commands are aborted.
879 * No new descriptors are fetched until the ITE is cleared.
881 if (fault
& DMA_FSTS_ITE
) {
882 head
= readl(iommu
->reg
+ DMAR_IQH_REG
);
883 head
= ((head
>> DMAR_IQ_SHIFT
) - 1 + QI_LENGTH
) % QI_LENGTH
;
885 tail
= readl(iommu
->reg
+ DMAR_IQT_REG
);
886 tail
= ((tail
>> DMAR_IQ_SHIFT
) - 1 + QI_LENGTH
) % QI_LENGTH
;
888 writel(DMA_FSTS_ITE
, iommu
->reg
+ DMAR_FSTS_REG
);
891 if (qi
->desc_status
[head
] == QI_IN_USE
)
892 qi
->desc_status
[head
] = QI_ABORT
;
893 head
= (head
- 2 + QI_LENGTH
) % QI_LENGTH
;
894 } while (head
!= tail
);
896 if (qi
->desc_status
[wait_index
] == QI_ABORT
)
900 if (fault
& DMA_FSTS_ICE
)
901 writel(DMA_FSTS_ICE
, iommu
->reg
+ DMAR_FSTS_REG
);
907 * Submit the queued invalidation descriptor to the remapping
908 * hardware unit and wait for its completion.
910 int qi_submit_sync(struct qi_desc
*desc
, struct intel_iommu
*iommu
)
913 struct q_inval
*qi
= iommu
->qi
;
914 struct qi_desc
*hw
, wait_desc
;
915 int wait_index
, index
;
926 spin_lock_irqsave(&qi
->q_lock
, flags
);
927 while (qi
->free_cnt
< 3) {
928 spin_unlock_irqrestore(&qi
->q_lock
, flags
);
930 spin_lock_irqsave(&qi
->q_lock
, flags
);
933 index
= qi
->free_head
;
934 wait_index
= (index
+ 1) % QI_LENGTH
;
936 qi
->desc_status
[index
] = qi
->desc_status
[wait_index
] = QI_IN_USE
;
940 wait_desc
.low
= QI_IWD_STATUS_DATA(QI_DONE
) |
941 QI_IWD_STATUS_WRITE
| QI_IWD_TYPE
;
942 wait_desc
.high
= virt_to_phys(&qi
->desc_status
[wait_index
]);
944 hw
[wait_index
] = wait_desc
;
946 __iommu_flush_cache(iommu
, &hw
[index
], sizeof(struct qi_desc
));
947 __iommu_flush_cache(iommu
, &hw
[wait_index
], sizeof(struct qi_desc
));
949 qi
->free_head
= (qi
->free_head
+ 2) % QI_LENGTH
;
953 * update the HW tail register indicating the presence of
956 writel(qi
->free_head
<< DMAR_IQ_SHIFT
, iommu
->reg
+ DMAR_IQT_REG
);
958 while (qi
->desc_status
[wait_index
] != QI_DONE
) {
960 * We will leave the interrupts disabled, to prevent interrupt
961 * context to queue another cmd while a cmd is already submitted
962 * and waiting for completion on this cpu. This is to avoid
963 * a deadlock where the interrupt context can wait indefinitely
964 * for free slots in the queue.
966 rc
= qi_check_fault(iommu
, index
);
970 spin_unlock(&qi
->q_lock
);
972 spin_lock(&qi
->q_lock
);
975 qi
->desc_status
[index
] = QI_DONE
;
977 reclaim_free_desc(qi
);
978 spin_unlock_irqrestore(&qi
->q_lock
, flags
);
987 * Flush the global interrupt entry cache.
989 void qi_global_iec(struct intel_iommu
*iommu
)
993 desc
.low
= QI_IEC_TYPE
;
996 /* should never fail */
997 qi_submit_sync(&desc
, iommu
);
1000 void qi_flush_context(struct intel_iommu
*iommu
, u16 did
, u16 sid
, u8 fm
,
1003 struct qi_desc desc
;
1005 desc
.low
= QI_CC_FM(fm
) | QI_CC_SID(sid
) | QI_CC_DID(did
)
1006 | QI_CC_GRAN(type
) | QI_CC_TYPE
;
1009 qi_submit_sync(&desc
, iommu
);
1012 void qi_flush_iotlb(struct intel_iommu
*iommu
, u16 did
, u64 addr
,
1013 unsigned int size_order
, u64 type
)
1017 struct qi_desc desc
;
1020 if (cap_write_drain(iommu
->cap
))
1023 if (cap_read_drain(iommu
->cap
))
1026 desc
.low
= QI_IOTLB_DID(did
) | QI_IOTLB_DR(dr
) | QI_IOTLB_DW(dw
)
1027 | QI_IOTLB_GRAN(type
) | QI_IOTLB_TYPE
;
1028 desc
.high
= QI_IOTLB_ADDR(addr
) | QI_IOTLB_IH(ih
)
1029 | QI_IOTLB_AM(size_order
);
1031 qi_submit_sync(&desc
, iommu
);
1034 void qi_flush_dev_iotlb(struct intel_iommu
*iommu
, u16 sid
, u16 qdep
,
1035 u64 addr
, unsigned mask
)
1037 struct qi_desc desc
;
1040 BUG_ON(addr
& ((1 << (VTD_PAGE_SHIFT
+ mask
)) - 1));
1041 addr
|= (1 << (VTD_PAGE_SHIFT
+ mask
- 1)) - 1;
1042 desc
.high
= QI_DEV_IOTLB_ADDR(addr
) | QI_DEV_IOTLB_SIZE
;
1044 desc
.high
= QI_DEV_IOTLB_ADDR(addr
);
1046 if (qdep
>= QI_DEV_IOTLB_MAX_INVS
)
1049 desc
.low
= QI_DEV_IOTLB_SID(sid
) | QI_DEV_IOTLB_QDEP(qdep
) |
1052 qi_submit_sync(&desc
, iommu
);
1056 * Disable Queued Invalidation interface.
1058 void dmar_disable_qi(struct intel_iommu
*iommu
)
1060 unsigned long flags
;
1062 cycles_t start_time
= get_cycles();
1064 if (!ecap_qis(iommu
->ecap
))
1067 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1069 sts
= dmar_readq(iommu
->reg
+ DMAR_GSTS_REG
);
1070 if (!(sts
& DMA_GSTS_QIES
))
1074 * Give a chance to HW to complete the pending invalidation requests.
1076 while ((readl(iommu
->reg
+ DMAR_IQT_REG
) !=
1077 readl(iommu
->reg
+ DMAR_IQH_REG
)) &&
1078 (DMAR_OPERATION_TIMEOUT
> (get_cycles() - start_time
)))
1081 iommu
->gcmd
&= ~DMA_GCMD_QIE
;
1082 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1084 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
, readl
,
1085 !(sts
& DMA_GSTS_QIES
), sts
);
1087 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1091 * Enable queued invalidation.
1093 static void __dmar_enable_qi(struct intel_iommu
*iommu
)
1096 unsigned long flags
;
1097 struct q_inval
*qi
= iommu
->qi
;
1099 qi
->free_head
= qi
->free_tail
= 0;
1100 qi
->free_cnt
= QI_LENGTH
;
1102 spin_lock_irqsave(&iommu
->register_lock
, flags
);
1104 /* write zero to the tail reg */
1105 writel(0, iommu
->reg
+ DMAR_IQT_REG
);
1107 dmar_writeq(iommu
->reg
+ DMAR_IQA_REG
, virt_to_phys(qi
->desc
));
1109 iommu
->gcmd
|= DMA_GCMD_QIE
;
1110 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1112 /* Make sure hardware complete it */
1113 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
, readl
, (sts
& DMA_GSTS_QIES
), sts
);
1115 spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1119 * Enable Queued Invalidation interface. This is a must to support
1120 * interrupt-remapping. Also used by DMA-remapping, which replaces
1121 * register based IOTLB invalidation.
1123 int dmar_enable_qi(struct intel_iommu
*iommu
)
1126 struct page
*desc_page
;
1128 if (!ecap_qis(iommu
->ecap
))
1132 * queued invalidation is already setup and enabled.
1137 iommu
->qi
= kmalloc(sizeof(*qi
), GFP_ATOMIC
);
1144 desc_page
= alloc_pages_node(iommu
->node
, GFP_ATOMIC
| __GFP_ZERO
, 0);
1151 qi
->desc
= page_address(desc_page
);
1153 qi
->desc_status
= kmalloc(QI_LENGTH
* sizeof(int), GFP_ATOMIC
);
1154 if (!qi
->desc_status
) {
1155 free_page((unsigned long) qi
->desc
);
1161 qi
->free_head
= qi
->free_tail
= 0;
1162 qi
->free_cnt
= QI_LENGTH
;
1164 spin_lock_init(&qi
->q_lock
);
1166 __dmar_enable_qi(iommu
);
1171 /* iommu interrupt handling. Most stuff are MSI-like. */
1179 static const char *dma_remap_fault_reasons
[] =
1182 "Present bit in root entry is clear",
1183 "Present bit in context entry is clear",
1184 "Invalid context entry",
1185 "Access beyond MGAW",
1186 "PTE Write access is not set",
1187 "PTE Read access is not set",
1188 "Next page table ptr is invalid",
1189 "Root table address invalid",
1190 "Context table ptr is invalid",
1191 "non-zero reserved fields in RTP",
1192 "non-zero reserved fields in CTP",
1193 "non-zero reserved fields in PTE",
1196 static const char *intr_remap_fault_reasons
[] =
1198 "Detected reserved fields in the decoded interrupt-remapped request",
1199 "Interrupt index exceeded the interrupt-remapping table size",
1200 "Present field in the IRTE entry is clear",
1201 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1202 "Detected reserved fields in the IRTE entry",
1203 "Blocked a compatibility format interrupt request",
1204 "Blocked an interrupt request due to source-id verification failure",
1207 #define MAX_FAULT_REASON_IDX (ARRAY_SIZE(fault_reason_strings) - 1)
1209 const char *dmar_get_fault_reason(u8 fault_reason
, int *fault_type
)
1211 if (fault_reason
>= 0x20 && (fault_reason
<= 0x20 +
1212 ARRAY_SIZE(intr_remap_fault_reasons
))) {
1213 *fault_type
= INTR_REMAP
;
1214 return intr_remap_fault_reasons
[fault_reason
- 0x20];
1215 } else if (fault_reason
< ARRAY_SIZE(dma_remap_fault_reasons
)) {
1216 *fault_type
= DMA_REMAP
;
1217 return dma_remap_fault_reasons
[fault_reason
];
1219 *fault_type
= UNKNOWN
;
1224 void dmar_msi_unmask(unsigned int irq
)
1226 struct intel_iommu
*iommu
= get_irq_data(irq
);
1230 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1231 writel(0, iommu
->reg
+ DMAR_FECTL_REG
);
1232 /* Read a reg to force flush the post write */
1233 readl(iommu
->reg
+ DMAR_FECTL_REG
);
1234 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1237 void dmar_msi_mask(unsigned int irq
)
1240 struct intel_iommu
*iommu
= get_irq_data(irq
);
1243 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1244 writel(DMA_FECTL_IM
, iommu
->reg
+ DMAR_FECTL_REG
);
1245 /* Read a reg to force flush the post write */
1246 readl(iommu
->reg
+ DMAR_FECTL_REG
);
1247 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1250 void dmar_msi_write(int irq
, struct msi_msg
*msg
)
1252 struct intel_iommu
*iommu
= get_irq_data(irq
);
1255 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1256 writel(msg
->data
, iommu
->reg
+ DMAR_FEDATA_REG
);
1257 writel(msg
->address_lo
, iommu
->reg
+ DMAR_FEADDR_REG
);
1258 writel(msg
->address_hi
, iommu
->reg
+ DMAR_FEUADDR_REG
);
1259 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1262 void dmar_msi_read(int irq
, struct msi_msg
*msg
)
1264 struct intel_iommu
*iommu
= get_irq_data(irq
);
1267 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1268 msg
->data
= readl(iommu
->reg
+ DMAR_FEDATA_REG
);
1269 msg
->address_lo
= readl(iommu
->reg
+ DMAR_FEADDR_REG
);
1270 msg
->address_hi
= readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
1271 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1274 static int dmar_fault_do_one(struct intel_iommu
*iommu
, int type
,
1275 u8 fault_reason
, u16 source_id
, unsigned long long addr
)
1280 reason
= dmar_get_fault_reason(fault_reason
, &fault_type
);
1282 if (fault_type
== INTR_REMAP
)
1283 printk(KERN_ERR
"INTR-REMAP: Request device [[%02x:%02x.%d] "
1284 "fault index %llx\n"
1285 "INTR-REMAP:[fault reason %02d] %s\n",
1286 (source_id
>> 8), PCI_SLOT(source_id
& 0xFF),
1287 PCI_FUNC(source_id
& 0xFF), addr
>> 48,
1288 fault_reason
, reason
);
1291 "DMAR:[%s] Request device [%02x:%02x.%d] "
1292 "fault addr %llx \n"
1293 "DMAR:[fault reason %02d] %s\n",
1294 (type
? "DMA Read" : "DMA Write"),
1295 (source_id
>> 8), PCI_SLOT(source_id
& 0xFF),
1296 PCI_FUNC(source_id
& 0xFF), addr
, fault_reason
, reason
);
1300 #define PRIMARY_FAULT_REG_LEN (16)
1301 irqreturn_t
dmar_fault(int irq
, void *dev_id
)
1303 struct intel_iommu
*iommu
= dev_id
;
1304 int reg
, fault_index
;
1308 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1309 fault_status
= readl(iommu
->reg
+ DMAR_FSTS_REG
);
1311 printk(KERN_ERR
"DRHD: handling fault status reg %x\n",
1314 /* TBD: ignore advanced fault log currently */
1315 if (!(fault_status
& DMA_FSTS_PPF
))
1318 fault_index
= dma_fsts_fault_record_index(fault_status
);
1319 reg
= cap_fault_reg_offset(iommu
->cap
);
1327 /* highest 32 bits */
1328 data
= readl(iommu
->reg
+ reg
+
1329 fault_index
* PRIMARY_FAULT_REG_LEN
+ 12);
1330 if (!(data
& DMA_FRCD_F
))
1333 fault_reason
= dma_frcd_fault_reason(data
);
1334 type
= dma_frcd_type(data
);
1336 data
= readl(iommu
->reg
+ reg
+
1337 fault_index
* PRIMARY_FAULT_REG_LEN
+ 8);
1338 source_id
= dma_frcd_source_id(data
);
1340 guest_addr
= dmar_readq(iommu
->reg
+ reg
+
1341 fault_index
* PRIMARY_FAULT_REG_LEN
);
1342 guest_addr
= dma_frcd_page_addr(guest_addr
);
1343 /* clear the fault */
1344 writel(DMA_FRCD_F
, iommu
->reg
+ reg
+
1345 fault_index
* PRIMARY_FAULT_REG_LEN
+ 12);
1347 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1349 dmar_fault_do_one(iommu
, type
, fault_reason
,
1350 source_id
, guest_addr
);
1353 if (fault_index
>= cap_num_fault_regs(iommu
->cap
))
1355 spin_lock_irqsave(&iommu
->register_lock
, flag
);
1358 /* clear all the other faults */
1359 fault_status
= readl(iommu
->reg
+ DMAR_FSTS_REG
);
1360 writel(fault_status
, iommu
->reg
+ DMAR_FSTS_REG
);
1362 spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1366 int dmar_set_interrupt(struct intel_iommu
*iommu
)
1371 * Check if the fault interrupt is already initialized.
1378 printk(KERN_ERR
"IOMMU: no free vectors\n");
1382 set_irq_data(irq
, iommu
);
1385 ret
= arch_setup_dmar_msi(irq
);
1387 set_irq_data(irq
, NULL
);
1393 ret
= request_irq(irq
, dmar_fault
, 0, iommu
->name
, iommu
);
1395 printk(KERN_ERR
"IOMMU: can't request irq\n");
1399 int __init
enable_drhd_fault_handling(void)
1401 struct dmar_drhd_unit
*drhd
;
1404 * Enable fault control interrupt.
1406 for_each_drhd_unit(drhd
) {
1408 struct intel_iommu
*iommu
= drhd
->iommu
;
1409 ret
= dmar_set_interrupt(iommu
);
1412 printk(KERN_ERR
"DRHD %Lx: failed to enable fault, "
1413 " interrupt, ret %d\n",
1414 (unsigned long long)drhd
->reg_base_addr
, ret
);
1423 * Re-enable Queued Invalidation interface.
1425 int dmar_reenable_qi(struct intel_iommu
*iommu
)
1427 if (!ecap_qis(iommu
->ecap
))
1434 * First disable queued invalidation.
1436 dmar_disable_qi(iommu
);
1438 * Then enable queued invalidation again. Since there is no pending
1439 * invalidation requests now, it's safe to re-enable queued
1442 __dmar_enable_qi(iommu
);
1448 * Check interrupt remapping support in DMAR table description.
1450 int __init
dmar_ir_support(void)
1452 struct acpi_table_dmar
*dmar
;
1453 dmar
= (struct acpi_table_dmar
*)dmar_tbl
;
1456 return dmar
->flags
& 0x1;