2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency
= 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency
= 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG
;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity
= 2000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity
= 2000000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency
= 3;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly
;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield
;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity
= 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity
= 1000000UL;
90 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
92 static const struct sched_class fair_sched_class
;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct
*task_of(struct sched_entity
*se
)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se
));
114 return container_of(se
, struct task_struct
, se
);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
143 return cfs_rq
->tg
->cfs_rq
[this_cpu
];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
152 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
154 if (se
->cfs_rq
== pse
->cfs_rq
)
160 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity
*se
)
170 for_each_sched_entity(se
)
177 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
179 int se_depth
, pse_depth
;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
188 /* First walk up until both entities are at same depth */
189 se_depth
= depth_se(*se
);
190 pse_depth
= depth_se(*pse
);
192 while (se_depth
> pse_depth
) {
194 *se
= parent_entity(*se
);
197 while (pse_depth
> se_depth
) {
199 *pse
= parent_entity(*pse
);
202 while (!is_same_group(*se
, *pse
)) {
203 *se
= parent_entity(*se
);
204 *pse
= parent_entity(*pse
);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct
*task_of(struct sched_entity
*se
)
212 return container_of(se
, struct task_struct
, se
);
215 static inline struct rq
*rq_of(struct cfs_rq
*cfs_rq
)
217 return container_of(cfs_rq
, struct rq
, cfs
);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq
*task_cfs_rq(struct task_struct
*p
)
227 return &task_rq(p
)->cfs
;
230 static inline struct cfs_rq
*cfs_rq_of(struct sched_entity
*se
)
232 struct task_struct
*p
= task_of(se
);
233 struct rq
*rq
= task_rq(p
);
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq
*group_cfs_rq(struct sched_entity
*grp
)
244 static inline struct cfs_rq
*cpu_cfs_rq(struct cfs_rq
*cfs_rq
, int this_cpu
)
246 return &cpu_rq(this_cpu
)->cfs
;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
253 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
258 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
264 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64
max_vruntime(u64 min_vruntime
, u64 vruntime
)
277 s64 delta
= (s64
)(vruntime
- min_vruntime
);
279 min_vruntime
= vruntime
;
284 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
286 s64 delta
= (s64
)(vruntime
- min_vruntime
);
288 min_vruntime
= vruntime
;
293 static inline int entity_before(struct sched_entity
*a
,
294 struct sched_entity
*b
)
296 return (s64
)(a
->vruntime
- b
->vruntime
) < 0;
299 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
301 return se
->vruntime
- cfs_rq
->min_vruntime
;
304 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
306 u64 vruntime
= cfs_rq
->min_vruntime
;
309 vruntime
= cfs_rq
->curr
->vruntime
;
311 if (cfs_rq
->rb_leftmost
) {
312 struct sched_entity
*se
= rb_entry(cfs_rq
->rb_leftmost
,
317 vruntime
= se
->vruntime
;
319 vruntime
= min_vruntime(vruntime
, se
->vruntime
);
322 cfs_rq
->min_vruntime
= max_vruntime(cfs_rq
->min_vruntime
, vruntime
);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
330 struct rb_node
**link
= &cfs_rq
->tasks_timeline
.rb_node
;
331 struct rb_node
*parent
= NULL
;
332 struct sched_entity
*entry
;
333 s64 key
= entity_key(cfs_rq
, se
);
337 * Find the right place in the rbtree:
341 entry
= rb_entry(parent
, struct sched_entity
, run_node
);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key
< entity_key(cfs_rq
, entry
)) {
347 link
= &parent
->rb_left
;
349 link
= &parent
->rb_right
;
355 * Maintain a cache of leftmost tree entries (it is frequently
359 cfs_rq
->rb_leftmost
= &se
->run_node
;
361 rb_link_node(&se
->run_node
, parent
, link
);
362 rb_insert_color(&se
->run_node
, &cfs_rq
->tasks_timeline
);
365 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
367 if (cfs_rq
->rb_leftmost
== &se
->run_node
) {
368 struct rb_node
*next_node
;
370 next_node
= rb_next(&se
->run_node
);
371 cfs_rq
->rb_leftmost
= next_node
;
374 rb_erase(&se
->run_node
, &cfs_rq
->tasks_timeline
);
377 static struct sched_entity
*__pick_next_entity(struct cfs_rq
*cfs_rq
)
379 struct rb_node
*left
= cfs_rq
->rb_leftmost
;
384 return rb_entry(left
, struct sched_entity
, run_node
);
387 static struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
389 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
);
394 return rb_entry(last
, struct sched_entity
, run_node
);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table
*table
, int write
,
403 void __user
*buffer
, size_t *lenp
,
406 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
407 int factor
= get_update_sysctl_factor();
412 sched_nr_latency
= DIV_ROUND_UP(sysctl_sched_latency
,
413 sysctl_sched_min_granularity
);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity
);
418 WRT_SYSCTL(sched_latency
);
419 WRT_SYSCTL(sched_wakeup_granularity
);
420 WRT_SYSCTL(sched_shares_ratelimit
);
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta
, struct sched_entity
*se
)
433 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
434 delta
= calc_delta_mine(delta
, NICE_0_LOAD
, &se
->load
);
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64
__sched_period(unsigned long nr_running
)
449 u64 period
= sysctl_sched_latency
;
450 unsigned long nr_latency
= sched_nr_latency
;
452 if (unlikely(nr_running
> nr_latency
)) {
453 period
= sysctl_sched_min_granularity
;
454 period
*= nr_running
;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
466 static u64
sched_slice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
468 u64 slice
= __sched_period(cfs_rq
->nr_running
+ !se
->on_rq
);
470 for_each_sched_entity(se
) {
471 struct load_weight
*load
;
472 struct load_weight lw
;
474 cfs_rq
= cfs_rq_of(se
);
475 load
= &cfs_rq
->load
;
477 if (unlikely(!se
->on_rq
)) {
480 update_load_add(&lw
, se
->load
.weight
);
483 slice
= calc_delta_mine(slice
, se
->load
.weight
, load
);
489 * We calculate the vruntime slice of a to be inserted task
493 static u64
sched_vslice(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
495 return calc_delta_fair(sched_slice(cfs_rq
, se
), se
);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
503 __update_curr(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
,
504 unsigned long delta_exec
)
506 unsigned long delta_exec_weighted
;
508 schedstat_set(curr
->statistics
.exec_max
,
509 max((u64
)delta_exec
, curr
->statistics
.exec_max
));
511 curr
->sum_exec_runtime
+= delta_exec
;
512 schedstat_add(cfs_rq
, exec_clock
, delta_exec
);
513 delta_exec_weighted
= calc_delta_fair(delta_exec
, curr
);
515 curr
->vruntime
+= delta_exec_weighted
;
516 update_min_vruntime(cfs_rq
);
519 static void update_curr(struct cfs_rq
*cfs_rq
)
521 struct sched_entity
*curr
= cfs_rq
->curr
;
522 u64 now
= rq_of(cfs_rq
)->clock
;
523 unsigned long delta_exec
;
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
533 delta_exec
= (unsigned long)(now
- curr
->exec_start
);
537 __update_curr(cfs_rq
, curr
, delta_exec
);
538 curr
->exec_start
= now
;
540 if (entity_is_task(curr
)) {
541 struct task_struct
*curtask
= task_of(curr
);
543 trace_sched_stat_runtime(curtask
, delta_exec
, curr
->vruntime
);
544 cpuacct_charge(curtask
, delta_exec
);
545 account_group_exec_runtime(curtask
, delta_exec
);
550 update_stats_wait_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
552 schedstat_set(se
->statistics
.wait_start
, rq_of(cfs_rq
)->clock
);
556 * Task is being enqueued - update stats:
558 static void update_stats_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
564 if (se
!= cfs_rq
->curr
)
565 update_stats_wait_start(cfs_rq
, se
);
569 update_stats_wait_end(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
571 schedstat_set(se
->statistics
.wait_max
, max(se
->statistics
.wait_max
,
572 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
));
573 schedstat_set(se
->statistics
.wait_count
, se
->statistics
.wait_count
+ 1);
574 schedstat_set(se
->statistics
.wait_sum
, se
->statistics
.wait_sum
+
575 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
576 #ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se
)) {
578 trace_sched_stat_wait(task_of(se
),
579 rq_of(cfs_rq
)->clock
- se
->statistics
.wait_start
);
582 schedstat_set(se
->statistics
.wait_start
, 0);
586 update_stats_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
589 * Mark the end of the wait period if dequeueing a
592 if (se
!= cfs_rq
->curr
)
593 update_stats_wait_end(cfs_rq
, se
);
597 * We are picking a new current task - update its stats:
600 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
603 * We are starting a new run period:
605 se
->exec_start
= rq_of(cfs_rq
)->clock
;
608 /**************************************************
609 * Scheduling class queueing methods:
612 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
614 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
616 cfs_rq
->task_weight
+= weight
;
620 add_cfs_task_weight(struct cfs_rq
*cfs_rq
, unsigned long weight
)
626 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
628 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
629 if (!parent_entity(se
))
630 inc_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
631 if (entity_is_task(se
)) {
632 add_cfs_task_weight(cfs_rq
, se
->load
.weight
);
633 list_add(&se
->group_node
, &cfs_rq
->tasks
);
635 cfs_rq
->nr_running
++;
640 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
642 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
643 if (!parent_entity(se
))
644 dec_cpu_load(rq_of(cfs_rq
), se
->load
.weight
);
645 if (entity_is_task(se
)) {
646 add_cfs_task_weight(cfs_rq
, -se
->load
.weight
);
647 list_del_init(&se
->group_node
);
649 cfs_rq
->nr_running
--;
653 static void enqueue_sleeper(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
655 #ifdef CONFIG_SCHEDSTATS
656 struct task_struct
*tsk
= NULL
;
658 if (entity_is_task(se
))
661 if (se
->statistics
.sleep_start
) {
662 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.sleep_start
;
667 if (unlikely(delta
> se
->statistics
.sleep_max
))
668 se
->statistics
.sleep_max
= delta
;
670 se
->statistics
.sleep_start
= 0;
671 se
->statistics
.sum_sleep_runtime
+= delta
;
674 account_scheduler_latency(tsk
, delta
>> 10, 1);
675 trace_sched_stat_sleep(tsk
, delta
);
678 if (se
->statistics
.block_start
) {
679 u64 delta
= rq_of(cfs_rq
)->clock
- se
->statistics
.block_start
;
684 if (unlikely(delta
> se
->statistics
.block_max
))
685 se
->statistics
.block_max
= delta
;
687 se
->statistics
.block_start
= 0;
688 se
->statistics
.sum_sleep_runtime
+= delta
;
691 if (tsk
->in_iowait
) {
692 se
->statistics
.iowait_sum
+= delta
;
693 se
->statistics
.iowait_count
++;
694 trace_sched_stat_iowait(tsk
, delta
);
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
702 if (unlikely(prof_on
== SLEEP_PROFILING
)) {
703 profile_hits(SLEEP_PROFILING
,
704 (void *)get_wchan(tsk
),
707 account_scheduler_latency(tsk
, delta
>> 10, 0);
713 static void check_spread(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
715 #ifdef CONFIG_SCHED_DEBUG
716 s64 d
= se
->vruntime
- cfs_rq
->min_vruntime
;
721 if (d
> 3*sysctl_sched_latency
)
722 schedstat_inc(cfs_rq
, nr_spread_over
);
727 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int initial
)
729 u64 vruntime
= cfs_rq
->min_vruntime
;
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
737 if (initial
&& sched_feat(START_DEBIT
))
738 vruntime
+= sched_vslice(cfs_rq
, se
);
740 /* sleeps up to a single latency don't count. */
742 unsigned long thresh
= sysctl_sched_latency
;
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
748 if (sched_feat(GENTLE_FAIR_SLEEPERS
))
754 /* ensure we never gain time by being placed backwards. */
755 vruntime
= max_vruntime(se
->vruntime
, vruntime
);
757 se
->vruntime
= vruntime
;
761 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
767 if (!(flags
& ENQUEUE_WAKEUP
) || (flags
& ENQUEUE_WAKING
))
768 se
->vruntime
+= cfs_rq
->min_vruntime
;
771 * Update run-time statistics of the 'current'.
774 account_entity_enqueue(cfs_rq
, se
);
776 if (flags
& ENQUEUE_WAKEUP
) {
777 place_entity(cfs_rq
, se
, 0);
778 enqueue_sleeper(cfs_rq
, se
);
781 update_stats_enqueue(cfs_rq
, se
);
782 check_spread(cfs_rq
, se
);
783 if (se
!= cfs_rq
->curr
)
784 __enqueue_entity(cfs_rq
, se
);
787 static void __clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
789 if (!se
|| cfs_rq
->last
== se
)
792 if (!se
|| cfs_rq
->next
== se
)
796 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
798 for_each_sched_entity(se
)
799 __clear_buddies(cfs_rq_of(se
), se
);
803 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
806 * Update run-time statistics of the 'current'.
810 update_stats_dequeue(cfs_rq
, se
);
811 if (flags
& DEQUEUE_SLEEP
) {
812 #ifdef CONFIG_SCHEDSTATS
813 if (entity_is_task(se
)) {
814 struct task_struct
*tsk
= task_of(se
);
816 if (tsk
->state
& TASK_INTERRUPTIBLE
)
817 se
->statistics
.sleep_start
= rq_of(cfs_rq
)->clock
;
818 if (tsk
->state
& TASK_UNINTERRUPTIBLE
)
819 se
->statistics
.block_start
= rq_of(cfs_rq
)->clock
;
824 clear_buddies(cfs_rq
, se
);
826 if (se
!= cfs_rq
->curr
)
827 __dequeue_entity(cfs_rq
, se
);
828 account_entity_dequeue(cfs_rq
, se
);
829 update_min_vruntime(cfs_rq
);
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
836 if (!(flags
& DEQUEUE_SLEEP
))
837 se
->vruntime
-= cfs_rq
->min_vruntime
;
841 * Preempt the current task with a newly woken task if needed:
844 check_preempt_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
846 unsigned long ideal_runtime
, delta_exec
;
848 ideal_runtime
= sched_slice(cfs_rq
, curr
);
849 delta_exec
= curr
->sum_exec_runtime
- curr
->prev_sum_exec_runtime
;
850 if (delta_exec
> ideal_runtime
) {
851 resched_task(rq_of(cfs_rq
)->curr
);
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
856 clear_buddies(cfs_rq
, curr
);
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
865 if (!sched_feat(WAKEUP_PREEMPT
))
868 if (delta_exec
< sysctl_sched_min_granularity
)
871 if (cfs_rq
->nr_running
> 1) {
872 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
873 s64 delta
= curr
->vruntime
- se
->vruntime
;
875 if (delta
> ideal_runtime
)
876 resched_task(rq_of(cfs_rq
)->curr
);
881 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
883 /* 'current' is not kept within the tree. */
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
890 update_stats_wait_end(cfs_rq
, se
);
891 __dequeue_entity(cfs_rq
, se
);
894 update_stats_curr_start(cfs_rq
, se
);
896 #ifdef CONFIG_SCHEDSTATS
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
902 if (rq_of(cfs_rq
)->load
.weight
>= 2*se
->load
.weight
) {
903 se
->statistics
.slice_max
= max(se
->statistics
.slice_max
,
904 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
);
907 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
911 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
);
913 static struct sched_entity
*pick_next_entity(struct cfs_rq
*cfs_rq
)
915 struct sched_entity
*se
= __pick_next_entity(cfs_rq
);
916 struct sched_entity
*left
= se
;
918 if (cfs_rq
->next
&& wakeup_preempt_entity(cfs_rq
->next
, left
) < 1)
922 * Prefer last buddy, try to return the CPU to a preempted task.
924 if (cfs_rq
->last
&& wakeup_preempt_entity(cfs_rq
->last
, left
) < 1)
927 clear_buddies(cfs_rq
, se
);
932 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
941 check_spread(cfs_rq
, prev
);
943 update_stats_wait_start(cfs_rq
, prev
);
944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq
, prev
);
951 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
954 * Update run-time statistics of the 'current'.
958 #ifdef CONFIG_SCHED_HRTICK
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
964 resched_task(rq_of(cfs_rq
)->curr
);
968 * don't let the period tick interfere with the hrtick preemption
970 if (!sched_feat(DOUBLE_TICK
) &&
971 hrtimer_active(&rq_of(cfs_rq
)->hrtick_timer
))
975 if (cfs_rq
->nr_running
> 1 || !sched_feat(WAKEUP_PREEMPT
))
976 check_preempt_tick(cfs_rq
, curr
);
979 /**************************************************
980 * CFS operations on tasks:
983 #ifdef CONFIG_SCHED_HRTICK
984 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
986 struct sched_entity
*se
= &p
->se
;
987 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
989 WARN_ON(task_rq(p
) != rq
);
991 if (hrtick_enabled(rq
) && cfs_rq
->nr_running
> 1) {
992 u64 slice
= sched_slice(cfs_rq
, se
);
993 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
994 s64 delta
= slice
- ran
;
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1007 delta
= max_t(s64
, 10000LL, delta
);
1009 hrtick_start(rq
, delta
);
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1018 static void hrtick_update(struct rq
*rq
)
1020 struct task_struct
*curr
= rq
->curr
;
1022 if (curr
->sched_class
!= &fair_sched_class
)
1025 if (cfs_rq_of(&curr
->se
)->nr_running
< sched_nr_latency
)
1026 hrtick_start_fair(rq
, curr
);
1028 #else /* !CONFIG_SCHED_HRTICK */
1030 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
1034 static inline void hrtick_update(struct rq
*rq
)
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1045 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1047 struct cfs_rq
*cfs_rq
;
1048 struct sched_entity
*se
= &p
->se
;
1050 for_each_sched_entity(se
) {
1053 cfs_rq
= cfs_rq_of(se
);
1054 enqueue_entity(cfs_rq
, se
, flags
);
1055 flags
= ENQUEUE_WAKEUP
;
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1066 static void dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
1068 struct cfs_rq
*cfs_rq
;
1069 struct sched_entity
*se
= &p
->se
;
1071 for_each_sched_entity(se
) {
1072 cfs_rq
= cfs_rq_of(se
);
1073 dequeue_entity(cfs_rq
, se
, flags
);
1074 /* Don't dequeue parent if it has other entities besides us */
1075 if (cfs_rq
->load
.weight
)
1077 flags
|= DEQUEUE_SLEEP
;
1084 * sched_yield() support is very simple - we dequeue and enqueue.
1086 * If compat_yield is turned on then we requeue to the end of the tree.
1088 static void yield_task_fair(struct rq
*rq
)
1090 struct task_struct
*curr
= rq
->curr
;
1091 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1092 struct sched_entity
*rightmost
, *se
= &curr
->se
;
1095 * Are we the only task in the tree?
1097 if (unlikely(cfs_rq
->nr_running
== 1))
1100 clear_buddies(cfs_rq
, se
);
1102 if (likely(!sysctl_sched_compat_yield
) && curr
->policy
!= SCHED_BATCH
) {
1103 update_rq_clock(rq
);
1105 * Update run-time statistics of the 'current'.
1107 update_curr(cfs_rq
);
1112 * Find the rightmost entry in the rbtree:
1114 rightmost
= __pick_last_entity(cfs_rq
);
1116 * Already in the rightmost position?
1118 if (unlikely(!rightmost
|| entity_before(rightmost
, se
)))
1122 * Minimally necessary key value to be last in the tree:
1123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
1126 se
->vruntime
= rightmost
->vruntime
+ 1;
1131 static void task_waking_fair(struct rq
*rq
, struct task_struct
*p
)
1133 struct sched_entity
*se
= &p
->se
;
1134 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1136 se
->vruntime
-= cfs_rq
->min_vruntime
;
1139 #ifdef CONFIG_FAIR_GROUP_SCHED
1141 * effective_load() calculates the load change as seen from the root_task_group
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1161 static long effective_load(struct task_group
*tg
, int cpu
,
1164 struct sched_entity
*se
= tg
->se
[cpu
];
1170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1173 if (!wl
&& sched_feat(ASYM_EFF_LOAD
))
1176 for_each_sched_entity(se
) {
1177 long S
, rw
, s
, a
, b
;
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1184 more_w
= se
->my_q
->load
.weight
- se
->my_q
->rq_weight
;
1188 S
= se
->my_q
->tg
->shares
;
1189 s
= se
->my_q
->shares
;
1190 rw
= se
->my_q
->rq_weight
;
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1215 static inline unsigned long effective_load(struct task_group
*tg
, int cpu
,
1216 unsigned long wl
, unsigned long wg
)
1223 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
, int sync
)
1225 unsigned long this_load
, load
;
1226 int idx
, this_cpu
, prev_cpu
;
1227 unsigned long tl_per_task
;
1228 struct task_group
*tg
;
1229 unsigned long weight
;
1233 this_cpu
= smp_processor_id();
1234 prev_cpu
= task_cpu(p
);
1235 load
= source_load(prev_cpu
, idx
);
1236 this_load
= target_load(this_cpu
, idx
);
1239 * If sync wakeup then subtract the (maximum possible)
1240 * effect of the currently running task from the load
1241 * of the current CPU:
1244 tg
= task_group(current
);
1245 weight
= current
->se
.load
.weight
;
1247 this_load
+= effective_load(tg
, this_cpu
, -weight
, -weight
);
1248 load
+= effective_load(tg
, prev_cpu
, 0, -weight
);
1252 weight
= p
->se
.load
.weight
;
1255 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1256 * due to the sync cause above having dropped this_load to 0, we'll
1257 * always have an imbalance, but there's really nothing you can do
1258 * about that, so that's good too.
1260 * Otherwise check if either cpus are near enough in load to allow this
1261 * task to be woken on this_cpu.
1264 unsigned long this_eff_load
, prev_eff_load
;
1266 this_eff_load
= 100;
1267 this_eff_load
*= power_of(prev_cpu
);
1268 this_eff_load
*= this_load
+
1269 effective_load(tg
, this_cpu
, weight
, weight
);
1271 prev_eff_load
= 100 + (sd
->imbalance_pct
- 100) / 2;
1272 prev_eff_load
*= power_of(this_cpu
);
1273 prev_eff_load
*= load
+ effective_load(tg
, prev_cpu
, 0, weight
);
1275 balanced
= this_eff_load
<= prev_eff_load
;
1280 * If the currently running task will sleep within
1281 * a reasonable amount of time then attract this newly
1284 if (sync
&& balanced
)
1287 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine_attempts
);
1288 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1291 (this_load
<= load
&&
1292 this_load
+ target_load(prev_cpu
, idx
) <= tl_per_task
)) {
1294 * This domain has SD_WAKE_AFFINE and
1295 * p is cache cold in this domain, and
1296 * there is no bad imbalance.
1298 schedstat_inc(sd
, ttwu_move_affine
);
1299 schedstat_inc(p
, se
.statistics
.nr_wakeups_affine
);
1307 * find_idlest_group finds and returns the least busy CPU group within the
1310 static struct sched_group
*
1311 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
,
1312 int this_cpu
, int load_idx
)
1314 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1315 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1316 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1319 unsigned long load
, avg_load
;
1323 /* Skip over this group if it has no CPUs allowed */
1324 if (!cpumask_intersects(sched_group_cpus(group
),
1328 local_group
= cpumask_test_cpu(this_cpu
,
1329 sched_group_cpus(group
));
1331 /* Tally up the load of all CPUs in the group */
1334 for_each_cpu(i
, sched_group_cpus(group
)) {
1335 /* Bias balancing toward cpus of our domain */
1337 load
= source_load(i
, load_idx
);
1339 load
= target_load(i
, load_idx
);
1344 /* Adjust by relative CPU power of the group */
1345 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1348 this_load
= avg_load
;
1350 } else if (avg_load
< min_load
) {
1351 min_load
= avg_load
;
1354 } while (group
= group
->next
, group
!= sd
->groups
);
1356 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1362 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1365 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1367 unsigned long load
, min_load
= ULONG_MAX
;
1371 /* Traverse only the allowed CPUs */
1372 for_each_cpu_and(i
, sched_group_cpus(group
), &p
->cpus_allowed
) {
1373 load
= weighted_cpuload(i
);
1375 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1385 * Try and locate an idle CPU in the sched_domain.
1387 static int select_idle_sibling(struct task_struct
*p
, int target
)
1389 int cpu
= smp_processor_id();
1390 int prev_cpu
= task_cpu(p
);
1391 struct sched_domain
*sd
;
1395 * If the task is going to be woken-up on this cpu and if it is
1396 * already idle, then it is the right target.
1398 if (target
== cpu
&& idle_cpu(cpu
))
1402 * If the task is going to be woken-up on the cpu where it previously
1403 * ran and if it is currently idle, then it the right target.
1405 if (target
== prev_cpu
&& idle_cpu(prev_cpu
))
1409 * Otherwise, iterate the domains and find an elegible idle cpu.
1411 for_each_domain(target
, sd
) {
1412 if (!(sd
->flags
& SD_SHARE_PKG_RESOURCES
))
1415 for_each_cpu_and(i
, sched_domain_span(sd
), &p
->cpus_allowed
) {
1423 * Lets stop looking for an idle sibling when we reached
1424 * the domain that spans the current cpu and prev_cpu.
1426 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
)) &&
1427 cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
1435 * sched_balance_self: balance the current task (running on cpu) in domains
1436 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1439 * Balance, ie. select the least loaded group.
1441 * Returns the target CPU number, or the same CPU if no balancing is needed.
1443 * preempt must be disabled.
1446 select_task_rq_fair(struct rq
*rq
, struct task_struct
*p
, int sd_flag
, int wake_flags
)
1448 struct sched_domain
*tmp
, *affine_sd
= NULL
, *sd
= NULL
;
1449 int cpu
= smp_processor_id();
1450 int prev_cpu
= task_cpu(p
);
1452 int want_affine
= 0;
1454 int sync
= wake_flags
& WF_SYNC
;
1456 if (sd_flag
& SD_BALANCE_WAKE
) {
1457 if (cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
1462 for_each_domain(cpu
, tmp
) {
1463 if (!(tmp
->flags
& SD_LOAD_BALANCE
))
1467 * If power savings logic is enabled for a domain, see if we
1468 * are not overloaded, if so, don't balance wider.
1470 if (tmp
->flags
& (SD_POWERSAVINGS_BALANCE
|SD_PREFER_LOCAL
)) {
1471 unsigned long power
= 0;
1472 unsigned long nr_running
= 0;
1473 unsigned long capacity
;
1476 for_each_cpu(i
, sched_domain_span(tmp
)) {
1477 power
+= power_of(i
);
1478 nr_running
+= cpu_rq(i
)->cfs
.nr_running
;
1481 capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
1483 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1486 if (nr_running
< capacity
)
1491 * If both cpu and prev_cpu are part of this domain,
1492 * cpu is a valid SD_WAKE_AFFINE target.
1494 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
1495 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
1500 if (!want_sd
&& !want_affine
)
1503 if (!(tmp
->flags
& sd_flag
))
1510 #ifdef CONFIG_FAIR_GROUP_SCHED
1511 if (sched_feat(LB_SHARES_UPDATE
)) {
1513 * Pick the largest domain to update shares over
1516 if (affine_sd
&& (!tmp
|| affine_sd
->span_weight
> sd
->span_weight
))
1520 raw_spin_unlock(&rq
->lock
);
1522 raw_spin_lock(&rq
->lock
);
1528 if (cpu
== prev_cpu
|| wake_affine(affine_sd
, p
, sync
))
1529 return select_idle_sibling(p
, cpu
);
1531 return select_idle_sibling(p
, prev_cpu
);
1535 int load_idx
= sd
->forkexec_idx
;
1536 struct sched_group
*group
;
1539 if (!(sd
->flags
& sd_flag
)) {
1544 if (sd_flag
& SD_BALANCE_WAKE
)
1545 load_idx
= sd
->wake_idx
;
1547 group
= find_idlest_group(sd
, p
, cpu
, load_idx
);
1553 new_cpu
= find_idlest_cpu(group
, p
, cpu
);
1554 if (new_cpu
== -1 || new_cpu
== cpu
) {
1555 /* Now try balancing at a lower domain level of cpu */
1560 /* Now try balancing at a lower domain level of new_cpu */
1562 weight
= sd
->span_weight
;
1564 for_each_domain(cpu
, tmp
) {
1565 if (weight
<= tmp
->span_weight
)
1567 if (tmp
->flags
& sd_flag
)
1570 /* while loop will break here if sd == NULL */
1575 #endif /* CONFIG_SMP */
1577 static unsigned long
1578 wakeup_gran(struct sched_entity
*curr
, struct sched_entity
*se
)
1580 unsigned long gran
= sysctl_sched_wakeup_granularity
;
1583 * Since its curr running now, convert the gran from real-time
1584 * to virtual-time in his units.
1586 * By using 'se' instead of 'curr' we penalize light tasks, so
1587 * they get preempted easier. That is, if 'se' < 'curr' then
1588 * the resulting gran will be larger, therefore penalizing the
1589 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1590 * be smaller, again penalizing the lighter task.
1592 * This is especially important for buddies when the leftmost
1593 * task is higher priority than the buddy.
1595 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
1596 gran
= calc_delta_fair(gran
, se
);
1602 * Should 'se' preempt 'curr'.
1616 wakeup_preempt_entity(struct sched_entity
*curr
, struct sched_entity
*se
)
1618 s64 gran
, vdiff
= curr
->vruntime
- se
->vruntime
;
1623 gran
= wakeup_gran(curr
, se
);
1630 static void set_last_buddy(struct sched_entity
*se
)
1632 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1633 for_each_sched_entity(se
)
1634 cfs_rq_of(se
)->last
= se
;
1638 static void set_next_buddy(struct sched_entity
*se
)
1640 if (likely(task_of(se
)->policy
!= SCHED_IDLE
)) {
1641 for_each_sched_entity(se
)
1642 cfs_rq_of(se
)->next
= se
;
1647 * Preempt the current task with a newly woken task if needed:
1649 static void check_preempt_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
1651 struct task_struct
*curr
= rq
->curr
;
1652 struct sched_entity
*se
= &curr
->se
, *pse
= &p
->se
;
1653 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
1654 int scale
= cfs_rq
->nr_running
>= sched_nr_latency
;
1656 if (unlikely(rt_prio(p
->prio
)))
1659 if (unlikely(p
->sched_class
!= &fair_sched_class
))
1662 if (unlikely(se
== pse
))
1665 if (sched_feat(NEXT_BUDDY
) && scale
&& !(wake_flags
& WF_FORK
))
1666 set_next_buddy(pse
);
1669 * We can come here with TIF_NEED_RESCHED already set from new task
1672 if (test_tsk_need_resched(curr
))
1676 * Batch and idle tasks do not preempt (their preemption is driven by
1679 if (unlikely(p
->policy
!= SCHED_NORMAL
))
1682 /* Idle tasks are by definition preempted by everybody. */
1683 if (unlikely(curr
->policy
== SCHED_IDLE
))
1686 if (!sched_feat(WAKEUP_PREEMPT
))
1689 update_curr(cfs_rq
);
1690 find_matching_se(&se
, &pse
);
1692 if (wakeup_preempt_entity(se
, pse
) == 1)
1700 * Only set the backward buddy when the current task is still
1701 * on the rq. This can happen when a wakeup gets interleaved
1702 * with schedule on the ->pre_schedule() or idle_balance()
1703 * point, either of which can * drop the rq lock.
1705 * Also, during early boot the idle thread is in the fair class,
1706 * for obvious reasons its a bad idea to schedule back to it.
1708 if (unlikely(!se
->on_rq
|| curr
== rq
->idle
))
1711 if (sched_feat(LAST_BUDDY
) && scale
&& entity_is_task(se
))
1715 static struct task_struct
*pick_next_task_fair(struct rq
*rq
)
1717 struct task_struct
*p
;
1718 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
1719 struct sched_entity
*se
;
1721 if (!cfs_rq
->nr_running
)
1725 se
= pick_next_entity(cfs_rq
);
1726 set_next_entity(cfs_rq
, se
);
1727 cfs_rq
= group_cfs_rq(se
);
1731 hrtick_start_fair(rq
, p
);
1737 * Account for a descheduled task:
1739 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
)
1741 struct sched_entity
*se
= &prev
->se
;
1742 struct cfs_rq
*cfs_rq
;
1744 for_each_sched_entity(se
) {
1745 cfs_rq
= cfs_rq_of(se
);
1746 put_prev_entity(cfs_rq
, se
);
1751 /**************************************************
1752 * Fair scheduling class load-balancing methods:
1756 * pull_task - move a task from a remote runqueue to the local runqueue.
1757 * Both runqueues must be locked.
1759 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
1760 struct rq
*this_rq
, int this_cpu
)
1762 deactivate_task(src_rq
, p
, 0);
1763 set_task_cpu(p
, this_cpu
);
1764 activate_task(this_rq
, p
, 0);
1765 check_preempt_curr(this_rq
, p
, 0);
1769 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1772 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
1773 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1776 int tsk_cache_hot
= 0;
1778 * We do not migrate tasks that are:
1779 * 1) running (obviously), or
1780 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1781 * 3) are cache-hot on their current CPU.
1783 if (!cpumask_test_cpu(this_cpu
, &p
->cpus_allowed
)) {
1784 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_affine
);
1789 if (task_running(rq
, p
)) {
1790 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_running
);
1795 * Aggressive migration if:
1796 * 1) task is cache cold, or
1797 * 2) too many balance attempts have failed.
1800 tsk_cache_hot
= task_hot(p
, rq
->clock
, sd
);
1801 if (!tsk_cache_hot
||
1802 sd
->nr_balance_failed
> sd
->cache_nice_tries
) {
1803 #ifdef CONFIG_SCHEDSTATS
1804 if (tsk_cache_hot
) {
1805 schedstat_inc(sd
, lb_hot_gained
[idle
]);
1806 schedstat_inc(p
, se
.statistics
.nr_forced_migrations
);
1812 if (tsk_cache_hot
) {
1813 schedstat_inc(p
, se
.statistics
.nr_failed_migrations_hot
);
1820 * move_one_task tries to move exactly one task from busiest to this_rq, as
1821 * part of active balancing operations within "domain".
1822 * Returns 1 if successful and 0 otherwise.
1824 * Called with both runqueues locked.
1827 move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1828 struct sched_domain
*sd
, enum cpu_idle_type idle
)
1830 struct task_struct
*p
, *n
;
1831 struct cfs_rq
*cfs_rq
;
1834 for_each_leaf_cfs_rq(busiest
, cfs_rq
) {
1835 list_for_each_entry_safe(p
, n
, &cfs_rq
->tasks
, se
.group_node
) {
1837 if (!can_migrate_task(p
, busiest
, this_cpu
,
1841 pull_task(busiest
, p
, this_rq
, this_cpu
);
1843 * Right now, this is only the second place pull_task()
1844 * is called, so we can safely collect pull_task()
1845 * stats here rather than inside pull_task().
1847 schedstat_inc(sd
, lb_gained
[idle
]);
1855 static unsigned long
1856 balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1857 unsigned long max_load_move
, struct sched_domain
*sd
,
1858 enum cpu_idle_type idle
, int *all_pinned
,
1859 int *this_best_prio
, struct cfs_rq
*busiest_cfs_rq
)
1861 int loops
= 0, pulled
= 0, pinned
= 0;
1862 long rem_load_move
= max_load_move
;
1863 struct task_struct
*p
, *n
;
1865 if (max_load_move
== 0)
1870 list_for_each_entry_safe(p
, n
, &busiest_cfs_rq
->tasks
, se
.group_node
) {
1871 if (loops
++ > sysctl_sched_nr_migrate
)
1874 if ((p
->se
.load
.weight
>> 1) > rem_load_move
||
1875 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
))
1878 pull_task(busiest
, p
, this_rq
, this_cpu
);
1880 rem_load_move
-= p
->se
.load
.weight
;
1882 #ifdef CONFIG_PREEMPT
1884 * NEWIDLE balancing is a source of latency, so preemptible
1885 * kernels will stop after the first task is pulled to minimize
1886 * the critical section.
1888 if (idle
== CPU_NEWLY_IDLE
)
1893 * We only want to steal up to the prescribed amount of
1896 if (rem_load_move
<= 0)
1899 if (p
->prio
< *this_best_prio
)
1900 *this_best_prio
= p
->prio
;
1904 * Right now, this is one of only two places pull_task() is called,
1905 * so we can safely collect pull_task() stats here rather than
1906 * inside pull_task().
1908 schedstat_add(sd
, lb_gained
[idle
], pulled
);
1911 *all_pinned
= pinned
;
1913 return max_load_move
- rem_load_move
;
1916 #ifdef CONFIG_FAIR_GROUP_SCHED
1917 static unsigned long
1918 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1919 unsigned long max_load_move
,
1920 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1921 int *all_pinned
, int *this_best_prio
)
1923 long rem_load_move
= max_load_move
;
1924 int busiest_cpu
= cpu_of(busiest
);
1925 struct task_group
*tg
;
1928 update_h_load(busiest_cpu
);
1930 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
1931 struct cfs_rq
*busiest_cfs_rq
= tg
->cfs_rq
[busiest_cpu
];
1932 unsigned long busiest_h_load
= busiest_cfs_rq
->h_load
;
1933 unsigned long busiest_weight
= busiest_cfs_rq
->load
.weight
;
1934 u64 rem_load
, moved_load
;
1939 if (!busiest_cfs_rq
->task_weight
)
1942 rem_load
= (u64
)rem_load_move
* busiest_weight
;
1943 rem_load
= div_u64(rem_load
, busiest_h_load
+ 1);
1945 moved_load
= balance_tasks(this_rq
, this_cpu
, busiest
,
1946 rem_load
, sd
, idle
, all_pinned
, this_best_prio
,
1952 moved_load
*= busiest_h_load
;
1953 moved_load
= div_u64(moved_load
, busiest_weight
+ 1);
1955 rem_load_move
-= moved_load
;
1956 if (rem_load_move
< 0)
1961 return max_load_move
- rem_load_move
;
1964 static unsigned long
1965 load_balance_fair(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1966 unsigned long max_load_move
,
1967 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1968 int *all_pinned
, int *this_best_prio
)
1970 return balance_tasks(this_rq
, this_cpu
, busiest
,
1971 max_load_move
, sd
, idle
, all_pinned
,
1972 this_best_prio
, &busiest
->cfs
);
1977 * move_tasks tries to move up to max_load_move weighted load from busiest to
1978 * this_rq, as part of a balancing operation within domain "sd".
1979 * Returns 1 if successful and 0 otherwise.
1981 * Called with both runqueues locked.
1983 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
1984 unsigned long max_load_move
,
1985 struct sched_domain
*sd
, enum cpu_idle_type idle
,
1988 unsigned long total_load_moved
= 0, load_moved
;
1989 int this_best_prio
= this_rq
->curr
->prio
;
1992 load_moved
= load_balance_fair(this_rq
, this_cpu
, busiest
,
1993 max_load_move
- total_load_moved
,
1994 sd
, idle
, all_pinned
, &this_best_prio
);
1996 total_load_moved
+= load_moved
;
1998 #ifdef CONFIG_PREEMPT
2000 * NEWIDLE balancing is a source of latency, so preemptible
2001 * kernels will stop after the first task is pulled to minimize
2002 * the critical section.
2004 if (idle
== CPU_NEWLY_IDLE
&& this_rq
->nr_running
)
2007 if (raw_spin_is_contended(&this_rq
->lock
) ||
2008 raw_spin_is_contended(&busiest
->lock
))
2011 } while (load_moved
&& max_load_move
> total_load_moved
);
2013 return total_load_moved
> 0;
2016 /********** Helpers for find_busiest_group ************************/
2018 * sd_lb_stats - Structure to store the statistics of a sched_domain
2019 * during load balancing.
2021 struct sd_lb_stats
{
2022 struct sched_group
*busiest
; /* Busiest group in this sd */
2023 struct sched_group
*this; /* Local group in this sd */
2024 unsigned long total_load
; /* Total load of all groups in sd */
2025 unsigned long total_pwr
; /* Total power of all groups in sd */
2026 unsigned long avg_load
; /* Average load across all groups in sd */
2028 /** Statistics of this group */
2029 unsigned long this_load
;
2030 unsigned long this_load_per_task
;
2031 unsigned long this_nr_running
;
2033 /* Statistics of the busiest group */
2034 unsigned long max_load
;
2035 unsigned long busiest_load_per_task
;
2036 unsigned long busiest_nr_running
;
2037 unsigned long busiest_group_capacity
;
2039 int group_imb
; /* Is there imbalance in this sd */
2040 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2041 int power_savings_balance
; /* Is powersave balance needed for this sd */
2042 struct sched_group
*group_min
; /* Least loaded group in sd */
2043 struct sched_group
*group_leader
; /* Group which relieves group_min */
2044 unsigned long min_load_per_task
; /* load_per_task in group_min */
2045 unsigned long leader_nr_running
; /* Nr running of group_leader */
2046 unsigned long min_nr_running
; /* Nr running of group_min */
2051 * sg_lb_stats - stats of a sched_group required for load_balancing
2053 struct sg_lb_stats
{
2054 unsigned long avg_load
; /*Avg load across the CPUs of the group */
2055 unsigned long group_load
; /* Total load over the CPUs of the group */
2056 unsigned long sum_nr_running
; /* Nr tasks running in the group */
2057 unsigned long sum_weighted_load
; /* Weighted load of group's tasks */
2058 unsigned long group_capacity
;
2059 int group_imb
; /* Is there an imbalance in the group ? */
2063 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2064 * @group: The group whose first cpu is to be returned.
2066 static inline unsigned int group_first_cpu(struct sched_group
*group
)
2068 return cpumask_first(sched_group_cpus(group
));
2072 * get_sd_load_idx - Obtain the load index for a given sched domain.
2073 * @sd: The sched_domain whose load_idx is to be obtained.
2074 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2076 static inline int get_sd_load_idx(struct sched_domain
*sd
,
2077 enum cpu_idle_type idle
)
2083 load_idx
= sd
->busy_idx
;
2086 case CPU_NEWLY_IDLE
:
2087 load_idx
= sd
->newidle_idx
;
2090 load_idx
= sd
->idle_idx
;
2098 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2100 * init_sd_power_savings_stats - Initialize power savings statistics for
2101 * the given sched_domain, during load balancing.
2103 * @sd: Sched domain whose power-savings statistics are to be initialized.
2104 * @sds: Variable containing the statistics for sd.
2105 * @idle: Idle status of the CPU at which we're performing load-balancing.
2107 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2108 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2111 * Busy processors will not participate in power savings
2114 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2115 sds
->power_savings_balance
= 0;
2117 sds
->power_savings_balance
= 1;
2118 sds
->min_nr_running
= ULONG_MAX
;
2119 sds
->leader_nr_running
= 0;
2124 * update_sd_power_savings_stats - Update the power saving stats for a
2125 * sched_domain while performing load balancing.
2127 * @group: sched_group belonging to the sched_domain under consideration.
2128 * @sds: Variable containing the statistics of the sched_domain
2129 * @local_group: Does group contain the CPU for which we're performing
2131 * @sgs: Variable containing the statistics of the group.
2133 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2134 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2137 if (!sds
->power_savings_balance
)
2141 * If the local group is idle or completely loaded
2142 * no need to do power savings balance at this domain
2144 if (local_group
&& (sds
->this_nr_running
>= sgs
->group_capacity
||
2145 !sds
->this_nr_running
))
2146 sds
->power_savings_balance
= 0;
2149 * If a group is already running at full capacity or idle,
2150 * don't include that group in power savings calculations
2152 if (!sds
->power_savings_balance
||
2153 sgs
->sum_nr_running
>= sgs
->group_capacity
||
2154 !sgs
->sum_nr_running
)
2158 * Calculate the group which has the least non-idle load.
2159 * This is the group from where we need to pick up the load
2162 if ((sgs
->sum_nr_running
< sds
->min_nr_running
) ||
2163 (sgs
->sum_nr_running
== sds
->min_nr_running
&&
2164 group_first_cpu(group
) > group_first_cpu(sds
->group_min
))) {
2165 sds
->group_min
= group
;
2166 sds
->min_nr_running
= sgs
->sum_nr_running
;
2167 sds
->min_load_per_task
= sgs
->sum_weighted_load
/
2168 sgs
->sum_nr_running
;
2172 * Calculate the group which is almost near its
2173 * capacity but still has some space to pick up some load
2174 * from other group and save more power
2176 if (sgs
->sum_nr_running
+ 1 > sgs
->group_capacity
)
2179 if (sgs
->sum_nr_running
> sds
->leader_nr_running
||
2180 (sgs
->sum_nr_running
== sds
->leader_nr_running
&&
2181 group_first_cpu(group
) < group_first_cpu(sds
->group_leader
))) {
2182 sds
->group_leader
= group
;
2183 sds
->leader_nr_running
= sgs
->sum_nr_running
;
2188 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2189 * @sds: Variable containing the statistics of the sched_domain
2190 * under consideration.
2191 * @this_cpu: Cpu at which we're currently performing load-balancing.
2192 * @imbalance: Variable to store the imbalance.
2195 * Check if we have potential to perform some power-savings balance.
2196 * If yes, set the busiest group to be the least loaded group in the
2197 * sched_domain, so that it's CPUs can be put to idle.
2199 * Returns 1 if there is potential to perform power-savings balance.
2202 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2203 int this_cpu
, unsigned long *imbalance
)
2205 if (!sds
->power_savings_balance
)
2208 if (sds
->this != sds
->group_leader
||
2209 sds
->group_leader
== sds
->group_min
)
2212 *imbalance
= sds
->min_load_per_task
;
2213 sds
->busiest
= sds
->group_min
;
2218 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2219 static inline void init_sd_power_savings_stats(struct sched_domain
*sd
,
2220 struct sd_lb_stats
*sds
, enum cpu_idle_type idle
)
2225 static inline void update_sd_power_savings_stats(struct sched_group
*group
,
2226 struct sd_lb_stats
*sds
, int local_group
, struct sg_lb_stats
*sgs
)
2231 static inline int check_power_save_busiest_group(struct sd_lb_stats
*sds
,
2232 int this_cpu
, unsigned long *imbalance
)
2236 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2239 unsigned long default_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2241 return SCHED_LOAD_SCALE
;
2244 unsigned long __weak
arch_scale_freq_power(struct sched_domain
*sd
, int cpu
)
2246 return default_scale_freq_power(sd
, cpu
);
2249 unsigned long default_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2251 unsigned long weight
= sd
->span_weight
;
2252 unsigned long smt_gain
= sd
->smt_gain
;
2259 unsigned long __weak
arch_scale_smt_power(struct sched_domain
*sd
, int cpu
)
2261 return default_scale_smt_power(sd
, cpu
);
2264 unsigned long scale_rt_power(int cpu
)
2266 struct rq
*rq
= cpu_rq(cpu
);
2267 u64 total
, available
;
2269 sched_avg_update(rq
);
2271 total
= sched_avg_period() + (rq
->clock
- rq
->age_stamp
);
2272 available
= total
- rq
->rt_avg
;
2274 if (unlikely((s64
)total
< SCHED_LOAD_SCALE
))
2275 total
= SCHED_LOAD_SCALE
;
2277 total
>>= SCHED_LOAD_SHIFT
;
2279 return div_u64(available
, total
);
2282 static void update_cpu_power(struct sched_domain
*sd
, int cpu
)
2284 unsigned long weight
= sd
->span_weight
;
2285 unsigned long power
= SCHED_LOAD_SCALE
;
2286 struct sched_group
*sdg
= sd
->groups
;
2288 if (sched_feat(ARCH_POWER
))
2289 power
*= arch_scale_freq_power(sd
, cpu
);
2291 power
*= default_scale_freq_power(sd
, cpu
);
2293 power
>>= SCHED_LOAD_SHIFT
;
2295 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
2296 if (sched_feat(ARCH_POWER
))
2297 power
*= arch_scale_smt_power(sd
, cpu
);
2299 power
*= default_scale_smt_power(sd
, cpu
);
2301 power
>>= SCHED_LOAD_SHIFT
;
2304 power
*= scale_rt_power(cpu
);
2305 power
>>= SCHED_LOAD_SHIFT
;
2310 cpu_rq(cpu
)->cpu_power
= power
;
2311 sdg
->cpu_power
= power
;
2314 static void update_group_power(struct sched_domain
*sd
, int cpu
)
2316 struct sched_domain
*child
= sd
->child
;
2317 struct sched_group
*group
, *sdg
= sd
->groups
;
2318 unsigned long power
;
2321 update_cpu_power(sd
, cpu
);
2327 group
= child
->groups
;
2329 power
+= group
->cpu_power
;
2330 group
= group
->next
;
2331 } while (group
!= child
->groups
);
2333 sdg
->cpu_power
= power
;
2337 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2338 * @sd: The sched_domain whose statistics are to be updated.
2339 * @group: sched_group whose statistics are to be updated.
2340 * @this_cpu: Cpu for which load balance is currently performed.
2341 * @idle: Idle status of this_cpu
2342 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2343 * @sd_idle: Idle status of the sched_domain containing group.
2344 * @local_group: Does group contain this_cpu.
2345 * @cpus: Set of cpus considered for load balancing.
2346 * @balance: Should we balance.
2347 * @sgs: variable to hold the statistics for this group.
2349 static inline void update_sg_lb_stats(struct sched_domain
*sd
,
2350 struct sched_group
*group
, int this_cpu
,
2351 enum cpu_idle_type idle
, int load_idx
, int *sd_idle
,
2352 int local_group
, const struct cpumask
*cpus
,
2353 int *balance
, struct sg_lb_stats
*sgs
)
2355 unsigned long load
, max_cpu_load
, min_cpu_load
;
2357 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2358 unsigned long avg_load_per_task
= 0;
2361 balance_cpu
= group_first_cpu(group
);
2363 /* Tally up the load of all CPUs in the group */
2365 min_cpu_load
= ~0UL;
2367 for_each_cpu_and(i
, sched_group_cpus(group
), cpus
) {
2368 struct rq
*rq
= cpu_rq(i
);
2370 if (*sd_idle
&& rq
->nr_running
)
2373 /* Bias balancing toward cpus of our domain */
2375 if (idle_cpu(i
) && !first_idle_cpu
) {
2380 load
= target_load(i
, load_idx
);
2382 load
= source_load(i
, load_idx
);
2383 if (load
> max_cpu_load
)
2384 max_cpu_load
= load
;
2385 if (min_cpu_load
> load
)
2386 min_cpu_load
= load
;
2389 sgs
->group_load
+= load
;
2390 sgs
->sum_nr_running
+= rq
->nr_running
;
2391 sgs
->sum_weighted_load
+= weighted_cpuload(i
);
2396 * First idle cpu or the first cpu(busiest) in this sched group
2397 * is eligible for doing load balancing at this and above
2398 * domains. In the newly idle case, we will allow all the cpu's
2399 * to do the newly idle load balance.
2401 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2402 balance_cpu
!= this_cpu
) {
2407 update_group_power(sd
, this_cpu
);
2409 /* Adjust by relative CPU power of the group */
2410 sgs
->avg_load
= (sgs
->group_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2413 * Consider the group unbalanced when the imbalance is larger
2414 * than the average weight of two tasks.
2416 * APZ: with cgroup the avg task weight can vary wildly and
2417 * might not be a suitable number - should we keep a
2418 * normalized nr_running number somewhere that negates
2421 if (sgs
->sum_nr_running
)
2422 avg_load_per_task
= sgs
->sum_weighted_load
/ sgs
->sum_nr_running
;
2424 if ((max_cpu_load
- min_cpu_load
) > 2*avg_load_per_task
)
2427 sgs
->group_capacity
=
2428 DIV_ROUND_CLOSEST(group
->cpu_power
, SCHED_LOAD_SCALE
);
2432 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2433 * @sd: sched_domain whose statistics are to be updated.
2434 * @this_cpu: Cpu for which load balance is currently performed.
2435 * @idle: Idle status of this_cpu
2436 * @sd_idle: Idle status of the sched_domain containing group.
2437 * @cpus: Set of cpus considered for load balancing.
2438 * @balance: Should we balance.
2439 * @sds: variable to hold the statistics for this sched_domain.
2441 static inline void update_sd_lb_stats(struct sched_domain
*sd
, int this_cpu
,
2442 enum cpu_idle_type idle
, int *sd_idle
,
2443 const struct cpumask
*cpus
, int *balance
,
2444 struct sd_lb_stats
*sds
)
2446 struct sched_domain
*child
= sd
->child
;
2447 struct sched_group
*group
= sd
->groups
;
2448 struct sg_lb_stats sgs
;
2449 int load_idx
, prefer_sibling
= 0;
2451 if (child
&& child
->flags
& SD_PREFER_SIBLING
)
2454 init_sd_power_savings_stats(sd
, sds
, idle
);
2455 load_idx
= get_sd_load_idx(sd
, idle
);
2460 local_group
= cpumask_test_cpu(this_cpu
,
2461 sched_group_cpus(group
));
2462 memset(&sgs
, 0, sizeof(sgs
));
2463 update_sg_lb_stats(sd
, group
, this_cpu
, idle
, load_idx
, sd_idle
,
2464 local_group
, cpus
, balance
, &sgs
);
2466 if (local_group
&& !(*balance
))
2469 sds
->total_load
+= sgs
.group_load
;
2470 sds
->total_pwr
+= group
->cpu_power
;
2473 * In case the child domain prefers tasks go to siblings
2474 * first, lower the group capacity to one so that we'll try
2475 * and move all the excess tasks away.
2478 sgs
.group_capacity
= min(sgs
.group_capacity
, 1UL);
2481 sds
->this_load
= sgs
.avg_load
;
2483 sds
->this_nr_running
= sgs
.sum_nr_running
;
2484 sds
->this_load_per_task
= sgs
.sum_weighted_load
;
2485 } else if (sgs
.avg_load
> sds
->max_load
&&
2486 (sgs
.sum_nr_running
> sgs
.group_capacity
||
2488 sds
->max_load
= sgs
.avg_load
;
2489 sds
->busiest
= group
;
2490 sds
->busiest_nr_running
= sgs
.sum_nr_running
;
2491 sds
->busiest_group_capacity
= sgs
.group_capacity
;
2492 sds
->busiest_load_per_task
= sgs
.sum_weighted_load
;
2493 sds
->group_imb
= sgs
.group_imb
;
2496 update_sd_power_savings_stats(group
, sds
, local_group
, &sgs
);
2497 group
= group
->next
;
2498 } while (group
!= sd
->groups
);
2502 * fix_small_imbalance - Calculate the minor imbalance that exists
2503 * amongst the groups of a sched_domain, during
2505 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2506 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2507 * @imbalance: Variable to store the imbalance.
2509 static inline void fix_small_imbalance(struct sd_lb_stats
*sds
,
2510 int this_cpu
, unsigned long *imbalance
)
2512 unsigned long tmp
, pwr_now
= 0, pwr_move
= 0;
2513 unsigned int imbn
= 2;
2514 unsigned long scaled_busy_load_per_task
;
2516 if (sds
->this_nr_running
) {
2517 sds
->this_load_per_task
/= sds
->this_nr_running
;
2518 if (sds
->busiest_load_per_task
>
2519 sds
->this_load_per_task
)
2522 sds
->this_load_per_task
=
2523 cpu_avg_load_per_task(this_cpu
);
2525 scaled_busy_load_per_task
= sds
->busiest_load_per_task
2527 scaled_busy_load_per_task
/= sds
->busiest
->cpu_power
;
2529 if (sds
->max_load
- sds
->this_load
+ scaled_busy_load_per_task
>=
2530 (scaled_busy_load_per_task
* imbn
)) {
2531 *imbalance
= sds
->busiest_load_per_task
;
2536 * OK, we don't have enough imbalance to justify moving tasks,
2537 * however we may be able to increase total CPU power used by
2541 pwr_now
+= sds
->busiest
->cpu_power
*
2542 min(sds
->busiest_load_per_task
, sds
->max_load
);
2543 pwr_now
+= sds
->this->cpu_power
*
2544 min(sds
->this_load_per_task
, sds
->this_load
);
2545 pwr_now
/= SCHED_LOAD_SCALE
;
2547 /* Amount of load we'd subtract */
2548 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
2549 sds
->busiest
->cpu_power
;
2550 if (sds
->max_load
> tmp
)
2551 pwr_move
+= sds
->busiest
->cpu_power
*
2552 min(sds
->busiest_load_per_task
, sds
->max_load
- tmp
);
2554 /* Amount of load we'd add */
2555 if (sds
->max_load
* sds
->busiest
->cpu_power
<
2556 sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
)
2557 tmp
= (sds
->max_load
* sds
->busiest
->cpu_power
) /
2558 sds
->this->cpu_power
;
2560 tmp
= (sds
->busiest_load_per_task
* SCHED_LOAD_SCALE
) /
2561 sds
->this->cpu_power
;
2562 pwr_move
+= sds
->this->cpu_power
*
2563 min(sds
->this_load_per_task
, sds
->this_load
+ tmp
);
2564 pwr_move
/= SCHED_LOAD_SCALE
;
2566 /* Move if we gain throughput */
2567 if (pwr_move
> pwr_now
)
2568 *imbalance
= sds
->busiest_load_per_task
;
2572 * calculate_imbalance - Calculate the amount of imbalance present within the
2573 * groups of a given sched_domain during load balance.
2574 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2575 * @this_cpu: Cpu for which currently load balance is being performed.
2576 * @imbalance: The variable to store the imbalance.
2578 static inline void calculate_imbalance(struct sd_lb_stats
*sds
, int this_cpu
,
2579 unsigned long *imbalance
)
2581 unsigned long max_pull
, load_above_capacity
= ~0UL;
2583 sds
->busiest_load_per_task
/= sds
->busiest_nr_running
;
2584 if (sds
->group_imb
) {
2585 sds
->busiest_load_per_task
=
2586 min(sds
->busiest_load_per_task
, sds
->avg_load
);
2590 * In the presence of smp nice balancing, certain scenarios can have
2591 * max load less than avg load(as we skip the groups at or below
2592 * its cpu_power, while calculating max_load..)
2594 if (sds
->max_load
< sds
->avg_load
) {
2596 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
2599 if (!sds
->group_imb
) {
2601 * Don't want to pull so many tasks that a group would go idle.
2603 load_above_capacity
= (sds
->busiest_nr_running
-
2604 sds
->busiest_group_capacity
);
2606 load_above_capacity
*= (SCHED_LOAD_SCALE
* SCHED_LOAD_SCALE
);
2608 load_above_capacity
/= sds
->busiest
->cpu_power
;
2612 * We're trying to get all the cpus to the average_load, so we don't
2613 * want to push ourselves above the average load, nor do we wish to
2614 * reduce the max loaded cpu below the average load. At the same time,
2615 * we also don't want to reduce the group load below the group capacity
2616 * (so that we can implement power-savings policies etc). Thus we look
2617 * for the minimum possible imbalance.
2618 * Be careful of negative numbers as they'll appear as very large values
2619 * with unsigned longs.
2621 max_pull
= min(sds
->max_load
- sds
->avg_load
, load_above_capacity
);
2623 /* How much load to actually move to equalise the imbalance */
2624 *imbalance
= min(max_pull
* sds
->busiest
->cpu_power
,
2625 (sds
->avg_load
- sds
->this_load
) * sds
->this->cpu_power
)
2629 * if *imbalance is less than the average load per runnable task
2630 * there is no gaurantee that any tasks will be moved so we'll have
2631 * a think about bumping its value to force at least one task to be
2634 if (*imbalance
< sds
->busiest_load_per_task
)
2635 return fix_small_imbalance(sds
, this_cpu
, imbalance
);
2638 /******* find_busiest_group() helpers end here *********************/
2641 * find_busiest_group - Returns the busiest group within the sched_domain
2642 * if there is an imbalance. If there isn't an imbalance, and
2643 * the user has opted for power-savings, it returns a group whose
2644 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2645 * such a group exists.
2647 * Also calculates the amount of weighted load which should be moved
2648 * to restore balance.
2650 * @sd: The sched_domain whose busiest group is to be returned.
2651 * @this_cpu: The cpu for which load balancing is currently being performed.
2652 * @imbalance: Variable which stores amount of weighted load which should
2653 * be moved to restore balance/put a group to idle.
2654 * @idle: The idle status of this_cpu.
2655 * @sd_idle: The idleness of sd
2656 * @cpus: The set of CPUs under consideration for load-balancing.
2657 * @balance: Pointer to a variable indicating if this_cpu
2658 * is the appropriate cpu to perform load balancing at this_level.
2660 * Returns: - the busiest group if imbalance exists.
2661 * - If no imbalance and user has opted for power-savings balance,
2662 * return the least loaded group whose CPUs can be
2663 * put to idle by rebalancing its tasks onto our group.
2665 static struct sched_group
*
2666 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2667 unsigned long *imbalance
, enum cpu_idle_type idle
,
2668 int *sd_idle
, const struct cpumask
*cpus
, int *balance
)
2670 struct sd_lb_stats sds
;
2672 memset(&sds
, 0, sizeof(sds
));
2675 * Compute the various statistics relavent for load balancing at
2678 update_sd_lb_stats(sd
, this_cpu
, idle
, sd_idle
, cpus
,
2681 /* Cases where imbalance does not exist from POV of this_cpu */
2682 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2684 * 2) There is no busy sibling group to pull from.
2685 * 3) This group is the busiest group.
2686 * 4) This group is more busy than the avg busieness at this
2688 * 5) The imbalance is within the specified limit.
2693 if (!sds
.busiest
|| sds
.busiest_nr_running
== 0)
2696 if (sds
.this_load
>= sds
.max_load
)
2699 sds
.avg_load
= (SCHED_LOAD_SCALE
* sds
.total_load
) / sds
.total_pwr
;
2701 if (sds
.this_load
>= sds
.avg_load
)
2704 if (100 * sds
.max_load
<= sd
->imbalance_pct
* sds
.this_load
)
2707 /* Looks like there is an imbalance. Compute it */
2708 calculate_imbalance(&sds
, this_cpu
, imbalance
);
2713 * There is no obvious imbalance. But check if we can do some balancing
2716 if (check_power_save_busiest_group(&sds
, this_cpu
, imbalance
))
2724 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2727 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2728 unsigned long imbalance
, const struct cpumask
*cpus
)
2730 struct rq
*busiest
= NULL
, *rq
;
2731 unsigned long max_load
= 0;
2734 for_each_cpu(i
, sched_group_cpus(group
)) {
2735 unsigned long power
= power_of(i
);
2736 unsigned long capacity
= DIV_ROUND_CLOSEST(power
, SCHED_LOAD_SCALE
);
2739 if (!cpumask_test_cpu(i
, cpus
))
2743 wl
= weighted_cpuload(i
);
2746 * When comparing with imbalance, use weighted_cpuload()
2747 * which is not scaled with the cpu power.
2749 if (capacity
&& rq
->nr_running
== 1 && wl
> imbalance
)
2753 * For the load comparisons with the other cpu's, consider
2754 * the weighted_cpuload() scaled with the cpu power, so that
2755 * the load can be moved away from the cpu that is potentially
2756 * running at a lower capacity.
2758 wl
= (wl
* SCHED_LOAD_SCALE
) / power
;
2760 if (wl
> max_load
) {
2770 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2771 * so long as it is large enough.
2773 #define MAX_PINNED_INTERVAL 512
2775 /* Working cpumask for load_balance and load_balance_newidle. */
2776 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_tmpmask
);
2778 static int need_active_balance(struct sched_domain
*sd
, int sd_idle
, int idle
)
2780 if (idle
== CPU_NEWLY_IDLE
) {
2782 * The only task running in a non-idle cpu can be moved to this
2783 * cpu in an attempt to completely freeup the other CPU
2786 * The package power saving logic comes from
2787 * find_busiest_group(). If there are no imbalance, then
2788 * f_b_g() will return NULL. However when sched_mc={1,2} then
2789 * f_b_g() will select a group from which a running task may be
2790 * pulled to this cpu in order to make the other package idle.
2791 * If there is no opportunity to make a package idle and if
2792 * there are no imbalance, then f_b_g() will return NULL and no
2793 * action will be taken in load_balance_newidle().
2795 * Under normal task pull operation due to imbalance, there
2796 * will be more than one task in the source run queue and
2797 * move_tasks() will succeed. ld_moved will be true and this
2798 * active balance code will not be triggered.
2800 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2801 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2804 if (sched_mc_power_savings
< POWERSAVINGS_BALANCE_WAKEUP
)
2808 return unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2);
2811 static int active_load_balance_cpu_stop(void *data
);
2814 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2815 * tasks if there is an imbalance.
2817 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2818 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2821 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2822 struct sched_group
*group
;
2823 unsigned long imbalance
;
2825 unsigned long flags
;
2826 struct cpumask
*cpus
= __get_cpu_var(load_balance_tmpmask
);
2828 cpumask_copy(cpus
, cpu_active_mask
);
2831 * When power savings policy is enabled for the parent domain, idle
2832 * sibling can pick up load irrespective of busy siblings. In this case,
2833 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2834 * portraying it as CPU_NOT_IDLE.
2836 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2837 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2840 schedstat_inc(sd
, lb_count
[idle
]);
2844 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2851 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2855 busiest
= find_busiest_queue(group
, idle
, imbalance
, cpus
);
2857 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2861 BUG_ON(busiest
== this_rq
);
2863 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2866 if (busiest
->nr_running
> 1) {
2868 * Attempt to move tasks. If find_busiest_group has found
2869 * an imbalance but busiest->nr_running <= 1, the group is
2870 * still unbalanced. ld_moved simply stays zero, so it is
2871 * correctly treated as an imbalance.
2873 local_irq_save(flags
);
2874 double_rq_lock(this_rq
, busiest
);
2875 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2876 imbalance
, sd
, idle
, &all_pinned
);
2877 double_rq_unlock(this_rq
, busiest
);
2878 local_irq_restore(flags
);
2881 * some other cpu did the load balance for us.
2883 if (ld_moved
&& this_cpu
!= smp_processor_id())
2884 resched_cpu(this_cpu
);
2886 /* All tasks on this runqueue were pinned by CPU affinity */
2887 if (unlikely(all_pinned
)) {
2888 cpumask_clear_cpu(cpu_of(busiest
), cpus
);
2889 if (!cpumask_empty(cpus
))
2896 schedstat_inc(sd
, lb_failed
[idle
]);
2897 sd
->nr_balance_failed
++;
2899 if (need_active_balance(sd
, sd_idle
, idle
)) {
2900 raw_spin_lock_irqsave(&busiest
->lock
, flags
);
2902 /* don't kick the active_load_balance_cpu_stop,
2903 * if the curr task on busiest cpu can't be
2906 if (!cpumask_test_cpu(this_cpu
,
2907 &busiest
->curr
->cpus_allowed
)) {
2908 raw_spin_unlock_irqrestore(&busiest
->lock
,
2911 goto out_one_pinned
;
2915 * ->active_balance synchronizes accesses to
2916 * ->active_balance_work. Once set, it's cleared
2917 * only after active load balance is finished.
2919 if (!busiest
->active_balance
) {
2920 busiest
->active_balance
= 1;
2921 busiest
->push_cpu
= this_cpu
;
2924 raw_spin_unlock_irqrestore(&busiest
->lock
, flags
);
2927 stop_one_cpu_nowait(cpu_of(busiest
),
2928 active_load_balance_cpu_stop
, busiest
,
2929 &busiest
->active_balance_work
);
2932 * We've kicked active balancing, reset the failure
2935 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2938 sd
->nr_balance_failed
= 0;
2940 if (likely(!active_balance
)) {
2941 /* We were unbalanced, so reset the balancing interval */
2942 sd
->balance_interval
= sd
->min_interval
;
2945 * If we've begun active balancing, start to back off. This
2946 * case may not be covered by the all_pinned logic if there
2947 * is only 1 task on the busy runqueue (because we don't call
2950 if (sd
->balance_interval
< sd
->max_interval
)
2951 sd
->balance_interval
*= 2;
2954 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2955 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2961 schedstat_inc(sd
, lb_balanced
[idle
]);
2963 sd
->nr_balance_failed
= 0;
2966 /* tune up the balancing interval */
2967 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2968 (sd
->balance_interval
< sd
->max_interval
))
2969 sd
->balance_interval
*= 2;
2971 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2972 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2983 * idle_balance is called by schedule() if this_cpu is about to become
2984 * idle. Attempts to pull tasks from other CPUs.
2986 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2988 struct sched_domain
*sd
;
2989 int pulled_task
= 0;
2990 unsigned long next_balance
= jiffies
+ HZ
;
2992 this_rq
->idle_stamp
= this_rq
->clock
;
2994 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
2998 * Drop the rq->lock, but keep IRQ/preempt disabled.
3000 raw_spin_unlock(&this_rq
->lock
);
3002 for_each_domain(this_cpu
, sd
) {
3003 unsigned long interval
;
3006 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3009 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
3010 /* If we've pulled tasks over stop searching: */
3011 pulled_task
= load_balance(this_cpu
, this_rq
,
3012 sd
, CPU_NEWLY_IDLE
, &balance
);
3015 interval
= msecs_to_jiffies(sd
->balance_interval
);
3016 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3017 next_balance
= sd
->last_balance
+ interval
;
3019 this_rq
->idle_stamp
= 0;
3024 raw_spin_lock(&this_rq
->lock
);
3026 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
3028 * We are going idle. next_balance may be set based on
3029 * a busy processor. So reset next_balance.
3031 this_rq
->next_balance
= next_balance
;
3036 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3037 * running tasks off the busiest CPU onto idle CPUs. It requires at
3038 * least 1 task to be running on each physical CPU where possible, and
3039 * avoids physical / logical imbalances.
3041 static int active_load_balance_cpu_stop(void *data
)
3043 struct rq
*busiest_rq
= data
;
3044 int busiest_cpu
= cpu_of(busiest_rq
);
3045 int target_cpu
= busiest_rq
->push_cpu
;
3046 struct rq
*target_rq
= cpu_rq(target_cpu
);
3047 struct sched_domain
*sd
;
3049 raw_spin_lock_irq(&busiest_rq
->lock
);
3051 /* make sure the requested cpu hasn't gone down in the meantime */
3052 if (unlikely(busiest_cpu
!= smp_processor_id() ||
3053 !busiest_rq
->active_balance
))
3056 /* Is there any task to move? */
3057 if (busiest_rq
->nr_running
<= 1)
3061 * This condition is "impossible", if it occurs
3062 * we need to fix it. Originally reported by
3063 * Bjorn Helgaas on a 128-cpu setup.
3065 BUG_ON(busiest_rq
== target_rq
);
3067 /* move a task from busiest_rq to target_rq */
3068 double_lock_balance(busiest_rq
, target_rq
);
3070 /* Search for an sd spanning us and the target CPU. */
3071 for_each_domain(target_cpu
, sd
) {
3072 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
3073 cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
3078 schedstat_inc(sd
, alb_count
);
3080 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
3082 schedstat_inc(sd
, alb_pushed
);
3084 schedstat_inc(sd
, alb_failed
);
3086 double_unlock_balance(busiest_rq
, target_rq
);
3088 busiest_rq
->active_balance
= 0;
3089 raw_spin_unlock_irq(&busiest_rq
->lock
);
3095 atomic_t load_balancer
;
3096 cpumask_var_t cpu_mask
;
3097 cpumask_var_t ilb_grp_nohz_mask
;
3098 } nohz ____cacheline_aligned
= {
3099 .load_balancer
= ATOMIC_INIT(-1),
3102 int get_nohz_load_balancer(void)
3104 return atomic_read(&nohz
.load_balancer
);
3107 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3109 * lowest_flag_domain - Return lowest sched_domain containing flag.
3110 * @cpu: The cpu whose lowest level of sched domain is to
3112 * @flag: The flag to check for the lowest sched_domain
3113 * for the given cpu.
3115 * Returns the lowest sched_domain of a cpu which contains the given flag.
3117 static inline struct sched_domain
*lowest_flag_domain(int cpu
, int flag
)
3119 struct sched_domain
*sd
;
3121 for_each_domain(cpu
, sd
)
3122 if (sd
&& (sd
->flags
& flag
))
3129 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3130 * @cpu: The cpu whose domains we're iterating over.
3131 * @sd: variable holding the value of the power_savings_sd
3133 * @flag: The flag to filter the sched_domains to be iterated.
3135 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3136 * set, starting from the lowest sched_domain to the highest.
3138 #define for_each_flag_domain(cpu, sd, flag) \
3139 for (sd = lowest_flag_domain(cpu, flag); \
3140 (sd && (sd->flags & flag)); sd = sd->parent)
3143 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3144 * @ilb_group: group to be checked for semi-idleness
3146 * Returns: 1 if the group is semi-idle. 0 otherwise.
3148 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3149 * and atleast one non-idle CPU. This helper function checks if the given
3150 * sched_group is semi-idle or not.
3152 static inline int is_semi_idle_group(struct sched_group
*ilb_group
)
3154 cpumask_and(nohz
.ilb_grp_nohz_mask
, nohz
.cpu_mask
,
3155 sched_group_cpus(ilb_group
));
3158 * A sched_group is semi-idle when it has atleast one busy cpu
3159 * and atleast one idle cpu.
3161 if (cpumask_empty(nohz
.ilb_grp_nohz_mask
))
3164 if (cpumask_equal(nohz
.ilb_grp_nohz_mask
, sched_group_cpus(ilb_group
)))
3170 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3171 * @cpu: The cpu which is nominating a new idle_load_balancer.
3173 * Returns: Returns the id of the idle load balancer if it exists,
3174 * Else, returns >= nr_cpu_ids.
3176 * This algorithm picks the idle load balancer such that it belongs to a
3177 * semi-idle powersavings sched_domain. The idea is to try and avoid
3178 * completely idle packages/cores just for the purpose of idle load balancing
3179 * when there are other idle cpu's which are better suited for that job.
3181 static int find_new_ilb(int cpu
)
3183 struct sched_domain
*sd
;
3184 struct sched_group
*ilb_group
;
3187 * Have idle load balancer selection from semi-idle packages only
3188 * when power-aware load balancing is enabled
3190 if (!(sched_smt_power_savings
|| sched_mc_power_savings
))
3194 * Optimize for the case when we have no idle CPUs or only one
3195 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3197 if (cpumask_weight(nohz
.cpu_mask
) < 2)
3200 for_each_flag_domain(cpu
, sd
, SD_POWERSAVINGS_BALANCE
) {
3201 ilb_group
= sd
->groups
;
3204 if (is_semi_idle_group(ilb_group
))
3205 return cpumask_first(nohz
.ilb_grp_nohz_mask
);
3207 ilb_group
= ilb_group
->next
;
3209 } while (ilb_group
!= sd
->groups
);
3213 return cpumask_first(nohz
.cpu_mask
);
3215 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3216 static inline int find_new_ilb(int call_cpu
)
3218 return cpumask_first(nohz
.cpu_mask
);
3223 * This routine will try to nominate the ilb (idle load balancing)
3224 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3225 * load balancing on behalf of all those cpus. If all the cpus in the system
3226 * go into this tickless mode, then there will be no ilb owner (as there is
3227 * no need for one) and all the cpus will sleep till the next wakeup event
3230 * For the ilb owner, tick is not stopped. And this tick will be used
3231 * for idle load balancing. ilb owner will still be part of
3234 * While stopping the tick, this cpu will become the ilb owner if there
3235 * is no other owner. And will be the owner till that cpu becomes busy
3236 * or if all cpus in the system stop their ticks at which point
3237 * there is no need for ilb owner.
3239 * When the ilb owner becomes busy, it nominates another owner, during the
3240 * next busy scheduler_tick()
3242 int select_nohz_load_balancer(int stop_tick
)
3244 int cpu
= smp_processor_id();
3247 cpu_rq(cpu
)->in_nohz_recently
= 1;
3249 if (!cpu_active(cpu
)) {
3250 if (atomic_read(&nohz
.load_balancer
) != cpu
)
3254 * If we are going offline and still the leader,
3257 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3263 cpumask_set_cpu(cpu
, nohz
.cpu_mask
);
3265 /* time for ilb owner also to sleep */
3266 if (cpumask_weight(nohz
.cpu_mask
) == num_active_cpus()) {
3267 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3268 atomic_set(&nohz
.load_balancer
, -1);
3272 if (atomic_read(&nohz
.load_balancer
) == -1) {
3273 /* make me the ilb owner */
3274 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
3276 } else if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3279 if (!(sched_smt_power_savings
||
3280 sched_mc_power_savings
))
3283 * Check to see if there is a more power-efficient
3286 new_ilb
= find_new_ilb(cpu
);
3287 if (new_ilb
< nr_cpu_ids
&& new_ilb
!= cpu
) {
3288 atomic_set(&nohz
.load_balancer
, -1);
3289 resched_cpu(new_ilb
);
3295 if (!cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
3298 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
3300 if (atomic_read(&nohz
.load_balancer
) == cpu
)
3301 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
3308 static DEFINE_SPINLOCK(balancing
);
3311 * It checks each scheduling domain to see if it is due to be balanced,
3312 * and initiates a balancing operation if so.
3314 * Balancing parameters are set up in arch_init_sched_domains.
3316 static void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3319 struct rq
*rq
= cpu_rq(cpu
);
3320 unsigned long interval
;
3321 struct sched_domain
*sd
;
3322 /* Earliest time when we have to do rebalance again */
3323 unsigned long next_balance
= jiffies
+ 60*HZ
;
3324 int update_next_balance
= 0;
3327 for_each_domain(cpu
, sd
) {
3328 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3331 interval
= sd
->balance_interval
;
3332 if (idle
!= CPU_IDLE
)
3333 interval
*= sd
->busy_factor
;
3335 /* scale ms to jiffies */
3336 interval
= msecs_to_jiffies(interval
);
3337 if (unlikely(!interval
))
3339 if (interval
> HZ
*NR_CPUS
/10)
3340 interval
= HZ
*NR_CPUS
/10;
3342 need_serialize
= sd
->flags
& SD_SERIALIZE
;
3344 if (need_serialize
) {
3345 if (!spin_trylock(&balancing
))
3349 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3350 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3352 * We've pulled tasks over so either we're no
3353 * longer idle, or one of our SMT siblings is
3356 idle
= CPU_NOT_IDLE
;
3358 sd
->last_balance
= jiffies
;
3361 spin_unlock(&balancing
);
3363 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
3364 next_balance
= sd
->last_balance
+ interval
;
3365 update_next_balance
= 1;
3369 * Stop the load balance at this level. There is another
3370 * CPU in our sched group which is doing load balancing more
3378 * next_balance will be updated only when there is a need.
3379 * When the cpu is attached to null domain for ex, it will not be
3382 if (likely(update_next_balance
))
3383 rq
->next_balance
= next_balance
;
3387 * run_rebalance_domains is triggered when needed from the scheduler tick.
3388 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3389 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3391 static void run_rebalance_domains(struct softirq_action
*h
)
3393 int this_cpu
= smp_processor_id();
3394 struct rq
*this_rq
= cpu_rq(this_cpu
);
3395 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3396 CPU_IDLE
: CPU_NOT_IDLE
;
3398 rebalance_domains(this_cpu
, idle
);
3402 * If this cpu is the owner for idle load balancing, then do the
3403 * balancing on behalf of the other idle cpus whose ticks are
3406 if (this_rq
->idle_at_tick
&&
3407 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3411 for_each_cpu(balance_cpu
, nohz
.cpu_mask
) {
3412 if (balance_cpu
== this_cpu
)
3416 * If this cpu gets work to do, stop the load balancing
3417 * work being done for other cpus. Next load
3418 * balancing owner will pick it up.
3423 rebalance_domains(balance_cpu
, CPU_IDLE
);
3425 rq
= cpu_rq(balance_cpu
);
3426 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3427 this_rq
->next_balance
= rq
->next_balance
;
3433 static inline int on_null_domain(int cpu
)
3435 return !rcu_dereference_sched(cpu_rq(cpu
)->sd
);
3439 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3441 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3442 * idle load balancing owner or decide to stop the periodic load balancing,
3443 * if the whole system is idle.
3445 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3449 * If we were in the nohz mode recently and busy at the current
3450 * scheduler tick, then check if we need to nominate new idle
3453 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3454 rq
->in_nohz_recently
= 0;
3456 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3457 cpumask_clear_cpu(cpu
, nohz
.cpu_mask
);
3458 atomic_set(&nohz
.load_balancer
, -1);
3461 if (atomic_read(&nohz
.load_balancer
) == -1) {
3462 int ilb
= find_new_ilb(cpu
);
3464 if (ilb
< nr_cpu_ids
)
3470 * If this cpu is idle and doing idle load balancing for all the
3471 * cpus with ticks stopped, is it time for that to stop?
3473 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3474 cpumask_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3480 * If this cpu is idle and the idle load balancing is done by
3481 * someone else, then no need raise the SCHED_SOFTIRQ
3483 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3484 cpumask_test_cpu(cpu
, nohz
.cpu_mask
))
3487 /* Don't need to rebalance while attached to NULL domain */
3488 if (time_after_eq(jiffies
, rq
->next_balance
) &&
3489 likely(!on_null_domain(cpu
)))
3490 raise_softirq(SCHED_SOFTIRQ
);
3493 static void rq_online_fair(struct rq
*rq
)
3498 static void rq_offline_fair(struct rq
*rq
)
3503 #else /* CONFIG_SMP */
3506 * on UP we do not need to balance between CPUs:
3508 static inline void idle_balance(int cpu
, struct rq
*rq
)
3512 #endif /* CONFIG_SMP */
3515 * scheduler tick hitting a task of our scheduling class:
3517 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
3519 struct cfs_rq
*cfs_rq
;
3520 struct sched_entity
*se
= &curr
->se
;
3522 for_each_sched_entity(se
) {
3523 cfs_rq
= cfs_rq_of(se
);
3524 entity_tick(cfs_rq
, se
, queued
);
3529 * called on fork with the child task as argument from the parent's context
3530 * - child not yet on the tasklist
3531 * - preemption disabled
3533 static void task_fork_fair(struct task_struct
*p
)
3535 struct cfs_rq
*cfs_rq
= task_cfs_rq(current
);
3536 struct sched_entity
*se
= &p
->se
, *curr
= cfs_rq
->curr
;
3537 int this_cpu
= smp_processor_id();
3538 struct rq
*rq
= this_rq();
3539 unsigned long flags
;
3541 raw_spin_lock_irqsave(&rq
->lock
, flags
);
3543 if (unlikely(task_cpu(p
) != this_cpu
))
3544 __set_task_cpu(p
, this_cpu
);
3546 update_curr(cfs_rq
);
3549 se
->vruntime
= curr
->vruntime
;
3550 place_entity(cfs_rq
, se
, 1);
3552 if (sysctl_sched_child_runs_first
&& curr
&& entity_before(curr
, se
)) {
3554 * Upon rescheduling, sched_class::put_prev_task() will place
3555 * 'current' within the tree based on its new key value.
3557 swap(curr
->vruntime
, se
->vruntime
);
3558 resched_task(rq
->curr
);
3561 se
->vruntime
-= cfs_rq
->min_vruntime
;
3563 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
3567 * Priority of the task has changed. Check to see if we preempt
3570 static void prio_changed_fair(struct rq
*rq
, struct task_struct
*p
,
3571 int oldprio
, int running
)
3574 * Reschedule if we are currently running on this runqueue and
3575 * our priority decreased, or if we are not currently running on
3576 * this runqueue and our priority is higher than the current's
3579 if (p
->prio
> oldprio
)
3580 resched_task(rq
->curr
);
3582 check_preempt_curr(rq
, p
, 0);
3586 * We switched to the sched_fair class.
3588 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
,
3592 * We were most likely switched from sched_rt, so
3593 * kick off the schedule if running, otherwise just see
3594 * if we can still preempt the current task.
3597 resched_task(rq
->curr
);
3599 check_preempt_curr(rq
, p
, 0);
3602 /* Account for a task changing its policy or group.
3604 * This routine is mostly called to set cfs_rq->curr field when a task
3605 * migrates between groups/classes.
3607 static void set_curr_task_fair(struct rq
*rq
)
3609 struct sched_entity
*se
= &rq
->curr
->se
;
3611 for_each_sched_entity(se
)
3612 set_next_entity(cfs_rq_of(se
), se
);
3615 #ifdef CONFIG_FAIR_GROUP_SCHED
3616 static void moved_group_fair(struct task_struct
*p
, int on_rq
)
3618 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
3620 update_curr(cfs_rq
);
3622 place_entity(cfs_rq
, &p
->se
, 1);
3626 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
3628 struct sched_entity
*se
= &task
->se
;
3629 unsigned int rr_interval
= 0;
3632 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3635 if (rq
->cfs
.load
.weight
)
3636 rr_interval
= NS_TO_JIFFIES(sched_slice(&rq
->cfs
, se
));
3642 * All the scheduling class methods:
3644 static const struct sched_class fair_sched_class
= {
3645 .next
= &idle_sched_class
,
3646 .enqueue_task
= enqueue_task_fair
,
3647 .dequeue_task
= dequeue_task_fair
,
3648 .yield_task
= yield_task_fair
,
3650 .check_preempt_curr
= check_preempt_wakeup
,
3652 .pick_next_task
= pick_next_task_fair
,
3653 .put_prev_task
= put_prev_task_fair
,
3656 .select_task_rq
= select_task_rq_fair
,
3658 .rq_online
= rq_online_fair
,
3659 .rq_offline
= rq_offline_fair
,
3661 .task_waking
= task_waking_fair
,
3664 .set_curr_task
= set_curr_task_fair
,
3665 .task_tick
= task_tick_fair
,
3666 .task_fork
= task_fork_fair
,
3668 .prio_changed
= prio_changed_fair
,
3669 .switched_to
= switched_to_fair
,
3671 .get_rr_interval
= get_rr_interval_fair
,
3673 #ifdef CONFIG_FAIR_GROUP_SCHED
3674 .moved_group
= moved_group_fair
,
3678 #ifdef CONFIG_SCHED_DEBUG
3679 static void print_cfs_stats(struct seq_file
*m
, int cpu
)
3681 struct cfs_rq
*cfs_rq
;
3684 for_each_leaf_cfs_rq(cpu_rq(cpu
), cfs_rq
)
3685 print_cfs_rq(m
, cpu
, cfs_rq
);