Merge branch 'for-linus' of git://oss.sgi.com/xfs/xfs
[linux/fpc-iii.git] / net / sunrpc / xprtrdma / transport.c
bloba85e866a77f73d2abde623b3d89a264331f63999
1 /*
2 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the BSD-type
8 * license below:
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
14 * Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
17 * Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials provided
20 * with the distribution.
22 * Neither the name of the Network Appliance, Inc. nor the names of
23 * its contributors may be used to endorse or promote products
24 * derived from this software without specific prior written
25 * permission.
27 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
28 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
29 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
30 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
31 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
32 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
33 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
34 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
35 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
36 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
37 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
41 * transport.c
43 * This file contains the top-level implementation of an RPC RDMA
44 * transport.
46 * Naming convention: functions beginning with xprt_ are part of the
47 * transport switch. All others are RPC RDMA internal.
50 #include <linux/module.h>
51 #include <linux/init.h>
52 #include <linux/slab.h>
53 #include <linux/seq_file.h>
55 #include "xprt_rdma.h"
57 #ifdef RPC_DEBUG
58 # define RPCDBG_FACILITY RPCDBG_TRANS
59 #endif
61 MODULE_LICENSE("Dual BSD/GPL");
63 MODULE_DESCRIPTION("RPC/RDMA Transport for Linux kernel NFS");
64 MODULE_AUTHOR("Network Appliance, Inc.");
67 * tunables
70 static unsigned int xprt_rdma_slot_table_entries = RPCRDMA_DEF_SLOT_TABLE;
71 static unsigned int xprt_rdma_max_inline_read = RPCRDMA_DEF_INLINE;
72 static unsigned int xprt_rdma_max_inline_write = RPCRDMA_DEF_INLINE;
73 static unsigned int xprt_rdma_inline_write_padding;
74 static unsigned int xprt_rdma_memreg_strategy = RPCRDMA_FRMR;
75 int xprt_rdma_pad_optimize = 0;
77 #ifdef RPC_DEBUG
79 static unsigned int min_slot_table_size = RPCRDMA_MIN_SLOT_TABLE;
80 static unsigned int max_slot_table_size = RPCRDMA_MAX_SLOT_TABLE;
81 static unsigned int zero;
82 static unsigned int max_padding = PAGE_SIZE;
83 static unsigned int min_memreg = RPCRDMA_BOUNCEBUFFERS;
84 static unsigned int max_memreg = RPCRDMA_LAST - 1;
86 static struct ctl_table_header *sunrpc_table_header;
88 static ctl_table xr_tunables_table[] = {
90 .procname = "rdma_slot_table_entries",
91 .data = &xprt_rdma_slot_table_entries,
92 .maxlen = sizeof(unsigned int),
93 .mode = 0644,
94 .proc_handler = proc_dointvec_minmax,
95 .extra1 = &min_slot_table_size,
96 .extra2 = &max_slot_table_size
99 .procname = "rdma_max_inline_read",
100 .data = &xprt_rdma_max_inline_read,
101 .maxlen = sizeof(unsigned int),
102 .mode = 0644,
103 .proc_handler = proc_dointvec,
106 .procname = "rdma_max_inline_write",
107 .data = &xprt_rdma_max_inline_write,
108 .maxlen = sizeof(unsigned int),
109 .mode = 0644,
110 .proc_handler = proc_dointvec,
113 .procname = "rdma_inline_write_padding",
114 .data = &xprt_rdma_inline_write_padding,
115 .maxlen = sizeof(unsigned int),
116 .mode = 0644,
117 .proc_handler = proc_dointvec_minmax,
118 .extra1 = &zero,
119 .extra2 = &max_padding,
122 .procname = "rdma_memreg_strategy",
123 .data = &xprt_rdma_memreg_strategy,
124 .maxlen = sizeof(unsigned int),
125 .mode = 0644,
126 .proc_handler = proc_dointvec_minmax,
127 .extra1 = &min_memreg,
128 .extra2 = &max_memreg,
131 .procname = "rdma_pad_optimize",
132 .data = &xprt_rdma_pad_optimize,
133 .maxlen = sizeof(unsigned int),
134 .mode = 0644,
135 .proc_handler = proc_dointvec,
137 { },
140 static ctl_table sunrpc_table[] = {
142 .procname = "sunrpc",
143 .mode = 0555,
144 .child = xr_tunables_table
146 { },
149 #endif
151 static struct rpc_xprt_ops xprt_rdma_procs; /* forward reference */
153 static void
154 xprt_rdma_format_addresses(struct rpc_xprt *xprt)
156 struct sockaddr *sap = (struct sockaddr *)
157 &rpcx_to_rdmad(xprt).addr;
158 struct sockaddr_in *sin = (struct sockaddr_in *)sap;
159 char buf[64];
161 (void)rpc_ntop(sap, buf, sizeof(buf));
162 xprt->address_strings[RPC_DISPLAY_ADDR] = kstrdup(buf, GFP_KERNEL);
164 snprintf(buf, sizeof(buf), "%u", rpc_get_port(sap));
165 xprt->address_strings[RPC_DISPLAY_PORT] = kstrdup(buf, GFP_KERNEL);
167 xprt->address_strings[RPC_DISPLAY_PROTO] = "rdma";
169 snprintf(buf, sizeof(buf), "%08x", ntohl(sin->sin_addr.s_addr));
170 xprt->address_strings[RPC_DISPLAY_HEX_ADDR] = kstrdup(buf, GFP_KERNEL);
172 snprintf(buf, sizeof(buf), "%4hx", rpc_get_port(sap));
173 xprt->address_strings[RPC_DISPLAY_HEX_PORT] = kstrdup(buf, GFP_KERNEL);
175 /* netid */
176 xprt->address_strings[RPC_DISPLAY_NETID] = "rdma";
179 static void
180 xprt_rdma_free_addresses(struct rpc_xprt *xprt)
182 unsigned int i;
184 for (i = 0; i < RPC_DISPLAY_MAX; i++)
185 switch (i) {
186 case RPC_DISPLAY_PROTO:
187 case RPC_DISPLAY_NETID:
188 continue;
189 default:
190 kfree(xprt->address_strings[i]);
194 static void
195 xprt_rdma_connect_worker(struct work_struct *work)
197 struct rpcrdma_xprt *r_xprt =
198 container_of(work, struct rpcrdma_xprt, rdma_connect.work);
199 struct rpc_xprt *xprt = &r_xprt->xprt;
200 int rc = 0;
202 if (!xprt->shutdown) {
203 xprt_clear_connected(xprt);
205 dprintk("RPC: %s: %sconnect\n", __func__,
206 r_xprt->rx_ep.rep_connected != 0 ? "re" : "");
207 rc = rpcrdma_ep_connect(&r_xprt->rx_ep, &r_xprt->rx_ia);
208 if (rc)
209 goto out;
211 goto out_clear;
213 out:
214 xprt_wake_pending_tasks(xprt, rc);
216 out_clear:
217 dprintk("RPC: %s: exit\n", __func__);
218 xprt_clear_connecting(xprt);
222 * xprt_rdma_destroy
224 * Destroy the xprt.
225 * Free all memory associated with the object, including its own.
226 * NOTE: none of the *destroy methods free memory for their top-level
227 * objects, even though they may have allocated it (they do free
228 * private memory). It's up to the caller to handle it. In this
229 * case (RDMA transport), all structure memory is inlined with the
230 * struct rpcrdma_xprt.
232 static void
233 xprt_rdma_destroy(struct rpc_xprt *xprt)
235 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
236 int rc;
238 dprintk("RPC: %s: called\n", __func__);
240 cancel_delayed_work(&r_xprt->rdma_connect);
241 flush_scheduled_work();
243 xprt_clear_connected(xprt);
245 rpcrdma_buffer_destroy(&r_xprt->rx_buf);
246 rc = rpcrdma_ep_destroy(&r_xprt->rx_ep, &r_xprt->rx_ia);
247 if (rc)
248 dprintk("RPC: %s: rpcrdma_ep_destroy returned %i\n",
249 __func__, rc);
250 rpcrdma_ia_close(&r_xprt->rx_ia);
252 xprt_rdma_free_addresses(xprt);
254 kfree(xprt->slot);
255 xprt->slot = NULL;
256 kfree(xprt);
258 dprintk("RPC: %s: returning\n", __func__);
260 module_put(THIS_MODULE);
263 static const struct rpc_timeout xprt_rdma_default_timeout = {
264 .to_initval = 60 * HZ,
265 .to_maxval = 60 * HZ,
269 * xprt_setup_rdma - Set up transport to use RDMA
271 * @args: rpc transport arguments
273 static struct rpc_xprt *
274 xprt_setup_rdma(struct xprt_create *args)
276 struct rpcrdma_create_data_internal cdata;
277 struct rpc_xprt *xprt;
278 struct rpcrdma_xprt *new_xprt;
279 struct rpcrdma_ep *new_ep;
280 struct sockaddr_in *sin;
281 int rc;
283 if (args->addrlen > sizeof(xprt->addr)) {
284 dprintk("RPC: %s: address too large\n", __func__);
285 return ERR_PTR(-EBADF);
288 xprt = kzalloc(sizeof(struct rpcrdma_xprt), GFP_KERNEL);
289 if (xprt == NULL) {
290 dprintk("RPC: %s: couldn't allocate rpcrdma_xprt\n",
291 __func__);
292 return ERR_PTR(-ENOMEM);
295 xprt->max_reqs = xprt_rdma_slot_table_entries;
296 xprt->slot = kcalloc(xprt->max_reqs,
297 sizeof(struct rpc_rqst), GFP_KERNEL);
298 if (xprt->slot == NULL) {
299 dprintk("RPC: %s: couldn't allocate %d slots\n",
300 __func__, xprt->max_reqs);
301 kfree(xprt);
302 return ERR_PTR(-ENOMEM);
305 /* 60 second timeout, no retries */
306 xprt->timeout = &xprt_rdma_default_timeout;
307 xprt->bind_timeout = (60U * HZ);
308 xprt->reestablish_timeout = (5U * HZ);
309 xprt->idle_timeout = (5U * 60 * HZ);
311 xprt->resvport = 0; /* privileged port not needed */
312 xprt->tsh_size = 0; /* RPC-RDMA handles framing */
313 xprt->max_payload = RPCRDMA_MAX_DATA_SEGS * PAGE_SIZE;
314 xprt->ops = &xprt_rdma_procs;
317 * Set up RDMA-specific connect data.
320 /* Put server RDMA address in local cdata */
321 memcpy(&cdata.addr, args->dstaddr, args->addrlen);
323 /* Ensure xprt->addr holds valid server TCP (not RDMA)
324 * address, for any side protocols which peek at it */
325 xprt->prot = IPPROTO_TCP;
326 xprt->addrlen = args->addrlen;
327 memcpy(&xprt->addr, &cdata.addr, xprt->addrlen);
329 sin = (struct sockaddr_in *)&cdata.addr;
330 if (ntohs(sin->sin_port) != 0)
331 xprt_set_bound(xprt);
333 dprintk("RPC: %s: %pI4:%u\n",
334 __func__, &sin->sin_addr.s_addr, ntohs(sin->sin_port));
336 /* Set max requests */
337 cdata.max_requests = xprt->max_reqs;
339 /* Set some length limits */
340 cdata.rsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA write max */
341 cdata.wsize = RPCRDMA_MAX_SEGS * PAGE_SIZE; /* RDMA read max */
343 cdata.inline_wsize = xprt_rdma_max_inline_write;
344 if (cdata.inline_wsize > cdata.wsize)
345 cdata.inline_wsize = cdata.wsize;
347 cdata.inline_rsize = xprt_rdma_max_inline_read;
348 if (cdata.inline_rsize > cdata.rsize)
349 cdata.inline_rsize = cdata.rsize;
351 cdata.padding = xprt_rdma_inline_write_padding;
354 * Create new transport instance, which includes initialized
355 * o ia
356 * o endpoint
357 * o buffers
360 new_xprt = rpcx_to_rdmax(xprt);
362 rc = rpcrdma_ia_open(new_xprt, (struct sockaddr *) &cdata.addr,
363 xprt_rdma_memreg_strategy);
364 if (rc)
365 goto out1;
368 * initialize and create ep
370 new_xprt->rx_data = cdata;
371 new_ep = &new_xprt->rx_ep;
372 new_ep->rep_remote_addr = cdata.addr;
374 rc = rpcrdma_ep_create(&new_xprt->rx_ep,
375 &new_xprt->rx_ia, &new_xprt->rx_data);
376 if (rc)
377 goto out2;
380 * Allocate pre-registered send and receive buffers for headers and
381 * any inline data. Also specify any padding which will be provided
382 * from a preregistered zero buffer.
384 rc = rpcrdma_buffer_create(&new_xprt->rx_buf, new_ep, &new_xprt->rx_ia,
385 &new_xprt->rx_data);
386 if (rc)
387 goto out3;
390 * Register a callback for connection events. This is necessary because
391 * connection loss notification is async. We also catch connection loss
392 * when reaping receives.
394 INIT_DELAYED_WORK(&new_xprt->rdma_connect, xprt_rdma_connect_worker);
395 new_ep->rep_func = rpcrdma_conn_func;
396 new_ep->rep_xprt = xprt;
398 xprt_rdma_format_addresses(xprt);
400 if (!try_module_get(THIS_MODULE))
401 goto out4;
403 return xprt;
405 out4:
406 xprt_rdma_free_addresses(xprt);
407 rc = -EINVAL;
408 out3:
409 (void) rpcrdma_ep_destroy(new_ep, &new_xprt->rx_ia);
410 out2:
411 rpcrdma_ia_close(&new_xprt->rx_ia);
412 out1:
413 kfree(xprt->slot);
414 kfree(xprt);
415 return ERR_PTR(rc);
419 * Close a connection, during shutdown or timeout/reconnect
421 static void
422 xprt_rdma_close(struct rpc_xprt *xprt)
424 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
426 dprintk("RPC: %s: closing\n", __func__);
427 if (r_xprt->rx_ep.rep_connected > 0)
428 xprt->reestablish_timeout = 0;
429 xprt_disconnect_done(xprt);
430 (void) rpcrdma_ep_disconnect(&r_xprt->rx_ep, &r_xprt->rx_ia);
433 static void
434 xprt_rdma_set_port(struct rpc_xprt *xprt, u16 port)
436 struct sockaddr_in *sap;
438 sap = (struct sockaddr_in *)&xprt->addr;
439 sap->sin_port = htons(port);
440 sap = (struct sockaddr_in *)&rpcx_to_rdmad(xprt).addr;
441 sap->sin_port = htons(port);
442 dprintk("RPC: %s: %u\n", __func__, port);
445 static void
446 xprt_rdma_connect(struct rpc_task *task)
448 struct rpc_xprt *xprt = (struct rpc_xprt *)task->tk_xprt;
449 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
451 if (r_xprt->rx_ep.rep_connected != 0) {
452 /* Reconnect */
453 schedule_delayed_work(&r_xprt->rdma_connect,
454 xprt->reestablish_timeout);
455 xprt->reestablish_timeout <<= 1;
456 if (xprt->reestablish_timeout > (30 * HZ))
457 xprt->reestablish_timeout = (30 * HZ);
458 else if (xprt->reestablish_timeout < (5 * HZ))
459 xprt->reestablish_timeout = (5 * HZ);
460 } else {
461 schedule_delayed_work(&r_xprt->rdma_connect, 0);
462 if (!RPC_IS_ASYNC(task))
463 flush_scheduled_work();
467 static int
468 xprt_rdma_reserve_xprt(struct rpc_task *task)
470 struct rpc_xprt *xprt = task->tk_xprt;
471 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
472 int credits = atomic_read(&r_xprt->rx_buf.rb_credits);
474 /* == RPC_CWNDSCALE @ init, but *after* setup */
475 if (r_xprt->rx_buf.rb_cwndscale == 0UL) {
476 r_xprt->rx_buf.rb_cwndscale = xprt->cwnd;
477 dprintk("RPC: %s: cwndscale %lu\n", __func__,
478 r_xprt->rx_buf.rb_cwndscale);
479 BUG_ON(r_xprt->rx_buf.rb_cwndscale <= 0);
481 xprt->cwnd = credits * r_xprt->rx_buf.rb_cwndscale;
482 return xprt_reserve_xprt_cong(task);
486 * The RDMA allocate/free functions need the task structure as a place
487 * to hide the struct rpcrdma_req, which is necessary for the actual send/recv
488 * sequence. For this reason, the recv buffers are attached to send
489 * buffers for portions of the RPC. Note that the RPC layer allocates
490 * both send and receive buffers in the same call. We may register
491 * the receive buffer portion when using reply chunks.
493 static void *
494 xprt_rdma_allocate(struct rpc_task *task, size_t size)
496 struct rpc_xprt *xprt = task->tk_xprt;
497 struct rpcrdma_req *req, *nreq;
499 req = rpcrdma_buffer_get(&rpcx_to_rdmax(xprt)->rx_buf);
500 BUG_ON(NULL == req);
502 if (size > req->rl_size) {
503 dprintk("RPC: %s: size %zd too large for buffer[%zd]: "
504 "prog %d vers %d proc %d\n",
505 __func__, size, req->rl_size,
506 task->tk_client->cl_prog, task->tk_client->cl_vers,
507 task->tk_msg.rpc_proc->p_proc);
509 * Outgoing length shortage. Our inline write max must have
510 * been configured to perform direct i/o.
512 * This is therefore a large metadata operation, and the
513 * allocate call was made on the maximum possible message,
514 * e.g. containing long filename(s) or symlink data. In
515 * fact, while these metadata operations *might* carry
516 * large outgoing payloads, they rarely *do*. However, we
517 * have to commit to the request here, so reallocate and
518 * register it now. The data path will never require this
519 * reallocation.
521 * If the allocation or registration fails, the RPC framework
522 * will (doggedly) retry.
524 if (rpcx_to_rdmax(xprt)->rx_ia.ri_memreg_strategy ==
525 RPCRDMA_BOUNCEBUFFERS) {
526 /* forced to "pure inline" */
527 dprintk("RPC: %s: too much data (%zd) for inline "
528 "(r/w max %d/%d)\n", __func__, size,
529 rpcx_to_rdmad(xprt).inline_rsize,
530 rpcx_to_rdmad(xprt).inline_wsize);
531 size = req->rl_size;
532 rpc_exit(task, -EIO); /* fail the operation */
533 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
534 goto out;
536 if (task->tk_flags & RPC_TASK_SWAPPER)
537 nreq = kmalloc(sizeof *req + size, GFP_ATOMIC);
538 else
539 nreq = kmalloc(sizeof *req + size, GFP_NOFS);
540 if (nreq == NULL)
541 goto outfail;
543 if (rpcrdma_register_internal(&rpcx_to_rdmax(xprt)->rx_ia,
544 nreq->rl_base, size + sizeof(struct rpcrdma_req)
545 - offsetof(struct rpcrdma_req, rl_base),
546 &nreq->rl_handle, &nreq->rl_iov)) {
547 kfree(nreq);
548 goto outfail;
550 rpcx_to_rdmax(xprt)->rx_stats.hardway_register_count += size;
551 nreq->rl_size = size;
552 nreq->rl_niovs = 0;
553 nreq->rl_nchunks = 0;
554 nreq->rl_buffer = (struct rpcrdma_buffer *)req;
555 nreq->rl_reply = req->rl_reply;
556 memcpy(nreq->rl_segments,
557 req->rl_segments, sizeof nreq->rl_segments);
558 /* flag the swap with an unused field */
559 nreq->rl_iov.length = 0;
560 req->rl_reply = NULL;
561 req = nreq;
563 dprintk("RPC: %s: size %zd, request 0x%p\n", __func__, size, req);
564 out:
565 req->rl_connect_cookie = 0; /* our reserved value */
566 return req->rl_xdr_buf;
568 outfail:
569 rpcrdma_buffer_put(req);
570 rpcx_to_rdmax(xprt)->rx_stats.failed_marshal_count++;
571 return NULL;
575 * This function returns all RDMA resources to the pool.
577 static void
578 xprt_rdma_free(void *buffer)
580 struct rpcrdma_req *req;
581 struct rpcrdma_xprt *r_xprt;
582 struct rpcrdma_rep *rep;
583 int i;
585 if (buffer == NULL)
586 return;
588 req = container_of(buffer, struct rpcrdma_req, rl_xdr_buf[0]);
589 if (req->rl_iov.length == 0) { /* see allocate above */
590 r_xprt = container_of(((struct rpcrdma_req *) req->rl_buffer)->rl_buffer,
591 struct rpcrdma_xprt, rx_buf);
592 } else
593 r_xprt = container_of(req->rl_buffer, struct rpcrdma_xprt, rx_buf);
594 rep = req->rl_reply;
596 dprintk("RPC: %s: called on 0x%p%s\n",
597 __func__, rep, (rep && rep->rr_func) ? " (with waiter)" : "");
600 * Finish the deregistration. When using mw bind, this was
601 * begun in rpcrdma_reply_handler(). In all other modes, we
602 * do it here, in thread context. The process is considered
603 * complete when the rr_func vector becomes NULL - this
604 * was put in place during rpcrdma_reply_handler() - the wait
605 * call below will not block if the dereg is "done". If
606 * interrupted, our framework will clean up.
608 for (i = 0; req->rl_nchunks;) {
609 --req->rl_nchunks;
610 i += rpcrdma_deregister_external(
611 &req->rl_segments[i], r_xprt, NULL);
614 if (rep && wait_event_interruptible(rep->rr_unbind, !rep->rr_func)) {
615 rep->rr_func = NULL; /* abandon the callback */
616 req->rl_reply = NULL;
619 if (req->rl_iov.length == 0) { /* see allocate above */
620 struct rpcrdma_req *oreq = (struct rpcrdma_req *)req->rl_buffer;
621 oreq->rl_reply = req->rl_reply;
622 (void) rpcrdma_deregister_internal(&r_xprt->rx_ia,
623 req->rl_handle,
624 &req->rl_iov);
625 kfree(req);
626 req = oreq;
629 /* Put back request+reply buffers */
630 rpcrdma_buffer_put(req);
634 * send_request invokes the meat of RPC RDMA. It must do the following:
635 * 1. Marshal the RPC request into an RPC RDMA request, which means
636 * putting a header in front of data, and creating IOVs for RDMA
637 * from those in the request.
638 * 2. In marshaling, detect opportunities for RDMA, and use them.
639 * 3. Post a recv message to set up asynch completion, then send
640 * the request (rpcrdma_ep_post).
641 * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
644 static int
645 xprt_rdma_send_request(struct rpc_task *task)
647 struct rpc_rqst *rqst = task->tk_rqstp;
648 struct rpc_xprt *xprt = task->tk_xprt;
649 struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
650 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
652 /* marshal the send itself */
653 if (req->rl_niovs == 0 && rpcrdma_marshal_req(rqst) != 0) {
654 r_xprt->rx_stats.failed_marshal_count++;
655 dprintk("RPC: %s: rpcrdma_marshal_req failed\n",
656 __func__);
657 return -EIO;
660 if (req->rl_reply == NULL) /* e.g. reconnection */
661 rpcrdma_recv_buffer_get(req);
663 if (req->rl_reply) {
664 req->rl_reply->rr_func = rpcrdma_reply_handler;
665 /* this need only be done once, but... */
666 req->rl_reply->rr_xprt = xprt;
669 /* Must suppress retransmit to maintain credits */
670 if (req->rl_connect_cookie == xprt->connect_cookie)
671 goto drop_connection;
672 req->rl_connect_cookie = xprt->connect_cookie;
674 if (rpcrdma_ep_post(&r_xprt->rx_ia, &r_xprt->rx_ep, req))
675 goto drop_connection;
677 rqst->rq_xmit_bytes_sent += rqst->rq_snd_buf.len;
678 rqst->rq_bytes_sent = 0;
679 return 0;
681 drop_connection:
682 xprt_disconnect_done(xprt);
683 return -ENOTCONN; /* implies disconnect */
686 static void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
688 struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
689 long idle_time = 0;
691 if (xprt_connected(xprt))
692 idle_time = (long)(jiffies - xprt->last_used) / HZ;
694 seq_printf(seq,
695 "\txprt:\trdma %u %lu %lu %lu %ld %lu %lu %lu %Lu %Lu "
696 "%lu %lu %lu %Lu %Lu %Lu %Lu %lu %lu %lu\n",
698 0, /* need a local port? */
699 xprt->stat.bind_count,
700 xprt->stat.connect_count,
701 xprt->stat.connect_time,
702 idle_time,
703 xprt->stat.sends,
704 xprt->stat.recvs,
705 xprt->stat.bad_xids,
706 xprt->stat.req_u,
707 xprt->stat.bklog_u,
709 r_xprt->rx_stats.read_chunk_count,
710 r_xprt->rx_stats.write_chunk_count,
711 r_xprt->rx_stats.reply_chunk_count,
712 r_xprt->rx_stats.total_rdma_request,
713 r_xprt->rx_stats.total_rdma_reply,
714 r_xprt->rx_stats.pullup_copy_count,
715 r_xprt->rx_stats.fixup_copy_count,
716 r_xprt->rx_stats.hardway_register_count,
717 r_xprt->rx_stats.failed_marshal_count,
718 r_xprt->rx_stats.bad_reply_count);
722 * Plumbing for rpc transport switch and kernel module
725 static struct rpc_xprt_ops xprt_rdma_procs = {
726 .reserve_xprt = xprt_rdma_reserve_xprt,
727 .release_xprt = xprt_release_xprt_cong, /* sunrpc/xprt.c */
728 .release_request = xprt_release_rqst_cong, /* ditto */
729 .set_retrans_timeout = xprt_set_retrans_timeout_def, /* ditto */
730 .rpcbind = rpcb_getport_async, /* sunrpc/rpcb_clnt.c */
731 .set_port = xprt_rdma_set_port,
732 .connect = xprt_rdma_connect,
733 .buf_alloc = xprt_rdma_allocate,
734 .buf_free = xprt_rdma_free,
735 .send_request = xprt_rdma_send_request,
736 .close = xprt_rdma_close,
737 .destroy = xprt_rdma_destroy,
738 .print_stats = xprt_rdma_print_stats
741 static struct xprt_class xprt_rdma = {
742 .list = LIST_HEAD_INIT(xprt_rdma.list),
743 .name = "rdma",
744 .owner = THIS_MODULE,
745 .ident = XPRT_TRANSPORT_RDMA,
746 .setup = xprt_setup_rdma,
749 static void __exit xprt_rdma_cleanup(void)
751 int rc;
753 dprintk(KERN_INFO "RPCRDMA Module Removed, deregister RPC RDMA transport\n");
754 #ifdef RPC_DEBUG
755 if (sunrpc_table_header) {
756 unregister_sysctl_table(sunrpc_table_header);
757 sunrpc_table_header = NULL;
759 #endif
760 rc = xprt_unregister_transport(&xprt_rdma);
761 if (rc)
762 dprintk("RPC: %s: xprt_unregister returned %i\n",
763 __func__, rc);
766 static int __init xprt_rdma_init(void)
768 int rc;
770 rc = xprt_register_transport(&xprt_rdma);
772 if (rc)
773 return rc;
775 dprintk(KERN_INFO "RPCRDMA Module Init, register RPC RDMA transport\n");
777 dprintk(KERN_INFO "Defaults:\n");
778 dprintk(KERN_INFO "\tSlots %d\n"
779 "\tMaxInlineRead %d\n\tMaxInlineWrite %d\n",
780 xprt_rdma_slot_table_entries,
781 xprt_rdma_max_inline_read, xprt_rdma_max_inline_write);
782 dprintk(KERN_INFO "\tPadding %d\n\tMemreg %d\n",
783 xprt_rdma_inline_write_padding, xprt_rdma_memreg_strategy);
785 #ifdef RPC_DEBUG
786 if (!sunrpc_table_header)
787 sunrpc_table_header = register_sysctl_table(sunrpc_table);
788 #endif
789 return 0;
792 module_init(xprt_rdma_init);
793 module_exit(xprt_rdma_cleanup);