2 * Performance counter support - powerpc architecture code
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
22 struct cpu_hw_counters
{
29 struct perf_counter
*counter
[MAX_HWCOUNTERS
];
30 u64 events
[MAX_HWCOUNTERS
];
31 unsigned int flags
[MAX_HWCOUNTERS
];
32 unsigned long mmcr
[3];
33 struct perf_counter
*limited_counter
[MAX_LIMITED_HWCOUNTERS
];
34 u8 limited_hwidx
[MAX_LIMITED_HWCOUNTERS
];
36 DEFINE_PER_CPU(struct cpu_hw_counters
, cpu_hw_counters
);
38 struct power_pmu
*ppmu
;
41 * Normally, to ignore kernel events we set the FCS (freeze counters
42 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43 * hypervisor bit set in the MSR, or if we are running on a processor
44 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45 * then we need to use the FCHV bit to ignore kernel events.
47 static unsigned int freeze_counters_kernel
= MMCR0_FCS
;
50 * 32-bit doesn't have MMCRA but does have an MMCR2,
51 * and a few other names are different.
56 #define MMCR0_PMCjCE MMCR0_PMCnCE
58 #define SPRN_MMCRA SPRN_MMCR2
59 #define MMCRA_SAMPLE_ENABLE 0
61 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
65 static inline void perf_set_pmu_inuse(int inuse
) { }
66 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
) { }
67 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
71 static inline void perf_read_regs(struct pt_regs
*regs
) { }
72 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
77 #endif /* CONFIG_PPC32 */
80 * Things that are specific to 64-bit implementations.
84 static inline unsigned long perf_ip_adjust(struct pt_regs
*regs
)
86 unsigned long mmcra
= regs
->dsisr
;
88 if ((mmcra
& MMCRA_SAMPLE_ENABLE
) && !(ppmu
->flags
& PPMU_ALT_SIPR
)) {
89 unsigned long slot
= (mmcra
& MMCRA_SLOT
) >> MMCRA_SLOT_SHIFT
;
91 return 4 * (slot
- 1);
96 static inline void perf_set_pmu_inuse(int inuse
)
98 get_lppaca()->pmcregs_in_use
= inuse
;
102 * The user wants a data address recorded.
103 * If we're not doing instruction sampling, give them the SDAR
104 * (sampled data address). If we are doing instruction sampling, then
105 * only give them the SDAR if it corresponds to the instruction
106 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC
109 static inline void perf_get_data_addr(struct pt_regs
*regs
, u64
*addrp
)
111 unsigned long mmcra
= regs
->dsisr
;
112 unsigned long sdsync
= (ppmu
->flags
& PPMU_ALT_SIPR
) ?
113 POWER6_MMCRA_SDSYNC
: MMCRA_SDSYNC
;
115 if (!(mmcra
& MMCRA_SAMPLE_ENABLE
) || (mmcra
& sdsync
))
116 *addrp
= mfspr(SPRN_SDAR
);
119 static inline u32
perf_get_misc_flags(struct pt_regs
*regs
)
121 unsigned long mmcra
= regs
->dsisr
;
123 if (TRAP(regs
) != 0xf00)
124 return 0; /* not a PMU interrupt */
126 if (ppmu
->flags
& PPMU_ALT_SIPR
) {
127 if (mmcra
& POWER6_MMCRA_SIHV
)
128 return PERF_EVENT_MISC_HYPERVISOR
;
129 return (mmcra
& POWER6_MMCRA_SIPR
) ?
130 PERF_EVENT_MISC_USER
: PERF_EVENT_MISC_KERNEL
;
132 if (mmcra
& MMCRA_SIHV
)
133 return PERF_EVENT_MISC_HYPERVISOR
;
134 return (mmcra
& MMCRA_SIPR
) ? PERF_EVENT_MISC_USER
:
135 PERF_EVENT_MISC_KERNEL
;
139 * Overload regs->dsisr to store MMCRA so we only need to read it once
142 static inline void perf_read_regs(struct pt_regs
*regs
)
144 regs
->dsisr
= mfspr(SPRN_MMCRA
);
148 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
151 static inline int perf_intr_is_nmi(struct pt_regs
*regs
)
156 #endif /* CONFIG_PPC64 */
158 static void perf_counter_interrupt(struct pt_regs
*regs
);
160 void perf_counter_print_debug(void)
165 * Read one performance monitor counter (PMC).
167 static unsigned long read_pmc(int idx
)
173 val
= mfspr(SPRN_PMC1
);
176 val
= mfspr(SPRN_PMC2
);
179 val
= mfspr(SPRN_PMC3
);
182 val
= mfspr(SPRN_PMC4
);
185 val
= mfspr(SPRN_PMC5
);
188 val
= mfspr(SPRN_PMC6
);
192 val
= mfspr(SPRN_PMC7
);
195 val
= mfspr(SPRN_PMC8
);
197 #endif /* CONFIG_PPC64 */
199 printk(KERN_ERR
"oops trying to read PMC%d\n", idx
);
208 static void write_pmc(int idx
, unsigned long val
)
212 mtspr(SPRN_PMC1
, val
);
215 mtspr(SPRN_PMC2
, val
);
218 mtspr(SPRN_PMC3
, val
);
221 mtspr(SPRN_PMC4
, val
);
224 mtspr(SPRN_PMC5
, val
);
227 mtspr(SPRN_PMC6
, val
);
231 mtspr(SPRN_PMC7
, val
);
234 mtspr(SPRN_PMC8
, val
);
236 #endif /* CONFIG_PPC64 */
238 printk(KERN_ERR
"oops trying to write PMC%d\n", idx
);
243 * Check if a set of events can all go on the PMU at once.
244 * If they can't, this will look at alternative codes for the events
245 * and see if any combination of alternative codes is feasible.
246 * The feasible set is returned in event[].
248 static int power_check_constraints(u64 event
[], unsigned int cflags
[],
251 unsigned long mask
, value
, nv
;
252 u64 alternatives
[MAX_HWCOUNTERS
][MAX_EVENT_ALTERNATIVES
];
253 unsigned long amasks
[MAX_HWCOUNTERS
][MAX_EVENT_ALTERNATIVES
];
254 unsigned long avalues
[MAX_HWCOUNTERS
][MAX_EVENT_ALTERNATIVES
];
255 unsigned long smasks
[MAX_HWCOUNTERS
], svalues
[MAX_HWCOUNTERS
];
256 int n_alt
[MAX_HWCOUNTERS
], choice
[MAX_HWCOUNTERS
];
258 unsigned long addf
= ppmu
->add_fields
;
259 unsigned long tadd
= ppmu
->test_adder
;
261 if (n_ev
> ppmu
->n_counter
)
264 /* First see if the events will go on as-is */
265 for (i
= 0; i
< n_ev
; ++i
) {
266 if ((cflags
[i
] & PPMU_LIMITED_PMC_REQD
)
267 && !ppmu
->limited_pmc_event(event
[i
])) {
268 ppmu
->get_alternatives(event
[i
], cflags
[i
],
270 event
[i
] = alternatives
[i
][0];
272 if (ppmu
->get_constraint(event
[i
], &amasks
[i
][0],
277 for (i
= 0; i
< n_ev
; ++i
) {
278 nv
= (value
| avalues
[i
][0]) + (value
& avalues
[i
][0] & addf
);
279 if ((((nv
+ tadd
) ^ value
) & mask
) != 0 ||
280 (((nv
+ tadd
) ^ avalues
[i
][0]) & amasks
[i
][0]) != 0)
283 mask
|= amasks
[i
][0];
286 return 0; /* all OK */
288 /* doesn't work, gather alternatives... */
289 if (!ppmu
->get_alternatives
)
291 for (i
= 0; i
< n_ev
; ++i
) {
293 n_alt
[i
] = ppmu
->get_alternatives(event
[i
], cflags
[i
],
295 for (j
= 1; j
< n_alt
[i
]; ++j
)
296 ppmu
->get_constraint(alternatives
[i
][j
],
297 &amasks
[i
][j
], &avalues
[i
][j
]);
300 /* enumerate all possibilities and see if any will work */
303 value
= mask
= nv
= 0;
306 /* we're backtracking, restore context */
312 * See if any alternative k for event i,
313 * where k > j, will satisfy the constraints.
315 while (++j
< n_alt
[i
]) {
316 nv
= (value
| avalues
[i
][j
]) +
317 (value
& avalues
[i
][j
] & addf
);
318 if ((((nv
+ tadd
) ^ value
) & mask
) == 0 &&
319 (((nv
+ tadd
) ^ avalues
[i
][j
])
320 & amasks
[i
][j
]) == 0)
325 * No feasible alternative, backtrack
326 * to event i-1 and continue enumerating its
327 * alternatives from where we got up to.
333 * Found a feasible alternative for event i,
334 * remember where we got up to with this event,
335 * go on to the next event, and start with
336 * the first alternative for it.
342 mask
|= amasks
[i
][j
];
348 /* OK, we have a feasible combination, tell the caller the solution */
349 for (i
= 0; i
< n_ev
; ++i
)
350 event
[i
] = alternatives
[i
][choice
[i
]];
355 * Check if newly-added counters have consistent settings for
356 * exclude_{user,kernel,hv} with each other and any previously
359 static int check_excludes(struct perf_counter
**ctrs
, unsigned int cflags
[],
360 int n_prev
, int n_new
)
362 int eu
= 0, ek
= 0, eh
= 0;
364 struct perf_counter
*counter
;
371 for (i
= 0; i
< n
; ++i
) {
372 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
) {
373 cflags
[i
] &= ~PPMU_LIMITED_PMC_REQD
;
378 eu
= counter
->attr
.exclude_user
;
379 ek
= counter
->attr
.exclude_kernel
;
380 eh
= counter
->attr
.exclude_hv
;
382 } else if (counter
->attr
.exclude_user
!= eu
||
383 counter
->attr
.exclude_kernel
!= ek
||
384 counter
->attr
.exclude_hv
!= eh
) {
390 for (i
= 0; i
< n
; ++i
)
391 if (cflags
[i
] & PPMU_LIMITED_PMC_OK
)
392 cflags
[i
] |= PPMU_LIMITED_PMC_REQD
;
397 static void power_pmu_read(struct perf_counter
*counter
)
399 s64 val
, delta
, prev
;
401 if (!counter
->hw
.idx
)
404 * Performance monitor interrupts come even when interrupts
405 * are soft-disabled, as long as interrupts are hard-enabled.
406 * Therefore we treat them like NMIs.
409 prev
= atomic64_read(&counter
->hw
.prev_count
);
411 val
= read_pmc(counter
->hw
.idx
);
412 } while (atomic64_cmpxchg(&counter
->hw
.prev_count
, prev
, val
) != prev
);
414 /* The counters are only 32 bits wide */
415 delta
= (val
- prev
) & 0xfffffffful
;
416 atomic64_add(delta
, &counter
->count
);
417 atomic64_sub(delta
, &counter
->hw
.period_left
);
421 * On some machines, PMC5 and PMC6 can't be written, don't respect
422 * the freeze conditions, and don't generate interrupts. This tells
423 * us if `counter' is using such a PMC.
425 static int is_limited_pmc(int pmcnum
)
427 return (ppmu
->flags
& PPMU_LIMITED_PMC5_6
)
428 && (pmcnum
== 5 || pmcnum
== 6);
431 static void freeze_limited_counters(struct cpu_hw_counters
*cpuhw
,
432 unsigned long pmc5
, unsigned long pmc6
)
434 struct perf_counter
*counter
;
435 u64 val
, prev
, delta
;
438 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
439 counter
= cpuhw
->limited_counter
[i
];
440 if (!counter
->hw
.idx
)
442 val
= (counter
->hw
.idx
== 5) ? pmc5
: pmc6
;
443 prev
= atomic64_read(&counter
->hw
.prev_count
);
445 delta
= (val
- prev
) & 0xfffffffful
;
446 atomic64_add(delta
, &counter
->count
);
450 static void thaw_limited_counters(struct cpu_hw_counters
*cpuhw
,
451 unsigned long pmc5
, unsigned long pmc6
)
453 struct perf_counter
*counter
;
457 for (i
= 0; i
< cpuhw
->n_limited
; ++i
) {
458 counter
= cpuhw
->limited_counter
[i
];
459 counter
->hw
.idx
= cpuhw
->limited_hwidx
[i
];
460 val
= (counter
->hw
.idx
== 5) ? pmc5
: pmc6
;
461 atomic64_set(&counter
->hw
.prev_count
, val
);
462 perf_counter_update_userpage(counter
);
467 * Since limited counters don't respect the freeze conditions, we
468 * have to read them immediately after freezing or unfreezing the
469 * other counters. We try to keep the values from the limited
470 * counters as consistent as possible by keeping the delay (in
471 * cycles and instructions) between freezing/unfreezing and reading
472 * the limited counters as small and consistent as possible.
473 * Therefore, if any limited counters are in use, we read them
474 * both, and always in the same order, to minimize variability,
475 * and do it inside the same asm that writes MMCR0.
477 static void write_mmcr0(struct cpu_hw_counters
*cpuhw
, unsigned long mmcr0
)
479 unsigned long pmc5
, pmc6
;
481 if (!cpuhw
->n_limited
) {
482 mtspr(SPRN_MMCR0
, mmcr0
);
487 * Write MMCR0, then read PMC5 and PMC6 immediately.
488 * To ensure we don't get a performance monitor interrupt
489 * between writing MMCR0 and freezing/thawing the limited
490 * counters, we first write MMCR0 with the counter overflow
491 * interrupt enable bits turned off.
493 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
494 : "=&r" (pmc5
), "=&r" (pmc6
)
495 : "r" (mmcr0
& ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
)),
497 "i" (SPRN_PMC5
), "i" (SPRN_PMC6
));
499 if (mmcr0
& MMCR0_FC
)
500 freeze_limited_counters(cpuhw
, pmc5
, pmc6
);
502 thaw_limited_counters(cpuhw
, pmc5
, pmc6
);
505 * Write the full MMCR0 including the counter overflow interrupt
506 * enable bits, if necessary.
508 if (mmcr0
& (MMCR0_PMC1CE
| MMCR0_PMCjCE
))
509 mtspr(SPRN_MMCR0
, mmcr0
);
513 * Disable all counters to prevent PMU interrupts and to allow
514 * counters to be added or removed.
516 void hw_perf_disable(void)
518 struct cpu_hw_counters
*cpuhw
;
521 local_irq_save(flags
);
522 cpuhw
= &__get_cpu_var(cpu_hw_counters
);
524 if (!cpuhw
->disabled
) {
529 * Check if we ever enabled the PMU on this cpu.
531 if (!cpuhw
->pmcs_enabled
) {
532 if (ppc_md
.enable_pmcs
)
533 ppc_md
.enable_pmcs();
534 cpuhw
->pmcs_enabled
= 1;
538 * Disable instruction sampling if it was enabled
540 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
542 cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
547 * Set the 'freeze counters' bit.
548 * The barrier is to make sure the mtspr has been
549 * executed and the PMU has frozen the counters
552 write_mmcr0(cpuhw
, mfspr(SPRN_MMCR0
) | MMCR0_FC
);
555 local_irq_restore(flags
);
559 * Re-enable all counters if disable == 0.
560 * If we were previously disabled and counters were added, then
561 * put the new config on the PMU.
563 void hw_perf_enable(void)
565 struct perf_counter
*counter
;
566 struct cpu_hw_counters
*cpuhw
;
571 unsigned int hwc_index
[MAX_HWCOUNTERS
];
575 local_irq_save(flags
);
576 cpuhw
= &__get_cpu_var(cpu_hw_counters
);
577 if (!cpuhw
->disabled
) {
578 local_irq_restore(flags
);
584 * If we didn't change anything, or only removed counters,
585 * no need to recalculate MMCR* settings and reset the PMCs.
586 * Just reenable the PMU with the current MMCR* settings
587 * (possibly updated for removal of counters).
589 if (!cpuhw
->n_added
) {
590 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
591 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
592 if (cpuhw
->n_counters
== 0)
593 perf_set_pmu_inuse(0);
598 * Compute MMCR* values for the new set of counters
600 if (ppmu
->compute_mmcr(cpuhw
->events
, cpuhw
->n_counters
, hwc_index
,
602 /* shouldn't ever get here */
603 printk(KERN_ERR
"oops compute_mmcr failed\n");
608 * Add in MMCR0 freeze bits corresponding to the
609 * attr.exclude_* bits for the first counter.
610 * We have already checked that all counters have the
611 * same values for these bits as the first counter.
613 counter
= cpuhw
->counter
[0];
614 if (counter
->attr
.exclude_user
)
615 cpuhw
->mmcr
[0] |= MMCR0_FCP
;
616 if (counter
->attr
.exclude_kernel
)
617 cpuhw
->mmcr
[0] |= freeze_counters_kernel
;
618 if (counter
->attr
.exclude_hv
)
619 cpuhw
->mmcr
[0] |= MMCR0_FCHV
;
622 * Write the new configuration to MMCR* with the freeze
623 * bit set and set the hardware counters to their initial values.
624 * Then unfreeze the counters.
626 perf_set_pmu_inuse(1);
627 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2] & ~MMCRA_SAMPLE_ENABLE
);
628 mtspr(SPRN_MMCR1
, cpuhw
->mmcr
[1]);
629 mtspr(SPRN_MMCR0
, (cpuhw
->mmcr
[0] & ~(MMCR0_PMC1CE
| MMCR0_PMCjCE
))
633 * Read off any pre-existing counters that need to move
636 for (i
= 0; i
< cpuhw
->n_counters
; ++i
) {
637 counter
= cpuhw
->counter
[i
];
638 if (counter
->hw
.idx
&& counter
->hw
.idx
!= hwc_index
[i
] + 1) {
639 power_pmu_read(counter
);
640 write_pmc(counter
->hw
.idx
, 0);
646 * Initialize the PMCs for all the new and moved counters.
648 cpuhw
->n_limited
= n_lim
= 0;
649 for (i
= 0; i
< cpuhw
->n_counters
; ++i
) {
650 counter
= cpuhw
->counter
[i
];
653 idx
= hwc_index
[i
] + 1;
654 if (is_limited_pmc(idx
)) {
655 cpuhw
->limited_counter
[n_lim
] = counter
;
656 cpuhw
->limited_hwidx
[n_lim
] = idx
;
661 if (counter
->hw
.sample_period
) {
662 left
= atomic64_read(&counter
->hw
.period_left
);
663 if (left
< 0x80000000L
)
664 val
= 0x80000000L
- left
;
666 atomic64_set(&counter
->hw
.prev_count
, val
);
667 counter
->hw
.idx
= idx
;
669 perf_counter_update_userpage(counter
);
671 cpuhw
->n_limited
= n_lim
;
672 cpuhw
->mmcr
[0] |= MMCR0_PMXE
| MMCR0_FCECE
;
676 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
679 * Enable instruction sampling if necessary
681 if (cpuhw
->mmcr
[2] & MMCRA_SAMPLE_ENABLE
) {
683 mtspr(SPRN_MMCRA
, cpuhw
->mmcr
[2]);
687 local_irq_restore(flags
);
690 static int collect_events(struct perf_counter
*group
, int max_count
,
691 struct perf_counter
*ctrs
[], u64
*events
,
695 struct perf_counter
*counter
;
697 if (!is_software_counter(group
)) {
701 flags
[n
] = group
->hw
.counter_base
;
702 events
[n
++] = group
->hw
.config
;
704 list_for_each_entry(counter
, &group
->sibling_list
, list_entry
) {
705 if (!is_software_counter(counter
) &&
706 counter
->state
!= PERF_COUNTER_STATE_OFF
) {
710 flags
[n
] = counter
->hw
.counter_base
;
711 events
[n
++] = counter
->hw
.config
;
717 static void counter_sched_in(struct perf_counter
*counter
, int cpu
)
719 counter
->state
= PERF_COUNTER_STATE_ACTIVE
;
720 counter
->oncpu
= cpu
;
721 counter
->tstamp_running
+= counter
->ctx
->time
- counter
->tstamp_stopped
;
722 if (is_software_counter(counter
))
723 counter
->pmu
->enable(counter
);
727 * Called to enable a whole group of counters.
728 * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
729 * Assumes the caller has disabled interrupts and has
730 * frozen the PMU with hw_perf_save_disable.
732 int hw_perf_group_sched_in(struct perf_counter
*group_leader
,
733 struct perf_cpu_context
*cpuctx
,
734 struct perf_counter_context
*ctx
, int cpu
)
736 struct cpu_hw_counters
*cpuhw
;
738 struct perf_counter
*sub
;
740 cpuhw
= &__get_cpu_var(cpu_hw_counters
);
741 n0
= cpuhw
->n_counters
;
742 n
= collect_events(group_leader
, ppmu
->n_counter
- n0
,
743 &cpuhw
->counter
[n0
], &cpuhw
->events
[n0
],
747 if (check_excludes(cpuhw
->counter
, cpuhw
->flags
, n0
, n
))
749 i
= power_check_constraints(cpuhw
->events
, cpuhw
->flags
, n
+ n0
);
752 cpuhw
->n_counters
= n0
+ n
;
756 * OK, this group can go on; update counter states etc.,
757 * and enable any software counters
759 for (i
= n0
; i
< n0
+ n
; ++i
)
760 cpuhw
->counter
[i
]->hw
.config
= cpuhw
->events
[i
];
761 cpuctx
->active_oncpu
+= n
;
763 counter_sched_in(group_leader
, cpu
);
764 list_for_each_entry(sub
, &group_leader
->sibling_list
, list_entry
) {
765 if (sub
->state
!= PERF_COUNTER_STATE_OFF
) {
766 counter_sched_in(sub
, cpu
);
776 * Add a counter to the PMU.
777 * If all counters are not already frozen, then we disable and
778 * re-enable the PMU in order to get hw_perf_enable to do the
779 * actual work of reconfiguring the PMU.
781 static int power_pmu_enable(struct perf_counter
*counter
)
783 struct cpu_hw_counters
*cpuhw
;
788 local_irq_save(flags
);
792 * Add the counter to the list (if there is room)
793 * and check whether the total set is still feasible.
795 cpuhw
= &__get_cpu_var(cpu_hw_counters
);
796 n0
= cpuhw
->n_counters
;
797 if (n0
>= ppmu
->n_counter
)
799 cpuhw
->counter
[n0
] = counter
;
800 cpuhw
->events
[n0
] = counter
->hw
.config
;
801 cpuhw
->flags
[n0
] = counter
->hw
.counter_base
;
802 if (check_excludes(cpuhw
->counter
, cpuhw
->flags
, n0
, 1))
804 if (power_check_constraints(cpuhw
->events
, cpuhw
->flags
, n0
+ 1))
807 counter
->hw
.config
= cpuhw
->events
[n0
];
814 local_irq_restore(flags
);
819 * Remove a counter from the PMU.
821 static void power_pmu_disable(struct perf_counter
*counter
)
823 struct cpu_hw_counters
*cpuhw
;
827 local_irq_save(flags
);
830 power_pmu_read(counter
);
832 cpuhw
= &__get_cpu_var(cpu_hw_counters
);
833 for (i
= 0; i
< cpuhw
->n_counters
; ++i
) {
834 if (counter
== cpuhw
->counter
[i
]) {
835 while (++i
< cpuhw
->n_counters
)
836 cpuhw
->counter
[i
-1] = cpuhw
->counter
[i
];
838 ppmu
->disable_pmc(counter
->hw
.idx
- 1, cpuhw
->mmcr
);
839 if (counter
->hw
.idx
) {
840 write_pmc(counter
->hw
.idx
, 0);
843 perf_counter_update_userpage(counter
);
847 for (i
= 0; i
< cpuhw
->n_limited
; ++i
)
848 if (counter
== cpuhw
->limited_counter
[i
])
850 if (i
< cpuhw
->n_limited
) {
851 while (++i
< cpuhw
->n_limited
) {
852 cpuhw
->limited_counter
[i
-1] = cpuhw
->limited_counter
[i
];
853 cpuhw
->limited_hwidx
[i
-1] = cpuhw
->limited_hwidx
[i
];
857 if (cpuhw
->n_counters
== 0) {
858 /* disable exceptions if no counters are running */
859 cpuhw
->mmcr
[0] &= ~(MMCR0_PMXE
| MMCR0_FCECE
);
863 local_irq_restore(flags
);
867 * Re-enable interrupts on a counter after they were throttled
868 * because they were coming too fast.
870 static void power_pmu_unthrottle(struct perf_counter
*counter
)
875 if (!counter
->hw
.idx
|| !counter
->hw
.sample_period
)
877 local_irq_save(flags
);
879 power_pmu_read(counter
);
880 left
= counter
->hw
.sample_period
;
881 counter
->hw
.last_period
= left
;
883 if (left
< 0x80000000L
)
884 val
= 0x80000000L
- left
;
885 write_pmc(counter
->hw
.idx
, val
);
886 atomic64_set(&counter
->hw
.prev_count
, val
);
887 atomic64_set(&counter
->hw
.period_left
, left
);
888 perf_counter_update_userpage(counter
);
890 local_irq_restore(flags
);
893 struct pmu power_pmu
= {
894 .enable
= power_pmu_enable
,
895 .disable
= power_pmu_disable
,
896 .read
= power_pmu_read
,
897 .unthrottle
= power_pmu_unthrottle
,
901 * Return 1 if we might be able to put counter on a limited PMC,
903 * A counter can only go on a limited PMC if it counts something
904 * that a limited PMC can count, doesn't require interrupts, and
905 * doesn't exclude any processor mode.
907 static int can_go_on_limited_pmc(struct perf_counter
*counter
, u64 ev
,
911 u64 alt
[MAX_EVENT_ALTERNATIVES
];
913 if (counter
->attr
.exclude_user
914 || counter
->attr
.exclude_kernel
915 || counter
->attr
.exclude_hv
916 || counter
->attr
.sample_period
)
919 if (ppmu
->limited_pmc_event(ev
))
923 * The requested event isn't on a limited PMC already;
924 * see if any alternative code goes on a limited PMC.
926 if (!ppmu
->get_alternatives
)
929 flags
|= PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
;
930 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
936 * Find an alternative event that goes on a normal PMC, if possible,
937 * and return the event code, or 0 if there is no such alternative.
938 * (Note: event code 0 is "don't count" on all machines.)
940 static u64
normal_pmc_alternative(u64 ev
, unsigned long flags
)
942 u64 alt
[MAX_EVENT_ALTERNATIVES
];
945 flags
&= ~(PPMU_LIMITED_PMC_OK
| PPMU_LIMITED_PMC_REQD
);
946 n
= ppmu
->get_alternatives(ev
, flags
, alt
);
952 /* Number of perf_counters counting hardware events */
953 static atomic_t num_counters
;
954 /* Used to avoid races in calling reserve/release_pmc_hardware */
955 static DEFINE_MUTEX(pmc_reserve_mutex
);
958 * Release the PMU if this is the last perf_counter.
960 static void hw_perf_counter_destroy(struct perf_counter
*counter
)
962 if (!atomic_add_unless(&num_counters
, -1, 1)) {
963 mutex_lock(&pmc_reserve_mutex
);
964 if (atomic_dec_return(&num_counters
) == 0)
965 release_pmc_hardware();
966 mutex_unlock(&pmc_reserve_mutex
);
971 * Translate a generic cache event config to a raw event code.
973 static int hw_perf_cache_event(u64 config
, u64
*eventp
)
975 unsigned long type
, op
, result
;
978 if (!ppmu
->cache_events
)
982 type
= config
& 0xff;
983 op
= (config
>> 8) & 0xff;
984 result
= (config
>> 16) & 0xff;
986 if (type
>= PERF_COUNT_HW_CACHE_MAX
||
987 op
>= PERF_COUNT_HW_CACHE_OP_MAX
||
988 result
>= PERF_COUNT_HW_CACHE_RESULT_MAX
)
991 ev
= (*ppmu
->cache_events
)[type
][op
][result
];
1000 const struct pmu
*hw_perf_counter_init(struct perf_counter
*counter
)
1003 unsigned long flags
;
1004 struct perf_counter
*ctrs
[MAX_HWCOUNTERS
];
1005 u64 events
[MAX_HWCOUNTERS
];
1006 unsigned int cflags
[MAX_HWCOUNTERS
];
1011 return ERR_PTR(-ENXIO
);
1012 switch (counter
->attr
.type
) {
1013 case PERF_TYPE_HARDWARE
:
1014 ev
= counter
->attr
.config
;
1015 if (ev
>= ppmu
->n_generic
|| ppmu
->generic_events
[ev
] == 0)
1016 return ERR_PTR(-EOPNOTSUPP
);
1017 ev
= ppmu
->generic_events
[ev
];
1019 case PERF_TYPE_HW_CACHE
:
1020 err
= hw_perf_cache_event(counter
->attr
.config
, &ev
);
1022 return ERR_PTR(err
);
1025 ev
= counter
->attr
.config
;
1028 return ERR_PTR(-EINVAL
);
1030 counter
->hw
.config_base
= ev
;
1031 counter
->hw
.idx
= 0;
1034 * If we are not running on a hypervisor, force the
1035 * exclude_hv bit to 0 so that we don't care what
1036 * the user set it to.
1038 if (!firmware_has_feature(FW_FEATURE_LPAR
))
1039 counter
->attr
.exclude_hv
= 0;
1042 * If this is a per-task counter, then we can use
1043 * PM_RUN_* events interchangeably with their non RUN_*
1044 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1045 * XXX we should check if the task is an idle task.
1048 if (counter
->ctx
->task
)
1049 flags
|= PPMU_ONLY_COUNT_RUN
;
1052 * If this machine has limited counters, check whether this
1053 * event could go on a limited counter.
1055 if (ppmu
->flags
& PPMU_LIMITED_PMC5_6
) {
1056 if (can_go_on_limited_pmc(counter
, ev
, flags
)) {
1057 flags
|= PPMU_LIMITED_PMC_OK
;
1058 } else if (ppmu
->limited_pmc_event(ev
)) {
1060 * The requested event is on a limited PMC,
1061 * but we can't use a limited PMC; see if any
1062 * alternative goes on a normal PMC.
1064 ev
= normal_pmc_alternative(ev
, flags
);
1066 return ERR_PTR(-EINVAL
);
1071 * If this is in a group, check if it can go on with all the
1072 * other hardware counters in the group. We assume the counter
1073 * hasn't been linked into its leader's sibling list at this point.
1076 if (counter
->group_leader
!= counter
) {
1077 n
= collect_events(counter
->group_leader
, ppmu
->n_counter
- 1,
1078 ctrs
, events
, cflags
);
1080 return ERR_PTR(-EINVAL
);
1085 if (check_excludes(ctrs
, cflags
, n
, 1))
1086 return ERR_PTR(-EINVAL
);
1087 if (power_check_constraints(events
, cflags
, n
+ 1))
1088 return ERR_PTR(-EINVAL
);
1090 counter
->hw
.config
= events
[n
];
1091 counter
->hw
.counter_base
= cflags
[n
];
1092 counter
->hw
.last_period
= counter
->hw
.sample_period
;
1093 atomic64_set(&counter
->hw
.period_left
, counter
->hw
.last_period
);
1096 * See if we need to reserve the PMU.
1097 * If no counters are currently in use, then we have to take a
1098 * mutex to ensure that we don't race with another task doing
1099 * reserve_pmc_hardware or release_pmc_hardware.
1102 if (!atomic_inc_not_zero(&num_counters
)) {
1103 mutex_lock(&pmc_reserve_mutex
);
1104 if (atomic_read(&num_counters
) == 0 &&
1105 reserve_pmc_hardware(perf_counter_interrupt
))
1108 atomic_inc(&num_counters
);
1109 mutex_unlock(&pmc_reserve_mutex
);
1111 counter
->destroy
= hw_perf_counter_destroy
;
1114 return ERR_PTR(err
);
1119 * A counter has overflowed; update its count and record
1120 * things if requested. Note that interrupts are hard-disabled
1121 * here so there is no possibility of being interrupted.
1123 static void record_and_restart(struct perf_counter
*counter
, unsigned long val
,
1124 struct pt_regs
*regs
, int nmi
)
1126 u64 period
= counter
->hw
.sample_period
;
1127 s64 prev
, delta
, left
;
1130 /* we don't have to worry about interrupts here */
1131 prev
= atomic64_read(&counter
->hw
.prev_count
);
1132 delta
= (val
- prev
) & 0xfffffffful
;
1133 atomic64_add(delta
, &counter
->count
);
1136 * See if the total period for this counter has expired,
1137 * and update for the next period.
1140 left
= atomic64_read(&counter
->hw
.period_left
) - delta
;
1148 if (left
< 0x80000000LL
)
1149 val
= 0x80000000LL
- left
;
1153 * Finally record data if requested.
1156 struct perf_sample_data data
= {
1159 .period
= counter
->hw
.last_period
,
1162 if (counter
->attr
.sample_type
& PERF_SAMPLE_ADDR
)
1163 perf_get_data_addr(regs
, &data
.addr
);
1165 if (perf_counter_overflow(counter
, nmi
, &data
)) {
1167 * Interrupts are coming too fast - throttle them
1168 * by setting the counter to 0, so it will be
1169 * at least 2^30 cycles until the next interrupt
1170 * (assuming each counter counts at most 2 counts
1178 write_pmc(counter
->hw
.idx
, val
);
1179 atomic64_set(&counter
->hw
.prev_count
, val
);
1180 atomic64_set(&counter
->hw
.period_left
, left
);
1181 perf_counter_update_userpage(counter
);
1185 * Called from generic code to get the misc flags (i.e. processor mode)
1188 unsigned long perf_misc_flags(struct pt_regs
*regs
)
1190 u32 flags
= perf_get_misc_flags(regs
);
1194 return user_mode(regs
) ? PERF_EVENT_MISC_USER
:
1195 PERF_EVENT_MISC_KERNEL
;
1199 * Called from generic code to get the instruction pointer
1202 unsigned long perf_instruction_pointer(struct pt_regs
*regs
)
1206 if (TRAP(regs
) != 0xf00)
1207 return regs
->nip
; /* not a PMU interrupt */
1209 ip
= mfspr(SPRN_SIAR
) + perf_ip_adjust(regs
);
1214 * Performance monitor interrupt stuff
1216 static void perf_counter_interrupt(struct pt_regs
*regs
)
1219 struct cpu_hw_counters
*cpuhw
= &__get_cpu_var(cpu_hw_counters
);
1220 struct perf_counter
*counter
;
1225 if (cpuhw
->n_limited
)
1226 freeze_limited_counters(cpuhw
, mfspr(SPRN_PMC5
),
1229 perf_read_regs(regs
);
1231 nmi
= perf_intr_is_nmi(regs
);
1237 for (i
= 0; i
< cpuhw
->n_counters
; ++i
) {
1238 counter
= cpuhw
->counter
[i
];
1239 if (!counter
->hw
.idx
|| is_limited_pmc(counter
->hw
.idx
))
1241 val
= read_pmc(counter
->hw
.idx
);
1243 /* counter has overflowed */
1245 record_and_restart(counter
, val
, regs
, nmi
);
1250 * In case we didn't find and reset the counter that caused
1251 * the interrupt, scan all counters and reset any that are
1252 * negative, to avoid getting continual interrupts.
1253 * Any that we processed in the previous loop will not be negative.
1256 for (i
= 0; i
< ppmu
->n_counter
; ++i
) {
1257 if (is_limited_pmc(i
+ 1))
1259 val
= read_pmc(i
+ 1);
1261 write_pmc(i
+ 1, 0);
1266 * Reset MMCR0 to its normal value. This will set PMXE and
1267 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1268 * and thus allow interrupts to occur again.
1269 * XXX might want to use MSR.PM to keep the counters frozen until
1270 * we get back out of this interrupt.
1272 write_mmcr0(cpuhw
, cpuhw
->mmcr
[0]);
1280 void hw_perf_counter_setup(int cpu
)
1282 struct cpu_hw_counters
*cpuhw
= &per_cpu(cpu_hw_counters
, cpu
);
1284 memset(cpuhw
, 0, sizeof(*cpuhw
));
1285 cpuhw
->mmcr
[0] = MMCR0_FC
;
1288 int register_power_pmu(struct power_pmu
*pmu
)
1291 return -EBUSY
; /* something's already registered */
1294 pr_info("%s performance monitor hardware support registered\n",
1299 * Use FCHV to ignore kernel events if MSR.HV is set.
1301 if (mfmsr() & MSR_HV
)
1302 freeze_counters_kernel
= MMCR0_FCHV
;
1303 #endif /* CONFIG_PPC64 */