wl1251: use wiphy_dev instead of wl->spi->dev
[linux/fpc-iii.git] / drivers / net / cxgb3 / cxgb3_main.c
blob8b3e76c1cf52a89f4466a7b41fbdd5ffb223d5b6
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <asm/uaccess.h>
49 #include "common.h"
50 #include "cxgb3_ioctl.h"
51 #include "regs.h"
52 #include "cxgb3_offload.h"
53 #include "version.h"
55 #include "cxgb3_ctl_defs.h"
56 #include "t3_cpl.h"
57 #include "firmware_exports.h"
59 enum {
60 MAX_TXQ_ENTRIES = 16384,
61 MAX_CTRL_TXQ_ENTRIES = 1024,
62 MAX_RSPQ_ENTRIES = 16384,
63 MAX_RX_BUFFERS = 16384,
64 MAX_RX_JUMBO_BUFFERS = 16384,
65 MIN_TXQ_ENTRIES = 4,
66 MIN_CTRL_TXQ_ENTRIES = 4,
67 MIN_RSPQ_ENTRIES = 32,
68 MIN_FL_ENTRIES = 32
71 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
73 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
74 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
75 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
77 #define EEPROM_MAGIC 0x38E2F10C
79 #define CH_DEVICE(devid, idx) \
80 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
82 static const struct pci_device_id cxgb3_pci_tbl[] = {
83 CH_DEVICE(0x20, 0), /* PE9000 */
84 CH_DEVICE(0x21, 1), /* T302E */
85 CH_DEVICE(0x22, 2), /* T310E */
86 CH_DEVICE(0x23, 3), /* T320X */
87 CH_DEVICE(0x24, 1), /* T302X */
88 CH_DEVICE(0x25, 3), /* T320E */
89 CH_DEVICE(0x26, 2), /* T310X */
90 CH_DEVICE(0x30, 2), /* T3B10 */
91 CH_DEVICE(0x31, 3), /* T3B20 */
92 CH_DEVICE(0x32, 1), /* T3B02 */
93 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
94 CH_DEVICE(0x36, 3), /* S320E-CR */
95 CH_DEVICE(0x37, 7), /* N320E-G2 */
96 {0,}
99 MODULE_DESCRIPTION(DRV_DESC);
100 MODULE_AUTHOR("Chelsio Communications");
101 MODULE_LICENSE("Dual BSD/GPL");
102 MODULE_VERSION(DRV_VERSION);
103 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
105 static int dflt_msg_enable = DFLT_MSG_ENABLE;
107 module_param(dflt_msg_enable, int, 0644);
108 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
111 * The driver uses the best interrupt scheme available on a platform in the
112 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
113 * of these schemes the driver may consider as follows:
115 * msi = 2: choose from among all three options
116 * msi = 1: only consider MSI and pin interrupts
117 * msi = 0: force pin interrupts
119 static int msi = 2;
121 module_param(msi, int, 0644);
122 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
125 * The driver enables offload as a default.
126 * To disable it, use ofld_disable = 1.
129 static int ofld_disable = 0;
131 module_param(ofld_disable, int, 0644);
132 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
135 * We have work elements that we need to cancel when an interface is taken
136 * down. Normally the work elements would be executed by keventd but that
137 * can deadlock because of linkwatch. If our close method takes the rtnl
138 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
139 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
140 * for our work to complete. Get our own work queue to solve this.
142 static struct workqueue_struct *cxgb3_wq;
145 * link_report - show link status and link speed/duplex
146 * @p: the port whose settings are to be reported
148 * Shows the link status, speed, and duplex of a port.
150 static void link_report(struct net_device *dev)
152 if (!netif_carrier_ok(dev))
153 printk(KERN_INFO "%s: link down\n", dev->name);
154 else {
155 const char *s = "10Mbps";
156 const struct port_info *p = netdev_priv(dev);
158 switch (p->link_config.speed) {
159 case SPEED_10000:
160 s = "10Gbps";
161 break;
162 case SPEED_1000:
163 s = "1000Mbps";
164 break;
165 case SPEED_100:
166 s = "100Mbps";
167 break;
170 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
171 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175 static void enable_tx_fifo_drain(struct adapter *adapter,
176 struct port_info *pi)
178 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
179 F_ENDROPPKT);
180 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
181 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
182 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
185 static void disable_tx_fifo_drain(struct adapter *adapter,
186 struct port_info *pi)
188 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
189 F_ENDROPPKT, 0);
192 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
194 struct net_device *dev = adap->port[port_id];
195 struct port_info *pi = netdev_priv(dev);
197 if (state == netif_carrier_ok(dev))
198 return;
200 if (state) {
201 struct cmac *mac = &pi->mac;
203 netif_carrier_on(dev);
205 disable_tx_fifo_drain(adap, pi);
207 /* Clear local faults */
208 t3_xgm_intr_disable(adap, pi->port_id);
209 t3_read_reg(adap, A_XGM_INT_STATUS +
210 pi->mac.offset);
211 t3_write_reg(adap,
212 A_XGM_INT_CAUSE + pi->mac.offset,
213 F_XGM_INT);
215 t3_set_reg_field(adap,
216 A_XGM_INT_ENABLE +
217 pi->mac.offset,
218 F_XGM_INT, F_XGM_INT);
219 t3_xgm_intr_enable(adap, pi->port_id);
221 t3_mac_enable(mac, MAC_DIRECTION_TX);
222 } else {
223 netif_carrier_off(dev);
225 /* Flush TX FIFO */
226 enable_tx_fifo_drain(adap, pi);
228 link_report(dev);
232 * t3_os_link_changed - handle link status changes
233 * @adapter: the adapter associated with the link change
234 * @port_id: the port index whose limk status has changed
235 * @link_stat: the new status of the link
236 * @speed: the new speed setting
237 * @duplex: the new duplex setting
238 * @pause: the new flow-control setting
240 * This is the OS-dependent handler for link status changes. The OS
241 * neutral handler takes care of most of the processing for these events,
242 * then calls this handler for any OS-specific processing.
244 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
245 int speed, int duplex, int pause)
247 struct net_device *dev = adapter->port[port_id];
248 struct port_info *pi = netdev_priv(dev);
249 struct cmac *mac = &pi->mac;
251 /* Skip changes from disabled ports. */
252 if (!netif_running(dev))
253 return;
255 if (link_stat != netif_carrier_ok(dev)) {
256 if (link_stat) {
257 disable_tx_fifo_drain(adapter, pi);
259 t3_mac_enable(mac, MAC_DIRECTION_RX);
261 /* Clear local faults */
262 t3_xgm_intr_disable(adapter, pi->port_id);
263 t3_read_reg(adapter, A_XGM_INT_STATUS +
264 pi->mac.offset);
265 t3_write_reg(adapter,
266 A_XGM_INT_CAUSE + pi->mac.offset,
267 F_XGM_INT);
269 t3_set_reg_field(adapter,
270 A_XGM_INT_ENABLE + pi->mac.offset,
271 F_XGM_INT, F_XGM_INT);
272 t3_xgm_intr_enable(adapter, pi->port_id);
274 netif_carrier_on(dev);
275 } else {
276 netif_carrier_off(dev);
278 t3_xgm_intr_disable(adapter, pi->port_id);
279 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
280 t3_set_reg_field(adapter,
281 A_XGM_INT_ENABLE + pi->mac.offset,
282 F_XGM_INT, 0);
284 if (is_10G(adapter))
285 pi->phy.ops->power_down(&pi->phy, 1);
287 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
288 t3_mac_disable(mac, MAC_DIRECTION_RX);
289 t3_link_start(&pi->phy, mac, &pi->link_config);
291 /* Flush TX FIFO */
292 enable_tx_fifo_drain(adapter, pi);
295 link_report(dev);
300 * t3_os_phymod_changed - handle PHY module changes
301 * @phy: the PHY reporting the module change
302 * @mod_type: new module type
304 * This is the OS-dependent handler for PHY module changes. It is
305 * invoked when a PHY module is removed or inserted for any OS-specific
306 * processing.
308 void t3_os_phymod_changed(struct adapter *adap, int port_id)
310 static const char *mod_str[] = {
311 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
314 const struct net_device *dev = adap->port[port_id];
315 const struct port_info *pi = netdev_priv(dev);
317 if (pi->phy.modtype == phy_modtype_none)
318 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
319 else
320 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
321 mod_str[pi->phy.modtype]);
324 static void cxgb_set_rxmode(struct net_device *dev)
326 struct t3_rx_mode rm;
327 struct port_info *pi = netdev_priv(dev);
329 init_rx_mode(&rm, dev, dev->mc_list);
330 t3_mac_set_rx_mode(&pi->mac, &rm);
334 * link_start - enable a port
335 * @dev: the device to enable
337 * Performs the MAC and PHY actions needed to enable a port.
339 static void link_start(struct net_device *dev)
341 struct t3_rx_mode rm;
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
345 init_rx_mode(&rm, dev, dev->mc_list);
346 t3_mac_reset(mac);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, 0, dev->dev_addr);
349 t3_mac_set_rx_mode(mac, &rm);
350 t3_link_start(&pi->phy, mac, &pi->link_config);
351 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
354 static inline void cxgb_disable_msi(struct adapter *adapter)
356 if (adapter->flags & USING_MSIX) {
357 pci_disable_msix(adapter->pdev);
358 adapter->flags &= ~USING_MSIX;
359 } else if (adapter->flags & USING_MSI) {
360 pci_disable_msi(adapter->pdev);
361 adapter->flags &= ~USING_MSI;
366 * Interrupt handler for asynchronous events used with MSI-X.
368 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 t3_slow_intr_handler(cookie);
371 return IRQ_HANDLED;
375 * Name the MSI-X interrupts.
377 static void name_msix_vecs(struct adapter *adap)
379 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
382 adap->msix_info[0].desc[n] = 0;
384 for_each_port(adap, j) {
385 struct net_device *d = adap->port[j];
386 const struct port_info *pi = netdev_priv(d);
388 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
389 snprintf(adap->msix_info[msi_idx].desc, n,
390 "%s-%d", d->name, pi->first_qset + i);
391 adap->msix_info[msi_idx].desc[n] = 0;
396 static int request_msix_data_irqs(struct adapter *adap)
398 int i, j, err, qidx = 0;
400 for_each_port(adap, i) {
401 int nqsets = adap2pinfo(adap, i)->nqsets;
403 for (j = 0; j < nqsets; ++j) {
404 err = request_irq(adap->msix_info[qidx + 1].vec,
405 t3_intr_handler(adap,
406 adap->sge.qs[qidx].
407 rspq.polling), 0,
408 adap->msix_info[qidx + 1].desc,
409 &adap->sge.qs[qidx]);
410 if (err) {
411 while (--qidx >= 0)
412 free_irq(adap->msix_info[qidx + 1].vec,
413 &adap->sge.qs[qidx]);
414 return err;
416 qidx++;
419 return 0;
422 static void free_irq_resources(struct adapter *adapter)
424 if (adapter->flags & USING_MSIX) {
425 int i, n = 0;
427 free_irq(adapter->msix_info[0].vec, adapter);
428 for_each_port(adapter, i)
429 n += adap2pinfo(adapter, i)->nqsets;
431 for (i = 0; i < n; ++i)
432 free_irq(adapter->msix_info[i + 1].vec,
433 &adapter->sge.qs[i]);
434 } else
435 free_irq(adapter->pdev->irq, adapter);
438 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
439 unsigned long n)
441 int attempts = 5;
443 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
444 if (!--attempts)
445 return -ETIMEDOUT;
446 msleep(10);
448 return 0;
451 static int init_tp_parity(struct adapter *adap)
453 int i;
454 struct sk_buff *skb;
455 struct cpl_set_tcb_field *greq;
456 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458 t3_tp_set_offload_mode(adap, 1);
460 for (i = 0; i < 16; i++) {
461 struct cpl_smt_write_req *req;
463 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
464 if (!skb)
465 skb = adap->nofail_skb;
466 if (!skb)
467 goto alloc_skb_fail;
469 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
470 memset(req, 0, sizeof(*req));
471 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
472 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
473 req->mtu_idx = NMTUS - 1;
474 req->iff = i;
475 t3_mgmt_tx(adap, skb);
476 if (skb == adap->nofail_skb) {
477 await_mgmt_replies(adap, cnt, i + 1);
478 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
479 if (!adap->nofail_skb)
480 goto alloc_skb_fail;
484 for (i = 0; i < 2048; i++) {
485 struct cpl_l2t_write_req *req;
487 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
488 if (!skb)
489 skb = adap->nofail_skb;
490 if (!skb)
491 goto alloc_skb_fail;
493 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
494 memset(req, 0, sizeof(*req));
495 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
496 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
497 req->params = htonl(V_L2T_W_IDX(i));
498 t3_mgmt_tx(adap, skb);
499 if (skb == adap->nofail_skb) {
500 await_mgmt_replies(adap, cnt, 16 + i + 1);
501 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
502 if (!adap->nofail_skb)
503 goto alloc_skb_fail;
507 for (i = 0; i < 2048; i++) {
508 struct cpl_rte_write_req *req;
510 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
511 if (!skb)
512 skb = adap->nofail_skb;
513 if (!skb)
514 goto alloc_skb_fail;
516 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
517 memset(req, 0, sizeof(*req));
518 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
519 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
520 req->l2t_idx = htonl(V_L2T_W_IDX(i));
521 t3_mgmt_tx(adap, skb);
522 if (skb == adap->nofail_skb) {
523 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
524 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
525 if (!adap->nofail_skb)
526 goto alloc_skb_fail;
530 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
531 if (!skb)
532 skb = adap->nofail_skb;
533 if (!skb)
534 goto alloc_skb_fail;
536 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
537 memset(greq, 0, sizeof(*greq));
538 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
539 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
540 greq->mask = cpu_to_be64(1);
541 t3_mgmt_tx(adap, skb);
543 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
544 if (skb == adap->nofail_skb) {
545 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
546 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
549 t3_tp_set_offload_mode(adap, 0);
550 return i;
552 alloc_skb_fail:
553 t3_tp_set_offload_mode(adap, 0);
554 return -ENOMEM;
558 * setup_rss - configure RSS
559 * @adap: the adapter
561 * Sets up RSS to distribute packets to multiple receive queues. We
562 * configure the RSS CPU lookup table to distribute to the number of HW
563 * receive queues, and the response queue lookup table to narrow that
564 * down to the response queues actually configured for each port.
565 * We always configure the RSS mapping for two ports since the mapping
566 * table has plenty of entries.
568 static void setup_rss(struct adapter *adap)
570 int i;
571 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
572 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
573 u8 cpus[SGE_QSETS + 1];
574 u16 rspq_map[RSS_TABLE_SIZE];
576 for (i = 0; i < SGE_QSETS; ++i)
577 cpus[i] = i;
578 cpus[SGE_QSETS] = 0xff; /* terminator */
580 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
581 rspq_map[i] = i % nq0;
582 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
585 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
586 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
587 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
590 static void init_napi(struct adapter *adap)
592 int i;
594 for (i = 0; i < SGE_QSETS; i++) {
595 struct sge_qset *qs = &adap->sge.qs[i];
597 if (qs->adap)
598 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
599 64);
603 * netif_napi_add() can be called only once per napi_struct because it
604 * adds each new napi_struct to a list. Be careful not to call it a
605 * second time, e.g., during EEH recovery, by making a note of it.
607 adap->flags |= NAPI_INIT;
611 * Wait until all NAPI handlers are descheduled. This includes the handlers of
612 * both netdevices representing interfaces and the dummy ones for the extra
613 * queues.
615 static void quiesce_rx(struct adapter *adap)
617 int i;
619 for (i = 0; i < SGE_QSETS; i++)
620 if (adap->sge.qs[i].adap)
621 napi_disable(&adap->sge.qs[i].napi);
624 static void enable_all_napi(struct adapter *adap)
626 int i;
627 for (i = 0; i < SGE_QSETS; i++)
628 if (adap->sge.qs[i].adap)
629 napi_enable(&adap->sge.qs[i].napi);
633 * set_qset_lro - Turn a queue set's LRO capability on and off
634 * @dev: the device the qset is attached to
635 * @qset_idx: the queue set index
636 * @val: the LRO switch
638 * Sets LRO on or off for a particular queue set.
639 * the device's features flag is updated to reflect the LRO
640 * capability when all queues belonging to the device are
641 * in the same state.
643 static void set_qset_lro(struct net_device *dev, int qset_idx, int val)
645 struct port_info *pi = netdev_priv(dev);
646 struct adapter *adapter = pi->adapter;
648 adapter->params.sge.qset[qset_idx].lro = !!val;
649 adapter->sge.qs[qset_idx].lro_enabled = !!val;
653 * setup_sge_qsets - configure SGE Tx/Rx/response queues
654 * @adap: the adapter
656 * Determines how many sets of SGE queues to use and initializes them.
657 * We support multiple queue sets per port if we have MSI-X, otherwise
658 * just one queue set per port.
660 static int setup_sge_qsets(struct adapter *adap)
662 int i, j, err, irq_idx = 0, qset_idx = 0;
663 unsigned int ntxq = SGE_TXQ_PER_SET;
665 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
666 irq_idx = -1;
668 for_each_port(adap, i) {
669 struct net_device *dev = adap->port[i];
670 struct port_info *pi = netdev_priv(dev);
672 pi->qs = &adap->sge.qs[pi->first_qset];
673 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
674 set_qset_lro(dev, qset_idx, pi->rx_offload & T3_LRO);
675 err = t3_sge_alloc_qset(adap, qset_idx, 1,
676 (adap->flags & USING_MSIX) ? qset_idx + 1 :
677 irq_idx,
678 &adap->params.sge.qset[qset_idx], ntxq, dev,
679 netdev_get_tx_queue(dev, j));
680 if (err) {
681 t3_free_sge_resources(adap);
682 return err;
687 return 0;
690 static ssize_t attr_show(struct device *d, char *buf,
691 ssize_t(*format) (struct net_device *, char *))
693 ssize_t len;
695 /* Synchronize with ioctls that may shut down the device */
696 rtnl_lock();
697 len = (*format) (to_net_dev(d), buf);
698 rtnl_unlock();
699 return len;
702 static ssize_t attr_store(struct device *d,
703 const char *buf, size_t len,
704 ssize_t(*set) (struct net_device *, unsigned int),
705 unsigned int min_val, unsigned int max_val)
707 char *endp;
708 ssize_t ret;
709 unsigned int val;
711 if (!capable(CAP_NET_ADMIN))
712 return -EPERM;
714 val = simple_strtoul(buf, &endp, 0);
715 if (endp == buf || val < min_val || val > max_val)
716 return -EINVAL;
718 rtnl_lock();
719 ret = (*set) (to_net_dev(d), val);
720 if (!ret)
721 ret = len;
722 rtnl_unlock();
723 return ret;
726 #define CXGB3_SHOW(name, val_expr) \
727 static ssize_t format_##name(struct net_device *dev, char *buf) \
729 struct port_info *pi = netdev_priv(dev); \
730 struct adapter *adap = pi->adapter; \
731 return sprintf(buf, "%u\n", val_expr); \
733 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
734 char *buf) \
736 return attr_show(d, buf, format_##name); \
739 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
741 struct port_info *pi = netdev_priv(dev);
742 struct adapter *adap = pi->adapter;
743 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
745 if (adap->flags & FULL_INIT_DONE)
746 return -EBUSY;
747 if (val && adap->params.rev == 0)
748 return -EINVAL;
749 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
750 min_tids)
751 return -EINVAL;
752 adap->params.mc5.nfilters = val;
753 return 0;
756 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
757 const char *buf, size_t len)
759 return attr_store(d, buf, len, set_nfilters, 0, ~0);
762 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
764 struct port_info *pi = netdev_priv(dev);
765 struct adapter *adap = pi->adapter;
767 if (adap->flags & FULL_INIT_DONE)
768 return -EBUSY;
769 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
770 MC5_MIN_TIDS)
771 return -EINVAL;
772 adap->params.mc5.nservers = val;
773 return 0;
776 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
777 const char *buf, size_t len)
779 return attr_store(d, buf, len, set_nservers, 0, ~0);
782 #define CXGB3_ATTR_R(name, val_expr) \
783 CXGB3_SHOW(name, val_expr) \
784 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
786 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
787 CXGB3_SHOW(name, val_expr) \
788 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
790 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
791 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
792 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
794 static struct attribute *cxgb3_attrs[] = {
795 &dev_attr_cam_size.attr,
796 &dev_attr_nfilters.attr,
797 &dev_attr_nservers.attr,
798 NULL
801 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
803 static ssize_t tm_attr_show(struct device *d,
804 char *buf, int sched)
806 struct port_info *pi = netdev_priv(to_net_dev(d));
807 struct adapter *adap = pi->adapter;
808 unsigned int v, addr, bpt, cpt;
809 ssize_t len;
811 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
812 rtnl_lock();
813 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
814 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
815 if (sched & 1)
816 v >>= 16;
817 bpt = (v >> 8) & 0xff;
818 cpt = v & 0xff;
819 if (!cpt)
820 len = sprintf(buf, "disabled\n");
821 else {
822 v = (adap->params.vpd.cclk * 1000) / cpt;
823 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
825 rtnl_unlock();
826 return len;
829 static ssize_t tm_attr_store(struct device *d,
830 const char *buf, size_t len, int sched)
832 struct port_info *pi = netdev_priv(to_net_dev(d));
833 struct adapter *adap = pi->adapter;
834 unsigned int val;
835 char *endp;
836 ssize_t ret;
838 if (!capable(CAP_NET_ADMIN))
839 return -EPERM;
841 val = simple_strtoul(buf, &endp, 0);
842 if (endp == buf || val > 10000000)
843 return -EINVAL;
845 rtnl_lock();
846 ret = t3_config_sched(adap, val, sched);
847 if (!ret)
848 ret = len;
849 rtnl_unlock();
850 return ret;
853 #define TM_ATTR(name, sched) \
854 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
855 char *buf) \
857 return tm_attr_show(d, buf, sched); \
859 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
860 const char *buf, size_t len) \
862 return tm_attr_store(d, buf, len, sched); \
864 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
866 TM_ATTR(sched0, 0);
867 TM_ATTR(sched1, 1);
868 TM_ATTR(sched2, 2);
869 TM_ATTR(sched3, 3);
870 TM_ATTR(sched4, 4);
871 TM_ATTR(sched5, 5);
872 TM_ATTR(sched6, 6);
873 TM_ATTR(sched7, 7);
875 static struct attribute *offload_attrs[] = {
876 &dev_attr_sched0.attr,
877 &dev_attr_sched1.attr,
878 &dev_attr_sched2.attr,
879 &dev_attr_sched3.attr,
880 &dev_attr_sched4.attr,
881 &dev_attr_sched5.attr,
882 &dev_attr_sched6.attr,
883 &dev_attr_sched7.attr,
884 NULL
887 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
890 * Sends an sk_buff to an offload queue driver
891 * after dealing with any active network taps.
893 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
895 int ret;
897 local_bh_disable();
898 ret = t3_offload_tx(tdev, skb);
899 local_bh_enable();
900 return ret;
903 static int write_smt_entry(struct adapter *adapter, int idx)
905 struct cpl_smt_write_req *req;
906 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
908 if (!skb)
909 return -ENOMEM;
911 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
912 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
913 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
914 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
915 req->iff = idx;
916 memset(req->src_mac1, 0, sizeof(req->src_mac1));
917 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
918 skb->priority = 1;
919 offload_tx(&adapter->tdev, skb);
920 return 0;
923 static int init_smt(struct adapter *adapter)
925 int i;
927 for_each_port(adapter, i)
928 write_smt_entry(adapter, i);
929 return 0;
932 static void init_port_mtus(struct adapter *adapter)
934 unsigned int mtus = adapter->port[0]->mtu;
936 if (adapter->port[1])
937 mtus |= adapter->port[1]->mtu << 16;
938 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
941 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
942 int hi, int port)
944 struct sk_buff *skb;
945 struct mngt_pktsched_wr *req;
946 int ret;
948 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
949 if (!skb)
950 skb = adap->nofail_skb;
951 if (!skb)
952 return -ENOMEM;
954 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
955 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
956 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
957 req->sched = sched;
958 req->idx = qidx;
959 req->min = lo;
960 req->max = hi;
961 req->binding = port;
962 ret = t3_mgmt_tx(adap, skb);
963 if (skb == adap->nofail_skb) {
964 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
965 GFP_KERNEL);
966 if (!adap->nofail_skb)
967 ret = -ENOMEM;
970 return ret;
973 static int bind_qsets(struct adapter *adap)
975 int i, j, err = 0;
977 for_each_port(adap, i) {
978 const struct port_info *pi = adap2pinfo(adap, i);
980 for (j = 0; j < pi->nqsets; ++j) {
981 int ret = send_pktsched_cmd(adap, 1,
982 pi->first_qset + j, -1,
983 -1, i);
984 if (ret)
985 err = ret;
989 return err;
992 #define FW_FNAME "cxgb3/t3fw-%d.%d.%d.bin"
993 #define TPSRAM_NAME "cxgb3/t3%c_psram-%d.%d.%d.bin"
994 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
995 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
996 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
998 static inline const char *get_edc_fw_name(int edc_idx)
1000 const char *fw_name = NULL;
1002 switch (edc_idx) {
1003 case EDC_OPT_AEL2005:
1004 fw_name = AEL2005_OPT_EDC_NAME;
1005 break;
1006 case EDC_TWX_AEL2005:
1007 fw_name = AEL2005_TWX_EDC_NAME;
1008 break;
1009 case EDC_TWX_AEL2020:
1010 fw_name = AEL2020_TWX_EDC_NAME;
1011 break;
1013 return fw_name;
1016 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1018 struct adapter *adapter = phy->adapter;
1019 const struct firmware *fw;
1020 char buf[64];
1021 u32 csum;
1022 const __be32 *p;
1023 u16 *cache = phy->phy_cache;
1024 int i, ret;
1026 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1028 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1029 if (ret < 0) {
1030 dev_err(&adapter->pdev->dev,
1031 "could not upgrade firmware: unable to load %s\n",
1032 buf);
1033 return ret;
1036 /* check size, take checksum in account */
1037 if (fw->size > size + 4) {
1038 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1039 (unsigned int)fw->size, size + 4);
1040 ret = -EINVAL;
1043 /* compute checksum */
1044 p = (const __be32 *)fw->data;
1045 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1046 csum += ntohl(p[i]);
1048 if (csum != 0xffffffff) {
1049 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1050 csum);
1051 ret = -EINVAL;
1054 for (i = 0; i < size / 4 ; i++) {
1055 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1056 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1059 release_firmware(fw);
1061 return ret;
1064 static int upgrade_fw(struct adapter *adap)
1066 int ret;
1067 char buf[64];
1068 const struct firmware *fw;
1069 struct device *dev = &adap->pdev->dev;
1071 snprintf(buf, sizeof(buf), FW_FNAME, FW_VERSION_MAJOR,
1072 FW_VERSION_MINOR, FW_VERSION_MICRO);
1073 ret = request_firmware(&fw, buf, dev);
1074 if (ret < 0) {
1075 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1076 buf);
1077 return ret;
1079 ret = t3_load_fw(adap, fw->data, fw->size);
1080 release_firmware(fw);
1082 if (ret == 0)
1083 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1084 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1085 else
1086 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1087 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1089 return ret;
1092 static inline char t3rev2char(struct adapter *adapter)
1094 char rev = 0;
1096 switch(adapter->params.rev) {
1097 case T3_REV_B:
1098 case T3_REV_B2:
1099 rev = 'b';
1100 break;
1101 case T3_REV_C:
1102 rev = 'c';
1103 break;
1105 return rev;
1108 static int update_tpsram(struct adapter *adap)
1110 const struct firmware *tpsram;
1111 char buf[64];
1112 struct device *dev = &adap->pdev->dev;
1113 int ret;
1114 char rev;
1116 rev = t3rev2char(adap);
1117 if (!rev)
1118 return 0;
1120 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev,
1121 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1123 ret = request_firmware(&tpsram, buf, dev);
1124 if (ret < 0) {
1125 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126 buf);
1127 return ret;
1130 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131 if (ret)
1132 goto release_tpsram;
1134 ret = t3_set_proto_sram(adap, tpsram->data);
1135 if (ret == 0)
1136 dev_info(dev,
1137 "successful update of protocol engine "
1138 "to %d.%d.%d\n",
1139 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140 else
1141 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143 if (ret)
1144 dev_err(dev, "loading protocol SRAM failed\n");
1146 release_tpsram:
1147 release_firmware(tpsram);
1149 return ret;
1153 * cxgb_up - enable the adapter
1154 * @adapter: adapter being enabled
1156 * Called when the first port is enabled, this function performs the
1157 * actions necessary to make an adapter operational, such as completing
1158 * the initialization of HW modules, and enabling interrupts.
1160 * Must be called with the rtnl lock held.
1162 static int cxgb_up(struct adapter *adap)
1164 int err;
1166 if (!(adap->flags & FULL_INIT_DONE)) {
1167 err = t3_check_fw_version(adap);
1168 if (err == -EINVAL) {
1169 err = upgrade_fw(adap);
1170 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1171 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1172 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1175 err = t3_check_tpsram_version(adap);
1176 if (err == -EINVAL) {
1177 err = update_tpsram(adap);
1178 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1179 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1180 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1184 * Clear interrupts now to catch errors if t3_init_hw fails.
1185 * We clear them again later as initialization may trigger
1186 * conditions that can interrupt.
1188 t3_intr_clear(adap);
1190 err = t3_init_hw(adap, 0);
1191 if (err)
1192 goto out;
1194 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1195 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1197 err = setup_sge_qsets(adap);
1198 if (err)
1199 goto out;
1201 setup_rss(adap);
1202 if (!(adap->flags & NAPI_INIT))
1203 init_napi(adap);
1205 t3_start_sge_timers(adap);
1206 adap->flags |= FULL_INIT_DONE;
1209 t3_intr_clear(adap);
1211 if (adap->flags & USING_MSIX) {
1212 name_msix_vecs(adap);
1213 err = request_irq(adap->msix_info[0].vec,
1214 t3_async_intr_handler, 0,
1215 adap->msix_info[0].desc, adap);
1216 if (err)
1217 goto irq_err;
1219 err = request_msix_data_irqs(adap);
1220 if (err) {
1221 free_irq(adap->msix_info[0].vec, adap);
1222 goto irq_err;
1224 } else if ((err = request_irq(adap->pdev->irq,
1225 t3_intr_handler(adap,
1226 adap->sge.qs[0].rspq.
1227 polling),
1228 (adap->flags & USING_MSI) ?
1229 0 : IRQF_SHARED,
1230 adap->name, adap)))
1231 goto irq_err;
1233 enable_all_napi(adap);
1234 t3_sge_start(adap);
1235 t3_intr_enable(adap);
1237 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1238 is_offload(adap) && init_tp_parity(adap) == 0)
1239 adap->flags |= TP_PARITY_INIT;
1241 if (adap->flags & TP_PARITY_INIT) {
1242 t3_write_reg(adap, A_TP_INT_CAUSE,
1243 F_CMCACHEPERR | F_ARPLUTPERR);
1244 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1247 if (!(adap->flags & QUEUES_BOUND)) {
1248 err = bind_qsets(adap);
1249 if (err) {
1250 CH_ERR(adap, "failed to bind qsets, err %d\n", err);
1251 t3_intr_disable(adap);
1252 free_irq_resources(adap);
1253 goto out;
1255 adap->flags |= QUEUES_BOUND;
1258 out:
1259 return err;
1260 irq_err:
1261 CH_ERR(adap, "request_irq failed, err %d\n", err);
1262 goto out;
1266 * Release resources when all the ports and offloading have been stopped.
1268 static void cxgb_down(struct adapter *adapter)
1270 t3_sge_stop(adapter);
1271 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1272 t3_intr_disable(adapter);
1273 spin_unlock_irq(&adapter->work_lock);
1275 free_irq_resources(adapter);
1276 quiesce_rx(adapter);
1277 flush_workqueue(cxgb3_wq); /* wait for external IRQ handler */
1280 static void schedule_chk_task(struct adapter *adap)
1282 unsigned int timeo;
1284 timeo = adap->params.linkpoll_period ?
1285 (HZ * adap->params.linkpoll_period) / 10 :
1286 adap->params.stats_update_period * HZ;
1287 if (timeo)
1288 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1291 static int offload_open(struct net_device *dev)
1293 struct port_info *pi = netdev_priv(dev);
1294 struct adapter *adapter = pi->adapter;
1295 struct t3cdev *tdev = dev2t3cdev(dev);
1296 int adap_up = adapter->open_device_map & PORT_MASK;
1297 int err;
1299 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1300 return 0;
1302 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1303 goto out;
1305 t3_tp_set_offload_mode(adapter, 1);
1306 tdev->lldev = adapter->port[0];
1307 err = cxgb3_offload_activate(adapter);
1308 if (err)
1309 goto out;
1311 init_port_mtus(adapter);
1312 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1313 adapter->params.b_wnd,
1314 adapter->params.rev == 0 ?
1315 adapter->port[0]->mtu : 0xffff);
1316 init_smt(adapter);
1318 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1319 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1321 /* Call back all registered clients */
1322 cxgb3_add_clients(tdev);
1324 out:
1325 /* restore them in case the offload module has changed them */
1326 if (err) {
1327 t3_tp_set_offload_mode(adapter, 0);
1328 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1329 cxgb3_set_dummy_ops(tdev);
1331 return err;
1334 static int offload_close(struct t3cdev *tdev)
1336 struct adapter *adapter = tdev2adap(tdev);
1338 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1339 return 0;
1341 /* Call back all registered clients */
1342 cxgb3_remove_clients(tdev);
1344 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1346 /* Flush work scheduled while releasing TIDs */
1347 flush_scheduled_work();
1349 tdev->lldev = NULL;
1350 cxgb3_set_dummy_ops(tdev);
1351 t3_tp_set_offload_mode(adapter, 0);
1352 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1354 if (!adapter->open_device_map)
1355 cxgb_down(adapter);
1357 cxgb3_offload_deactivate(adapter);
1358 return 0;
1361 static int cxgb_open(struct net_device *dev)
1363 struct port_info *pi = netdev_priv(dev);
1364 struct adapter *adapter = pi->adapter;
1365 int other_ports = adapter->open_device_map & PORT_MASK;
1366 int err;
1368 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1369 return err;
1371 set_bit(pi->port_id, &adapter->open_device_map);
1372 if (is_offload(adapter) && !ofld_disable) {
1373 err = offload_open(dev);
1374 if (err)
1375 printk(KERN_WARNING
1376 "Could not initialize offload capabilities\n");
1379 dev->real_num_tx_queues = pi->nqsets;
1380 link_start(dev);
1381 t3_port_intr_enable(adapter, pi->port_id);
1382 netif_tx_start_all_queues(dev);
1383 if (!other_ports)
1384 schedule_chk_task(adapter);
1386 return 0;
1389 static int cxgb_close(struct net_device *dev)
1391 struct port_info *pi = netdev_priv(dev);
1392 struct adapter *adapter = pi->adapter;
1395 if (!adapter->open_device_map)
1396 return 0;
1398 /* Stop link fault interrupts */
1399 t3_xgm_intr_disable(adapter, pi->port_id);
1400 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1402 t3_port_intr_disable(adapter, pi->port_id);
1403 netif_tx_stop_all_queues(dev);
1404 pi->phy.ops->power_down(&pi->phy, 1);
1405 netif_carrier_off(dev);
1406 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1408 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1409 clear_bit(pi->port_id, &adapter->open_device_map);
1410 spin_unlock_irq(&adapter->work_lock);
1412 if (!(adapter->open_device_map & PORT_MASK))
1413 cancel_delayed_work_sync(&adapter->adap_check_task);
1415 if (!adapter->open_device_map)
1416 cxgb_down(adapter);
1418 return 0;
1421 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1423 struct port_info *pi = netdev_priv(dev);
1424 struct adapter *adapter = pi->adapter;
1425 struct net_device_stats *ns = &pi->netstats;
1426 const struct mac_stats *pstats;
1428 spin_lock(&adapter->stats_lock);
1429 pstats = t3_mac_update_stats(&pi->mac);
1430 spin_unlock(&adapter->stats_lock);
1432 ns->tx_bytes = pstats->tx_octets;
1433 ns->tx_packets = pstats->tx_frames;
1434 ns->rx_bytes = pstats->rx_octets;
1435 ns->rx_packets = pstats->rx_frames;
1436 ns->multicast = pstats->rx_mcast_frames;
1438 ns->tx_errors = pstats->tx_underrun;
1439 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1440 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1441 pstats->rx_fifo_ovfl;
1443 /* detailed rx_errors */
1444 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1445 ns->rx_over_errors = 0;
1446 ns->rx_crc_errors = pstats->rx_fcs_errs;
1447 ns->rx_frame_errors = pstats->rx_symbol_errs;
1448 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1449 ns->rx_missed_errors = pstats->rx_cong_drops;
1451 /* detailed tx_errors */
1452 ns->tx_aborted_errors = 0;
1453 ns->tx_carrier_errors = 0;
1454 ns->tx_fifo_errors = pstats->tx_underrun;
1455 ns->tx_heartbeat_errors = 0;
1456 ns->tx_window_errors = 0;
1457 return ns;
1460 static u32 get_msglevel(struct net_device *dev)
1462 struct port_info *pi = netdev_priv(dev);
1463 struct adapter *adapter = pi->adapter;
1465 return adapter->msg_enable;
1468 static void set_msglevel(struct net_device *dev, u32 val)
1470 struct port_info *pi = netdev_priv(dev);
1471 struct adapter *adapter = pi->adapter;
1473 adapter->msg_enable = val;
1476 static char stats_strings[][ETH_GSTRING_LEN] = {
1477 "TxOctetsOK ",
1478 "TxFramesOK ",
1479 "TxMulticastFramesOK",
1480 "TxBroadcastFramesOK",
1481 "TxPauseFrames ",
1482 "TxUnderrun ",
1483 "TxExtUnderrun ",
1485 "TxFrames64 ",
1486 "TxFrames65To127 ",
1487 "TxFrames128To255 ",
1488 "TxFrames256To511 ",
1489 "TxFrames512To1023 ",
1490 "TxFrames1024To1518 ",
1491 "TxFrames1519ToMax ",
1493 "RxOctetsOK ",
1494 "RxFramesOK ",
1495 "RxMulticastFramesOK",
1496 "RxBroadcastFramesOK",
1497 "RxPauseFrames ",
1498 "RxFCSErrors ",
1499 "RxSymbolErrors ",
1500 "RxShortErrors ",
1501 "RxJabberErrors ",
1502 "RxLengthErrors ",
1503 "RxFIFOoverflow ",
1505 "RxFrames64 ",
1506 "RxFrames65To127 ",
1507 "RxFrames128To255 ",
1508 "RxFrames256To511 ",
1509 "RxFrames512To1023 ",
1510 "RxFrames1024To1518 ",
1511 "RxFrames1519ToMax ",
1513 "PhyFIFOErrors ",
1514 "TSO ",
1515 "VLANextractions ",
1516 "VLANinsertions ",
1517 "TxCsumOffload ",
1518 "RxCsumGood ",
1519 "LroAggregated ",
1520 "LroFlushed ",
1521 "LroNoDesc ",
1522 "RxDrops ",
1524 "CheckTXEnToggled ",
1525 "CheckResets ",
1527 "LinkFaults ",
1530 static int get_sset_count(struct net_device *dev, int sset)
1532 switch (sset) {
1533 case ETH_SS_STATS:
1534 return ARRAY_SIZE(stats_strings);
1535 default:
1536 return -EOPNOTSUPP;
1540 #define T3_REGMAP_SIZE (3 * 1024)
1542 static int get_regs_len(struct net_device *dev)
1544 return T3_REGMAP_SIZE;
1547 static int get_eeprom_len(struct net_device *dev)
1549 return EEPROMSIZE;
1552 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1554 struct port_info *pi = netdev_priv(dev);
1555 struct adapter *adapter = pi->adapter;
1556 u32 fw_vers = 0;
1557 u32 tp_vers = 0;
1559 spin_lock(&adapter->stats_lock);
1560 t3_get_fw_version(adapter, &fw_vers);
1561 t3_get_tp_version(adapter, &tp_vers);
1562 spin_unlock(&adapter->stats_lock);
1564 strcpy(info->driver, DRV_NAME);
1565 strcpy(info->version, DRV_VERSION);
1566 strcpy(info->bus_info, pci_name(adapter->pdev));
1567 if (!fw_vers)
1568 strcpy(info->fw_version, "N/A");
1569 else {
1570 snprintf(info->fw_version, sizeof(info->fw_version),
1571 "%s %u.%u.%u TP %u.%u.%u",
1572 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1573 G_FW_VERSION_MAJOR(fw_vers),
1574 G_FW_VERSION_MINOR(fw_vers),
1575 G_FW_VERSION_MICRO(fw_vers),
1576 G_TP_VERSION_MAJOR(tp_vers),
1577 G_TP_VERSION_MINOR(tp_vers),
1578 G_TP_VERSION_MICRO(tp_vers));
1582 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1584 if (stringset == ETH_SS_STATS)
1585 memcpy(data, stats_strings, sizeof(stats_strings));
1588 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1589 struct port_info *p, int idx)
1591 int i;
1592 unsigned long tot = 0;
1594 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1595 tot += adapter->sge.qs[i].port_stats[idx];
1596 return tot;
1599 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1600 u64 *data)
1602 struct port_info *pi = netdev_priv(dev);
1603 struct adapter *adapter = pi->adapter;
1604 const struct mac_stats *s;
1606 spin_lock(&adapter->stats_lock);
1607 s = t3_mac_update_stats(&pi->mac);
1608 spin_unlock(&adapter->stats_lock);
1610 *data++ = s->tx_octets;
1611 *data++ = s->tx_frames;
1612 *data++ = s->tx_mcast_frames;
1613 *data++ = s->tx_bcast_frames;
1614 *data++ = s->tx_pause;
1615 *data++ = s->tx_underrun;
1616 *data++ = s->tx_fifo_urun;
1618 *data++ = s->tx_frames_64;
1619 *data++ = s->tx_frames_65_127;
1620 *data++ = s->tx_frames_128_255;
1621 *data++ = s->tx_frames_256_511;
1622 *data++ = s->tx_frames_512_1023;
1623 *data++ = s->tx_frames_1024_1518;
1624 *data++ = s->tx_frames_1519_max;
1626 *data++ = s->rx_octets;
1627 *data++ = s->rx_frames;
1628 *data++ = s->rx_mcast_frames;
1629 *data++ = s->rx_bcast_frames;
1630 *data++ = s->rx_pause;
1631 *data++ = s->rx_fcs_errs;
1632 *data++ = s->rx_symbol_errs;
1633 *data++ = s->rx_short;
1634 *data++ = s->rx_jabber;
1635 *data++ = s->rx_too_long;
1636 *data++ = s->rx_fifo_ovfl;
1638 *data++ = s->rx_frames_64;
1639 *data++ = s->rx_frames_65_127;
1640 *data++ = s->rx_frames_128_255;
1641 *data++ = s->rx_frames_256_511;
1642 *data++ = s->rx_frames_512_1023;
1643 *data++ = s->rx_frames_1024_1518;
1644 *data++ = s->rx_frames_1519_max;
1646 *data++ = pi->phy.fifo_errors;
1648 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1649 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1650 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1651 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1652 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1653 *data++ = 0;
1654 *data++ = 0;
1655 *data++ = 0;
1656 *data++ = s->rx_cong_drops;
1658 *data++ = s->num_toggled;
1659 *data++ = s->num_resets;
1661 *data++ = s->link_faults;
1664 static inline void reg_block_dump(struct adapter *ap, void *buf,
1665 unsigned int start, unsigned int end)
1667 u32 *p = buf + start;
1669 for (; start <= end; start += sizeof(u32))
1670 *p++ = t3_read_reg(ap, start);
1673 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1674 void *buf)
1676 struct port_info *pi = netdev_priv(dev);
1677 struct adapter *ap = pi->adapter;
1680 * Version scheme:
1681 * bits 0..9: chip version
1682 * bits 10..15: chip revision
1683 * bit 31: set for PCIe cards
1685 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1688 * We skip the MAC statistics registers because they are clear-on-read.
1689 * Also reading multi-register stats would need to synchronize with the
1690 * periodic mac stats accumulation. Hard to justify the complexity.
1692 memset(buf, 0, T3_REGMAP_SIZE);
1693 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1694 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1695 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1696 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1697 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1698 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1699 XGM_REG(A_XGM_SERDES_STAT3, 1));
1700 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1701 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1704 static int restart_autoneg(struct net_device *dev)
1706 struct port_info *p = netdev_priv(dev);
1708 if (!netif_running(dev))
1709 return -EAGAIN;
1710 if (p->link_config.autoneg != AUTONEG_ENABLE)
1711 return -EINVAL;
1712 p->phy.ops->autoneg_restart(&p->phy);
1713 return 0;
1716 static int cxgb3_phys_id(struct net_device *dev, u32 data)
1718 struct port_info *pi = netdev_priv(dev);
1719 struct adapter *adapter = pi->adapter;
1720 int i;
1722 if (data == 0)
1723 data = 2;
1725 for (i = 0; i < data * 2; i++) {
1726 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1727 (i & 1) ? F_GPIO0_OUT_VAL : 0);
1728 if (msleep_interruptible(500))
1729 break;
1731 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1732 F_GPIO0_OUT_VAL);
1733 return 0;
1736 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1738 struct port_info *p = netdev_priv(dev);
1740 cmd->supported = p->link_config.supported;
1741 cmd->advertising = p->link_config.advertising;
1743 if (netif_carrier_ok(dev)) {
1744 cmd->speed = p->link_config.speed;
1745 cmd->duplex = p->link_config.duplex;
1746 } else {
1747 cmd->speed = -1;
1748 cmd->duplex = -1;
1751 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1752 cmd->phy_address = p->phy.mdio.prtad;
1753 cmd->transceiver = XCVR_EXTERNAL;
1754 cmd->autoneg = p->link_config.autoneg;
1755 cmd->maxtxpkt = 0;
1756 cmd->maxrxpkt = 0;
1757 return 0;
1760 static int speed_duplex_to_caps(int speed, int duplex)
1762 int cap = 0;
1764 switch (speed) {
1765 case SPEED_10:
1766 if (duplex == DUPLEX_FULL)
1767 cap = SUPPORTED_10baseT_Full;
1768 else
1769 cap = SUPPORTED_10baseT_Half;
1770 break;
1771 case SPEED_100:
1772 if (duplex == DUPLEX_FULL)
1773 cap = SUPPORTED_100baseT_Full;
1774 else
1775 cap = SUPPORTED_100baseT_Half;
1776 break;
1777 case SPEED_1000:
1778 if (duplex == DUPLEX_FULL)
1779 cap = SUPPORTED_1000baseT_Full;
1780 else
1781 cap = SUPPORTED_1000baseT_Half;
1782 break;
1783 case SPEED_10000:
1784 if (duplex == DUPLEX_FULL)
1785 cap = SUPPORTED_10000baseT_Full;
1787 return cap;
1790 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1791 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1792 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1793 ADVERTISED_10000baseT_Full)
1795 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1797 struct port_info *p = netdev_priv(dev);
1798 struct link_config *lc = &p->link_config;
1800 if (!(lc->supported & SUPPORTED_Autoneg)) {
1802 * PHY offers a single speed/duplex. See if that's what's
1803 * being requested.
1805 if (cmd->autoneg == AUTONEG_DISABLE) {
1806 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1807 if (lc->supported & cap)
1808 return 0;
1810 return -EINVAL;
1813 if (cmd->autoneg == AUTONEG_DISABLE) {
1814 int cap = speed_duplex_to_caps(cmd->speed, cmd->duplex);
1816 if (!(lc->supported & cap) || cmd->speed == SPEED_1000)
1817 return -EINVAL;
1818 lc->requested_speed = cmd->speed;
1819 lc->requested_duplex = cmd->duplex;
1820 lc->advertising = 0;
1821 } else {
1822 cmd->advertising &= ADVERTISED_MASK;
1823 cmd->advertising &= lc->supported;
1824 if (!cmd->advertising)
1825 return -EINVAL;
1826 lc->requested_speed = SPEED_INVALID;
1827 lc->requested_duplex = DUPLEX_INVALID;
1828 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1830 lc->autoneg = cmd->autoneg;
1831 if (netif_running(dev))
1832 t3_link_start(&p->phy, &p->mac, lc);
1833 return 0;
1836 static void get_pauseparam(struct net_device *dev,
1837 struct ethtool_pauseparam *epause)
1839 struct port_info *p = netdev_priv(dev);
1841 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1842 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1843 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1846 static int set_pauseparam(struct net_device *dev,
1847 struct ethtool_pauseparam *epause)
1849 struct port_info *p = netdev_priv(dev);
1850 struct link_config *lc = &p->link_config;
1852 if (epause->autoneg == AUTONEG_DISABLE)
1853 lc->requested_fc = 0;
1854 else if (lc->supported & SUPPORTED_Autoneg)
1855 lc->requested_fc = PAUSE_AUTONEG;
1856 else
1857 return -EINVAL;
1859 if (epause->rx_pause)
1860 lc->requested_fc |= PAUSE_RX;
1861 if (epause->tx_pause)
1862 lc->requested_fc |= PAUSE_TX;
1863 if (lc->autoneg == AUTONEG_ENABLE) {
1864 if (netif_running(dev))
1865 t3_link_start(&p->phy, &p->mac, lc);
1866 } else {
1867 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1868 if (netif_running(dev))
1869 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1871 return 0;
1874 static u32 get_rx_csum(struct net_device *dev)
1876 struct port_info *p = netdev_priv(dev);
1878 return p->rx_offload & T3_RX_CSUM;
1881 static int set_rx_csum(struct net_device *dev, u32 data)
1883 struct port_info *p = netdev_priv(dev);
1885 if (data) {
1886 p->rx_offload |= T3_RX_CSUM;
1887 } else {
1888 int i;
1890 p->rx_offload &= ~(T3_RX_CSUM | T3_LRO);
1891 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++)
1892 set_qset_lro(dev, i, 0);
1894 return 0;
1897 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1899 struct port_info *pi = netdev_priv(dev);
1900 struct adapter *adapter = pi->adapter;
1901 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1903 e->rx_max_pending = MAX_RX_BUFFERS;
1904 e->rx_mini_max_pending = 0;
1905 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1906 e->tx_max_pending = MAX_TXQ_ENTRIES;
1908 e->rx_pending = q->fl_size;
1909 e->rx_mini_pending = q->rspq_size;
1910 e->rx_jumbo_pending = q->jumbo_size;
1911 e->tx_pending = q->txq_size[0];
1914 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1916 struct port_info *pi = netdev_priv(dev);
1917 struct adapter *adapter = pi->adapter;
1918 struct qset_params *q;
1919 int i;
1921 if (e->rx_pending > MAX_RX_BUFFERS ||
1922 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1923 e->tx_pending > MAX_TXQ_ENTRIES ||
1924 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1925 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1926 e->rx_pending < MIN_FL_ENTRIES ||
1927 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1928 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1929 return -EINVAL;
1931 if (adapter->flags & FULL_INIT_DONE)
1932 return -EBUSY;
1934 q = &adapter->params.sge.qset[pi->first_qset];
1935 for (i = 0; i < pi->nqsets; ++i, ++q) {
1936 q->rspq_size = e->rx_mini_pending;
1937 q->fl_size = e->rx_pending;
1938 q->jumbo_size = e->rx_jumbo_pending;
1939 q->txq_size[0] = e->tx_pending;
1940 q->txq_size[1] = e->tx_pending;
1941 q->txq_size[2] = e->tx_pending;
1943 return 0;
1946 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1948 struct port_info *pi = netdev_priv(dev);
1949 struct adapter *adapter = pi->adapter;
1950 struct qset_params *qsp = &adapter->params.sge.qset[0];
1951 struct sge_qset *qs = &adapter->sge.qs[0];
1953 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1954 return -EINVAL;
1956 qsp->coalesce_usecs = c->rx_coalesce_usecs;
1957 t3_update_qset_coalesce(qs, qsp);
1958 return 0;
1961 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1963 struct port_info *pi = netdev_priv(dev);
1964 struct adapter *adapter = pi->adapter;
1965 struct qset_params *q = adapter->params.sge.qset;
1967 c->rx_coalesce_usecs = q->coalesce_usecs;
1968 return 0;
1971 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
1972 u8 * data)
1974 struct port_info *pi = netdev_priv(dev);
1975 struct adapter *adapter = pi->adapter;
1976 int i, err = 0;
1978 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
1979 if (!buf)
1980 return -ENOMEM;
1982 e->magic = EEPROM_MAGIC;
1983 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
1984 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
1986 if (!err)
1987 memcpy(data, buf + e->offset, e->len);
1988 kfree(buf);
1989 return err;
1992 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
1993 u8 * data)
1995 struct port_info *pi = netdev_priv(dev);
1996 struct adapter *adapter = pi->adapter;
1997 u32 aligned_offset, aligned_len;
1998 __le32 *p;
1999 u8 *buf;
2000 int err;
2002 if (eeprom->magic != EEPROM_MAGIC)
2003 return -EINVAL;
2005 aligned_offset = eeprom->offset & ~3;
2006 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2008 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2009 buf = kmalloc(aligned_len, GFP_KERNEL);
2010 if (!buf)
2011 return -ENOMEM;
2012 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2013 if (!err && aligned_len > 4)
2014 err = t3_seeprom_read(adapter,
2015 aligned_offset + aligned_len - 4,
2016 (__le32 *) & buf[aligned_len - 4]);
2017 if (err)
2018 goto out;
2019 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2020 } else
2021 buf = data;
2023 err = t3_seeprom_wp(adapter, 0);
2024 if (err)
2025 goto out;
2027 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2028 err = t3_seeprom_write(adapter, aligned_offset, *p);
2029 aligned_offset += 4;
2032 if (!err)
2033 err = t3_seeprom_wp(adapter, 1);
2034 out:
2035 if (buf != data)
2036 kfree(buf);
2037 return err;
2040 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2042 wol->supported = 0;
2043 wol->wolopts = 0;
2044 memset(&wol->sopass, 0, sizeof(wol->sopass));
2047 static const struct ethtool_ops cxgb_ethtool_ops = {
2048 .get_settings = get_settings,
2049 .set_settings = set_settings,
2050 .get_drvinfo = get_drvinfo,
2051 .get_msglevel = get_msglevel,
2052 .set_msglevel = set_msglevel,
2053 .get_ringparam = get_sge_param,
2054 .set_ringparam = set_sge_param,
2055 .get_coalesce = get_coalesce,
2056 .set_coalesce = set_coalesce,
2057 .get_eeprom_len = get_eeprom_len,
2058 .get_eeprom = get_eeprom,
2059 .set_eeprom = set_eeprom,
2060 .get_pauseparam = get_pauseparam,
2061 .set_pauseparam = set_pauseparam,
2062 .get_rx_csum = get_rx_csum,
2063 .set_rx_csum = set_rx_csum,
2064 .set_tx_csum = ethtool_op_set_tx_csum,
2065 .set_sg = ethtool_op_set_sg,
2066 .get_link = ethtool_op_get_link,
2067 .get_strings = get_strings,
2068 .phys_id = cxgb3_phys_id,
2069 .nway_reset = restart_autoneg,
2070 .get_sset_count = get_sset_count,
2071 .get_ethtool_stats = get_stats,
2072 .get_regs_len = get_regs_len,
2073 .get_regs = get_regs,
2074 .get_wol = get_wol,
2075 .set_tso = ethtool_op_set_tso,
2078 static int in_range(int val, int lo, int hi)
2080 return val < 0 || (val <= hi && val >= lo);
2083 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2085 struct port_info *pi = netdev_priv(dev);
2086 struct adapter *adapter = pi->adapter;
2087 u32 cmd;
2088 int ret;
2090 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2091 return -EFAULT;
2093 switch (cmd) {
2094 case CHELSIO_SET_QSET_PARAMS:{
2095 int i;
2096 struct qset_params *q;
2097 struct ch_qset_params t;
2098 int q1 = pi->first_qset;
2099 int nqsets = pi->nqsets;
2101 if (!capable(CAP_NET_ADMIN))
2102 return -EPERM;
2103 if (copy_from_user(&t, useraddr, sizeof(t)))
2104 return -EFAULT;
2105 if (t.qset_idx >= SGE_QSETS)
2106 return -EINVAL;
2107 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2108 !in_range(t.cong_thres, 0, 255) ||
2109 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2110 MAX_TXQ_ENTRIES) ||
2111 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2112 MAX_TXQ_ENTRIES) ||
2113 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2114 MAX_CTRL_TXQ_ENTRIES) ||
2115 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2116 MAX_RX_BUFFERS)
2117 || !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2118 MAX_RX_JUMBO_BUFFERS)
2119 || !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2120 MAX_RSPQ_ENTRIES))
2121 return -EINVAL;
2123 if ((adapter->flags & FULL_INIT_DONE) && t.lro > 0)
2124 for_each_port(adapter, i) {
2125 pi = adap2pinfo(adapter, i);
2126 if (t.qset_idx >= pi->first_qset &&
2127 t.qset_idx < pi->first_qset + pi->nqsets &&
2128 !(pi->rx_offload & T3_RX_CSUM))
2129 return -EINVAL;
2132 if ((adapter->flags & FULL_INIT_DONE) &&
2133 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2134 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2135 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2136 t.polling >= 0 || t.cong_thres >= 0))
2137 return -EBUSY;
2139 /* Allow setting of any available qset when offload enabled */
2140 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2141 q1 = 0;
2142 for_each_port(adapter, i) {
2143 pi = adap2pinfo(adapter, i);
2144 nqsets += pi->first_qset + pi->nqsets;
2148 if (t.qset_idx < q1)
2149 return -EINVAL;
2150 if (t.qset_idx > q1 + nqsets - 1)
2151 return -EINVAL;
2153 q = &adapter->params.sge.qset[t.qset_idx];
2155 if (t.rspq_size >= 0)
2156 q->rspq_size = t.rspq_size;
2157 if (t.fl_size[0] >= 0)
2158 q->fl_size = t.fl_size[0];
2159 if (t.fl_size[1] >= 0)
2160 q->jumbo_size = t.fl_size[1];
2161 if (t.txq_size[0] >= 0)
2162 q->txq_size[0] = t.txq_size[0];
2163 if (t.txq_size[1] >= 0)
2164 q->txq_size[1] = t.txq_size[1];
2165 if (t.txq_size[2] >= 0)
2166 q->txq_size[2] = t.txq_size[2];
2167 if (t.cong_thres >= 0)
2168 q->cong_thres = t.cong_thres;
2169 if (t.intr_lat >= 0) {
2170 struct sge_qset *qs =
2171 &adapter->sge.qs[t.qset_idx];
2173 q->coalesce_usecs = t.intr_lat;
2174 t3_update_qset_coalesce(qs, q);
2176 if (t.polling >= 0) {
2177 if (adapter->flags & USING_MSIX)
2178 q->polling = t.polling;
2179 else {
2180 /* No polling with INTx for T3A */
2181 if (adapter->params.rev == 0 &&
2182 !(adapter->flags & USING_MSI))
2183 t.polling = 0;
2185 for (i = 0; i < SGE_QSETS; i++) {
2186 q = &adapter->params.sge.
2187 qset[i];
2188 q->polling = t.polling;
2192 if (t.lro >= 0)
2193 set_qset_lro(dev, t.qset_idx, t.lro);
2195 break;
2197 case CHELSIO_GET_QSET_PARAMS:{
2198 struct qset_params *q;
2199 struct ch_qset_params t;
2200 int q1 = pi->first_qset;
2201 int nqsets = pi->nqsets;
2202 int i;
2204 if (copy_from_user(&t, useraddr, sizeof(t)))
2205 return -EFAULT;
2207 /* Display qsets for all ports when offload enabled */
2208 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2209 q1 = 0;
2210 for_each_port(adapter, i) {
2211 pi = adap2pinfo(adapter, i);
2212 nqsets = pi->first_qset + pi->nqsets;
2216 if (t.qset_idx >= nqsets)
2217 return -EINVAL;
2219 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2220 t.rspq_size = q->rspq_size;
2221 t.txq_size[0] = q->txq_size[0];
2222 t.txq_size[1] = q->txq_size[1];
2223 t.txq_size[2] = q->txq_size[2];
2224 t.fl_size[0] = q->fl_size;
2225 t.fl_size[1] = q->jumbo_size;
2226 t.polling = q->polling;
2227 t.lro = q->lro;
2228 t.intr_lat = q->coalesce_usecs;
2229 t.cong_thres = q->cong_thres;
2230 t.qnum = q1;
2232 if (adapter->flags & USING_MSIX)
2233 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2234 else
2235 t.vector = adapter->pdev->irq;
2237 if (copy_to_user(useraddr, &t, sizeof(t)))
2238 return -EFAULT;
2239 break;
2241 case CHELSIO_SET_QSET_NUM:{
2242 struct ch_reg edata;
2243 unsigned int i, first_qset = 0, other_qsets = 0;
2245 if (!capable(CAP_NET_ADMIN))
2246 return -EPERM;
2247 if (adapter->flags & FULL_INIT_DONE)
2248 return -EBUSY;
2249 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2250 return -EFAULT;
2251 if (edata.val < 1 ||
2252 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2253 return -EINVAL;
2255 for_each_port(adapter, i)
2256 if (adapter->port[i] && adapter->port[i] != dev)
2257 other_qsets += adap2pinfo(adapter, i)->nqsets;
2259 if (edata.val + other_qsets > SGE_QSETS)
2260 return -EINVAL;
2262 pi->nqsets = edata.val;
2264 for_each_port(adapter, i)
2265 if (adapter->port[i]) {
2266 pi = adap2pinfo(adapter, i);
2267 pi->first_qset = first_qset;
2268 first_qset += pi->nqsets;
2270 break;
2272 case CHELSIO_GET_QSET_NUM:{
2273 struct ch_reg edata;
2275 edata.cmd = CHELSIO_GET_QSET_NUM;
2276 edata.val = pi->nqsets;
2277 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2278 return -EFAULT;
2279 break;
2281 case CHELSIO_LOAD_FW:{
2282 u8 *fw_data;
2283 struct ch_mem_range t;
2285 if (!capable(CAP_SYS_RAWIO))
2286 return -EPERM;
2287 if (copy_from_user(&t, useraddr, sizeof(t)))
2288 return -EFAULT;
2289 /* Check t.len sanity ? */
2290 fw_data = kmalloc(t.len, GFP_KERNEL);
2291 if (!fw_data)
2292 return -ENOMEM;
2294 if (copy_from_user
2295 (fw_data, useraddr + sizeof(t), t.len)) {
2296 kfree(fw_data);
2297 return -EFAULT;
2300 ret = t3_load_fw(adapter, fw_data, t.len);
2301 kfree(fw_data);
2302 if (ret)
2303 return ret;
2304 break;
2306 case CHELSIO_SETMTUTAB:{
2307 struct ch_mtus m;
2308 int i;
2310 if (!is_offload(adapter))
2311 return -EOPNOTSUPP;
2312 if (!capable(CAP_NET_ADMIN))
2313 return -EPERM;
2314 if (offload_running(adapter))
2315 return -EBUSY;
2316 if (copy_from_user(&m, useraddr, sizeof(m)))
2317 return -EFAULT;
2318 if (m.nmtus != NMTUS)
2319 return -EINVAL;
2320 if (m.mtus[0] < 81) /* accommodate SACK */
2321 return -EINVAL;
2323 /* MTUs must be in ascending order */
2324 for (i = 1; i < NMTUS; ++i)
2325 if (m.mtus[i] < m.mtus[i - 1])
2326 return -EINVAL;
2328 memcpy(adapter->params.mtus, m.mtus,
2329 sizeof(adapter->params.mtus));
2330 break;
2332 case CHELSIO_GET_PM:{
2333 struct tp_params *p = &adapter->params.tp;
2334 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2336 if (!is_offload(adapter))
2337 return -EOPNOTSUPP;
2338 m.tx_pg_sz = p->tx_pg_size;
2339 m.tx_num_pg = p->tx_num_pgs;
2340 m.rx_pg_sz = p->rx_pg_size;
2341 m.rx_num_pg = p->rx_num_pgs;
2342 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2343 if (copy_to_user(useraddr, &m, sizeof(m)))
2344 return -EFAULT;
2345 break;
2347 case CHELSIO_SET_PM:{
2348 struct ch_pm m;
2349 struct tp_params *p = &adapter->params.tp;
2351 if (!is_offload(adapter))
2352 return -EOPNOTSUPP;
2353 if (!capable(CAP_NET_ADMIN))
2354 return -EPERM;
2355 if (adapter->flags & FULL_INIT_DONE)
2356 return -EBUSY;
2357 if (copy_from_user(&m, useraddr, sizeof(m)))
2358 return -EFAULT;
2359 if (!is_power_of_2(m.rx_pg_sz) ||
2360 !is_power_of_2(m.tx_pg_sz))
2361 return -EINVAL; /* not power of 2 */
2362 if (!(m.rx_pg_sz & 0x14000))
2363 return -EINVAL; /* not 16KB or 64KB */
2364 if (!(m.tx_pg_sz & 0x1554000))
2365 return -EINVAL;
2366 if (m.tx_num_pg == -1)
2367 m.tx_num_pg = p->tx_num_pgs;
2368 if (m.rx_num_pg == -1)
2369 m.rx_num_pg = p->rx_num_pgs;
2370 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2371 return -EINVAL;
2372 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2373 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2374 return -EINVAL;
2375 p->rx_pg_size = m.rx_pg_sz;
2376 p->tx_pg_size = m.tx_pg_sz;
2377 p->rx_num_pgs = m.rx_num_pg;
2378 p->tx_num_pgs = m.tx_num_pg;
2379 break;
2381 case CHELSIO_GET_MEM:{
2382 struct ch_mem_range t;
2383 struct mc7 *mem;
2384 u64 buf[32];
2386 if (!is_offload(adapter))
2387 return -EOPNOTSUPP;
2388 if (!(adapter->flags & FULL_INIT_DONE))
2389 return -EIO; /* need the memory controllers */
2390 if (copy_from_user(&t, useraddr, sizeof(t)))
2391 return -EFAULT;
2392 if ((t.addr & 7) || (t.len & 7))
2393 return -EINVAL;
2394 if (t.mem_id == MEM_CM)
2395 mem = &adapter->cm;
2396 else if (t.mem_id == MEM_PMRX)
2397 mem = &adapter->pmrx;
2398 else if (t.mem_id == MEM_PMTX)
2399 mem = &adapter->pmtx;
2400 else
2401 return -EINVAL;
2404 * Version scheme:
2405 * bits 0..9: chip version
2406 * bits 10..15: chip revision
2408 t.version = 3 | (adapter->params.rev << 10);
2409 if (copy_to_user(useraddr, &t, sizeof(t)))
2410 return -EFAULT;
2413 * Read 256 bytes at a time as len can be large and we don't
2414 * want to use huge intermediate buffers.
2416 useraddr += sizeof(t); /* advance to start of buffer */
2417 while (t.len) {
2418 unsigned int chunk =
2419 min_t(unsigned int, t.len, sizeof(buf));
2421 ret =
2422 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2423 buf);
2424 if (ret)
2425 return ret;
2426 if (copy_to_user(useraddr, buf, chunk))
2427 return -EFAULT;
2428 useraddr += chunk;
2429 t.addr += chunk;
2430 t.len -= chunk;
2432 break;
2434 case CHELSIO_SET_TRACE_FILTER:{
2435 struct ch_trace t;
2436 const struct trace_params *tp;
2438 if (!capable(CAP_NET_ADMIN))
2439 return -EPERM;
2440 if (!offload_running(adapter))
2441 return -EAGAIN;
2442 if (copy_from_user(&t, useraddr, sizeof(t)))
2443 return -EFAULT;
2445 tp = (const struct trace_params *)&t.sip;
2446 if (t.config_tx)
2447 t3_config_trace_filter(adapter, tp, 0,
2448 t.invert_match,
2449 t.trace_tx);
2450 if (t.config_rx)
2451 t3_config_trace_filter(adapter, tp, 1,
2452 t.invert_match,
2453 t.trace_rx);
2454 break;
2456 default:
2457 return -EOPNOTSUPP;
2459 return 0;
2462 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2464 struct mii_ioctl_data *data = if_mii(req);
2465 struct port_info *pi = netdev_priv(dev);
2466 struct adapter *adapter = pi->adapter;
2468 switch (cmd) {
2469 case SIOCGMIIREG:
2470 case SIOCSMIIREG:
2471 /* Convert phy_id from older PRTAD/DEVAD format */
2472 if (is_10G(adapter) &&
2473 !mdio_phy_id_is_c45(data->phy_id) &&
2474 (data->phy_id & 0x1f00) &&
2475 !(data->phy_id & 0xe0e0))
2476 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2477 data->phy_id & 0x1f);
2478 /* FALLTHRU */
2479 case SIOCGMIIPHY:
2480 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2481 case SIOCCHIOCTL:
2482 return cxgb_extension_ioctl(dev, req->ifr_data);
2483 default:
2484 return -EOPNOTSUPP;
2488 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2490 struct port_info *pi = netdev_priv(dev);
2491 struct adapter *adapter = pi->adapter;
2492 int ret;
2494 if (new_mtu < 81) /* accommodate SACK */
2495 return -EINVAL;
2496 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2497 return ret;
2498 dev->mtu = new_mtu;
2499 init_port_mtus(adapter);
2500 if (adapter->params.rev == 0 && offload_running(adapter))
2501 t3_load_mtus(adapter, adapter->params.mtus,
2502 adapter->params.a_wnd, adapter->params.b_wnd,
2503 adapter->port[0]->mtu);
2504 return 0;
2507 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2509 struct port_info *pi = netdev_priv(dev);
2510 struct adapter *adapter = pi->adapter;
2511 struct sockaddr *addr = p;
2513 if (!is_valid_ether_addr(addr->sa_data))
2514 return -EINVAL;
2516 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2517 t3_mac_set_address(&pi->mac, 0, dev->dev_addr);
2518 if (offload_running(adapter))
2519 write_smt_entry(adapter, pi->port_id);
2520 return 0;
2524 * t3_synchronize_rx - wait for current Rx processing on a port to complete
2525 * @adap: the adapter
2526 * @p: the port
2528 * Ensures that current Rx processing on any of the queues associated with
2529 * the given port completes before returning. We do this by acquiring and
2530 * releasing the locks of the response queues associated with the port.
2532 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
2534 int i;
2536 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
2537 struct sge_rspq *q = &adap->sge.qs[i].rspq;
2539 spin_lock_irq(&q->lock);
2540 spin_unlock_irq(&q->lock);
2544 static void vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
2546 struct port_info *pi = netdev_priv(dev);
2547 struct adapter *adapter = pi->adapter;
2549 pi->vlan_grp = grp;
2550 if (adapter->params.rev > 0)
2551 t3_set_vlan_accel(adapter, 1 << pi->port_id, grp != NULL);
2552 else {
2553 /* single control for all ports */
2554 unsigned int i, have_vlans = 0;
2555 for_each_port(adapter, i)
2556 have_vlans |= adap2pinfo(adapter, i)->vlan_grp != NULL;
2558 t3_set_vlan_accel(adapter, 1, have_vlans);
2560 t3_synchronize_rx(adapter, pi);
2563 #ifdef CONFIG_NET_POLL_CONTROLLER
2564 static void cxgb_netpoll(struct net_device *dev)
2566 struct port_info *pi = netdev_priv(dev);
2567 struct adapter *adapter = pi->adapter;
2568 int qidx;
2570 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2571 struct sge_qset *qs = &adapter->sge.qs[qidx];
2572 void *source;
2574 if (adapter->flags & USING_MSIX)
2575 source = qs;
2576 else
2577 source = adapter;
2579 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2582 #endif
2585 * Periodic accumulation of MAC statistics.
2587 static void mac_stats_update(struct adapter *adapter)
2589 int i;
2591 for_each_port(adapter, i) {
2592 struct net_device *dev = adapter->port[i];
2593 struct port_info *p = netdev_priv(dev);
2595 if (netif_running(dev)) {
2596 spin_lock(&adapter->stats_lock);
2597 t3_mac_update_stats(&p->mac);
2598 spin_unlock(&adapter->stats_lock);
2603 static void check_link_status(struct adapter *adapter)
2605 int i;
2607 for_each_port(adapter, i) {
2608 struct net_device *dev = adapter->port[i];
2609 struct port_info *p = netdev_priv(dev);
2610 int link_fault;
2612 spin_lock_irq(&adapter->work_lock);
2613 link_fault = p->link_fault;
2614 spin_unlock_irq(&adapter->work_lock);
2616 if (link_fault) {
2617 t3_link_fault(adapter, i);
2618 continue;
2621 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2622 t3_xgm_intr_disable(adapter, i);
2623 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2625 t3_link_changed(adapter, i);
2626 t3_xgm_intr_enable(adapter, i);
2631 static void check_t3b2_mac(struct adapter *adapter)
2633 int i;
2635 if (!rtnl_trylock()) /* synchronize with ifdown */
2636 return;
2638 for_each_port(adapter, i) {
2639 struct net_device *dev = adapter->port[i];
2640 struct port_info *p = netdev_priv(dev);
2641 int status;
2643 if (!netif_running(dev))
2644 continue;
2646 status = 0;
2647 if (netif_running(dev) && netif_carrier_ok(dev))
2648 status = t3b2_mac_watchdog_task(&p->mac);
2649 if (status == 1)
2650 p->mac.stats.num_toggled++;
2651 else if (status == 2) {
2652 struct cmac *mac = &p->mac;
2654 t3_mac_set_mtu(mac, dev->mtu);
2655 t3_mac_set_address(mac, 0, dev->dev_addr);
2656 cxgb_set_rxmode(dev);
2657 t3_link_start(&p->phy, mac, &p->link_config);
2658 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2659 t3_port_intr_enable(adapter, p->port_id);
2660 p->mac.stats.num_resets++;
2663 rtnl_unlock();
2667 static void t3_adap_check_task(struct work_struct *work)
2669 struct adapter *adapter = container_of(work, struct adapter,
2670 adap_check_task.work);
2671 const struct adapter_params *p = &adapter->params;
2672 int port;
2673 unsigned int v, status, reset;
2675 adapter->check_task_cnt++;
2677 check_link_status(adapter);
2679 /* Accumulate MAC stats if needed */
2680 if (!p->linkpoll_period ||
2681 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2682 p->stats_update_period) {
2683 mac_stats_update(adapter);
2684 adapter->check_task_cnt = 0;
2687 if (p->rev == T3_REV_B2)
2688 check_t3b2_mac(adapter);
2691 * Scan the XGMAC's to check for various conditions which we want to
2692 * monitor in a periodic polling manner rather than via an interrupt
2693 * condition. This is used for conditions which would otherwise flood
2694 * the system with interrupts and we only really need to know that the
2695 * conditions are "happening" ... For each condition we count the
2696 * detection of the condition and reset it for the next polling loop.
2698 for_each_port(adapter, port) {
2699 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2700 u32 cause;
2702 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2703 reset = 0;
2704 if (cause & F_RXFIFO_OVERFLOW) {
2705 mac->stats.rx_fifo_ovfl++;
2706 reset |= F_RXFIFO_OVERFLOW;
2709 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2713 * We do the same as above for FL_EMPTY interrupts.
2715 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2716 reset = 0;
2718 if (status & F_FLEMPTY) {
2719 struct sge_qset *qs = &adapter->sge.qs[0];
2720 int i = 0;
2722 reset |= F_FLEMPTY;
2724 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2725 0xffff;
2727 while (v) {
2728 qs->fl[i].empty += (v & 1);
2729 if (i)
2730 qs++;
2731 i ^= 1;
2732 v >>= 1;
2736 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2738 /* Schedule the next check update if any port is active. */
2739 spin_lock_irq(&adapter->work_lock);
2740 if (adapter->open_device_map & PORT_MASK)
2741 schedule_chk_task(adapter);
2742 spin_unlock_irq(&adapter->work_lock);
2746 * Processes external (PHY) interrupts in process context.
2748 static void ext_intr_task(struct work_struct *work)
2750 struct adapter *adapter = container_of(work, struct adapter,
2751 ext_intr_handler_task);
2752 int i;
2754 /* Disable link fault interrupts */
2755 for_each_port(adapter, i) {
2756 struct net_device *dev = adapter->port[i];
2757 struct port_info *p = netdev_priv(dev);
2759 t3_xgm_intr_disable(adapter, i);
2760 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2763 /* Re-enable link fault interrupts */
2764 t3_phy_intr_handler(adapter);
2766 for_each_port(adapter, i)
2767 t3_xgm_intr_enable(adapter, i);
2769 /* Now reenable external interrupts */
2770 spin_lock_irq(&adapter->work_lock);
2771 if (adapter->slow_intr_mask) {
2772 adapter->slow_intr_mask |= F_T3DBG;
2773 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2774 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2775 adapter->slow_intr_mask);
2777 spin_unlock_irq(&adapter->work_lock);
2781 * Interrupt-context handler for external (PHY) interrupts.
2783 void t3_os_ext_intr_handler(struct adapter *adapter)
2786 * Schedule a task to handle external interrupts as they may be slow
2787 * and we use a mutex to protect MDIO registers. We disable PHY
2788 * interrupts in the meantime and let the task reenable them when
2789 * it's done.
2791 spin_lock(&adapter->work_lock);
2792 if (adapter->slow_intr_mask) {
2793 adapter->slow_intr_mask &= ~F_T3DBG;
2794 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2795 adapter->slow_intr_mask);
2796 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2798 spin_unlock(&adapter->work_lock);
2801 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2803 struct net_device *netdev = adapter->port[port_id];
2804 struct port_info *pi = netdev_priv(netdev);
2806 spin_lock(&adapter->work_lock);
2807 pi->link_fault = 1;
2808 spin_unlock(&adapter->work_lock);
2811 static int t3_adapter_error(struct adapter *adapter, int reset)
2813 int i, ret = 0;
2815 if (is_offload(adapter) &&
2816 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2817 cxgb3_err_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2818 offload_close(&adapter->tdev);
2821 /* Stop all ports */
2822 for_each_port(adapter, i) {
2823 struct net_device *netdev = adapter->port[i];
2825 if (netif_running(netdev))
2826 cxgb_close(netdev);
2829 /* Stop SGE timers */
2830 t3_stop_sge_timers(adapter);
2832 adapter->flags &= ~FULL_INIT_DONE;
2834 if (reset)
2835 ret = t3_reset_adapter(adapter);
2837 pci_disable_device(adapter->pdev);
2839 return ret;
2842 static int t3_reenable_adapter(struct adapter *adapter)
2844 if (pci_enable_device(adapter->pdev)) {
2845 dev_err(&adapter->pdev->dev,
2846 "Cannot re-enable PCI device after reset.\n");
2847 goto err;
2849 pci_set_master(adapter->pdev);
2850 pci_restore_state(adapter->pdev);
2852 /* Free sge resources */
2853 t3_free_sge_resources(adapter);
2855 if (t3_replay_prep_adapter(adapter))
2856 goto err;
2858 return 0;
2859 err:
2860 return -1;
2863 static void t3_resume_ports(struct adapter *adapter)
2865 int i;
2867 /* Restart the ports */
2868 for_each_port(adapter, i) {
2869 struct net_device *netdev = adapter->port[i];
2871 if (netif_running(netdev)) {
2872 if (cxgb_open(netdev)) {
2873 dev_err(&adapter->pdev->dev,
2874 "can't bring device back up"
2875 " after reset\n");
2876 continue;
2881 if (is_offload(adapter) && !ofld_disable)
2882 cxgb3_err_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2886 * processes a fatal error.
2887 * Bring the ports down, reset the chip, bring the ports back up.
2889 static void fatal_error_task(struct work_struct *work)
2891 struct adapter *adapter = container_of(work, struct adapter,
2892 fatal_error_handler_task);
2893 int err = 0;
2895 rtnl_lock();
2896 err = t3_adapter_error(adapter, 1);
2897 if (!err)
2898 err = t3_reenable_adapter(adapter);
2899 if (!err)
2900 t3_resume_ports(adapter);
2902 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2903 rtnl_unlock();
2906 void t3_fatal_err(struct adapter *adapter)
2908 unsigned int fw_status[4];
2910 if (adapter->flags & FULL_INIT_DONE) {
2911 t3_sge_stop(adapter);
2912 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2913 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2914 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2915 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2917 spin_lock(&adapter->work_lock);
2918 t3_intr_disable(adapter);
2919 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2920 spin_unlock(&adapter->work_lock);
2922 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2923 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2924 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2925 fw_status[0], fw_status[1],
2926 fw_status[2], fw_status[3]);
2930 * t3_io_error_detected - called when PCI error is detected
2931 * @pdev: Pointer to PCI device
2932 * @state: The current pci connection state
2934 * This function is called after a PCI bus error affecting
2935 * this device has been detected.
2937 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2938 pci_channel_state_t state)
2940 struct adapter *adapter = pci_get_drvdata(pdev);
2941 int ret;
2943 if (state == pci_channel_io_perm_failure)
2944 return PCI_ERS_RESULT_DISCONNECT;
2946 ret = t3_adapter_error(adapter, 0);
2948 /* Request a slot reset. */
2949 return PCI_ERS_RESULT_NEED_RESET;
2953 * t3_io_slot_reset - called after the pci bus has been reset.
2954 * @pdev: Pointer to PCI device
2956 * Restart the card from scratch, as if from a cold-boot.
2958 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
2960 struct adapter *adapter = pci_get_drvdata(pdev);
2962 if (!t3_reenable_adapter(adapter))
2963 return PCI_ERS_RESULT_RECOVERED;
2965 return PCI_ERS_RESULT_DISCONNECT;
2969 * t3_io_resume - called when traffic can start flowing again.
2970 * @pdev: Pointer to PCI device
2972 * This callback is called when the error recovery driver tells us that
2973 * its OK to resume normal operation.
2975 static void t3_io_resume(struct pci_dev *pdev)
2977 struct adapter *adapter = pci_get_drvdata(pdev);
2979 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
2980 t3_read_reg(adapter, A_PCIE_PEX_ERR));
2982 t3_resume_ports(adapter);
2985 static struct pci_error_handlers t3_err_handler = {
2986 .error_detected = t3_io_error_detected,
2987 .slot_reset = t3_io_slot_reset,
2988 .resume = t3_io_resume,
2992 * Set the number of qsets based on the number of CPUs and the number of ports,
2993 * not to exceed the number of available qsets, assuming there are enough qsets
2994 * per port in HW.
2996 static void set_nqsets(struct adapter *adap)
2998 int i, j = 0;
2999 int num_cpus = num_online_cpus();
3000 int hwports = adap->params.nports;
3001 int nqsets = adap->msix_nvectors - 1;
3003 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3004 if (hwports == 2 &&
3005 (hwports * nqsets > SGE_QSETS ||
3006 num_cpus >= nqsets / hwports))
3007 nqsets /= hwports;
3008 if (nqsets > num_cpus)
3009 nqsets = num_cpus;
3010 if (nqsets < 1 || hwports == 4)
3011 nqsets = 1;
3012 } else
3013 nqsets = 1;
3015 for_each_port(adap, i) {
3016 struct port_info *pi = adap2pinfo(adap, i);
3018 pi->first_qset = j;
3019 pi->nqsets = nqsets;
3020 j = pi->first_qset + nqsets;
3022 dev_info(&adap->pdev->dev,
3023 "Port %d using %d queue sets.\n", i, nqsets);
3027 static int __devinit cxgb_enable_msix(struct adapter *adap)
3029 struct msix_entry entries[SGE_QSETS + 1];
3030 int vectors;
3031 int i, err;
3033 vectors = ARRAY_SIZE(entries);
3034 for (i = 0; i < vectors; ++i)
3035 entries[i].entry = i;
3037 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3038 vectors = err;
3040 if (err < 0)
3041 pci_disable_msix(adap->pdev);
3043 if (!err && vectors < (adap->params.nports + 1)) {
3044 pci_disable_msix(adap->pdev);
3045 err = -1;
3048 if (!err) {
3049 for (i = 0; i < vectors; ++i)
3050 adap->msix_info[i].vec = entries[i].vector;
3051 adap->msix_nvectors = vectors;
3054 return err;
3057 static void __devinit print_port_info(struct adapter *adap,
3058 const struct adapter_info *ai)
3060 static const char *pci_variant[] = {
3061 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3064 int i;
3065 char buf[80];
3067 if (is_pcie(adap))
3068 snprintf(buf, sizeof(buf), "%s x%d",
3069 pci_variant[adap->params.pci.variant],
3070 adap->params.pci.width);
3071 else
3072 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3073 pci_variant[adap->params.pci.variant],
3074 adap->params.pci.speed, adap->params.pci.width);
3076 for_each_port(adap, i) {
3077 struct net_device *dev = adap->port[i];
3078 const struct port_info *pi = netdev_priv(dev);
3080 if (!test_bit(i, &adap->registered_device_map))
3081 continue;
3082 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3083 dev->name, ai->desc, pi->phy.desc,
3084 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3085 (adap->flags & USING_MSIX) ? " MSI-X" :
3086 (adap->flags & USING_MSI) ? " MSI" : "");
3087 if (adap->name == dev->name && adap->params.vpd.mclk)
3088 printk(KERN_INFO
3089 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3090 adap->name, t3_mc7_size(&adap->cm) >> 20,
3091 t3_mc7_size(&adap->pmtx) >> 20,
3092 t3_mc7_size(&adap->pmrx) >> 20,
3093 adap->params.vpd.sn);
3097 static const struct net_device_ops cxgb_netdev_ops = {
3098 .ndo_open = cxgb_open,
3099 .ndo_stop = cxgb_close,
3100 .ndo_start_xmit = t3_eth_xmit,
3101 .ndo_get_stats = cxgb_get_stats,
3102 .ndo_validate_addr = eth_validate_addr,
3103 .ndo_set_multicast_list = cxgb_set_rxmode,
3104 .ndo_do_ioctl = cxgb_ioctl,
3105 .ndo_change_mtu = cxgb_change_mtu,
3106 .ndo_set_mac_address = cxgb_set_mac_addr,
3107 .ndo_vlan_rx_register = vlan_rx_register,
3108 #ifdef CONFIG_NET_POLL_CONTROLLER
3109 .ndo_poll_controller = cxgb_netpoll,
3110 #endif
3113 static int __devinit init_one(struct pci_dev *pdev,
3114 const struct pci_device_id *ent)
3116 static int version_printed;
3118 int i, err, pci_using_dac = 0;
3119 resource_size_t mmio_start, mmio_len;
3120 const struct adapter_info *ai;
3121 struct adapter *adapter = NULL;
3122 struct port_info *pi;
3124 if (!version_printed) {
3125 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3126 ++version_printed;
3129 if (!cxgb3_wq) {
3130 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3131 if (!cxgb3_wq) {
3132 printk(KERN_ERR DRV_NAME
3133 ": cannot initialize work queue\n");
3134 return -ENOMEM;
3138 err = pci_request_regions(pdev, DRV_NAME);
3139 if (err) {
3140 /* Just info, some other driver may have claimed the device. */
3141 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3142 return err;
3145 err = pci_enable_device(pdev);
3146 if (err) {
3147 dev_err(&pdev->dev, "cannot enable PCI device\n");
3148 goto out_release_regions;
3151 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3152 pci_using_dac = 1;
3153 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3154 if (err) {
3155 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3156 "coherent allocations\n");
3157 goto out_disable_device;
3159 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3160 dev_err(&pdev->dev, "no usable DMA configuration\n");
3161 goto out_disable_device;
3164 pci_set_master(pdev);
3165 pci_save_state(pdev);
3167 mmio_start = pci_resource_start(pdev, 0);
3168 mmio_len = pci_resource_len(pdev, 0);
3169 ai = t3_get_adapter_info(ent->driver_data);
3171 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3172 if (!adapter) {
3173 err = -ENOMEM;
3174 goto out_disable_device;
3177 adapter->nofail_skb =
3178 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3179 if (!adapter->nofail_skb) {
3180 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3181 err = -ENOMEM;
3182 goto out_free_adapter;
3185 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3186 if (!adapter->regs) {
3187 dev_err(&pdev->dev, "cannot map device registers\n");
3188 err = -ENOMEM;
3189 goto out_free_adapter;
3192 adapter->pdev = pdev;
3193 adapter->name = pci_name(pdev);
3194 adapter->msg_enable = dflt_msg_enable;
3195 adapter->mmio_len = mmio_len;
3197 mutex_init(&adapter->mdio_lock);
3198 spin_lock_init(&adapter->work_lock);
3199 spin_lock_init(&adapter->stats_lock);
3201 INIT_LIST_HEAD(&adapter->adapter_list);
3202 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3203 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3204 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3206 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3207 struct net_device *netdev;
3209 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3210 if (!netdev) {
3211 err = -ENOMEM;
3212 goto out_free_dev;
3215 SET_NETDEV_DEV(netdev, &pdev->dev);
3217 adapter->port[i] = netdev;
3218 pi = netdev_priv(netdev);
3219 pi->adapter = adapter;
3220 pi->rx_offload = T3_RX_CSUM | T3_LRO;
3221 pi->port_id = i;
3222 netif_carrier_off(netdev);
3223 netif_tx_stop_all_queues(netdev);
3224 netdev->irq = pdev->irq;
3225 netdev->mem_start = mmio_start;
3226 netdev->mem_end = mmio_start + mmio_len - 1;
3227 netdev->features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
3228 netdev->features |= NETIF_F_GRO;
3229 if (pci_using_dac)
3230 netdev->features |= NETIF_F_HIGHDMA;
3232 netdev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
3233 netdev->netdev_ops = &cxgb_netdev_ops;
3234 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3237 pci_set_drvdata(pdev, adapter);
3238 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3239 err = -ENODEV;
3240 goto out_free_dev;
3244 * The card is now ready to go. If any errors occur during device
3245 * registration we do not fail the whole card but rather proceed only
3246 * with the ports we manage to register successfully. However we must
3247 * register at least one net device.
3249 for_each_port(adapter, i) {
3250 err = register_netdev(adapter->port[i]);
3251 if (err)
3252 dev_warn(&pdev->dev,
3253 "cannot register net device %s, skipping\n",
3254 adapter->port[i]->name);
3255 else {
3257 * Change the name we use for messages to the name of
3258 * the first successfully registered interface.
3260 if (!adapter->registered_device_map)
3261 adapter->name = adapter->port[i]->name;
3263 __set_bit(i, &adapter->registered_device_map);
3266 if (!adapter->registered_device_map) {
3267 dev_err(&pdev->dev, "could not register any net devices\n");
3268 goto out_free_dev;
3271 /* Driver's ready. Reflect it on LEDs */
3272 t3_led_ready(adapter);
3274 if (is_offload(adapter)) {
3275 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3276 cxgb3_adapter_ofld(adapter);
3279 /* See what interrupts we'll be using */
3280 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3281 adapter->flags |= USING_MSIX;
3282 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3283 adapter->flags |= USING_MSI;
3285 set_nqsets(adapter);
3287 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3288 &cxgb3_attr_group);
3290 print_port_info(adapter, ai);
3291 return 0;
3293 out_free_dev:
3294 iounmap(adapter->regs);
3295 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3296 if (adapter->port[i])
3297 free_netdev(adapter->port[i]);
3299 out_free_adapter:
3300 kfree(adapter);
3302 out_disable_device:
3303 pci_disable_device(pdev);
3304 out_release_regions:
3305 pci_release_regions(pdev);
3306 pci_set_drvdata(pdev, NULL);
3307 return err;
3310 static void __devexit remove_one(struct pci_dev *pdev)
3312 struct adapter *adapter = pci_get_drvdata(pdev);
3314 if (adapter) {
3315 int i;
3317 t3_sge_stop(adapter);
3318 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3319 &cxgb3_attr_group);
3321 if (is_offload(adapter)) {
3322 cxgb3_adapter_unofld(adapter);
3323 if (test_bit(OFFLOAD_DEVMAP_BIT,
3324 &adapter->open_device_map))
3325 offload_close(&adapter->tdev);
3328 for_each_port(adapter, i)
3329 if (test_bit(i, &adapter->registered_device_map))
3330 unregister_netdev(adapter->port[i]);
3332 t3_stop_sge_timers(adapter);
3333 t3_free_sge_resources(adapter);
3334 cxgb_disable_msi(adapter);
3336 for_each_port(adapter, i)
3337 if (adapter->port[i])
3338 free_netdev(adapter->port[i]);
3340 iounmap(adapter->regs);
3341 if (adapter->nofail_skb)
3342 kfree_skb(adapter->nofail_skb);
3343 kfree(adapter);
3344 pci_release_regions(pdev);
3345 pci_disable_device(pdev);
3346 pci_set_drvdata(pdev, NULL);
3350 static struct pci_driver driver = {
3351 .name = DRV_NAME,
3352 .id_table = cxgb3_pci_tbl,
3353 .probe = init_one,
3354 .remove = __devexit_p(remove_one),
3355 .err_handler = &t3_err_handler,
3358 static int __init cxgb3_init_module(void)
3360 int ret;
3362 cxgb3_offload_init();
3364 ret = pci_register_driver(&driver);
3365 return ret;
3368 static void __exit cxgb3_cleanup_module(void)
3370 pci_unregister_driver(&driver);
3371 if (cxgb3_wq)
3372 destroy_workqueue(cxgb3_wq);
3375 module_init(cxgb3_init_module);
3376 module_exit(cxgb3_cleanup_module);