1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/mii.h>
41 #include <linux/ethtool.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pm_qos_params.h>
47 #define DRV_VERSION "1.0.0-k0"
48 char igbvf_driver_name
[] = "igbvf";
49 const char igbvf_driver_version
[] = DRV_VERSION
;
50 static const char igbvf_driver_string
[] =
51 "Intel(R) Virtual Function Network Driver";
52 static const char igbvf_copyright
[] = "Copyright (c) 2009 Intel Corporation.";
54 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
55 static void igbvf_reset(struct igbvf_adapter
*);
56 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
57 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
59 static struct igbvf_info igbvf_vf_info
= {
63 .init_ops
= e1000_init_function_pointers_vf
,
66 static const struct igbvf_info
*igbvf_info_tbl
[] = {
67 [board_vf
] = &igbvf_vf_info
,
71 * igbvf_desc_unused - calculate if we have unused descriptors
73 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
75 if (ring
->next_to_clean
> ring
->next_to_use
)
76 return ring
->next_to_clean
- ring
->next_to_use
- 1;
78 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
82 * igbvf_receive_skb - helper function to handle Rx indications
83 * @adapter: board private structure
84 * @status: descriptor status field as written by hardware
85 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
86 * @skb: pointer to sk_buff to be indicated to stack
88 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
89 struct net_device
*netdev
,
93 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
94 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
96 E1000_RXD_SPC_VLAN_MASK
);
98 netif_receive_skb(skb
);
100 netdev
->last_rx
= jiffies
;
103 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
104 u32 status_err
, struct sk_buff
*skb
)
106 skb
->ip_summed
= CHECKSUM_NONE
;
108 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
109 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
110 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
113 /* TCP/UDP checksum error bit is set */
115 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
116 /* let the stack verify checksum errors */
117 adapter
->hw_csum_err
++;
121 /* It must be a TCP or UDP packet with a valid checksum */
122 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
123 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
125 adapter
->hw_csum_good
++;
129 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
130 * @rx_ring: address of ring structure to repopulate
131 * @cleaned_count: number of buffers to repopulate
133 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
136 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
137 struct net_device
*netdev
= adapter
->netdev
;
138 struct pci_dev
*pdev
= adapter
->pdev
;
139 union e1000_adv_rx_desc
*rx_desc
;
140 struct igbvf_buffer
*buffer_info
;
145 i
= rx_ring
->next_to_use
;
146 buffer_info
= &rx_ring
->buffer_info
[i
];
148 if (adapter
->rx_ps_hdr_size
)
149 bufsz
= adapter
->rx_ps_hdr_size
;
151 bufsz
= adapter
->rx_buffer_len
;
153 while (cleaned_count
--) {
154 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
156 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
157 if (!buffer_info
->page
) {
158 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
159 if (!buffer_info
->page
) {
160 adapter
->alloc_rx_buff_failed
++;
163 buffer_info
->page_offset
= 0;
165 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
167 buffer_info
->page_dma
=
168 pci_map_page(pdev
, buffer_info
->page
,
169 buffer_info
->page_offset
,
174 if (!buffer_info
->skb
) {
175 skb
= netdev_alloc_skb(netdev
, bufsz
+ NET_IP_ALIGN
);
177 adapter
->alloc_rx_buff_failed
++;
181 /* Make buffer alignment 2 beyond a 16 byte boundary
182 * this will result in a 16 byte aligned IP header after
183 * the 14 byte MAC header is removed
185 skb_reserve(skb
, NET_IP_ALIGN
);
187 buffer_info
->skb
= skb
;
188 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
192 /* Refresh the desc even if buffer_addrs didn't change because
193 * each write-back erases this info. */
194 if (adapter
->rx_ps_hdr_size
) {
195 rx_desc
->read
.pkt_addr
=
196 cpu_to_le64(buffer_info
->page_dma
);
197 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
199 rx_desc
->read
.pkt_addr
=
200 cpu_to_le64(buffer_info
->dma
);
201 rx_desc
->read
.hdr_addr
= 0;
205 if (i
== rx_ring
->count
)
207 buffer_info
= &rx_ring
->buffer_info
[i
];
211 if (rx_ring
->next_to_use
!= i
) {
212 rx_ring
->next_to_use
= i
;
214 i
= (rx_ring
->count
- 1);
218 /* Force memory writes to complete before letting h/w
219 * know there are new descriptors to fetch. (Only
220 * applicable for weak-ordered memory model archs,
223 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
228 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
229 * @adapter: board private structure
231 * the return value indicates whether actual cleaning was done, there
232 * is no guarantee that everything was cleaned
234 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
235 int *work_done
, int work_to_do
)
237 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
238 struct net_device
*netdev
= adapter
->netdev
;
239 struct pci_dev
*pdev
= adapter
->pdev
;
240 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
241 struct igbvf_buffer
*buffer_info
, *next_buffer
;
243 bool cleaned
= false;
244 int cleaned_count
= 0;
245 unsigned int total_bytes
= 0, total_packets
= 0;
247 u32 length
, hlen
, staterr
;
249 i
= rx_ring
->next_to_clean
;
250 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
251 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
253 while (staterr
& E1000_RXD_STAT_DD
) {
254 if (*work_done
>= work_to_do
)
258 buffer_info
= &rx_ring
->buffer_info
[i
];
260 /* HW will not DMA in data larger than the given buffer, even
261 * if it parses the (NFS, of course) header to be larger. In
262 * that case, it fills the header buffer and spills the rest
265 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
) &
266 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
267 if (hlen
> adapter
->rx_ps_hdr_size
)
268 hlen
= adapter
->rx_ps_hdr_size
;
270 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
274 skb
= buffer_info
->skb
;
275 prefetch(skb
->data
- NET_IP_ALIGN
);
276 buffer_info
->skb
= NULL
;
277 if (!adapter
->rx_ps_hdr_size
) {
278 pci_unmap_single(pdev
, buffer_info
->dma
,
279 adapter
->rx_buffer_len
,
281 buffer_info
->dma
= 0;
282 skb_put(skb
, length
);
286 if (!skb_shinfo(skb
)->nr_frags
) {
287 pci_unmap_single(pdev
, buffer_info
->dma
,
288 adapter
->rx_ps_hdr_size
,
294 pci_unmap_page(pdev
, buffer_info
->page_dma
,
297 buffer_info
->page_dma
= 0;
299 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
301 buffer_info
->page_offset
,
304 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
305 (page_count(buffer_info
->page
) != 1))
306 buffer_info
->page
= NULL
;
308 get_page(buffer_info
->page
);
311 skb
->data_len
+= length
;
312 skb
->truesize
+= length
;
316 if (i
== rx_ring
->count
)
318 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
320 next_buffer
= &rx_ring
->buffer_info
[i
];
322 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
323 buffer_info
->skb
= next_buffer
->skb
;
324 buffer_info
->dma
= next_buffer
->dma
;
325 next_buffer
->skb
= skb
;
326 next_buffer
->dma
= 0;
330 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
331 dev_kfree_skb_irq(skb
);
335 total_bytes
+= skb
->len
;
338 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
340 skb
->protocol
= eth_type_trans(skb
, netdev
);
342 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
343 rx_desc
->wb
.upper
.vlan
);
345 netdev
->last_rx
= jiffies
;
348 rx_desc
->wb
.upper
.status_error
= 0;
350 /* return some buffers to hardware, one at a time is too slow */
351 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
352 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
356 /* use prefetched values */
358 buffer_info
= next_buffer
;
360 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
363 rx_ring
->next_to_clean
= i
;
364 cleaned_count
= igbvf_desc_unused(rx_ring
);
367 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
369 adapter
->total_rx_packets
+= total_packets
;
370 adapter
->total_rx_bytes
+= total_bytes
;
371 adapter
->net_stats
.rx_bytes
+= total_bytes
;
372 adapter
->net_stats
.rx_packets
+= total_packets
;
376 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
377 struct igbvf_buffer
*buffer_info
)
379 buffer_info
->dma
= 0;
380 if (buffer_info
->skb
) {
381 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
383 dev_kfree_skb_any(buffer_info
->skb
);
384 buffer_info
->skb
= NULL
;
386 buffer_info
->time_stamp
= 0;
389 static void igbvf_print_tx_hang(struct igbvf_adapter
*adapter
)
391 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
392 unsigned int i
= tx_ring
->next_to_clean
;
393 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
394 union e1000_adv_tx_desc
*eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
396 /* detected Tx unit hang */
397 dev_err(&adapter
->pdev
->dev
,
398 "Detected Tx Unit Hang:\n"
401 " next_to_use <%x>\n"
402 " next_to_clean <%x>\n"
403 "buffer_info[next_to_clean]:\n"
404 " time_stamp <%lx>\n"
405 " next_to_watch <%x>\n"
407 " next_to_watch.status <%x>\n",
408 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
409 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
410 tx_ring
->next_to_use
,
411 tx_ring
->next_to_clean
,
412 tx_ring
->buffer_info
[eop
].time_stamp
,
415 eop_desc
->wb
.status
);
419 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
420 * @adapter: board private structure
422 * Return 0 on success, negative on failure
424 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
425 struct igbvf_ring
*tx_ring
)
427 struct pci_dev
*pdev
= adapter
->pdev
;
430 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
431 tx_ring
->buffer_info
= vmalloc(size
);
432 if (!tx_ring
->buffer_info
)
434 memset(tx_ring
->buffer_info
, 0, size
);
436 /* round up to nearest 4K */
437 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
438 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
440 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
446 tx_ring
->adapter
= adapter
;
447 tx_ring
->next_to_use
= 0;
448 tx_ring
->next_to_clean
= 0;
452 vfree(tx_ring
->buffer_info
);
453 dev_err(&adapter
->pdev
->dev
,
454 "Unable to allocate memory for the transmit descriptor ring\n");
459 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
460 * @adapter: board private structure
462 * Returns 0 on success, negative on failure
464 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
465 struct igbvf_ring
*rx_ring
)
467 struct pci_dev
*pdev
= adapter
->pdev
;
470 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
471 rx_ring
->buffer_info
= vmalloc(size
);
472 if (!rx_ring
->buffer_info
)
474 memset(rx_ring
->buffer_info
, 0, size
);
476 desc_len
= sizeof(union e1000_adv_rx_desc
);
478 /* Round up to nearest 4K */
479 rx_ring
->size
= rx_ring
->count
* desc_len
;
480 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
482 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
488 rx_ring
->next_to_clean
= 0;
489 rx_ring
->next_to_use
= 0;
491 rx_ring
->adapter
= adapter
;
496 vfree(rx_ring
->buffer_info
);
497 rx_ring
->buffer_info
= NULL
;
498 dev_err(&adapter
->pdev
->dev
,
499 "Unable to allocate memory for the receive descriptor ring\n");
504 * igbvf_clean_tx_ring - Free Tx Buffers
505 * @tx_ring: ring to be cleaned
507 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
509 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
510 struct igbvf_buffer
*buffer_info
;
514 if (!tx_ring
->buffer_info
)
517 /* Free all the Tx ring sk_buffs */
518 for (i
= 0; i
< tx_ring
->count
; i
++) {
519 buffer_info
= &tx_ring
->buffer_info
[i
];
520 igbvf_put_txbuf(adapter
, buffer_info
);
523 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
524 memset(tx_ring
->buffer_info
, 0, size
);
526 /* Zero out the descriptor ring */
527 memset(tx_ring
->desc
, 0, tx_ring
->size
);
529 tx_ring
->next_to_use
= 0;
530 tx_ring
->next_to_clean
= 0;
532 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
533 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
537 * igbvf_free_tx_resources - Free Tx Resources per Queue
538 * @tx_ring: ring to free resources from
540 * Free all transmit software resources
542 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
544 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
546 igbvf_clean_tx_ring(tx_ring
);
548 vfree(tx_ring
->buffer_info
);
549 tx_ring
->buffer_info
= NULL
;
551 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
553 tx_ring
->desc
= NULL
;
557 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
558 * @adapter: board private structure
560 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
562 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
563 struct igbvf_buffer
*buffer_info
;
564 struct pci_dev
*pdev
= adapter
->pdev
;
568 if (!rx_ring
->buffer_info
)
571 /* Free all the Rx ring sk_buffs */
572 for (i
= 0; i
< rx_ring
->count
; i
++) {
573 buffer_info
= &rx_ring
->buffer_info
[i
];
574 if (buffer_info
->dma
) {
575 if (adapter
->rx_ps_hdr_size
){
576 pci_unmap_single(pdev
, buffer_info
->dma
,
577 adapter
->rx_ps_hdr_size
,
580 pci_unmap_single(pdev
, buffer_info
->dma
,
581 adapter
->rx_buffer_len
,
584 buffer_info
->dma
= 0;
587 if (buffer_info
->skb
) {
588 dev_kfree_skb(buffer_info
->skb
);
589 buffer_info
->skb
= NULL
;
592 if (buffer_info
->page
) {
593 if (buffer_info
->page_dma
)
594 pci_unmap_page(pdev
, buffer_info
->page_dma
,
597 put_page(buffer_info
->page
);
598 buffer_info
->page
= NULL
;
599 buffer_info
->page_dma
= 0;
600 buffer_info
->page_offset
= 0;
604 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
605 memset(rx_ring
->buffer_info
, 0, size
);
607 /* Zero out the descriptor ring */
608 memset(rx_ring
->desc
, 0, rx_ring
->size
);
610 rx_ring
->next_to_clean
= 0;
611 rx_ring
->next_to_use
= 0;
613 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
614 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
618 * igbvf_free_rx_resources - Free Rx Resources
619 * @rx_ring: ring to clean the resources from
621 * Free all receive software resources
624 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
626 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
628 igbvf_clean_rx_ring(rx_ring
);
630 vfree(rx_ring
->buffer_info
);
631 rx_ring
->buffer_info
= NULL
;
633 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
635 rx_ring
->desc
= NULL
;
639 * igbvf_update_itr - update the dynamic ITR value based on statistics
640 * @adapter: pointer to adapter
641 * @itr_setting: current adapter->itr
642 * @packets: the number of packets during this measurement interval
643 * @bytes: the number of bytes during this measurement interval
645 * Stores a new ITR value based on packets and byte
646 * counts during the last interrupt. The advantage of per interrupt
647 * computation is faster updates and more accurate ITR for the current
648 * traffic pattern. Constants in this function were computed
649 * based on theoretical maximum wire speed and thresholds were set based
650 * on testing data as well as attempting to minimize response time
651 * while increasing bulk throughput. This functionality is controlled
652 * by the InterruptThrottleRate module parameter.
654 static unsigned int igbvf_update_itr(struct igbvf_adapter
*adapter
,
655 u16 itr_setting
, int packets
,
658 unsigned int retval
= itr_setting
;
661 goto update_itr_done
;
663 switch (itr_setting
) {
665 /* handle TSO and jumbo frames */
666 if (bytes
/packets
> 8000)
667 retval
= bulk_latency
;
668 else if ((packets
< 5) && (bytes
> 512))
669 retval
= low_latency
;
671 case low_latency
: /* 50 usec aka 20000 ints/s */
673 /* this if handles the TSO accounting */
674 if (bytes
/packets
> 8000)
675 retval
= bulk_latency
;
676 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
677 retval
= bulk_latency
;
678 else if ((packets
> 35))
679 retval
= lowest_latency
;
680 } else if (bytes
/packets
> 2000) {
681 retval
= bulk_latency
;
682 } else if (packets
<= 2 && bytes
< 512) {
683 retval
= lowest_latency
;
686 case bulk_latency
: /* 250 usec aka 4000 ints/s */
689 retval
= low_latency
;
690 } else if (bytes
< 6000) {
691 retval
= low_latency
;
700 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
702 struct e1000_hw
*hw
= &adapter
->hw
;
704 u32 new_itr
= adapter
->itr
;
706 adapter
->tx_itr
= igbvf_update_itr(adapter
, adapter
->tx_itr
,
707 adapter
->total_tx_packets
,
708 adapter
->total_tx_bytes
);
709 /* conservative mode (itr 3) eliminates the lowest_latency setting */
710 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
711 adapter
->tx_itr
= low_latency
;
713 adapter
->rx_itr
= igbvf_update_itr(adapter
, adapter
->rx_itr
,
714 adapter
->total_rx_packets
,
715 adapter
->total_rx_bytes
);
716 /* conservative mode (itr 3) eliminates the lowest_latency setting */
717 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
718 adapter
->rx_itr
= low_latency
;
720 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
722 switch (current_itr
) {
723 /* counts and packets in update_itr are dependent on these numbers */
728 new_itr
= 20000; /* aka hwitr = ~200 */
737 if (new_itr
!= adapter
->itr
) {
739 * this attempts to bias the interrupt rate towards Bulk
740 * by adding intermediate steps when interrupt rate is
743 new_itr
= new_itr
> adapter
->itr
?
744 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
746 adapter
->itr
= new_itr
;
747 adapter
->rx_ring
->itr_val
= 1952;
749 if (adapter
->msix_entries
)
750 adapter
->rx_ring
->set_itr
= 1;
757 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
758 * @adapter: board private structure
759 * returns true if ring is completely cleaned
761 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
763 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
764 struct e1000_hw
*hw
= &adapter
->hw
;
765 struct net_device
*netdev
= adapter
->netdev
;
766 struct igbvf_buffer
*buffer_info
;
768 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
769 unsigned int total_bytes
= 0, total_packets
= 0;
770 unsigned int i
, eop
, count
= 0;
771 bool cleaned
= false;
773 i
= tx_ring
->next_to_clean
;
774 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
775 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
777 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
778 (count
< tx_ring
->count
)) {
779 for (cleaned
= false; !cleaned
; count
++) {
780 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
781 buffer_info
= &tx_ring
->buffer_info
[i
];
782 cleaned
= (i
== eop
);
783 skb
= buffer_info
->skb
;
786 unsigned int segs
, bytecount
;
788 /* gso_segs is currently only valid for tcp */
789 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
790 /* multiply data chunks by size of headers */
791 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
793 total_packets
+= segs
;
794 total_bytes
+= bytecount
;
797 igbvf_put_txbuf(adapter
, buffer_info
);
798 tx_desc
->wb
.status
= 0;
801 if (i
== tx_ring
->count
)
804 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
805 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
808 tx_ring
->next_to_clean
= i
;
810 if (unlikely(count
&&
811 netif_carrier_ok(netdev
) &&
812 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
813 /* Make sure that anybody stopping the queue after this
814 * sees the new next_to_clean.
817 if (netif_queue_stopped(netdev
) &&
818 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
819 netif_wake_queue(netdev
);
820 ++adapter
->restart_queue
;
824 if (adapter
->detect_tx_hung
) {
825 /* Detect a transmit hang in hardware, this serializes the
826 * check with the clearing of time_stamp and movement of i */
827 adapter
->detect_tx_hung
= false;
828 if (tx_ring
->buffer_info
[i
].time_stamp
&&
829 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
830 (adapter
->tx_timeout_factor
* HZ
))
831 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
833 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
834 /* detected Tx unit hang */
835 igbvf_print_tx_hang(adapter
);
837 netif_stop_queue(netdev
);
840 adapter
->net_stats
.tx_bytes
+= total_bytes
;
841 adapter
->net_stats
.tx_packets
+= total_packets
;
842 return (count
< tx_ring
->count
);
845 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
847 struct net_device
*netdev
= data
;
848 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
849 struct e1000_hw
*hw
= &adapter
->hw
;
851 adapter
->int_counter1
++;
853 netif_carrier_off(netdev
);
854 hw
->mac
.get_link_status
= 1;
855 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
856 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
858 ew32(EIMS
, adapter
->eims_other
);
863 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
865 struct net_device
*netdev
= data
;
866 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
867 struct e1000_hw
*hw
= &adapter
->hw
;
868 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
871 adapter
->total_tx_bytes
= 0;
872 adapter
->total_tx_packets
= 0;
874 /* auto mask will automatically reenable the interrupt when we write
876 if (!igbvf_clean_tx_irq(tx_ring
))
877 /* Ring was not completely cleaned, so fire another interrupt */
878 ew32(EICS
, tx_ring
->eims_value
);
880 ew32(EIMS
, tx_ring
->eims_value
);
885 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
887 struct net_device
*netdev
= data
;
888 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
890 adapter
->int_counter0
++;
892 /* Write the ITR value calculated at the end of the
893 * previous interrupt.
895 if (adapter
->rx_ring
->set_itr
) {
896 writel(adapter
->rx_ring
->itr_val
,
897 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
898 adapter
->rx_ring
->set_itr
= 0;
901 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
902 adapter
->total_rx_bytes
= 0;
903 adapter
->total_rx_packets
= 0;
904 __napi_schedule(&adapter
->rx_ring
->napi
);
910 #define IGBVF_NO_QUEUE -1
912 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
913 int tx_queue
, int msix_vector
)
915 struct e1000_hw
*hw
= &adapter
->hw
;
918 /* 82576 uses a table-based method for assigning vectors.
919 Each queue has a single entry in the table to which we write
920 a vector number along with a "valid" bit. Sadly, the layout
921 of the table is somewhat counterintuitive. */
922 if (rx_queue
> IGBVF_NO_QUEUE
) {
923 index
= (rx_queue
>> 1);
924 ivar
= array_er32(IVAR0
, index
);
925 if (rx_queue
& 0x1) {
926 /* vector goes into third byte of register */
927 ivar
= ivar
& 0xFF00FFFF;
928 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
930 /* vector goes into low byte of register */
931 ivar
= ivar
& 0xFFFFFF00;
932 ivar
|= msix_vector
| E1000_IVAR_VALID
;
934 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
935 array_ew32(IVAR0
, index
, ivar
);
937 if (tx_queue
> IGBVF_NO_QUEUE
) {
938 index
= (tx_queue
>> 1);
939 ivar
= array_er32(IVAR0
, index
);
940 if (tx_queue
& 0x1) {
941 /* vector goes into high byte of register */
942 ivar
= ivar
& 0x00FFFFFF;
943 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
945 /* vector goes into second byte of register */
946 ivar
= ivar
& 0xFFFF00FF;
947 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
949 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
950 array_ew32(IVAR0
, index
, ivar
);
955 * igbvf_configure_msix - Configure MSI-X hardware
957 * igbvf_configure_msix sets up the hardware to properly
958 * generate MSI-X interrupts.
960 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
963 struct e1000_hw
*hw
= &adapter
->hw
;
964 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
965 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
968 adapter
->eims_enable_mask
= 0;
970 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
971 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
972 if (tx_ring
->itr_val
)
973 writel(tx_ring
->itr_val
,
974 hw
->hw_addr
+ tx_ring
->itr_register
);
976 writel(1952, hw
->hw_addr
+ tx_ring
->itr_register
);
978 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
979 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
980 if (rx_ring
->itr_val
)
981 writel(rx_ring
->itr_val
,
982 hw
->hw_addr
+ rx_ring
->itr_register
);
984 writel(1952, hw
->hw_addr
+ rx_ring
->itr_register
);
986 /* set vector for other causes, i.e. link changes */
988 tmp
= (vector
++ | E1000_IVAR_VALID
);
990 ew32(IVAR_MISC
, tmp
);
992 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
993 adapter
->eims_other
= 1 << (vector
- 1);
997 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
999 if (adapter
->msix_entries
) {
1000 pci_disable_msix(adapter
->pdev
);
1001 kfree(adapter
->msix_entries
);
1002 adapter
->msix_entries
= NULL
;
1007 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1009 * Attempt to configure interrupts using the best available
1010 * capabilities of the hardware and kernel.
1012 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
1017 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1018 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
1020 if (adapter
->msix_entries
) {
1021 for (i
= 0; i
< 3; i
++)
1022 adapter
->msix_entries
[i
].entry
= i
;
1024 err
= pci_enable_msix(adapter
->pdev
,
1025 adapter
->msix_entries
, 3);
1030 dev_err(&adapter
->pdev
->dev
,
1031 "Failed to initialize MSI-X interrupts.\n");
1032 igbvf_reset_interrupt_capability(adapter
);
1037 * igbvf_request_msix - Initialize MSI-X interrupts
1039 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1042 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1044 struct net_device
*netdev
= adapter
->netdev
;
1045 int err
= 0, vector
= 0;
1047 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1048 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1049 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1051 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1052 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1055 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1056 &igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1061 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1062 adapter
->tx_ring
->itr_val
= 1952;
1065 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1066 &igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1071 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1072 adapter
->rx_ring
->itr_val
= 1952;
1075 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1076 &igbvf_msix_other
, 0, netdev
->name
, netdev
);
1080 igbvf_configure_msix(adapter
);
1087 * igbvf_alloc_queues - Allocate memory for all rings
1088 * @adapter: board private structure to initialize
1090 static int __devinit
igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1092 struct net_device
*netdev
= adapter
->netdev
;
1094 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1095 if (!adapter
->tx_ring
)
1098 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1099 if (!adapter
->rx_ring
) {
1100 kfree(adapter
->tx_ring
);
1104 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1110 * igbvf_request_irq - initialize interrupts
1112 * Attempts to configure interrupts using the best available
1113 * capabilities of the hardware and kernel.
1115 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1119 /* igbvf supports msi-x only */
1120 if (adapter
->msix_entries
)
1121 err
= igbvf_request_msix(adapter
);
1126 dev_err(&adapter
->pdev
->dev
,
1127 "Unable to allocate interrupt, Error: %d\n", err
);
1132 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1134 struct net_device
*netdev
= adapter
->netdev
;
1137 if (adapter
->msix_entries
) {
1138 for (vector
= 0; vector
< 3; vector
++)
1139 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1144 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1146 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1148 struct e1000_hw
*hw
= &adapter
->hw
;
1152 if (adapter
->msix_entries
)
1157 * igbvf_irq_enable - Enable default interrupt generation settings
1159 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1161 struct e1000_hw
*hw
= &adapter
->hw
;
1163 ew32(EIAC
, adapter
->eims_enable_mask
);
1164 ew32(EIAM
, adapter
->eims_enable_mask
);
1165 ew32(EIMS
, adapter
->eims_enable_mask
);
1169 * igbvf_poll - NAPI Rx polling callback
1170 * @napi: struct associated with this polling callback
1171 * @budget: amount of packets driver is allowed to process this poll
1173 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1175 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1176 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1177 struct e1000_hw
*hw
= &adapter
->hw
;
1180 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1182 /* If not enough Rx work done, exit the polling mode */
1183 if (work_done
< budget
) {
1184 napi_complete(napi
);
1186 if (adapter
->itr_setting
& 3)
1187 igbvf_set_itr(adapter
);
1189 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1190 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1197 * igbvf_set_rlpml - set receive large packet maximum length
1198 * @adapter: board private structure
1200 * Configure the maximum size of packets that will be received
1202 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1204 int max_frame_size
= adapter
->max_frame_size
;
1205 struct e1000_hw
*hw
= &adapter
->hw
;
1208 max_frame_size
+= VLAN_TAG_SIZE
;
1210 e1000_rlpml_set_vf(hw
, max_frame_size
);
1213 static void igbvf_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1215 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1216 struct e1000_hw
*hw
= &adapter
->hw
;
1218 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true))
1219 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1222 static void igbvf_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1224 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1225 struct e1000_hw
*hw
= &adapter
->hw
;
1227 igbvf_irq_disable(adapter
);
1228 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
1230 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1231 igbvf_irq_enable(adapter
);
1233 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false))
1234 dev_err(&adapter
->pdev
->dev
,
1235 "Failed to remove vlan id %d\n", vid
);
1238 static void igbvf_vlan_rx_register(struct net_device
*netdev
,
1239 struct vlan_group
*grp
)
1241 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1243 adapter
->vlgrp
= grp
;
1246 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1250 if (!adapter
->vlgrp
)
1253 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
1254 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
1256 igbvf_vlan_rx_add_vid(adapter
->netdev
, vid
);
1259 igbvf_set_rlpml(adapter
);
1263 * igbvf_configure_tx - Configure Transmit Unit after Reset
1264 * @adapter: board private structure
1266 * Configure the Tx unit of the MAC after a reset.
1268 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1270 struct e1000_hw
*hw
= &adapter
->hw
;
1271 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1273 u32 txdctl
, dca_txctrl
;
1275 /* disable transmits */
1276 txdctl
= er32(TXDCTL(0));
1277 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1280 /* Setup the HW Tx Head and Tail descriptor pointers */
1281 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1282 tdba
= tx_ring
->dma
;
1283 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1284 ew32(TDBAH(0), (tdba
>> 32));
1287 tx_ring
->head
= E1000_TDH(0);
1288 tx_ring
->tail
= E1000_TDT(0);
1290 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1291 * MUST be delivered in order or it will completely screw up
1294 dca_txctrl
= er32(DCA_TXCTRL(0));
1295 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1296 ew32(DCA_TXCTRL(0), dca_txctrl
);
1298 /* enable transmits */
1299 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1300 ew32(TXDCTL(0), txdctl
);
1302 /* Setup Transmit Descriptor Settings for eop descriptor */
1303 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1305 /* enable Report Status bit */
1306 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1308 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
1312 * igbvf_setup_srrctl - configure the receive control registers
1313 * @adapter: Board private structure
1315 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1317 struct e1000_hw
*hw
= &adapter
->hw
;
1320 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1321 E1000_SRRCTL_BSIZEHDR_MASK
|
1322 E1000_SRRCTL_BSIZEPKT_MASK
);
1324 /* Enable queue drop to avoid head of line blocking */
1325 srrctl
|= E1000_SRRCTL_DROP_EN
;
1327 /* Setup buffer sizes */
1328 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1329 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1331 if (adapter
->rx_buffer_len
< 2048) {
1332 adapter
->rx_ps_hdr_size
= 0;
1333 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1335 adapter
->rx_ps_hdr_size
= 128;
1336 srrctl
|= adapter
->rx_ps_hdr_size
<<
1337 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1338 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1341 ew32(SRRCTL(0), srrctl
);
1345 * igbvf_configure_rx - Configure Receive Unit after Reset
1346 * @adapter: board private structure
1348 * Configure the Rx unit of the MAC after a reset.
1350 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1352 struct e1000_hw
*hw
= &adapter
->hw
;
1353 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1357 /* disable receives */
1358 rxdctl
= er32(RXDCTL(0));
1359 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1362 rdlen
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
1365 * Setup the HW Rx Head and Tail Descriptor Pointers and
1366 * the Base and Length of the Rx Descriptor Ring
1368 rdba
= rx_ring
->dma
;
1369 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1370 ew32(RDBAH(0), (rdba
>> 32));
1371 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1372 rx_ring
->head
= E1000_RDH(0);
1373 rx_ring
->tail
= E1000_RDT(0);
1377 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1378 rxdctl
&= 0xFFF00000;
1379 rxdctl
|= IGBVF_RX_PTHRESH
;
1380 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1381 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1383 igbvf_set_rlpml(adapter
);
1385 /* enable receives */
1386 ew32(RXDCTL(0), rxdctl
);
1390 * igbvf_set_multi - Multicast and Promiscuous mode set
1391 * @netdev: network interface device structure
1393 * The set_multi entry point is called whenever the multicast address
1394 * list or the network interface flags are updated. This routine is
1395 * responsible for configuring the hardware for proper multicast,
1396 * promiscuous mode, and all-multi behavior.
1398 static void igbvf_set_multi(struct net_device
*netdev
)
1400 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1401 struct e1000_hw
*hw
= &adapter
->hw
;
1402 struct dev_mc_list
*mc_ptr
;
1403 u8
*mta_list
= NULL
;
1406 if (netdev
->mc_count
) {
1407 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
1409 dev_err(&adapter
->pdev
->dev
,
1410 "failed to allocate multicast filter list\n");
1415 /* prepare a packed array of only addresses. */
1416 mc_ptr
= netdev
->mc_list
;
1418 for (i
= 0; i
< netdev
->mc_count
; i
++) {
1421 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
1423 mc_ptr
= mc_ptr
->next
;
1426 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1434 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1436 igbvf_set_multi(adapter
->netdev
);
1438 igbvf_restore_vlan(adapter
);
1440 igbvf_configure_tx(adapter
);
1441 igbvf_setup_srrctl(adapter
);
1442 igbvf_configure_rx(adapter
);
1443 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1444 igbvf_desc_unused(adapter
->rx_ring
));
1447 /* igbvf_reset - bring the hardware into a known good state
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1454 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1456 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1457 struct net_device
*netdev
= adapter
->netdev
;
1458 struct e1000_hw
*hw
= &adapter
->hw
;
1460 /* Allow time for pending master requests to run */
1461 if (mac
->ops
.reset_hw(hw
))
1462 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1464 mac
->ops
.init_hw(hw
);
1466 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1467 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1469 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1474 int igbvf_up(struct igbvf_adapter
*adapter
)
1476 struct e1000_hw
*hw
= &adapter
->hw
;
1478 /* hardware has been reset, we need to reload some things */
1479 igbvf_configure(adapter
);
1481 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1483 napi_enable(&adapter
->rx_ring
->napi
);
1484 if (adapter
->msix_entries
)
1485 igbvf_configure_msix(adapter
);
1487 /* Clear any pending interrupts. */
1489 igbvf_irq_enable(adapter
);
1491 /* start the watchdog */
1492 hw
->mac
.get_link_status
= 1;
1493 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1499 void igbvf_down(struct igbvf_adapter
*adapter
)
1501 struct net_device
*netdev
= adapter
->netdev
;
1502 struct e1000_hw
*hw
= &adapter
->hw
;
1506 * signal that we're down so the interrupt handler does not
1507 * reschedule our watchdog timer
1509 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1511 /* disable receives in the hardware */
1512 rxdctl
= er32(RXDCTL(0));
1513 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1515 netif_stop_queue(netdev
);
1517 /* disable transmits in the hardware */
1518 txdctl
= er32(TXDCTL(0));
1519 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1521 /* flush both disables and wait for them to finish */
1525 napi_disable(&adapter
->rx_ring
->napi
);
1527 igbvf_irq_disable(adapter
);
1529 del_timer_sync(&adapter
->watchdog_timer
);
1531 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1532 netif_carrier_off(netdev
);
1534 /* record the stats before reset*/
1535 igbvf_update_stats(adapter
);
1537 adapter
->link_speed
= 0;
1538 adapter
->link_duplex
= 0;
1540 igbvf_reset(adapter
);
1541 igbvf_clean_tx_ring(adapter
->tx_ring
);
1542 igbvf_clean_rx_ring(adapter
->rx_ring
);
1545 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1548 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1550 igbvf_down(adapter
);
1552 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1556 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1557 * @adapter: board private structure to initialize
1559 * igbvf_sw_init initializes the Adapter private data structure.
1560 * Fields are initialized based on PCI device information and
1561 * OS network device settings (MTU size).
1563 static int __devinit
igbvf_sw_init(struct igbvf_adapter
*adapter
)
1565 struct net_device
*netdev
= adapter
->netdev
;
1568 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1569 adapter
->rx_ps_hdr_size
= 0;
1570 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1571 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1573 adapter
->tx_int_delay
= 8;
1574 adapter
->tx_abs_int_delay
= 32;
1575 adapter
->rx_int_delay
= 0;
1576 adapter
->rx_abs_int_delay
= 8;
1577 adapter
->itr_setting
= 3;
1578 adapter
->itr
= 20000;
1580 /* Set various function pointers */
1581 adapter
->ei
->init_ops(&adapter
->hw
);
1583 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1587 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1591 igbvf_set_interrupt_capability(adapter
);
1593 if (igbvf_alloc_queues(adapter
))
1596 spin_lock_init(&adapter
->tx_queue_lock
);
1598 /* Explicitly disable IRQ since the NIC can be in any state. */
1599 igbvf_irq_disable(adapter
);
1601 spin_lock_init(&adapter
->stats_lock
);
1603 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1607 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1609 struct e1000_hw
*hw
= &adapter
->hw
;
1611 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1612 adapter
->stats
.last_gorc
= er32(VFGORC
);
1613 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1614 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1615 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1616 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1617 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1618 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1619 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1621 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1622 adapter
->stats
.base_gorc
= er32(VFGORC
);
1623 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1624 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1625 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1626 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1627 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1628 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1629 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1633 * igbvf_open - Called when a network interface is made active
1634 * @netdev: network interface device structure
1636 * Returns 0 on success, negative value on failure
1638 * The open entry point is called when a network interface is made
1639 * active by the system (IFF_UP). At this point all resources needed
1640 * for transmit and receive operations are allocated, the interrupt
1641 * handler is registered with the OS, the watchdog timer is started,
1642 * and the stack is notified that the interface is ready.
1644 static int igbvf_open(struct net_device
*netdev
)
1646 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1647 struct e1000_hw
*hw
= &adapter
->hw
;
1650 /* disallow open during test */
1651 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1654 /* allocate transmit descriptors */
1655 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1659 /* allocate receive descriptors */
1660 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1665 * before we allocate an interrupt, we must be ready to handle it.
1666 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1667 * as soon as we call pci_request_irq, so we have to setup our
1668 * clean_rx handler before we do so.
1670 igbvf_configure(adapter
);
1672 err
= igbvf_request_irq(adapter
);
1676 /* From here on the code is the same as igbvf_up() */
1677 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1679 napi_enable(&adapter
->rx_ring
->napi
);
1681 /* clear any pending interrupts */
1684 igbvf_irq_enable(adapter
);
1686 /* start the watchdog */
1687 hw
->mac
.get_link_status
= 1;
1688 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1693 igbvf_free_rx_resources(adapter
->rx_ring
);
1695 igbvf_free_tx_resources(adapter
->tx_ring
);
1697 igbvf_reset(adapter
);
1703 * igbvf_close - Disables a network interface
1704 * @netdev: network interface device structure
1706 * Returns 0, this is not allowed to fail
1708 * The close entry point is called when an interface is de-activated
1709 * by the OS. The hardware is still under the drivers control, but
1710 * needs to be disabled. A global MAC reset is issued to stop the
1711 * hardware, and all transmit and receive resources are freed.
1713 static int igbvf_close(struct net_device
*netdev
)
1715 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1717 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1718 igbvf_down(adapter
);
1720 igbvf_free_irq(adapter
);
1722 igbvf_free_tx_resources(adapter
->tx_ring
);
1723 igbvf_free_rx_resources(adapter
->rx_ring
);
1728 * igbvf_set_mac - Change the Ethernet Address of the NIC
1729 * @netdev: network interface device structure
1730 * @p: pointer to an address structure
1732 * Returns 0 on success, negative on failure
1734 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1736 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1737 struct e1000_hw
*hw
= &adapter
->hw
;
1738 struct sockaddr
*addr
= p
;
1740 if (!is_valid_ether_addr(addr
->sa_data
))
1741 return -EADDRNOTAVAIL
;
1743 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1745 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1747 if (memcmp(addr
->sa_data
, hw
->mac
.addr
, 6))
1748 return -EADDRNOTAVAIL
;
1750 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1755 #define UPDATE_VF_COUNTER(reg, name) \
1757 u32 current_counter = er32(reg); \
1758 if (current_counter < adapter->stats.last_##name) \
1759 adapter->stats.name += 0x100000000LL; \
1760 adapter->stats.last_##name = current_counter; \
1761 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1762 adapter->stats.name |= current_counter; \
1766 * igbvf_update_stats - Update the board statistics counters
1767 * @adapter: board private structure
1769 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1771 struct e1000_hw
*hw
= &adapter
->hw
;
1772 struct pci_dev
*pdev
= adapter
->pdev
;
1775 * Prevent stats update while adapter is being reset, link is down
1776 * or if the pci connection is down.
1778 if (adapter
->link_speed
== 0)
1781 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1784 if (pci_channel_offline(pdev
))
1787 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1788 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1789 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1790 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1791 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1792 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1793 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1794 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1795 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1797 /* Fill out the OS statistics structure */
1798 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
1801 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1803 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s\n",
1804 adapter
->link_speed
,
1805 ((adapter
->link_duplex
== FULL_DUPLEX
) ?
1806 "Full Duplex" : "Half Duplex"));
1809 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1811 struct e1000_hw
*hw
= &adapter
->hw
;
1812 s32 ret_val
= E1000_SUCCESS
;
1815 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1816 link_active
= !hw
->mac
.get_link_status
;
1818 /* if check for link returns error we will need to reset */
1820 schedule_work(&adapter
->reset_task
);
1826 * igbvf_watchdog - Timer Call-back
1827 * @data: pointer to adapter cast into an unsigned long
1829 static void igbvf_watchdog(unsigned long data
)
1831 struct igbvf_adapter
*adapter
= (struct igbvf_adapter
*) data
;
1833 /* Do the rest outside of interrupt context */
1834 schedule_work(&adapter
->watchdog_task
);
1837 static void igbvf_watchdog_task(struct work_struct
*work
)
1839 struct igbvf_adapter
*adapter
= container_of(work
,
1840 struct igbvf_adapter
,
1842 struct net_device
*netdev
= adapter
->netdev
;
1843 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1844 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1845 struct e1000_hw
*hw
= &adapter
->hw
;
1849 link
= igbvf_has_link(adapter
);
1852 if (!netif_carrier_ok(netdev
)) {
1855 mac
->ops
.get_link_up_info(&adapter
->hw
,
1856 &adapter
->link_speed
,
1857 &adapter
->link_duplex
);
1858 igbvf_print_link_info(adapter
);
1861 * tweak tx_queue_len according to speed/duplex
1862 * and adjust the timeout factor
1864 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
1865 adapter
->tx_timeout_factor
= 1;
1866 switch (adapter
->link_speed
) {
1869 netdev
->tx_queue_len
= 10;
1870 adapter
->tx_timeout_factor
= 16;
1874 netdev
->tx_queue_len
= 100;
1875 /* maybe add some timeout factor ? */
1879 netif_carrier_on(netdev
);
1880 netif_wake_queue(netdev
);
1883 if (netif_carrier_ok(netdev
)) {
1884 adapter
->link_speed
= 0;
1885 adapter
->link_duplex
= 0;
1886 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1887 netif_carrier_off(netdev
);
1888 netif_stop_queue(netdev
);
1892 if (netif_carrier_ok(netdev
)) {
1893 igbvf_update_stats(adapter
);
1895 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1899 * We've lost link, so the controller stops DMA,
1900 * but we've got queued Tx work that's never going
1901 * to get done, so reset controller to flush Tx.
1902 * (Do the reset outside of interrupt context).
1904 adapter
->tx_timeout_count
++;
1905 schedule_work(&adapter
->reset_task
);
1909 /* Cause software interrupt to ensure Rx ring is cleaned */
1910 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1912 /* Force detection of hung controller every watchdog period */
1913 adapter
->detect_tx_hung
= 1;
1915 /* Reset the timer */
1916 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1917 mod_timer(&adapter
->watchdog_timer
,
1918 round_jiffies(jiffies
+ (2 * HZ
)));
1921 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1922 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1923 #define IGBVF_TX_FLAGS_TSO 0x00000004
1924 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1925 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1926 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1928 static int igbvf_tso(struct igbvf_adapter
*adapter
,
1929 struct igbvf_ring
*tx_ring
,
1930 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
1932 struct e1000_adv_tx_context_desc
*context_desc
;
1935 struct igbvf_buffer
*buffer_info
;
1936 u32 info
= 0, tu_cmd
= 0;
1937 u32 mss_l4len_idx
, l4len
;
1940 if (skb_header_cloned(skb
)) {
1941 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1943 dev_err(&adapter
->pdev
->dev
,
1944 "igbvf_tso returning an error\n");
1949 l4len
= tcp_hdrlen(skb
);
1952 if (skb
->protocol
== htons(ETH_P_IP
)) {
1953 struct iphdr
*iph
= ip_hdr(skb
);
1956 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
1960 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
1961 ipv6_hdr(skb
)->payload_len
= 0;
1962 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1963 &ipv6_hdr(skb
)->daddr
,
1967 i
= tx_ring
->next_to_use
;
1969 buffer_info
= &tx_ring
->buffer_info
[i
];
1970 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1971 /* VLAN MACLEN IPLEN */
1972 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1973 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1974 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1975 *hdr_len
+= skb_network_offset(skb
);
1976 info
|= (skb_transport_header(skb
) - skb_network_header(skb
));
1977 *hdr_len
+= (skb_transport_header(skb
) - skb_network_header(skb
));
1978 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1980 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1981 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1983 if (skb
->protocol
== htons(ETH_P_IP
))
1984 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1985 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1987 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1990 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
1991 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
1993 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1994 context_desc
->seqnum_seed
= 0;
1996 buffer_info
->time_stamp
= jiffies
;
1997 buffer_info
->next_to_watch
= i
;
1998 buffer_info
->dma
= 0;
2000 if (i
== tx_ring
->count
)
2003 tx_ring
->next_to_use
= i
;
2008 static inline bool igbvf_tx_csum(struct igbvf_adapter
*adapter
,
2009 struct igbvf_ring
*tx_ring
,
2010 struct sk_buff
*skb
, u32 tx_flags
)
2012 struct e1000_adv_tx_context_desc
*context_desc
;
2014 struct igbvf_buffer
*buffer_info
;
2015 u32 info
= 0, tu_cmd
= 0;
2017 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2018 (tx_flags
& IGBVF_TX_FLAGS_VLAN
)) {
2019 i
= tx_ring
->next_to_use
;
2020 buffer_info
= &tx_ring
->buffer_info
[i
];
2021 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
2023 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2024 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
2026 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2027 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2028 info
|= (skb_transport_header(skb
) -
2029 skb_network_header(skb
));
2032 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2034 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2036 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2037 switch (skb
->protocol
) {
2038 case __constant_htons(ETH_P_IP
):
2039 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2040 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2041 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2043 case __constant_htons(ETH_P_IPV6
):
2044 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2045 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2052 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2053 context_desc
->seqnum_seed
= 0;
2054 context_desc
->mss_l4len_idx
= 0;
2056 buffer_info
->time_stamp
= jiffies
;
2057 buffer_info
->next_to_watch
= i
;
2058 buffer_info
->dma
= 0;
2060 if (i
== tx_ring
->count
)
2062 tx_ring
->next_to_use
= i
;
2070 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
2072 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2074 /* there is enough descriptors then we don't need to worry */
2075 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2078 netif_stop_queue(netdev
);
2082 /* We need to check again just in case room has been made available */
2083 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2086 netif_wake_queue(netdev
);
2088 ++adapter
->restart_queue
;
2092 #define IGBVF_MAX_TXD_PWR 16
2093 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2095 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2096 struct igbvf_ring
*tx_ring
,
2097 struct sk_buff
*skb
,
2100 struct igbvf_buffer
*buffer_info
;
2101 unsigned int len
= skb_headlen(skb
);
2102 unsigned int count
= 0, i
;
2106 i
= tx_ring
->next_to_use
;
2108 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
2109 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
2113 map
= skb_shinfo(skb
)->dma_maps
;
2115 buffer_info
= &tx_ring
->buffer_info
[i
];
2116 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2117 buffer_info
->length
= len
;
2118 /* set time_stamp *before* dma to help avoid a possible race */
2119 buffer_info
->time_stamp
= jiffies
;
2120 buffer_info
->next_to_watch
= i
;
2121 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
;
2123 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2124 struct skb_frag_struct
*frag
;
2127 if (i
== tx_ring
->count
)
2130 frag
= &skb_shinfo(skb
)->frags
[f
];
2133 buffer_info
= &tx_ring
->buffer_info
[i
];
2134 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2135 buffer_info
->length
= len
;
2136 buffer_info
->time_stamp
= jiffies
;
2137 buffer_info
->next_to_watch
= i
;
2138 buffer_info
->dma
= map
[count
];
2142 tx_ring
->buffer_info
[i
].skb
= skb
;
2143 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2148 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2149 struct igbvf_ring
*tx_ring
,
2150 int tx_flags
, int count
, u32 paylen
,
2153 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2154 struct igbvf_buffer
*buffer_info
;
2155 u32 olinfo_status
= 0, cmd_type_len
;
2158 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2159 E1000_ADVTXD_DCMD_DEXT
);
2161 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2162 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2164 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2165 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2167 /* insert tcp checksum */
2168 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2170 /* insert ip checksum */
2171 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2172 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2174 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2175 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2178 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2180 i
= tx_ring
->next_to_use
;
2182 buffer_info
= &tx_ring
->buffer_info
[i
];
2183 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2184 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2185 tx_desc
->read
.cmd_type_len
=
2186 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2187 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2189 if (i
== tx_ring
->count
)
2193 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2194 /* Force memory writes to complete before letting h/w
2195 * know there are new descriptors to fetch. (Only
2196 * applicable for weak-ordered memory model archs,
2197 * such as IA-64). */
2200 tx_ring
->next_to_use
= i
;
2201 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2202 /* we need this if more than one processor can write to our tail
2203 * at a time, it syncronizes IO on IA64/Altix systems */
2207 static int igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2208 struct net_device
*netdev
,
2209 struct igbvf_ring
*tx_ring
)
2211 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2212 unsigned int first
, tx_flags
= 0;
2217 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2218 dev_kfree_skb_any(skb
);
2219 return NETDEV_TX_OK
;
2222 if (skb
->len
<= 0) {
2223 dev_kfree_skb_any(skb
);
2224 return NETDEV_TX_OK
;
2228 * need: count + 4 desc gap to keep tail from touching
2229 * + 2 desc gap to keep tail from touching head,
2230 * + 1 desc for skb->data,
2231 * + 1 desc for context descriptor,
2232 * head, otherwise try next time
2234 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2235 /* this is a hard error */
2236 return NETDEV_TX_BUSY
;
2239 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2240 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2241 tx_flags
|= (vlan_tx_tag_get(skb
) << IGBVF_TX_FLAGS_VLAN_SHIFT
);
2244 if (skb
->protocol
== htons(ETH_P_IP
))
2245 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2247 first
= tx_ring
->next_to_use
;
2249 tso
= skb_is_gso(skb
) ?
2250 igbvf_tso(adapter
, tx_ring
, skb
, tx_flags
, &hdr_len
) : 0;
2251 if (unlikely(tso
< 0)) {
2252 dev_kfree_skb_any(skb
);
2253 return NETDEV_TX_OK
;
2257 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2258 else if (igbvf_tx_csum(adapter
, tx_ring
, skb
, tx_flags
) &&
2259 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2260 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2263 * count reflects descriptors mapped, if 0 then mapping error
2264 * has occured and we need to rewind the descriptor queue
2266 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
, first
);
2269 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2271 /* Make sure there is space in the ring for the next send. */
2272 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2274 dev_kfree_skb_any(skb
);
2275 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2276 tx_ring
->next_to_use
= first
;
2279 return NETDEV_TX_OK
;
2282 static int igbvf_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
2284 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2285 struct igbvf_ring
*tx_ring
;
2288 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2289 dev_kfree_skb_any(skb
);
2290 return NETDEV_TX_OK
;
2293 tx_ring
= &adapter
->tx_ring
[0];
2295 retval
= igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2301 * igbvf_tx_timeout - Respond to a Tx Hang
2302 * @netdev: network interface device structure
2304 static void igbvf_tx_timeout(struct net_device
*netdev
)
2306 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2308 /* Do the reset outside of interrupt context */
2309 adapter
->tx_timeout_count
++;
2310 schedule_work(&adapter
->reset_task
);
2313 static void igbvf_reset_task(struct work_struct
*work
)
2315 struct igbvf_adapter
*adapter
;
2316 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2318 igbvf_reinit_locked(adapter
);
2322 * igbvf_get_stats - Get System Network Statistics
2323 * @netdev: network interface device structure
2325 * Returns the address of the device statistics structure.
2326 * The statistics are actually updated from the timer callback.
2328 static struct net_device_stats
*igbvf_get_stats(struct net_device
*netdev
)
2330 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2332 /* only return the current stats */
2333 return &adapter
->net_stats
;
2337 * igbvf_change_mtu - Change the Maximum Transfer Unit
2338 * @netdev: network interface device structure
2339 * @new_mtu: new value for maximum frame size
2341 * Returns 0 on success, negative on failure
2343 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2345 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2346 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2348 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2349 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2353 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2354 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2355 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2359 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2361 /* igbvf_down has a dependency on max_frame_size */
2362 adapter
->max_frame_size
= max_frame
;
2363 if (netif_running(netdev
))
2364 igbvf_down(adapter
);
2367 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2368 * means we reserve 2 more, this pushes us to allocate from the next
2370 * i.e. RXBUFFER_2048 --> size-4096 slab
2371 * However with the new *_jumbo_rx* routines, jumbo receives will use
2375 if (max_frame
<= 1024)
2376 adapter
->rx_buffer_len
= 1024;
2377 else if (max_frame
<= 2048)
2378 adapter
->rx_buffer_len
= 2048;
2380 #if (PAGE_SIZE / 2) > 16384
2381 adapter
->rx_buffer_len
= 16384;
2383 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2387 /* adjust allocation if LPE protects us, and we aren't using SBP */
2388 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2389 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2390 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2393 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2394 netdev
->mtu
, new_mtu
);
2395 netdev
->mtu
= new_mtu
;
2397 if (netif_running(netdev
))
2400 igbvf_reset(adapter
);
2402 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2407 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2415 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2417 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2418 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2423 netif_device_detach(netdev
);
2425 if (netif_running(netdev
)) {
2426 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2427 igbvf_down(adapter
);
2428 igbvf_free_irq(adapter
);
2432 retval
= pci_save_state(pdev
);
2437 pci_disable_device(pdev
);
2443 static int igbvf_resume(struct pci_dev
*pdev
)
2445 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2446 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2449 pci_restore_state(pdev
);
2450 err
= pci_enable_device_mem(pdev
);
2452 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2456 pci_set_master(pdev
);
2458 if (netif_running(netdev
)) {
2459 err
= igbvf_request_irq(adapter
);
2464 igbvf_reset(adapter
);
2466 if (netif_running(netdev
))
2469 netif_device_attach(netdev
);
2475 static void igbvf_shutdown(struct pci_dev
*pdev
)
2477 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2480 #ifdef CONFIG_NET_POLL_CONTROLLER
2482 * Polling 'interrupt' - used by things like netconsole to send skbs
2483 * without having to re-enable interrupts. It's not called while
2484 * the interrupt routine is executing.
2486 static void igbvf_netpoll(struct net_device
*netdev
)
2488 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2490 disable_irq(adapter
->pdev
->irq
);
2492 igbvf_clean_tx_irq(adapter
->tx_ring
);
2494 enable_irq(adapter
->pdev
->irq
);
2499 * igbvf_io_error_detected - called when PCI error is detected
2500 * @pdev: Pointer to PCI device
2501 * @state: The current pci connection state
2503 * This function is called after a PCI bus error affecting
2504 * this device has been detected.
2506 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2507 pci_channel_state_t state
)
2509 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2510 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2512 netif_device_detach(netdev
);
2514 if (state
== pci_channel_io_perm_failure
)
2515 return PCI_ERS_RESULT_DISCONNECT
;
2517 if (netif_running(netdev
))
2518 igbvf_down(adapter
);
2519 pci_disable_device(pdev
);
2521 /* Request a slot slot reset. */
2522 return PCI_ERS_RESULT_NEED_RESET
;
2526 * igbvf_io_slot_reset - called after the pci bus has been reset.
2527 * @pdev: Pointer to PCI device
2529 * Restart the card from scratch, as if from a cold-boot. Implementation
2530 * resembles the first-half of the igbvf_resume routine.
2532 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2534 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2535 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2537 if (pci_enable_device_mem(pdev
)) {
2539 "Cannot re-enable PCI device after reset.\n");
2540 return PCI_ERS_RESULT_DISCONNECT
;
2542 pci_set_master(pdev
);
2544 igbvf_reset(adapter
);
2546 return PCI_ERS_RESULT_RECOVERED
;
2550 * igbvf_io_resume - called when traffic can start flowing again.
2551 * @pdev: Pointer to PCI device
2553 * This callback is called when the error recovery driver tells us that
2554 * its OK to resume normal operation. Implementation resembles the
2555 * second-half of the igbvf_resume routine.
2557 static void igbvf_io_resume(struct pci_dev
*pdev
)
2559 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2560 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2562 if (netif_running(netdev
)) {
2563 if (igbvf_up(adapter
)) {
2565 "can't bring device back up after reset\n");
2570 netif_device_attach(netdev
);
2573 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2575 struct e1000_hw
*hw
= &adapter
->hw
;
2576 struct net_device
*netdev
= adapter
->netdev
;
2577 struct pci_dev
*pdev
= adapter
->pdev
;
2579 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2580 dev_info(&pdev
->dev
, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2582 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
2583 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
2584 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2585 dev_info(&pdev
->dev
, "MAC: %d\n", hw
->mac
.type
);
2588 static const struct net_device_ops igbvf_netdev_ops
= {
2589 .ndo_open
= igbvf_open
,
2590 .ndo_stop
= igbvf_close
,
2591 .ndo_start_xmit
= igbvf_xmit_frame
,
2592 .ndo_get_stats
= igbvf_get_stats
,
2593 .ndo_set_multicast_list
= igbvf_set_multi
,
2594 .ndo_set_mac_address
= igbvf_set_mac
,
2595 .ndo_change_mtu
= igbvf_change_mtu
,
2596 .ndo_do_ioctl
= igbvf_ioctl
,
2597 .ndo_tx_timeout
= igbvf_tx_timeout
,
2598 .ndo_vlan_rx_register
= igbvf_vlan_rx_register
,
2599 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2600 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2601 #ifdef CONFIG_NET_POLL_CONTROLLER
2602 .ndo_poll_controller
= igbvf_netpoll
,
2607 * igbvf_probe - Device Initialization Routine
2608 * @pdev: PCI device information struct
2609 * @ent: entry in igbvf_pci_tbl
2611 * Returns 0 on success, negative on failure
2613 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2614 * The OS initialization, configuring of the adapter private structure,
2615 * and a hardware reset occur.
2617 static int __devinit
igbvf_probe(struct pci_dev
*pdev
,
2618 const struct pci_device_id
*ent
)
2620 struct net_device
*netdev
;
2621 struct igbvf_adapter
*adapter
;
2622 struct e1000_hw
*hw
;
2623 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2625 static int cards_found
;
2626 int err
, pci_using_dac
;
2628 err
= pci_enable_device_mem(pdev
);
2633 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
2635 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
2639 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2641 err
= pci_set_consistent_dma_mask(pdev
,
2644 dev_err(&pdev
->dev
, "No usable DMA "
2645 "configuration, aborting\n");
2651 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2655 pci_set_master(pdev
);
2658 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2660 goto err_alloc_etherdev
;
2662 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2664 pci_set_drvdata(pdev
, netdev
);
2665 adapter
= netdev_priv(netdev
);
2667 adapter
->netdev
= netdev
;
2668 adapter
->pdev
= pdev
;
2670 adapter
->pba
= ei
->pba
;
2671 adapter
->flags
= ei
->flags
;
2672 adapter
->hw
.back
= adapter
;
2673 adapter
->hw
.mac
.type
= ei
->mac
;
2674 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
2676 /* PCI config space info */
2678 hw
->vendor_id
= pdev
->vendor
;
2679 hw
->device_id
= pdev
->device
;
2680 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2681 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2683 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &hw
->revision_id
);
2686 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2687 pci_resource_len(pdev
, 0));
2689 if (!adapter
->hw
.hw_addr
)
2692 if (ei
->get_variants
) {
2693 err
= ei
->get_variants(adapter
);
2698 /* setup adapter struct */
2699 err
= igbvf_sw_init(adapter
);
2703 /* construct the net_device struct */
2704 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2706 igbvf_set_ethtool_ops(netdev
);
2707 netdev
->watchdog_timeo
= 5 * HZ
;
2708 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2710 adapter
->bd_number
= cards_found
++;
2712 netdev
->features
= NETIF_F_SG
|
2714 NETIF_F_HW_VLAN_TX
|
2715 NETIF_F_HW_VLAN_RX
|
2716 NETIF_F_HW_VLAN_FILTER
;
2718 netdev
->features
|= NETIF_F_IPV6_CSUM
;
2719 netdev
->features
|= NETIF_F_TSO
;
2720 netdev
->features
|= NETIF_F_TSO6
;
2723 netdev
->features
|= NETIF_F_HIGHDMA
;
2725 netdev
->vlan_features
|= NETIF_F_TSO
;
2726 netdev
->vlan_features
|= NETIF_F_TSO6
;
2727 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
2728 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
2729 netdev
->vlan_features
|= NETIF_F_SG
;
2731 /*reset the controller to put the device in a known good state */
2732 err
= hw
->mac
.ops
.reset_hw(hw
);
2734 dev_info(&pdev
->dev
,
2735 "PF still in reset state, assigning new address\n");
2736 random_ether_addr(hw
->mac
.addr
);
2738 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2740 dev_err(&pdev
->dev
, "Error reading MAC address\n");
2745 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2746 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2748 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2749 dev_err(&pdev
->dev
, "Invalid MAC Address: "
2750 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2751 netdev
->dev_addr
[0], netdev
->dev_addr
[1],
2752 netdev
->dev_addr
[2], netdev
->dev_addr
[3],
2753 netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
2758 setup_timer(&adapter
->watchdog_timer
, &igbvf_watchdog
,
2759 (unsigned long) adapter
);
2761 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2762 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2764 /* ring size defaults */
2765 adapter
->rx_ring
->count
= 1024;
2766 adapter
->tx_ring
->count
= 1024;
2768 /* reset the hardware with the new settings */
2769 igbvf_reset(adapter
);
2771 /* tell the stack to leave us alone until igbvf_open() is called */
2772 netif_carrier_off(netdev
);
2773 netif_stop_queue(netdev
);
2775 strcpy(netdev
->name
, "eth%d");
2776 err
= register_netdev(netdev
);
2780 igbvf_print_device_info(adapter
);
2782 igbvf_initialize_last_counter_stats(adapter
);
2787 kfree(adapter
->tx_ring
);
2788 kfree(adapter
->rx_ring
);
2790 igbvf_reset_interrupt_capability(adapter
);
2791 iounmap(adapter
->hw
.hw_addr
);
2793 free_netdev(netdev
);
2795 pci_release_regions(pdev
);
2798 pci_disable_device(pdev
);
2803 * igbvf_remove - Device Removal Routine
2804 * @pdev: PCI device information struct
2806 * igbvf_remove is called by the PCI subsystem to alert the driver
2807 * that it should release a PCI device. The could be caused by a
2808 * Hot-Plug event, or because the driver is going to be removed from
2811 static void __devexit
igbvf_remove(struct pci_dev
*pdev
)
2813 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2814 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2815 struct e1000_hw
*hw
= &adapter
->hw
;
2818 * flush_scheduled work may reschedule our watchdog task, so
2819 * explicitly disable watchdog tasks from being rescheduled
2821 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2822 del_timer_sync(&adapter
->watchdog_timer
);
2824 flush_scheduled_work();
2826 unregister_netdev(netdev
);
2828 igbvf_reset_interrupt_capability(adapter
);
2831 * it is important to delete the napi struct prior to freeing the
2832 * rx ring so that you do not end up with null pointer refs
2834 netif_napi_del(&adapter
->rx_ring
->napi
);
2835 kfree(adapter
->tx_ring
);
2836 kfree(adapter
->rx_ring
);
2838 iounmap(hw
->hw_addr
);
2839 if (hw
->flash_address
)
2840 iounmap(hw
->flash_address
);
2841 pci_release_regions(pdev
);
2843 free_netdev(netdev
);
2845 pci_disable_device(pdev
);
2848 /* PCI Error Recovery (ERS) */
2849 static struct pci_error_handlers igbvf_err_handler
= {
2850 .error_detected
= igbvf_io_error_detected
,
2851 .slot_reset
= igbvf_io_slot_reset
,
2852 .resume
= igbvf_io_resume
,
2855 static struct pci_device_id igbvf_pci_tbl
[] = {
2856 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2857 { } /* terminate list */
2859 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2861 /* PCI Device API Driver */
2862 static struct pci_driver igbvf_driver
= {
2863 .name
= igbvf_driver_name
,
2864 .id_table
= igbvf_pci_tbl
,
2865 .probe
= igbvf_probe
,
2866 .remove
= __devexit_p(igbvf_remove
),
2868 /* Power Management Hooks */
2869 .suspend
= igbvf_suspend
,
2870 .resume
= igbvf_resume
,
2872 .shutdown
= igbvf_shutdown
,
2873 .err_handler
= &igbvf_err_handler
2877 * igbvf_init_module - Driver Registration Routine
2879 * igbvf_init_module is the first routine called when the driver is
2880 * loaded. All it does is register with the PCI subsystem.
2882 static int __init
igbvf_init_module(void)
2885 printk(KERN_INFO
"%s - version %s\n",
2886 igbvf_driver_string
, igbvf_driver_version
);
2887 printk(KERN_INFO
"%s\n", igbvf_copyright
);
2889 ret
= pci_register_driver(&igbvf_driver
);
2890 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
, igbvf_driver_name
,
2891 PM_QOS_DEFAULT_VALUE
);
2895 module_init(igbvf_init_module
);
2898 * igbvf_exit_module - Driver Exit Cleanup Routine
2900 * igbvf_exit_module is called just before the driver is removed
2903 static void __exit
igbvf_exit_module(void)
2905 pci_unregister_driver(&igbvf_driver
);
2906 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
, igbvf_driver_name
);
2908 module_exit(igbvf_exit_module
);
2911 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2912 MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2913 MODULE_LICENSE("GPL");
2914 MODULE_VERSION(DRV_VERSION
);