wl1251: use wiphy_dev instead of wl->spi->dev
[linux/fpc-iii.git] / drivers / net / yellowfin.c
blob76764237cde6f3daf268d1631e4d7d9e420c47ad
1 /* yellowfin.c: A Packet Engines G-NIC ethernet driver for linux. */
2 /*
3 Written 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the Packet Engines G-NIC PCI Gigabit Ethernet adapter.
13 It also supports the Symbios Logic version of the same chip core.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Support and updates available at
21 http://www.scyld.com/network/yellowfin.html
22 [link no longer provides useful info -jgarzik]
26 #define DRV_NAME "yellowfin"
27 #define DRV_VERSION "2.1"
28 #define DRV_RELDATE "Sep 11, 2006"
30 #define PFX DRV_NAME ": "
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
36 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
37 static int max_interrupt_work = 20;
38 static int mtu;
39 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
40 /* System-wide count of bogus-rx frames. */
41 static int bogus_rx;
42 static int dma_ctrl = 0x004A0263; /* Constrained by errata */
43 static int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
44 #elif defined(YF_NEW) /* A future perfect board :->. */
45 static int dma_ctrl = 0x00CAC277; /* Override when loading module! */
46 static int fifo_cfg = 0x0028;
47 #else
48 static const int dma_ctrl = 0x004A0263; /* Constrained by errata */
49 static const int fifo_cfg = 0x0020; /* Bypass external Tx FIFO. */
50 #endif
52 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
53 Setting to > 1514 effectively disables this feature. */
54 static int rx_copybreak;
56 /* Used to pass the media type, etc.
57 No media types are currently defined. These exist for driver
58 interoperability.
60 #define MAX_UNITS 8 /* More are supported, limit only on options */
61 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
62 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
64 /* Do ugly workaround for GX server chipset errata. */
65 static int gx_fix;
67 /* Operational parameters that are set at compile time. */
69 /* Keep the ring sizes a power of two for efficiency.
70 Making the Tx ring too long decreases the effectiveness of channel
71 bonding and packet priority.
72 There are no ill effects from too-large receive rings. */
73 #define TX_RING_SIZE 16
74 #define TX_QUEUE_SIZE 12 /* Must be > 4 && <= TX_RING_SIZE */
75 #define RX_RING_SIZE 64
76 #define STATUS_TOTAL_SIZE TX_RING_SIZE*sizeof(struct tx_status_words)
77 #define TX_TOTAL_SIZE 2*TX_RING_SIZE*sizeof(struct yellowfin_desc)
78 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct yellowfin_desc)
80 /* Operational parameters that usually are not changed. */
81 /* Time in jiffies before concluding the transmitter is hung. */
82 #define TX_TIMEOUT (2*HZ)
83 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
85 #define yellowfin_debug debug
87 #include <linux/module.h>
88 #include <linux/kernel.h>
89 #include <linux/string.h>
90 #include <linux/timer.h>
91 #include <linux/errno.h>
92 #include <linux/ioport.h>
93 #include <linux/slab.h>
94 #include <linux/interrupt.h>
95 #include <linux/pci.h>
96 #include <linux/init.h>
97 #include <linux/mii.h>
98 #include <linux/netdevice.h>
99 #include <linux/etherdevice.h>
100 #include <linux/skbuff.h>
101 #include <linux/ethtool.h>
102 #include <linux/crc32.h>
103 #include <linux/bitops.h>
104 #include <asm/uaccess.h>
105 #include <asm/processor.h> /* Processor type for cache alignment. */
106 #include <asm/unaligned.h>
107 #include <asm/io.h>
109 /* These identify the driver base version and may not be removed. */
110 static const char version[] __devinitconst =
111 KERN_INFO DRV_NAME ".c:v1.05 1/09/2001 Written by Donald Becker <becker@scyld.com>\n"
112 " (unofficial 2.4.x port, " DRV_VERSION ", " DRV_RELDATE ")\n";
114 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
115 MODULE_DESCRIPTION("Packet Engines Yellowfin G-NIC Gigabit Ethernet driver");
116 MODULE_LICENSE("GPL");
118 module_param(max_interrupt_work, int, 0);
119 module_param(mtu, int, 0);
120 module_param(debug, int, 0);
121 module_param(rx_copybreak, int, 0);
122 module_param_array(options, int, NULL, 0);
123 module_param_array(full_duplex, int, NULL, 0);
124 module_param(gx_fix, int, 0);
125 MODULE_PARM_DESC(max_interrupt_work, "G-NIC maximum events handled per interrupt");
126 MODULE_PARM_DESC(mtu, "G-NIC MTU (all boards)");
127 MODULE_PARM_DESC(debug, "G-NIC debug level (0-7)");
128 MODULE_PARM_DESC(rx_copybreak, "G-NIC copy breakpoint for copy-only-tiny-frames");
129 MODULE_PARM_DESC(options, "G-NIC: Bits 0-3: media type, bit 17: full duplex");
130 MODULE_PARM_DESC(full_duplex, "G-NIC full duplex setting(s) (1)");
131 MODULE_PARM_DESC(gx_fix, "G-NIC: enable GX server chipset bug workaround (0-1)");
134 Theory of Operation
136 I. Board Compatibility
138 This device driver is designed for the Packet Engines "Yellowfin" Gigabit
139 Ethernet adapter. The G-NIC 64-bit PCI card is supported, as well as the
140 Symbios 53C885E dual function chip.
142 II. Board-specific settings
144 PCI bus devices are configured by the system at boot time, so no jumpers
145 need to be set on the board. The system BIOS preferably should assign the
146 PCI INTA signal to an otherwise unused system IRQ line.
147 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
148 interrupt lines.
150 III. Driver operation
152 IIIa. Ring buffers
154 The Yellowfin uses the Descriptor Based DMA Architecture specified by Apple.
155 This is a descriptor list scheme similar to that used by the EEPro100 and
156 Tulip. This driver uses two statically allocated fixed-size descriptor lists
157 formed into rings by a branch from the final descriptor to the beginning of
158 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE.
160 The driver allocates full frame size skbuffs for the Rx ring buffers at
161 open() time and passes the skb->data field to the Yellowfin as receive data
162 buffers. When an incoming frame is less than RX_COPYBREAK bytes long,
163 a fresh skbuff is allocated and the frame is copied to the new skbuff.
164 When the incoming frame is larger, the skbuff is passed directly up the
165 protocol stack and replaced by a newly allocated skbuff.
167 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
168 using a full-sized skbuff for small frames vs. the copying costs of larger
169 frames. For small frames the copying cost is negligible (esp. considering
170 that we are pre-loading the cache with immediately useful header
171 information). For large frames the copying cost is non-trivial, and the
172 larger copy might flush the cache of useful data.
174 IIIC. Synchronization
176 The driver runs as two independent, single-threaded flows of control. One
177 is the send-packet routine, which enforces single-threaded use by the
178 dev->tbusy flag. The other thread is the interrupt handler, which is single
179 threaded by the hardware and other software.
181 The send packet thread has partial control over the Tx ring and 'dev->tbusy'
182 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next
183 queue slot is empty, it clears the tbusy flag when finished otherwise it sets
184 the 'yp->tx_full' flag.
186 The interrupt handler has exclusive control over the Rx ring and records stats
187 from the Tx ring. After reaping the stats, it marks the Tx queue entry as
188 empty by incrementing the dirty_tx mark. Iff the 'yp->tx_full' flag is set, it
189 clears both the tx_full and tbusy flags.
191 IV. Notes
193 Thanks to Kim Stearns of Packet Engines for providing a pair of G-NIC boards.
194 Thanks to Bruce Faust of Digitalscape for providing both their SYM53C885 board
195 and an AlphaStation to verifty the Alpha port!
197 IVb. References
199 Yellowfin Engineering Design Specification, 4/23/97 Preliminary/Confidential
200 Symbios SYM53C885 PCI-SCSI/Fast Ethernet Multifunction Controller Preliminary
201 Data Manual v3.0
202 http://cesdis.gsfc.nasa.gov/linux/misc/NWay.html
203 http://cesdis.gsfc.nasa.gov/linux/misc/100mbps.html
205 IVc. Errata
207 See Packet Engines confidential appendix (prototype chips only).
212 enum capability_flags {
213 HasMII=1, FullTxStatus=2, IsGigabit=4, HasMulticastBug=8, FullRxStatus=16,
214 HasMACAddrBug=32, /* Only on early revs. */
215 DontUseEeprom=64, /* Don't read the MAC from the EEPROm. */
218 /* The PCI I/O space extent. */
219 enum {
220 YELLOWFIN_SIZE = 0x100,
223 struct pci_id_info {
224 const char *name;
225 struct match_info {
226 int pci, pci_mask, subsystem, subsystem_mask;
227 int revision, revision_mask; /* Only 8 bits. */
228 } id;
229 int drv_flags; /* Driver use, intended as capability flags. */
232 static const struct pci_id_info pci_id_tbl[] = {
233 {"Yellowfin G-NIC Gigabit Ethernet", { 0x07021000, 0xffffffff},
234 FullTxStatus | IsGigabit | HasMulticastBug | HasMACAddrBug | DontUseEeprom},
235 {"Symbios SYM83C885", { 0x07011000, 0xffffffff},
236 HasMII | DontUseEeprom },
240 static const struct pci_device_id yellowfin_pci_tbl[] = {
241 { 0x1000, 0x0702, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
242 { 0x1000, 0x0701, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
245 MODULE_DEVICE_TABLE (pci, yellowfin_pci_tbl);
248 /* Offsets to the Yellowfin registers. Various sizes and alignments. */
249 enum yellowfin_offsets {
250 TxCtrl=0x00, TxStatus=0x04, TxPtr=0x0C,
251 TxIntrSel=0x10, TxBranchSel=0x14, TxWaitSel=0x18,
252 RxCtrl=0x40, RxStatus=0x44, RxPtr=0x4C,
253 RxIntrSel=0x50, RxBranchSel=0x54, RxWaitSel=0x58,
254 EventStatus=0x80, IntrEnb=0x82, IntrClear=0x84, IntrStatus=0x86,
255 ChipRev=0x8C, DMACtrl=0x90, TxThreshold=0x94,
256 Cnfg=0xA0, FrameGap0=0xA2, FrameGap1=0xA4,
257 MII_Cmd=0xA6, MII_Addr=0xA8, MII_Wr_Data=0xAA, MII_Rd_Data=0xAC,
258 MII_Status=0xAE,
259 RxDepth=0xB8, FlowCtrl=0xBC,
260 AddrMode=0xD0, StnAddr=0xD2, HashTbl=0xD8, FIFOcfg=0xF8,
261 EEStatus=0xF0, EECtrl=0xF1, EEAddr=0xF2, EERead=0xF3, EEWrite=0xF4,
262 EEFeature=0xF5,
265 /* The Yellowfin Rx and Tx buffer descriptors.
266 Elements are written as 32 bit for endian portability. */
267 struct yellowfin_desc {
268 __le32 dbdma_cmd;
269 __le32 addr;
270 __le32 branch_addr;
271 __le32 result_status;
274 struct tx_status_words {
275 #ifdef __BIG_ENDIAN
276 u16 tx_errs;
277 u16 tx_cnt;
278 u16 paused;
279 u16 total_tx_cnt;
280 #else /* Little endian chips. */
281 u16 tx_cnt;
282 u16 tx_errs;
283 u16 total_tx_cnt;
284 u16 paused;
285 #endif /* __BIG_ENDIAN */
288 /* Bits in yellowfin_desc.cmd */
289 enum desc_cmd_bits {
290 CMD_TX_PKT=0x10000000, CMD_RX_BUF=0x20000000, CMD_TXSTATUS=0x30000000,
291 CMD_NOP=0x60000000, CMD_STOP=0x70000000,
292 BRANCH_ALWAYS=0x0C0000, INTR_ALWAYS=0x300000, WAIT_ALWAYS=0x030000,
293 BRANCH_IFTRUE=0x040000,
296 /* Bits in yellowfin_desc.status */
297 enum desc_status_bits { RX_EOP=0x0040, };
299 /* Bits in the interrupt status/mask registers. */
300 enum intr_status_bits {
301 IntrRxDone=0x01, IntrRxInvalid=0x02, IntrRxPCIFault=0x04,IntrRxPCIErr=0x08,
302 IntrTxDone=0x10, IntrTxInvalid=0x20, IntrTxPCIFault=0x40,IntrTxPCIErr=0x80,
303 IntrEarlyRx=0x100, IntrWakeup=0x200, };
305 #define PRIV_ALIGN 31 /* Required alignment mask */
306 #define MII_CNT 4
307 struct yellowfin_private {
308 /* Descriptor rings first for alignment.
309 Tx requires a second descriptor for status. */
310 struct yellowfin_desc *rx_ring;
311 struct yellowfin_desc *tx_ring;
312 struct sk_buff* rx_skbuff[RX_RING_SIZE];
313 struct sk_buff* tx_skbuff[TX_RING_SIZE];
314 dma_addr_t rx_ring_dma;
315 dma_addr_t tx_ring_dma;
317 struct tx_status_words *tx_status;
318 dma_addr_t tx_status_dma;
320 struct timer_list timer; /* Media selection timer. */
321 /* Frequently used and paired value: keep adjacent for cache effect. */
322 int chip_id, drv_flags;
323 struct pci_dev *pci_dev;
324 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */
325 unsigned int rx_buf_sz; /* Based on MTU+slack. */
326 struct tx_status_words *tx_tail_desc;
327 unsigned int cur_tx, dirty_tx;
328 int tx_threshold;
329 unsigned int tx_full:1; /* The Tx queue is full. */
330 unsigned int full_duplex:1; /* Full-duplex operation requested. */
331 unsigned int duplex_lock:1;
332 unsigned int medialock:1; /* Do not sense media. */
333 unsigned int default_port:4; /* Last dev->if_port value. */
334 /* MII transceiver section. */
335 int mii_cnt; /* MII device addresses. */
336 u16 advertising; /* NWay media advertisement */
337 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used */
338 spinlock_t lock;
339 void __iomem *base;
342 static int read_eeprom(void __iomem *ioaddr, int location);
343 static int mdio_read(void __iomem *ioaddr, int phy_id, int location);
344 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value);
345 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
346 static int yellowfin_open(struct net_device *dev);
347 static void yellowfin_timer(unsigned long data);
348 static void yellowfin_tx_timeout(struct net_device *dev);
349 static void yellowfin_init_ring(struct net_device *dev);
350 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev);
351 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance);
352 static int yellowfin_rx(struct net_device *dev);
353 static void yellowfin_error(struct net_device *dev, int intr_status);
354 static int yellowfin_close(struct net_device *dev);
355 static void set_rx_mode(struct net_device *dev);
356 static const struct ethtool_ops ethtool_ops;
358 static const struct net_device_ops netdev_ops = {
359 .ndo_open = yellowfin_open,
360 .ndo_stop = yellowfin_close,
361 .ndo_start_xmit = yellowfin_start_xmit,
362 .ndo_set_multicast_list = set_rx_mode,
363 .ndo_change_mtu = eth_change_mtu,
364 .ndo_validate_addr = eth_validate_addr,
365 .ndo_set_mac_address = eth_mac_addr,
366 .ndo_do_ioctl = netdev_ioctl,
367 .ndo_tx_timeout = yellowfin_tx_timeout,
370 static int __devinit yellowfin_init_one(struct pci_dev *pdev,
371 const struct pci_device_id *ent)
373 struct net_device *dev;
374 struct yellowfin_private *np;
375 int irq;
376 int chip_idx = ent->driver_data;
377 static int find_cnt;
378 void __iomem *ioaddr;
379 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
380 int drv_flags = pci_id_tbl[chip_idx].drv_flags;
381 void *ring_space;
382 dma_addr_t ring_dma;
383 #ifdef USE_IO_OPS
384 int bar = 0;
385 #else
386 int bar = 1;
387 #endif
389 /* when built into the kernel, we only print version if device is found */
390 #ifndef MODULE
391 static int printed_version;
392 if (!printed_version++)
393 printk(version);
394 #endif
396 i = pci_enable_device(pdev);
397 if (i) return i;
399 dev = alloc_etherdev(sizeof(*np));
400 if (!dev) {
401 printk (KERN_ERR PFX "cannot allocate ethernet device\n");
402 return -ENOMEM;
404 SET_NETDEV_DEV(dev, &pdev->dev);
406 np = netdev_priv(dev);
408 if (pci_request_regions(pdev, DRV_NAME))
409 goto err_out_free_netdev;
411 pci_set_master (pdev);
413 ioaddr = pci_iomap(pdev, bar, YELLOWFIN_SIZE);
414 if (!ioaddr)
415 goto err_out_free_res;
417 irq = pdev->irq;
419 if (drv_flags & DontUseEeprom)
420 for (i = 0; i < 6; i++)
421 dev->dev_addr[i] = ioread8(ioaddr + StnAddr + i);
422 else {
423 int ee_offset = (read_eeprom(ioaddr, 6) == 0xff ? 0x100 : 0);
424 for (i = 0; i < 6; i++)
425 dev->dev_addr[i] = read_eeprom(ioaddr, ee_offset + i);
428 /* Reset the chip. */
429 iowrite32(0x80000000, ioaddr + DMACtrl);
431 dev->base_addr = (unsigned long)ioaddr;
432 dev->irq = irq;
434 pci_set_drvdata(pdev, dev);
435 spin_lock_init(&np->lock);
437 np->pci_dev = pdev;
438 np->chip_id = chip_idx;
439 np->drv_flags = drv_flags;
440 np->base = ioaddr;
442 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
443 if (!ring_space)
444 goto err_out_cleardev;
445 np->tx_ring = (struct yellowfin_desc *)ring_space;
446 np->tx_ring_dma = ring_dma;
448 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
449 if (!ring_space)
450 goto err_out_unmap_tx;
451 np->rx_ring = (struct yellowfin_desc *)ring_space;
452 np->rx_ring_dma = ring_dma;
454 ring_space = pci_alloc_consistent(pdev, STATUS_TOTAL_SIZE, &ring_dma);
455 if (!ring_space)
456 goto err_out_unmap_rx;
457 np->tx_status = (struct tx_status_words *)ring_space;
458 np->tx_status_dma = ring_dma;
460 if (dev->mem_start)
461 option = dev->mem_start;
463 /* The lower four bits are the media type. */
464 if (option > 0) {
465 if (option & 0x200)
466 np->full_duplex = 1;
467 np->default_port = option & 15;
468 if (np->default_port)
469 np->medialock = 1;
471 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0)
472 np->full_duplex = 1;
474 if (np->full_duplex)
475 np->duplex_lock = 1;
477 /* The Yellowfin-specific entries in the device structure. */
478 dev->netdev_ops = &netdev_ops;
479 SET_ETHTOOL_OPS(dev, &ethtool_ops);
480 dev->watchdog_timeo = TX_TIMEOUT;
482 if (mtu)
483 dev->mtu = mtu;
485 i = register_netdev(dev);
486 if (i)
487 goto err_out_unmap_status;
489 printk(KERN_INFO "%s: %s type %8x at %p, %pM, IRQ %d.\n",
490 dev->name, pci_id_tbl[chip_idx].name,
491 ioread32(ioaddr + ChipRev), ioaddr,
492 dev->dev_addr, irq);
494 if (np->drv_flags & HasMII) {
495 int phy, phy_idx = 0;
496 for (phy = 0; phy < 32 && phy_idx < MII_CNT; phy++) {
497 int mii_status = mdio_read(ioaddr, phy, 1);
498 if (mii_status != 0xffff && mii_status != 0x0000) {
499 np->phys[phy_idx++] = phy;
500 np->advertising = mdio_read(ioaddr, phy, 4);
501 printk(KERN_INFO "%s: MII PHY found at address %d, status "
502 "0x%4.4x advertising %4.4x.\n",
503 dev->name, phy, mii_status, np->advertising);
506 np->mii_cnt = phy_idx;
509 find_cnt++;
511 return 0;
513 err_out_unmap_status:
514 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
515 np->tx_status_dma);
516 err_out_unmap_rx:
517 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
518 err_out_unmap_tx:
519 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
520 err_out_cleardev:
521 pci_set_drvdata(pdev, NULL);
522 pci_iounmap(pdev, ioaddr);
523 err_out_free_res:
524 pci_release_regions(pdev);
525 err_out_free_netdev:
526 free_netdev (dev);
527 return -ENODEV;
530 static int __devinit read_eeprom(void __iomem *ioaddr, int location)
532 int bogus_cnt = 10000; /* Typical 33Mhz: 1050 ticks */
534 iowrite8(location, ioaddr + EEAddr);
535 iowrite8(0x30 | ((location >> 8) & 7), ioaddr + EECtrl);
536 while ((ioread8(ioaddr + EEStatus) & 0x80) && --bogus_cnt > 0)
538 return ioread8(ioaddr + EERead);
541 /* MII Managemen Data I/O accesses.
542 These routines assume the MDIO controller is idle, and do not exit until
543 the command is finished. */
545 static int mdio_read(void __iomem *ioaddr, int phy_id, int location)
547 int i;
549 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
550 iowrite16(1, ioaddr + MII_Cmd);
551 for (i = 10000; i >= 0; i--)
552 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
553 break;
554 return ioread16(ioaddr + MII_Rd_Data);
557 static void mdio_write(void __iomem *ioaddr, int phy_id, int location, int value)
559 int i;
561 iowrite16((phy_id<<8) + location, ioaddr + MII_Addr);
562 iowrite16(value, ioaddr + MII_Wr_Data);
564 /* Wait for the command to finish. */
565 for (i = 10000; i >= 0; i--)
566 if ((ioread16(ioaddr + MII_Status) & 1) == 0)
567 break;
568 return;
572 static int yellowfin_open(struct net_device *dev)
574 struct yellowfin_private *yp = netdev_priv(dev);
575 void __iomem *ioaddr = yp->base;
576 int i;
578 /* Reset the chip. */
579 iowrite32(0x80000000, ioaddr + DMACtrl);
581 i = request_irq(dev->irq, &yellowfin_interrupt, IRQF_SHARED, dev->name, dev);
582 if (i) return i;
584 if (yellowfin_debug > 1)
585 printk(KERN_DEBUG "%s: yellowfin_open() irq %d.\n",
586 dev->name, dev->irq);
588 yellowfin_init_ring(dev);
590 iowrite32(yp->rx_ring_dma, ioaddr + RxPtr);
591 iowrite32(yp->tx_ring_dma, ioaddr + TxPtr);
593 for (i = 0; i < 6; i++)
594 iowrite8(dev->dev_addr[i], ioaddr + StnAddr + i);
596 /* Set up various condition 'select' registers.
597 There are no options here. */
598 iowrite32(0x00800080, ioaddr + TxIntrSel); /* Interrupt on Tx abort */
599 iowrite32(0x00800080, ioaddr + TxBranchSel); /* Branch on Tx abort */
600 iowrite32(0x00400040, ioaddr + TxWaitSel); /* Wait on Tx status */
601 iowrite32(0x00400040, ioaddr + RxIntrSel); /* Interrupt on Rx done */
602 iowrite32(0x00400040, ioaddr + RxBranchSel); /* Branch on Rx error */
603 iowrite32(0x00400040, ioaddr + RxWaitSel); /* Wait on Rx done */
605 /* Initialize other registers: with so many this eventually this will
606 converted to an offset/value list. */
607 iowrite32(dma_ctrl, ioaddr + DMACtrl);
608 iowrite16(fifo_cfg, ioaddr + FIFOcfg);
609 /* Enable automatic generation of flow control frames, period 0xffff. */
610 iowrite32(0x0030FFFF, ioaddr + FlowCtrl);
612 yp->tx_threshold = 32;
613 iowrite32(yp->tx_threshold, ioaddr + TxThreshold);
615 if (dev->if_port == 0)
616 dev->if_port = yp->default_port;
618 netif_start_queue(dev);
620 /* Setting the Rx mode will start the Rx process. */
621 if (yp->drv_flags & IsGigabit) {
622 /* We are always in full-duplex mode with gigabit! */
623 yp->full_duplex = 1;
624 iowrite16(0x01CF, ioaddr + Cnfg);
625 } else {
626 iowrite16(0x0018, ioaddr + FrameGap0); /* 0060/4060 for non-MII 10baseT */
627 iowrite16(0x1018, ioaddr + FrameGap1);
628 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
630 set_rx_mode(dev);
632 /* Enable interrupts by setting the interrupt mask. */
633 iowrite16(0x81ff, ioaddr + IntrEnb); /* See enum intr_status_bits */
634 iowrite16(0x0000, ioaddr + EventStatus); /* Clear non-interrupting events */
635 iowrite32(0x80008000, ioaddr + RxCtrl); /* Start Rx and Tx channels. */
636 iowrite32(0x80008000, ioaddr + TxCtrl);
638 if (yellowfin_debug > 2) {
639 printk(KERN_DEBUG "%s: Done yellowfin_open().\n",
640 dev->name);
643 /* Set the timer to check for link beat. */
644 init_timer(&yp->timer);
645 yp->timer.expires = jiffies + 3*HZ;
646 yp->timer.data = (unsigned long)dev;
647 yp->timer.function = &yellowfin_timer; /* timer handler */
648 add_timer(&yp->timer);
650 return 0;
653 static void yellowfin_timer(unsigned long data)
655 struct net_device *dev = (struct net_device *)data;
656 struct yellowfin_private *yp = netdev_priv(dev);
657 void __iomem *ioaddr = yp->base;
658 int next_tick = 60*HZ;
660 if (yellowfin_debug > 3) {
661 printk(KERN_DEBUG "%s: Yellowfin timer tick, status %8.8x.\n",
662 dev->name, ioread16(ioaddr + IntrStatus));
665 if (yp->mii_cnt) {
666 int bmsr = mdio_read(ioaddr, yp->phys[0], MII_BMSR);
667 int lpa = mdio_read(ioaddr, yp->phys[0], MII_LPA);
668 int negotiated = lpa & yp->advertising;
669 if (yellowfin_debug > 1)
670 printk(KERN_DEBUG "%s: MII #%d status register is %4.4x, "
671 "link partner capability %4.4x.\n",
672 dev->name, yp->phys[0], bmsr, lpa);
674 yp->full_duplex = mii_duplex(yp->duplex_lock, negotiated);
676 iowrite16(0x101C | (yp->full_duplex ? 2 : 0), ioaddr + Cnfg);
678 if (bmsr & BMSR_LSTATUS)
679 next_tick = 60*HZ;
680 else
681 next_tick = 3*HZ;
684 yp->timer.expires = jiffies + next_tick;
685 add_timer(&yp->timer);
688 static void yellowfin_tx_timeout(struct net_device *dev)
690 struct yellowfin_private *yp = netdev_priv(dev);
691 void __iomem *ioaddr = yp->base;
693 printk(KERN_WARNING "%s: Yellowfin transmit timed out at %d/%d Tx "
694 "status %4.4x, Rx status %4.4x, resetting...\n",
695 dev->name, yp->cur_tx, yp->dirty_tx,
696 ioread32(ioaddr + TxStatus), ioread32(ioaddr + RxStatus));
698 /* Note: these should be KERN_DEBUG. */
699 if (yellowfin_debug) {
700 int i;
701 printk(KERN_WARNING " Rx ring %p: ", yp->rx_ring);
702 for (i = 0; i < RX_RING_SIZE; i++)
703 printk(KERN_CONT " %8.8x",
704 yp->rx_ring[i].result_status);
705 printk(KERN_CONT "\n");
706 printk(KERN_WARNING" Tx ring %p: ", yp->tx_ring);
707 for (i = 0; i < TX_RING_SIZE; i++)
708 printk(KERN_CONT " %4.4x /%8.8x",
709 yp->tx_status[i].tx_errs,
710 yp->tx_ring[i].result_status);
711 printk(KERN_CONT "\n");
714 /* If the hardware is found to hang regularly, we will update the code
715 to reinitialize the chip here. */
716 dev->if_port = 0;
718 /* Wake the potentially-idle transmit channel. */
719 iowrite32(0x10001000, yp->base + TxCtrl);
720 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
721 netif_wake_queue (dev); /* Typical path */
723 dev->trans_start = jiffies; /* prevent tx timeout */
724 dev->stats.tx_errors++;
727 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
728 static void yellowfin_init_ring(struct net_device *dev)
730 struct yellowfin_private *yp = netdev_priv(dev);
731 int i;
733 yp->tx_full = 0;
734 yp->cur_rx = yp->cur_tx = 0;
735 yp->dirty_tx = 0;
737 yp->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
739 for (i = 0; i < RX_RING_SIZE; i++) {
740 yp->rx_ring[i].dbdma_cmd =
741 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
742 yp->rx_ring[i].branch_addr = cpu_to_le32(yp->rx_ring_dma +
743 ((i+1)%RX_RING_SIZE)*sizeof(struct yellowfin_desc));
746 for (i = 0; i < RX_RING_SIZE; i++) {
747 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
748 yp->rx_skbuff[i] = skb;
749 if (skb == NULL)
750 break;
751 skb->dev = dev; /* Mark as being used by this device. */
752 skb_reserve(skb, 2); /* 16 byte align the IP header. */
753 yp->rx_ring[i].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
754 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
756 yp->rx_ring[i-1].dbdma_cmd = cpu_to_le32(CMD_STOP);
757 yp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
759 #define NO_TXSTATS
760 #ifdef NO_TXSTATS
761 /* In this mode the Tx ring needs only a single descriptor. */
762 for (i = 0; i < TX_RING_SIZE; i++) {
763 yp->tx_skbuff[i] = NULL;
764 yp->tx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
765 yp->tx_ring[i].branch_addr = cpu_to_le32(yp->tx_ring_dma +
766 ((i+1)%TX_RING_SIZE)*sizeof(struct yellowfin_desc));
768 /* Wrap ring */
769 yp->tx_ring[--i].dbdma_cmd = cpu_to_le32(CMD_STOP | BRANCH_ALWAYS);
770 #else
772 int j;
774 /* Tx ring needs a pair of descriptors, the second for the status. */
775 for (i = 0; i < TX_RING_SIZE; i++) {
776 j = 2*i;
777 yp->tx_skbuff[i] = 0;
778 /* Branch on Tx error. */
779 yp->tx_ring[j].dbdma_cmd = cpu_to_le32(CMD_STOP);
780 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
781 (j+1)*sizeof(struct yellowfin_desc));
782 j++;
783 if (yp->flags & FullTxStatus) {
784 yp->tx_ring[j].dbdma_cmd =
785 cpu_to_le32(CMD_TXSTATUS | sizeof(*yp->tx_status));
786 yp->tx_ring[j].request_cnt = sizeof(*yp->tx_status);
787 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
788 i*sizeof(struct tx_status_words));
789 } else {
790 /* Symbios chips write only tx_errs word. */
791 yp->tx_ring[j].dbdma_cmd =
792 cpu_to_le32(CMD_TXSTATUS | INTR_ALWAYS | 2);
793 yp->tx_ring[j].request_cnt = 2;
794 /* Om pade ummmmm... */
795 yp->tx_ring[j].addr = cpu_to_le32(yp->tx_status_dma +
796 i*sizeof(struct tx_status_words) +
797 &(yp->tx_status[0].tx_errs) -
798 &(yp->tx_status[0]));
800 yp->tx_ring[j].branch_addr = cpu_to_le32(yp->tx_ring_dma +
801 ((j+1)%(2*TX_RING_SIZE))*sizeof(struct yellowfin_desc));
803 /* Wrap ring */
804 yp->tx_ring[++j].dbdma_cmd |= cpu_to_le32(BRANCH_ALWAYS | INTR_ALWAYS);
806 #endif
807 yp->tx_tail_desc = &yp->tx_status[0];
808 return;
811 static int yellowfin_start_xmit(struct sk_buff *skb, struct net_device *dev)
813 struct yellowfin_private *yp = netdev_priv(dev);
814 unsigned entry;
815 int len = skb->len;
817 netif_stop_queue (dev);
819 /* Note: Ordering is important here, set the field with the
820 "ownership" bit last, and only then increment cur_tx. */
822 /* Calculate the next Tx descriptor entry. */
823 entry = yp->cur_tx % TX_RING_SIZE;
825 if (gx_fix) { /* Note: only works for paddable protocols e.g. IP. */
826 int cacheline_end = ((unsigned long)skb->data + skb->len) % 32;
827 /* Fix GX chipset errata. */
828 if (cacheline_end > 24 || cacheline_end == 0) {
829 len = skb->len + 32 - cacheline_end + 1;
830 if (skb_padto(skb, len)) {
831 yp->tx_skbuff[entry] = NULL;
832 netif_wake_queue(dev);
833 return NETDEV_TX_OK;
837 yp->tx_skbuff[entry] = skb;
839 #ifdef NO_TXSTATS
840 yp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
841 skb->data, len, PCI_DMA_TODEVICE));
842 yp->tx_ring[entry].result_status = 0;
843 if (entry >= TX_RING_SIZE-1) {
844 /* New stop command. */
845 yp->tx_ring[0].dbdma_cmd = cpu_to_le32(CMD_STOP);
846 yp->tx_ring[TX_RING_SIZE-1].dbdma_cmd =
847 cpu_to_le32(CMD_TX_PKT|BRANCH_ALWAYS | len);
848 } else {
849 yp->tx_ring[entry+1].dbdma_cmd = cpu_to_le32(CMD_STOP);
850 yp->tx_ring[entry].dbdma_cmd =
851 cpu_to_le32(CMD_TX_PKT | BRANCH_IFTRUE | len);
853 yp->cur_tx++;
854 #else
855 yp->tx_ring[entry<<1].request_cnt = len;
856 yp->tx_ring[entry<<1].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
857 skb->data, len, PCI_DMA_TODEVICE));
858 /* The input_last (status-write) command is constant, but we must
859 rewrite the subsequent 'stop' command. */
861 yp->cur_tx++;
863 unsigned next_entry = yp->cur_tx % TX_RING_SIZE;
864 yp->tx_ring[next_entry<<1].dbdma_cmd = cpu_to_le32(CMD_STOP);
866 /* Final step -- overwrite the old 'stop' command. */
868 yp->tx_ring[entry<<1].dbdma_cmd =
869 cpu_to_le32( ((entry % 6) == 0 ? CMD_TX_PKT|INTR_ALWAYS|BRANCH_IFTRUE :
870 CMD_TX_PKT | BRANCH_IFTRUE) | len);
871 #endif
873 /* Non-x86 Todo: explicitly flush cache lines here. */
875 /* Wake the potentially-idle transmit channel. */
876 iowrite32(0x10001000, yp->base + TxCtrl);
878 if (yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE)
879 netif_start_queue (dev); /* Typical path */
880 else
881 yp->tx_full = 1;
883 if (yellowfin_debug > 4) {
884 printk(KERN_DEBUG "%s: Yellowfin transmit frame #%d queued in slot %d.\n",
885 dev->name, yp->cur_tx, entry);
887 return NETDEV_TX_OK;
890 /* The interrupt handler does all of the Rx thread work and cleans up
891 after the Tx thread. */
892 static irqreturn_t yellowfin_interrupt(int irq, void *dev_instance)
894 struct net_device *dev = dev_instance;
895 struct yellowfin_private *yp;
896 void __iomem *ioaddr;
897 int boguscnt = max_interrupt_work;
898 unsigned int handled = 0;
900 yp = netdev_priv(dev);
901 ioaddr = yp->base;
903 spin_lock (&yp->lock);
905 do {
906 u16 intr_status = ioread16(ioaddr + IntrClear);
908 if (yellowfin_debug > 4)
909 printk(KERN_DEBUG "%s: Yellowfin interrupt, status %4.4x.\n",
910 dev->name, intr_status);
912 if (intr_status == 0)
913 break;
914 handled = 1;
916 if (intr_status & (IntrRxDone | IntrEarlyRx)) {
917 yellowfin_rx(dev);
918 iowrite32(0x10001000, ioaddr + RxCtrl); /* Wake Rx engine. */
921 #ifdef NO_TXSTATS
922 for (; yp->cur_tx - yp->dirty_tx > 0; yp->dirty_tx++) {
923 int entry = yp->dirty_tx % TX_RING_SIZE;
924 struct sk_buff *skb;
926 if (yp->tx_ring[entry].result_status == 0)
927 break;
928 skb = yp->tx_skbuff[entry];
929 dev->stats.tx_packets++;
930 dev->stats.tx_bytes += skb->len;
931 /* Free the original skb. */
932 pci_unmap_single(yp->pci_dev, le32_to_cpu(yp->tx_ring[entry].addr),
933 skb->len, PCI_DMA_TODEVICE);
934 dev_kfree_skb_irq(skb);
935 yp->tx_skbuff[entry] = NULL;
937 if (yp->tx_full
938 && yp->cur_tx - yp->dirty_tx < TX_QUEUE_SIZE - 4) {
939 /* The ring is no longer full, clear tbusy. */
940 yp->tx_full = 0;
941 netif_wake_queue(dev);
943 #else
944 if ((intr_status & IntrTxDone) || (yp->tx_tail_desc->tx_errs)) {
945 unsigned dirty_tx = yp->dirty_tx;
947 for (dirty_tx = yp->dirty_tx; yp->cur_tx - dirty_tx > 0;
948 dirty_tx++) {
949 /* Todo: optimize this. */
950 int entry = dirty_tx % TX_RING_SIZE;
951 u16 tx_errs = yp->tx_status[entry].tx_errs;
952 struct sk_buff *skb;
954 #ifndef final_version
955 if (yellowfin_debug > 5)
956 printk(KERN_DEBUG "%s: Tx queue %d check, Tx status "
957 "%4.4x %4.4x %4.4x %4.4x.\n",
958 dev->name, entry,
959 yp->tx_status[entry].tx_cnt,
960 yp->tx_status[entry].tx_errs,
961 yp->tx_status[entry].total_tx_cnt,
962 yp->tx_status[entry].paused);
963 #endif
964 if (tx_errs == 0)
965 break; /* It still hasn't been Txed */
966 skb = yp->tx_skbuff[entry];
967 if (tx_errs & 0xF810) {
968 /* There was an major error, log it. */
969 #ifndef final_version
970 if (yellowfin_debug > 1)
971 printk(KERN_DEBUG "%s: Transmit error, Tx status %4.4x.\n",
972 dev->name, tx_errs);
973 #endif
974 dev->stats.tx_errors++;
975 if (tx_errs & 0xF800) dev->stats.tx_aborted_errors++;
976 if (tx_errs & 0x0800) dev->stats.tx_carrier_errors++;
977 if (tx_errs & 0x2000) dev->stats.tx_window_errors++;
978 if (tx_errs & 0x8000) dev->stats.tx_fifo_errors++;
979 } else {
980 #ifndef final_version
981 if (yellowfin_debug > 4)
982 printk(KERN_DEBUG "%s: Normal transmit, Tx status %4.4x.\n",
983 dev->name, tx_errs);
984 #endif
985 dev->stats.tx_bytes += skb->len;
986 dev->stats.collisions += tx_errs & 15;
987 dev->stats.tx_packets++;
989 /* Free the original skb. */
990 pci_unmap_single(yp->pci_dev,
991 yp->tx_ring[entry<<1].addr, skb->len,
992 PCI_DMA_TODEVICE);
993 dev_kfree_skb_irq(skb);
994 yp->tx_skbuff[entry] = 0;
995 /* Mark status as empty. */
996 yp->tx_status[entry].tx_errs = 0;
999 #ifndef final_version
1000 if (yp->cur_tx - dirty_tx > TX_RING_SIZE) {
1001 printk(KERN_ERR "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1002 dev->name, dirty_tx, yp->cur_tx, yp->tx_full);
1003 dirty_tx += TX_RING_SIZE;
1005 #endif
1007 if (yp->tx_full
1008 && yp->cur_tx - dirty_tx < TX_QUEUE_SIZE - 2) {
1009 /* The ring is no longer full, clear tbusy. */
1010 yp->tx_full = 0;
1011 netif_wake_queue(dev);
1014 yp->dirty_tx = dirty_tx;
1015 yp->tx_tail_desc = &yp->tx_status[dirty_tx % TX_RING_SIZE];
1017 #endif
1019 /* Log errors and other uncommon events. */
1020 if (intr_status & 0x2ee) /* Abnormal error summary. */
1021 yellowfin_error(dev, intr_status);
1023 if (--boguscnt < 0) {
1024 printk(KERN_WARNING "%s: Too much work at interrupt, "
1025 "status=0x%4.4x.\n",
1026 dev->name, intr_status);
1027 break;
1029 } while (1);
1031 if (yellowfin_debug > 3)
1032 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1033 dev->name, ioread16(ioaddr + IntrStatus));
1035 spin_unlock (&yp->lock);
1036 return IRQ_RETVAL(handled);
1039 /* This routine is logically part of the interrupt handler, but separated
1040 for clarity and better register allocation. */
1041 static int yellowfin_rx(struct net_device *dev)
1043 struct yellowfin_private *yp = netdev_priv(dev);
1044 int entry = yp->cur_rx % RX_RING_SIZE;
1045 int boguscnt = yp->dirty_rx + RX_RING_SIZE - yp->cur_rx;
1047 if (yellowfin_debug > 4) {
1048 printk(KERN_DEBUG " In yellowfin_rx(), entry %d status %8.8x.\n",
1049 entry, yp->rx_ring[entry].result_status);
1050 printk(KERN_DEBUG " #%d desc. %8.8x %8.8x %8.8x.\n",
1051 entry, yp->rx_ring[entry].dbdma_cmd, yp->rx_ring[entry].addr,
1052 yp->rx_ring[entry].result_status);
1055 /* If EOP is set on the next entry, it's a new packet. Send it up. */
1056 while (1) {
1057 struct yellowfin_desc *desc = &yp->rx_ring[entry];
1058 struct sk_buff *rx_skb = yp->rx_skbuff[entry];
1059 s16 frame_status;
1060 u16 desc_status;
1061 int data_size;
1062 u8 *buf_addr;
1064 if(!desc->result_status)
1065 break;
1066 pci_dma_sync_single_for_cpu(yp->pci_dev, le32_to_cpu(desc->addr),
1067 yp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1068 desc_status = le32_to_cpu(desc->result_status) >> 16;
1069 buf_addr = rx_skb->data;
1070 data_size = (le32_to_cpu(desc->dbdma_cmd) -
1071 le32_to_cpu(desc->result_status)) & 0xffff;
1072 frame_status = get_unaligned_le16(&(buf_addr[data_size - 2]));
1073 if (yellowfin_debug > 4)
1074 printk(KERN_DEBUG " yellowfin_rx() status was %4.4x.\n",
1075 frame_status);
1076 if (--boguscnt < 0)
1077 break;
1078 if ( ! (desc_status & RX_EOP)) {
1079 if (data_size != 0)
1080 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned multiple buffers,"
1081 " status %4.4x, data_size %d!\n", dev->name, desc_status, data_size);
1082 dev->stats.rx_length_errors++;
1083 } else if ((yp->drv_flags & IsGigabit) && (frame_status & 0x0038)) {
1084 /* There was a error. */
1085 if (yellowfin_debug > 3)
1086 printk(KERN_DEBUG " yellowfin_rx() Rx error was %4.4x.\n",
1087 frame_status);
1088 dev->stats.rx_errors++;
1089 if (frame_status & 0x0060) dev->stats.rx_length_errors++;
1090 if (frame_status & 0x0008) dev->stats.rx_frame_errors++;
1091 if (frame_status & 0x0010) dev->stats.rx_crc_errors++;
1092 if (frame_status < 0) dev->stats.rx_dropped++;
1093 } else if ( !(yp->drv_flags & IsGigabit) &&
1094 ((buf_addr[data_size-1] & 0x85) || buf_addr[data_size-2] & 0xC0)) {
1095 u8 status1 = buf_addr[data_size-2];
1096 u8 status2 = buf_addr[data_size-1];
1097 dev->stats.rx_errors++;
1098 if (status1 & 0xC0) dev->stats.rx_length_errors++;
1099 if (status2 & 0x03) dev->stats.rx_frame_errors++;
1100 if (status2 & 0x04) dev->stats.rx_crc_errors++;
1101 if (status2 & 0x80) dev->stats.rx_dropped++;
1102 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1103 } else if ((yp->flags & HasMACAddrBug) &&
1104 memcmp(le32_to_cpu(yp->rx_ring_dma +
1105 entry*sizeof(struct yellowfin_desc)),
1106 dev->dev_addr, 6) != 0 &&
1107 memcmp(le32_to_cpu(yp->rx_ring_dma +
1108 entry*sizeof(struct yellowfin_desc)),
1109 "\377\377\377\377\377\377", 6) != 0) {
1110 if (bogus_rx++ == 0)
1111 printk(KERN_WARNING "%s: Bad frame to %pM\n",
1112 dev->name, buf_addr);
1113 #endif
1114 } else {
1115 struct sk_buff *skb;
1116 int pkt_len = data_size -
1117 (yp->chip_id ? 7 : 8 + buf_addr[data_size - 8]);
1118 /* To verify: Yellowfin Length should omit the CRC! */
1120 #ifndef final_version
1121 if (yellowfin_debug > 4)
1122 printk(KERN_DEBUG " yellowfin_rx() normal Rx pkt length %d"
1123 " of %d, bogus_cnt %d.\n",
1124 pkt_len, data_size, boguscnt);
1125 #endif
1126 /* Check if the packet is long enough to just pass up the skbuff
1127 without copying to a properly sized skbuff. */
1128 if (pkt_len > rx_copybreak) {
1129 skb_put(skb = rx_skb, pkt_len);
1130 pci_unmap_single(yp->pci_dev,
1131 le32_to_cpu(yp->rx_ring[entry].addr),
1132 yp->rx_buf_sz,
1133 PCI_DMA_FROMDEVICE);
1134 yp->rx_skbuff[entry] = NULL;
1135 } else {
1136 skb = dev_alloc_skb(pkt_len + 2);
1137 if (skb == NULL)
1138 break;
1139 skb_reserve(skb, 2); /* 16 byte align the IP header */
1140 skb_copy_to_linear_data(skb, rx_skb->data, pkt_len);
1141 skb_put(skb, pkt_len);
1142 pci_dma_sync_single_for_device(yp->pci_dev,
1143 le32_to_cpu(desc->addr),
1144 yp->rx_buf_sz,
1145 PCI_DMA_FROMDEVICE);
1147 skb->protocol = eth_type_trans(skb, dev);
1148 netif_rx(skb);
1149 dev->stats.rx_packets++;
1150 dev->stats.rx_bytes += pkt_len;
1152 entry = (++yp->cur_rx) % RX_RING_SIZE;
1155 /* Refill the Rx ring buffers. */
1156 for (; yp->cur_rx - yp->dirty_rx > 0; yp->dirty_rx++) {
1157 entry = yp->dirty_rx % RX_RING_SIZE;
1158 if (yp->rx_skbuff[entry] == NULL) {
1159 struct sk_buff *skb = dev_alloc_skb(yp->rx_buf_sz);
1160 if (skb == NULL)
1161 break; /* Better luck next round. */
1162 yp->rx_skbuff[entry] = skb;
1163 skb->dev = dev; /* Mark as being used by this device. */
1164 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1165 yp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(yp->pci_dev,
1166 skb->data, yp->rx_buf_sz, PCI_DMA_FROMDEVICE));
1168 yp->rx_ring[entry].dbdma_cmd = cpu_to_le32(CMD_STOP);
1169 yp->rx_ring[entry].result_status = 0; /* Clear complete bit. */
1170 if (entry != 0)
1171 yp->rx_ring[entry - 1].dbdma_cmd =
1172 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | yp->rx_buf_sz);
1173 else
1174 yp->rx_ring[RX_RING_SIZE - 1].dbdma_cmd =
1175 cpu_to_le32(CMD_RX_BUF | INTR_ALWAYS | BRANCH_ALWAYS
1176 | yp->rx_buf_sz);
1179 return 0;
1182 static void yellowfin_error(struct net_device *dev, int intr_status)
1184 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n",
1185 dev->name, intr_status);
1186 /* Hmmmmm, it's not clear what to do here. */
1187 if (intr_status & (IntrTxPCIErr | IntrTxPCIFault))
1188 dev->stats.tx_errors++;
1189 if (intr_status & (IntrRxPCIErr | IntrRxPCIFault))
1190 dev->stats.rx_errors++;
1193 static int yellowfin_close(struct net_device *dev)
1195 struct yellowfin_private *yp = netdev_priv(dev);
1196 void __iomem *ioaddr = yp->base;
1197 int i;
1199 netif_stop_queue (dev);
1201 if (yellowfin_debug > 1) {
1202 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %4.4x "
1203 "Rx %4.4x Int %2.2x.\n",
1204 dev->name, ioread16(ioaddr + TxStatus),
1205 ioread16(ioaddr + RxStatus),
1206 ioread16(ioaddr + IntrStatus));
1207 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1208 dev->name, yp->cur_tx, yp->dirty_tx, yp->cur_rx, yp->dirty_rx);
1211 /* Disable interrupts by clearing the interrupt mask. */
1212 iowrite16(0x0000, ioaddr + IntrEnb);
1214 /* Stop the chip's Tx and Rx processes. */
1215 iowrite32(0x80000000, ioaddr + RxCtrl);
1216 iowrite32(0x80000000, ioaddr + TxCtrl);
1218 del_timer(&yp->timer);
1220 #if defined(__i386__)
1221 if (yellowfin_debug > 2) {
1222 printk(KERN_DEBUG" Tx ring at %8.8llx:\n",
1223 (unsigned long long)yp->tx_ring_dma);
1224 for (i = 0; i < TX_RING_SIZE*2; i++)
1225 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x %8.8x.\n",
1226 ioread32(ioaddr + TxPtr) == (long)&yp->tx_ring[i] ? '>' : ' ',
1227 i, yp->tx_ring[i].dbdma_cmd, yp->tx_ring[i].addr,
1228 yp->tx_ring[i].branch_addr, yp->tx_ring[i].result_status);
1229 printk(KERN_DEBUG " Tx status %p:\n", yp->tx_status);
1230 for (i = 0; i < TX_RING_SIZE; i++)
1231 printk(KERN_DEBUG " #%d status %4.4x %4.4x %4.4x %4.4x.\n",
1232 i, yp->tx_status[i].tx_cnt, yp->tx_status[i].tx_errs,
1233 yp->tx_status[i].total_tx_cnt, yp->tx_status[i].paused);
1235 printk(KERN_DEBUG " Rx ring %8.8llx:\n",
1236 (unsigned long long)yp->rx_ring_dma);
1237 for (i = 0; i < RX_RING_SIZE; i++) {
1238 printk(KERN_DEBUG " %c #%d desc. %8.8x %8.8x %8.8x\n",
1239 ioread32(ioaddr + RxPtr) == (long)&yp->rx_ring[i] ? '>' : ' ',
1240 i, yp->rx_ring[i].dbdma_cmd, yp->rx_ring[i].addr,
1241 yp->rx_ring[i].result_status);
1242 if (yellowfin_debug > 6) {
1243 if (get_unaligned((u8*)yp->rx_ring[i].addr) != 0x69) {
1244 int j;
1245 for (j = 0; j < 0x50; j++)
1246 printk(" %4.4x",
1247 get_unaligned(((u16*)yp->rx_ring[i].addr) + j));
1248 printk("\n");
1253 #endif /* __i386__ debugging only */
1255 free_irq(dev->irq, dev);
1257 /* Free all the skbuffs in the Rx queue. */
1258 for (i = 0; i < RX_RING_SIZE; i++) {
1259 yp->rx_ring[i].dbdma_cmd = cpu_to_le32(CMD_STOP);
1260 yp->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
1261 if (yp->rx_skbuff[i]) {
1262 dev_kfree_skb(yp->rx_skbuff[i]);
1264 yp->rx_skbuff[i] = NULL;
1266 for (i = 0; i < TX_RING_SIZE; i++) {
1267 if (yp->tx_skbuff[i])
1268 dev_kfree_skb(yp->tx_skbuff[i]);
1269 yp->tx_skbuff[i] = NULL;
1272 #ifdef YF_PROTOTYPE /* Support for prototype hardware errata. */
1273 if (yellowfin_debug > 0) {
1274 printk(KERN_DEBUG "%s: Received %d frames that we should not have.\n",
1275 dev->name, bogus_rx);
1277 #endif
1279 return 0;
1282 /* Set or clear the multicast filter for this adaptor. */
1284 static void set_rx_mode(struct net_device *dev)
1286 struct yellowfin_private *yp = netdev_priv(dev);
1287 void __iomem *ioaddr = yp->base;
1288 u16 cfg_value = ioread16(ioaddr + Cnfg);
1290 /* Stop the Rx process to change any value. */
1291 iowrite16(cfg_value & ~0x1000, ioaddr + Cnfg);
1292 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1293 iowrite16(0x000F, ioaddr + AddrMode);
1294 } else if ((dev->mc_count > 64) || (dev->flags & IFF_ALLMULTI)) {
1295 /* Too many to filter well, or accept all multicasts. */
1296 iowrite16(0x000B, ioaddr + AddrMode);
1297 } else if (dev->mc_count > 0) { /* Must use the multicast hash table. */
1298 struct dev_mc_list *mclist;
1299 u16 hash_table[4];
1300 int i;
1301 memset(hash_table, 0, sizeof(hash_table));
1302 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1303 i++, mclist = mclist->next) {
1304 unsigned int bit;
1306 /* Due to a bug in the early chip versions, multiple filter
1307 slots must be set for each address. */
1308 if (yp->drv_flags & HasMulticastBug) {
1309 bit = (ether_crc_le(3, mclist->dmi_addr) >> 3) & 0x3f;
1310 hash_table[bit >> 4] |= (1 << bit);
1311 bit = (ether_crc_le(4, mclist->dmi_addr) >> 3) & 0x3f;
1312 hash_table[bit >> 4] |= (1 << bit);
1313 bit = (ether_crc_le(5, mclist->dmi_addr) >> 3) & 0x3f;
1314 hash_table[bit >> 4] |= (1 << bit);
1316 bit = (ether_crc_le(6, mclist->dmi_addr) >> 3) & 0x3f;
1317 hash_table[bit >> 4] |= (1 << bit);
1319 /* Copy the hash table to the chip. */
1320 for (i = 0; i < 4; i++)
1321 iowrite16(hash_table[i], ioaddr + HashTbl + i*2);
1322 iowrite16(0x0003, ioaddr + AddrMode);
1323 } else { /* Normal, unicast/broadcast-only mode. */
1324 iowrite16(0x0001, ioaddr + AddrMode);
1326 /* Restart the Rx process. */
1327 iowrite16(cfg_value | 0x1000, ioaddr + Cnfg);
1330 static void yellowfin_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1332 struct yellowfin_private *np = netdev_priv(dev);
1333 strcpy(info->driver, DRV_NAME);
1334 strcpy(info->version, DRV_VERSION);
1335 strcpy(info->bus_info, pci_name(np->pci_dev));
1338 static const struct ethtool_ops ethtool_ops = {
1339 .get_drvinfo = yellowfin_get_drvinfo
1342 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1344 struct yellowfin_private *np = netdev_priv(dev);
1345 void __iomem *ioaddr = np->base;
1346 struct mii_ioctl_data *data = if_mii(rq);
1348 switch(cmd) {
1349 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1350 data->phy_id = np->phys[0] & 0x1f;
1351 /* Fall Through */
1353 case SIOCGMIIREG: /* Read MII PHY register. */
1354 data->val_out = mdio_read(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f);
1355 return 0;
1357 case SIOCSMIIREG: /* Write MII PHY register. */
1358 if (!capable(CAP_NET_ADMIN))
1359 return -EPERM;
1360 if (data->phy_id == np->phys[0]) {
1361 u16 value = data->val_in;
1362 switch (data->reg_num) {
1363 case 0:
1364 /* Check for autonegotiation on or reset. */
1365 np->medialock = (value & 0x9000) ? 0 : 1;
1366 if (np->medialock)
1367 np->full_duplex = (value & 0x0100) ? 1 : 0;
1368 break;
1369 case 4: np->advertising = value; break;
1371 /* Perhaps check_duplex(dev), depending on chip semantics. */
1373 mdio_write(ioaddr, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1374 return 0;
1375 default:
1376 return -EOPNOTSUPP;
1381 static void __devexit yellowfin_remove_one (struct pci_dev *pdev)
1383 struct net_device *dev = pci_get_drvdata(pdev);
1384 struct yellowfin_private *np;
1386 BUG_ON(!dev);
1387 np = netdev_priv(dev);
1389 pci_free_consistent(pdev, STATUS_TOTAL_SIZE, np->tx_status,
1390 np->tx_status_dma);
1391 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
1392 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
1393 unregister_netdev (dev);
1395 pci_iounmap(pdev, np->base);
1397 pci_release_regions (pdev);
1399 free_netdev (dev);
1400 pci_set_drvdata(pdev, NULL);
1404 static struct pci_driver yellowfin_driver = {
1405 .name = DRV_NAME,
1406 .id_table = yellowfin_pci_tbl,
1407 .probe = yellowfin_init_one,
1408 .remove = __devexit_p(yellowfin_remove_one),
1412 static int __init yellowfin_init (void)
1414 /* when a module, this is printed whether or not devices are found in probe */
1415 #ifdef MODULE
1416 printk(version);
1417 #endif
1418 return pci_register_driver(&yellowfin_driver);
1422 static void __exit yellowfin_cleanup (void)
1424 pci_unregister_driver (&yellowfin_driver);
1428 module_init(yellowfin_init);
1429 module_exit(yellowfin_cleanup);