2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul.moore@hp.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
26 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
27 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
28 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation, version 2.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/string.h>
36 #include <linux/spinlock.h>
37 #include <linux/rcupdate.h>
38 #include <linux/errno.h>
40 #include <linux/sched.h>
41 #include <linux/audit.h>
42 #include <linux/mutex.h>
43 #include <linux/selinux.h>
44 #include <net/netlabel.h>
54 #include "conditional.h"
62 extern void selnl_notify_policyload(u32 seqno
);
63 unsigned int policydb_loaded_version
;
65 int selinux_policycap_netpeer
;
66 int selinux_policycap_openperm
;
69 * This is declared in avc.c
71 extern const struct selinux_class_perm selinux_class_perm
;
73 static DEFINE_RWLOCK(policy_rwlock
);
75 static struct sidtab sidtab
;
76 struct policydb policydb
;
80 * The largest sequence number that has been used when
81 * providing an access decision to the access vector cache.
82 * The sequence number only changes when a policy change
85 static u32 latest_granting
;
87 /* Forward declaration. */
88 static int context_struct_to_string(struct context
*context
, char **scontext
,
91 static int context_struct_compute_av(struct context
*scontext
,
92 struct context
*tcontext
,
95 struct av_decision
*avd
);
97 * Return the boolean value of a constraint expression
98 * when it is applied to the specified source and target
101 * xcontext is a special beast... It is used by the validatetrans rules
102 * only. For these rules, scontext is the context before the transition,
103 * tcontext is the context after the transition, and xcontext is the context
104 * of the process performing the transition. All other callers of
105 * constraint_expr_eval should pass in NULL for xcontext.
107 static int constraint_expr_eval(struct context
*scontext
,
108 struct context
*tcontext
,
109 struct context
*xcontext
,
110 struct constraint_expr
*cexpr
)
114 struct role_datum
*r1
, *r2
;
115 struct mls_level
*l1
, *l2
;
116 struct constraint_expr
*e
;
117 int s
[CEXPR_MAXDEPTH
];
120 for (e
= cexpr
; e
; e
= e
->next
) {
121 switch (e
->expr_type
) {
137 if (sp
== (CEXPR_MAXDEPTH
-1))
141 val1
= scontext
->user
;
142 val2
= tcontext
->user
;
145 val1
= scontext
->type
;
146 val2
= tcontext
->type
;
149 val1
= scontext
->role
;
150 val2
= tcontext
->role
;
151 r1
= policydb
.role_val_to_struct
[val1
- 1];
152 r2
= policydb
.role_val_to_struct
[val2
- 1];
155 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
159 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
163 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
165 !ebitmap_get_bit(&r2
->dominates
,
173 l1
= &(scontext
->range
.level
[0]);
174 l2
= &(tcontext
->range
.level
[0]);
177 l1
= &(scontext
->range
.level
[0]);
178 l2
= &(tcontext
->range
.level
[1]);
181 l1
= &(scontext
->range
.level
[1]);
182 l2
= &(tcontext
->range
.level
[0]);
185 l1
= &(scontext
->range
.level
[1]);
186 l2
= &(tcontext
->range
.level
[1]);
189 l1
= &(scontext
->range
.level
[0]);
190 l2
= &(scontext
->range
.level
[1]);
193 l1
= &(tcontext
->range
.level
[0]);
194 l2
= &(tcontext
->range
.level
[1]);
199 s
[++sp
] = mls_level_eq(l1
, l2
);
202 s
[++sp
] = !mls_level_eq(l1
, l2
);
205 s
[++sp
] = mls_level_dom(l1
, l2
);
208 s
[++sp
] = mls_level_dom(l2
, l1
);
211 s
[++sp
] = mls_level_incomp(l2
, l1
);
225 s
[++sp
] = (val1
== val2
);
228 s
[++sp
] = (val1
!= val2
);
236 if (sp
== (CEXPR_MAXDEPTH
-1))
239 if (e
->attr
& CEXPR_TARGET
)
241 else if (e
->attr
& CEXPR_XTARGET
) {
248 if (e
->attr
& CEXPR_USER
)
250 else if (e
->attr
& CEXPR_ROLE
)
252 else if (e
->attr
& CEXPR_TYPE
)
261 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
264 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
282 * security_boundary_permission - drops violated permissions
283 * on boundary constraint.
285 static void type_attribute_bounds_av(struct context
*scontext
,
286 struct context
*tcontext
,
289 struct av_decision
*avd
)
291 struct context lo_scontext
;
292 struct context lo_tcontext
;
293 struct av_decision lo_avd
;
294 struct type_datum
*source
295 = policydb
.type_val_to_struct
[scontext
->type
- 1];
296 struct type_datum
*target
297 = policydb
.type_val_to_struct
[tcontext
->type
- 1];
300 if (source
->bounds
) {
301 memset(&lo_avd
, 0, sizeof(lo_avd
));
303 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
304 lo_scontext
.type
= source
->bounds
;
306 context_struct_compute_av(&lo_scontext
,
311 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
312 return; /* no masked permission */
313 masked
= ~lo_avd
.allowed
& avd
->allowed
;
316 if (target
->bounds
) {
317 memset(&lo_avd
, 0, sizeof(lo_avd
));
319 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
320 lo_tcontext
.type
= target
->bounds
;
322 context_struct_compute_av(scontext
,
327 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
328 return; /* no masked permission */
329 masked
= ~lo_avd
.allowed
& avd
->allowed
;
332 if (source
->bounds
&& target
->bounds
) {
333 memset(&lo_avd
, 0, sizeof(lo_avd
));
335 * lo_scontext and lo_tcontext are already
339 context_struct_compute_av(&lo_scontext
,
344 if ((lo_avd
.allowed
& avd
->allowed
) == avd
->allowed
)
345 return; /* no masked permission */
346 masked
= ~lo_avd
.allowed
& avd
->allowed
;
350 struct audit_buffer
*ab
;
352 = policydb
.p_type_val_to_name
[source
->value
- 1];
354 = policydb
.p_type_val_to_name
[target
->value
- 1];
356 = policydb
.p_class_val_to_name
[tclass
- 1];
358 /* mask violated permissions */
359 avd
->allowed
&= ~masked
;
361 /* notice to userspace via audit message */
362 ab
= audit_log_start(current
->audit_context
,
363 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
367 audit_log_format(ab
, "av boundary violation: "
368 "source=%s target=%s tclass=%s",
369 stype_name
, ttype_name
, tclass_name
);
370 avc_dump_av(ab
, tclass
, masked
);
376 * Compute access vectors based on a context structure pair for
377 * the permissions in a particular class.
379 static int context_struct_compute_av(struct context
*scontext
,
380 struct context
*tcontext
,
383 struct av_decision
*avd
)
385 struct constraint_node
*constraint
;
386 struct role_allow
*ra
;
387 struct avtab_key avkey
;
388 struct avtab_node
*node
;
389 struct class_datum
*tclass_datum
;
390 struct ebitmap
*sattr
, *tattr
;
391 struct ebitmap_node
*snode
, *tnode
;
392 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
396 * Remap extended Netlink classes for old policy versions.
397 * Do this here rather than socket_type_to_security_class()
398 * in case a newer policy version is loaded, allowing sockets
399 * to remain in the correct class.
401 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
402 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
403 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
404 tclass
= SECCLASS_NETLINK_SOCKET
;
407 * Initialize the access vectors to the default values.
411 avd
->auditdeny
= 0xffffffff;
412 avd
->seqno
= latest_granting
;
416 * Check for all the invalid cases.
418 * - tclass > policy and > kernel
419 * - tclass > policy but is a userspace class
420 * - tclass > policy but we do not allow unknowns
422 if (unlikely(!tclass
))
424 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
425 if (tclass
> kdefs
->cts_len
||
426 !kdefs
->class_to_string
[tclass
] ||
427 !policydb
.allow_unknown
)
431 * Kernel class and we allow unknown so pad the allow decision
432 * the pad will be all 1 for unknown classes.
434 if (tclass
<= kdefs
->cts_len
&& policydb
.allow_unknown
)
435 avd
->allowed
= policydb
.undefined_perms
[tclass
- 1];
438 * Not in policy. Since decision is completed (all 1 or all 0) return.
440 if (unlikely(tclass
> policydb
.p_classes
.nprim
))
443 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
446 * If a specific type enforcement rule was defined for
447 * this permission check, then use it.
449 avkey
.target_class
= tclass
;
450 avkey
.specified
= AVTAB_AV
;
451 sattr
= &policydb
.type_attr_map
[scontext
->type
- 1];
452 tattr
= &policydb
.type_attr_map
[tcontext
->type
- 1];
453 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
454 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
455 avkey
.source_type
= i
+ 1;
456 avkey
.target_type
= j
+ 1;
457 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
459 node
= avtab_search_node_next(node
, avkey
.specified
)) {
460 if (node
->key
.specified
== AVTAB_ALLOWED
)
461 avd
->allowed
|= node
->datum
.data
;
462 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
463 avd
->auditallow
|= node
->datum
.data
;
464 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
465 avd
->auditdeny
&= node
->datum
.data
;
468 /* Check conditional av table for additional permissions */
469 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
, avd
);
475 * Remove any permissions prohibited by a constraint (this includes
478 constraint
= tclass_datum
->constraints
;
480 if ((constraint
->permissions
& (avd
->allowed
)) &&
481 !constraint_expr_eval(scontext
, tcontext
, NULL
,
483 avd
->allowed
= (avd
->allowed
) & ~(constraint
->permissions
);
485 constraint
= constraint
->next
;
489 * If checking process transition permission and the
490 * role is changing, then check the (current_role, new_role)
493 if (tclass
== SECCLASS_PROCESS
&&
494 (avd
->allowed
& (PROCESS__TRANSITION
| PROCESS__DYNTRANSITION
)) &&
495 scontext
->role
!= tcontext
->role
) {
496 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
497 if (scontext
->role
== ra
->role
&&
498 tcontext
->role
== ra
->new_role
)
502 avd
->allowed
= (avd
->allowed
) & ~(PROCESS__TRANSITION
|
503 PROCESS__DYNTRANSITION
);
507 * If the given source and target types have boundary
508 * constraint, lazy checks have to mask any violated
509 * permission and notice it to userspace via audit.
511 type_attribute_bounds_av(scontext
, tcontext
,
512 tclass
, requested
, avd
);
517 if (!tclass
|| tclass
> kdefs
->cts_len
||
518 !kdefs
->class_to_string
[tclass
]) {
519 if (printk_ratelimit())
520 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
526 * Known to the kernel, but not to the policy.
527 * Handle as a denial (allowed is 0).
532 static int security_validtrans_handle_fail(struct context
*ocontext
,
533 struct context
*ncontext
,
534 struct context
*tcontext
,
537 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
538 u32 olen
, nlen
, tlen
;
540 if (context_struct_to_string(ocontext
, &o
, &olen
) < 0)
542 if (context_struct_to_string(ncontext
, &n
, &nlen
) < 0)
544 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
546 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
547 "security_validate_transition: denied for"
548 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
549 o
, n
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
555 if (!selinux_enforcing
)
560 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
563 struct context
*ocontext
;
564 struct context
*ncontext
;
565 struct context
*tcontext
;
566 struct class_datum
*tclass_datum
;
567 struct constraint_node
*constraint
;
573 read_lock(&policy_rwlock
);
576 * Remap extended Netlink classes for old policy versions.
577 * Do this here rather than socket_type_to_security_class()
578 * in case a newer policy version is loaded, allowing sockets
579 * to remain in the correct class.
581 if (policydb_loaded_version
< POLICYDB_VERSION_NLCLASS
)
582 if (tclass
>= SECCLASS_NETLINK_ROUTE_SOCKET
&&
583 tclass
<= SECCLASS_NETLINK_DNRT_SOCKET
)
584 tclass
= SECCLASS_NETLINK_SOCKET
;
586 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
587 printk(KERN_ERR
"SELinux: %s: unrecognized class %d\n",
592 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
594 ocontext
= sidtab_search(&sidtab
, oldsid
);
596 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
602 ncontext
= sidtab_search(&sidtab
, newsid
);
604 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
610 tcontext
= sidtab_search(&sidtab
, tasksid
);
612 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
618 constraint
= tclass_datum
->validatetrans
;
620 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
622 rc
= security_validtrans_handle_fail(ocontext
, ncontext
,
626 constraint
= constraint
->next
;
630 read_unlock(&policy_rwlock
);
635 * security_bounded_transition - check whether the given
636 * transition is directed to bounded, or not.
637 * It returns 0, if @newsid is bounded by @oldsid.
638 * Otherwise, it returns error code.
640 * @oldsid : current security identifier
641 * @newsid : destinated security identifier
643 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
645 struct context
*old_context
, *new_context
;
646 struct type_datum
*type
;
650 read_lock(&policy_rwlock
);
652 old_context
= sidtab_search(&sidtab
, old_sid
);
654 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
659 new_context
= sidtab_search(&sidtab
, new_sid
);
661 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
666 /* type/domain unchaned */
667 if (old_context
->type
== new_context
->type
) {
672 index
= new_context
->type
;
674 type
= policydb
.type_val_to_struct
[index
- 1];
677 /* not bounded anymore */
683 /* @newsid is bounded by @oldsid */
684 if (type
->bounds
== old_context
->type
) {
688 index
= type
->bounds
;
691 read_unlock(&policy_rwlock
);
698 * security_compute_av - Compute access vector decisions.
699 * @ssid: source security identifier
700 * @tsid: target security identifier
701 * @tclass: target security class
702 * @requested: requested permissions
703 * @avd: access vector decisions
705 * Compute a set of access vector decisions based on the
706 * SID pair (@ssid, @tsid) for the permissions in @tclass.
707 * Return -%EINVAL if any of the parameters are invalid or %0
708 * if the access vector decisions were computed successfully.
710 int security_compute_av(u32 ssid
,
714 struct av_decision
*avd
)
716 struct context
*scontext
= NULL
, *tcontext
= NULL
;
719 if (!ss_initialized
) {
720 avd
->allowed
= 0xffffffff;
722 avd
->auditdeny
= 0xffffffff;
723 avd
->seqno
= latest_granting
;
727 read_lock(&policy_rwlock
);
729 scontext
= sidtab_search(&sidtab
, ssid
);
731 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
736 tcontext
= sidtab_search(&sidtab
, tsid
);
738 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
744 rc
= context_struct_compute_av(scontext
, tcontext
, tclass
,
747 /* permissive domain? */
748 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
749 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
751 read_unlock(&policy_rwlock
);
756 * Write the security context string representation of
757 * the context structure `context' into a dynamically
758 * allocated string of the correct size. Set `*scontext'
759 * to point to this string and set `*scontext_len' to
760 * the length of the string.
762 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
770 *scontext_len
= context
->len
;
771 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
777 /* Compute the size of the context. */
778 *scontext_len
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) + 1;
779 *scontext_len
+= strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) + 1;
780 *scontext_len
+= strlen(policydb
.p_type_val_to_name
[context
->type
- 1]) + 1;
781 *scontext_len
+= mls_compute_context_len(context
);
783 /* Allocate space for the context; caller must free this space. */
784 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
787 *scontext
= scontextp
;
790 * Copy the user name, role name and type name into the context.
792 sprintf(scontextp
, "%s:%s:%s",
793 policydb
.p_user_val_to_name
[context
->user
- 1],
794 policydb
.p_role_val_to_name
[context
->role
- 1],
795 policydb
.p_type_val_to_name
[context
->type
- 1]);
796 scontextp
+= strlen(policydb
.p_user_val_to_name
[context
->user
- 1]) +
797 1 + strlen(policydb
.p_role_val_to_name
[context
->role
- 1]) +
798 1 + strlen(policydb
.p_type_val_to_name
[context
->type
- 1]);
800 mls_sid_to_context(context
, &scontextp
);
807 #include "initial_sid_to_string.h"
809 const char *security_get_initial_sid_context(u32 sid
)
811 if (unlikely(sid
> SECINITSID_NUM
))
813 return initial_sid_to_string
[sid
];
816 static int security_sid_to_context_core(u32 sid
, char **scontext
,
817 u32
*scontext_len
, int force
)
819 struct context
*context
;
825 if (!ss_initialized
) {
826 if (sid
<= SECINITSID_NUM
) {
829 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
830 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
835 strcpy(scontextp
, initial_sid_to_string
[sid
]);
836 *scontext
= scontextp
;
839 printk(KERN_ERR
"SELinux: %s: called before initial "
840 "load_policy on unknown SID %d\n", __func__
, sid
);
844 read_lock(&policy_rwlock
);
846 context
= sidtab_search_force(&sidtab
, sid
);
848 context
= sidtab_search(&sidtab
, sid
);
850 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
855 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
857 read_unlock(&policy_rwlock
);
864 * security_sid_to_context - Obtain a context for a given SID.
865 * @sid: security identifier, SID
866 * @scontext: security context
867 * @scontext_len: length in bytes
869 * Write the string representation of the context associated with @sid
870 * into a dynamically allocated string of the correct size. Set @scontext
871 * to point to this string and set @scontext_len to the length of the string.
873 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
875 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
878 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
880 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
884 * Caveat: Mutates scontext.
886 static int string_to_context_struct(struct policydb
*pol
,
887 struct sidtab
*sidtabp
,
893 struct role_datum
*role
;
894 struct type_datum
*typdatum
;
895 struct user_datum
*usrdatum
;
896 char *scontextp
, *p
, oldc
;
901 /* Parse the security context. */
904 scontextp
= (char *) scontext
;
906 /* Extract the user. */
908 while (*p
&& *p
!= ':')
916 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
920 ctx
->user
= usrdatum
->value
;
924 while (*p
&& *p
!= ':')
932 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
935 ctx
->role
= role
->value
;
939 while (*p
&& *p
!= ':')
944 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
945 if (!typdatum
|| typdatum
->attribute
)
948 ctx
->type
= typdatum
->value
;
950 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
954 if ((p
- scontext
) < scontext_len
) {
959 /* Check the validity of the new context. */
960 if (!policydb_context_isvalid(pol
, ctx
)) {
967 context_destroy(ctx
);
971 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
972 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
975 char *scontext2
, *str
= NULL
;
976 struct context context
;
979 if (!ss_initialized
) {
982 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
983 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
988 *sid
= SECINITSID_KERNEL
;
993 /* Copy the string so that we can modify the copy as we parse it. */
994 scontext2
= kmalloc(scontext_len
+1, gfp_flags
);
997 memcpy(scontext2
, scontext
, scontext_len
);
998 scontext2
[scontext_len
] = 0;
1001 /* Save another copy for storing in uninterpreted form */
1002 str
= kstrdup(scontext2
, gfp_flags
);
1009 read_lock(&policy_rwlock
);
1010 rc
= string_to_context_struct(&policydb
, &sidtab
,
1011 scontext2
, scontext_len
,
1013 if (rc
== -EINVAL
&& force
) {
1015 context
.len
= scontext_len
;
1019 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1020 context_destroy(&context
);
1022 read_unlock(&policy_rwlock
);
1029 * security_context_to_sid - Obtain a SID for a given security context.
1030 * @scontext: security context
1031 * @scontext_len: length in bytes
1032 * @sid: security identifier, SID
1034 * Obtains a SID associated with the security context that
1035 * has the string representation specified by @scontext.
1036 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1037 * memory is available, or 0 on success.
1039 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
)
1041 return security_context_to_sid_core(scontext
, scontext_len
,
1042 sid
, SECSID_NULL
, GFP_KERNEL
, 0);
1046 * security_context_to_sid_default - Obtain a SID for a given security context,
1047 * falling back to specified default if needed.
1049 * @scontext: security context
1050 * @scontext_len: length in bytes
1051 * @sid: security identifier, SID
1052 * @def_sid: default SID to assign on error
1054 * Obtains a SID associated with the security context that
1055 * has the string representation specified by @scontext.
1056 * The default SID is passed to the MLS layer to be used to allow
1057 * kernel labeling of the MLS field if the MLS field is not present
1058 * (for upgrading to MLS without full relabel).
1059 * Implicitly forces adding of the context even if it cannot be mapped yet.
1060 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1061 * memory is available, or 0 on success.
1063 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1064 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1066 return security_context_to_sid_core(scontext
, scontext_len
,
1067 sid
, def_sid
, gfp_flags
, 1);
1070 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1073 return security_context_to_sid_core(scontext
, scontext_len
,
1074 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1077 static int compute_sid_handle_invalid_context(
1078 struct context
*scontext
,
1079 struct context
*tcontext
,
1081 struct context
*newcontext
)
1083 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1084 u32 slen
, tlen
, nlen
;
1086 if (context_struct_to_string(scontext
, &s
, &slen
) < 0)
1088 if (context_struct_to_string(tcontext
, &t
, &tlen
) < 0)
1090 if (context_struct_to_string(newcontext
, &n
, &nlen
) < 0)
1092 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1093 "security_compute_sid: invalid context %s"
1097 n
, s
, t
, policydb
.p_class_val_to_name
[tclass
-1]);
1102 if (!selinux_enforcing
)
1107 static int security_compute_sid(u32 ssid
,
1113 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1114 struct role_trans
*roletr
= NULL
;
1115 struct avtab_key avkey
;
1116 struct avtab_datum
*avdatum
;
1117 struct avtab_node
*node
;
1120 if (!ss_initialized
) {
1122 case SECCLASS_PROCESS
:
1132 context_init(&newcontext
);
1134 read_lock(&policy_rwlock
);
1136 scontext
= sidtab_search(&sidtab
, ssid
);
1138 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1143 tcontext
= sidtab_search(&sidtab
, tsid
);
1145 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1151 /* Set the user identity. */
1152 switch (specified
) {
1153 case AVTAB_TRANSITION
:
1155 /* Use the process user identity. */
1156 newcontext
.user
= scontext
->user
;
1159 /* Use the related object owner. */
1160 newcontext
.user
= tcontext
->user
;
1164 /* Set the role and type to default values. */
1166 case SECCLASS_PROCESS
:
1167 /* Use the current role and type of process. */
1168 newcontext
.role
= scontext
->role
;
1169 newcontext
.type
= scontext
->type
;
1172 /* Use the well-defined object role. */
1173 newcontext
.role
= OBJECT_R_VAL
;
1174 /* Use the type of the related object. */
1175 newcontext
.type
= tcontext
->type
;
1178 /* Look for a type transition/member/change rule. */
1179 avkey
.source_type
= scontext
->type
;
1180 avkey
.target_type
= tcontext
->type
;
1181 avkey
.target_class
= tclass
;
1182 avkey
.specified
= specified
;
1183 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1185 /* If no permanent rule, also check for enabled conditional rules */
1187 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1188 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1189 if (node
->key
.specified
& AVTAB_ENABLED
) {
1190 avdatum
= &node
->datum
;
1197 /* Use the type from the type transition/member/change rule. */
1198 newcontext
.type
= avdatum
->data
;
1201 /* Check for class-specific changes. */
1203 case SECCLASS_PROCESS
:
1204 if (specified
& AVTAB_TRANSITION
) {
1205 /* Look for a role transition rule. */
1206 for (roletr
= policydb
.role_tr
; roletr
;
1207 roletr
= roletr
->next
) {
1208 if (roletr
->role
== scontext
->role
&&
1209 roletr
->type
== tcontext
->type
) {
1210 /* Use the role transition rule. */
1211 newcontext
.role
= roletr
->new_role
;
1221 /* Set the MLS attributes.
1222 This is done last because it may allocate memory. */
1223 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
, &newcontext
);
1227 /* Check the validity of the context. */
1228 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1229 rc
= compute_sid_handle_invalid_context(scontext
,
1236 /* Obtain the sid for the context. */
1237 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1239 read_unlock(&policy_rwlock
);
1240 context_destroy(&newcontext
);
1246 * security_transition_sid - Compute the SID for a new subject/object.
1247 * @ssid: source security identifier
1248 * @tsid: target security identifier
1249 * @tclass: target security class
1250 * @out_sid: security identifier for new subject/object
1252 * Compute a SID to use for labeling a new subject or object in the
1253 * class @tclass based on a SID pair (@ssid, @tsid).
1254 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1255 * if insufficient memory is available, or %0 if the new SID was
1256 * computed successfully.
1258 int security_transition_sid(u32 ssid
,
1263 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
, out_sid
);
1267 * security_member_sid - Compute the SID for member selection.
1268 * @ssid: source security identifier
1269 * @tsid: target security identifier
1270 * @tclass: target security class
1271 * @out_sid: security identifier for selected member
1273 * Compute a SID to use when selecting a member of a polyinstantiated
1274 * object of class @tclass based on a SID pair (@ssid, @tsid).
1275 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1276 * if insufficient memory is available, or %0 if the SID was
1277 * computed successfully.
1279 int security_member_sid(u32 ssid
,
1284 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, out_sid
);
1288 * security_change_sid - Compute the SID for object relabeling.
1289 * @ssid: source security identifier
1290 * @tsid: target security identifier
1291 * @tclass: target security class
1292 * @out_sid: security identifier for selected member
1294 * Compute a SID to use for relabeling an object of class @tclass
1295 * based on a SID pair (@ssid, @tsid).
1296 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1297 * if insufficient memory is available, or %0 if the SID was
1298 * computed successfully.
1300 int security_change_sid(u32 ssid
,
1305 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, out_sid
);
1309 * Verify that each kernel class that is defined in the
1312 static int validate_classes(struct policydb
*p
)
1315 struct class_datum
*cladatum
;
1316 struct perm_datum
*perdatum
;
1317 u32 nprim
, tmp
, common_pts_len
, perm_val
, pol_val
;
1319 const struct selinux_class_perm
*kdefs
= &selinux_class_perm
;
1320 const char *def_class
, *def_perm
, *pol_class
;
1321 struct symtab
*perms
;
1322 bool print_unknown_handle
= 0;
1324 if (p
->allow_unknown
) {
1325 u32 num_classes
= kdefs
->cts_len
;
1326 p
->undefined_perms
= kcalloc(num_classes
, sizeof(u32
), GFP_KERNEL
);
1327 if (!p
->undefined_perms
)
1331 for (i
= 1; i
< kdefs
->cts_len
; i
++) {
1332 def_class
= kdefs
->class_to_string
[i
];
1335 if (i
> p
->p_classes
.nprim
) {
1337 "SELinux: class %s not defined in policy\n",
1339 if (p
->reject_unknown
)
1341 if (p
->allow_unknown
)
1342 p
->undefined_perms
[i
-1] = ~0U;
1343 print_unknown_handle
= 1;
1346 pol_class
= p
->p_class_val_to_name
[i
-1];
1347 if (strcmp(pol_class
, def_class
)) {
1349 "SELinux: class %d is incorrect, found %s but should be %s\n",
1350 i
, pol_class
, def_class
);
1354 for (i
= 0; i
< kdefs
->av_pts_len
; i
++) {
1355 class_val
= kdefs
->av_perm_to_string
[i
].tclass
;
1356 perm_val
= kdefs
->av_perm_to_string
[i
].value
;
1357 def_perm
= kdefs
->av_perm_to_string
[i
].name
;
1358 if (class_val
> p
->p_classes
.nprim
)
1360 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1361 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1363 perms
= &cladatum
->permissions
;
1364 nprim
= 1 << (perms
->nprim
- 1);
1365 if (perm_val
> nprim
) {
1367 "SELinux: permission %s in class %s not defined in policy\n",
1368 def_perm
, pol_class
);
1369 if (p
->reject_unknown
)
1371 if (p
->allow_unknown
)
1372 p
->undefined_perms
[class_val
-1] |= perm_val
;
1373 print_unknown_handle
= 1;
1376 perdatum
= hashtab_search(perms
->table
, def_perm
);
1377 if (perdatum
== NULL
) {
1379 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1380 def_perm
, pol_class
);
1383 pol_val
= 1 << (perdatum
->value
- 1);
1384 if (pol_val
!= perm_val
) {
1386 "SELinux: permission %s in class %s has incorrect value\n",
1387 def_perm
, pol_class
);
1391 for (i
= 0; i
< kdefs
->av_inherit_len
; i
++) {
1392 class_val
= kdefs
->av_inherit
[i
].tclass
;
1393 if (class_val
> p
->p_classes
.nprim
)
1395 pol_class
= p
->p_class_val_to_name
[class_val
-1];
1396 cladatum
= hashtab_search(p
->p_classes
.table
, pol_class
);
1398 if (!cladatum
->comdatum
) {
1400 "SELinux: class %s should have an inherits clause but does not\n",
1404 tmp
= kdefs
->av_inherit
[i
].common_base
;
1406 while (!(tmp
& 0x01)) {
1410 perms
= &cladatum
->comdatum
->permissions
;
1411 for (j
= 0; j
< common_pts_len
; j
++) {
1412 def_perm
= kdefs
->av_inherit
[i
].common_pts
[j
];
1413 if (j
>= perms
->nprim
) {
1415 "SELinux: permission %s in class %s not defined in policy\n",
1416 def_perm
, pol_class
);
1417 if (p
->reject_unknown
)
1419 if (p
->allow_unknown
)
1420 p
->undefined_perms
[class_val
-1] |= (1 << j
);
1421 print_unknown_handle
= 1;
1424 perdatum
= hashtab_search(perms
->table
, def_perm
);
1425 if (perdatum
== NULL
) {
1427 "SELinux: permission %s in class %s not found in policy, bad policy\n",
1428 def_perm
, pol_class
);
1431 if (perdatum
->value
!= j
+ 1) {
1433 "SELinux: permission %s in class %s has incorrect value\n",
1434 def_perm
, pol_class
);
1439 if (print_unknown_handle
)
1440 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
1441 (security_get_allow_unknown() ? "allowed" : "denied"));
1445 /* Clone the SID into the new SID table. */
1446 static int clone_sid(u32 sid
,
1447 struct context
*context
,
1450 struct sidtab
*s
= arg
;
1452 return sidtab_insert(s
, sid
, context
);
1455 static inline int convert_context_handle_invalid_context(struct context
*context
)
1459 if (selinux_enforcing
) {
1465 if (!context_struct_to_string(context
, &s
, &len
)) {
1467 "SELinux: Context %s would be invalid if enforcing\n",
1475 struct convert_context_args
{
1476 struct policydb
*oldp
;
1477 struct policydb
*newp
;
1481 * Convert the values in the security context
1482 * structure `c' from the values specified
1483 * in the policy `p->oldp' to the values specified
1484 * in the policy `p->newp'. Verify that the
1485 * context is valid under the new policy.
1487 static int convert_context(u32 key
,
1491 struct convert_context_args
*args
;
1492 struct context oldc
;
1493 struct role_datum
*role
;
1494 struct type_datum
*typdatum
;
1495 struct user_datum
*usrdatum
;
1504 s
= kstrdup(c
->str
, GFP_KERNEL
);
1509 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1510 c
->len
, &ctx
, SECSID_NULL
);
1514 "SELinux: Context %s became valid (mapped).\n",
1516 /* Replace string with mapped representation. */
1518 memcpy(c
, &ctx
, sizeof(*c
));
1520 } else if (rc
== -EINVAL
) {
1521 /* Retain string representation for later mapping. */
1525 /* Other error condition, e.g. ENOMEM. */
1527 "SELinux: Unable to map context %s, rc = %d.\n",
1533 rc
= context_cpy(&oldc
, c
);
1539 /* Convert the user. */
1540 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1541 args
->oldp
->p_user_val_to_name
[c
->user
- 1]);
1544 c
->user
= usrdatum
->value
;
1546 /* Convert the role. */
1547 role
= hashtab_search(args
->newp
->p_roles
.table
,
1548 args
->oldp
->p_role_val_to_name
[c
->role
- 1]);
1551 c
->role
= role
->value
;
1553 /* Convert the type. */
1554 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1555 args
->oldp
->p_type_val_to_name
[c
->type
- 1]);
1558 c
->type
= typdatum
->value
;
1560 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1564 /* Check the validity of the new context. */
1565 if (!policydb_context_isvalid(args
->newp
, c
)) {
1566 rc
= convert_context_handle_invalid_context(&oldc
);
1571 context_destroy(&oldc
);
1576 /* Map old representation to string and save it. */
1577 if (context_struct_to_string(&oldc
, &s
, &len
))
1579 context_destroy(&oldc
);
1584 "SELinux: Context %s became invalid (unmapped).\n",
1590 static void security_load_policycaps(void)
1592 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
1593 POLICYDB_CAPABILITY_NETPEER
);
1594 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
1595 POLICYDB_CAPABILITY_OPENPERM
);
1598 extern void selinux_complete_init(void);
1599 static int security_preserve_bools(struct policydb
*p
);
1602 * security_load_policy - Load a security policy configuration.
1603 * @data: binary policy data
1604 * @len: length of data in bytes
1606 * Load a new set of security policy configuration data,
1607 * validate it and convert the SID table as necessary.
1608 * This function will flush the access vector cache after
1609 * loading the new policy.
1611 int security_load_policy(void *data
, size_t len
)
1613 struct policydb oldpolicydb
, newpolicydb
;
1614 struct sidtab oldsidtab
, newsidtab
;
1615 struct convert_context_args args
;
1618 struct policy_file file
= { data
, len
}, *fp
= &file
;
1620 if (!ss_initialized
) {
1622 if (policydb_read(&policydb
, fp
)) {
1623 avtab_cache_destroy();
1626 if (policydb_load_isids(&policydb
, &sidtab
)) {
1627 policydb_destroy(&policydb
);
1628 avtab_cache_destroy();
1631 /* Verify that the kernel defined classes are correct. */
1632 if (validate_classes(&policydb
)) {
1634 "SELinux: the definition of a class is incorrect\n");
1635 sidtab_destroy(&sidtab
);
1636 policydb_destroy(&policydb
);
1637 avtab_cache_destroy();
1640 security_load_policycaps();
1641 policydb_loaded_version
= policydb
.policyvers
;
1643 seqno
= ++latest_granting
;
1644 selinux_complete_init();
1645 avc_ss_reset(seqno
);
1646 selnl_notify_policyload(seqno
);
1647 selinux_netlbl_cache_invalidate();
1648 selinux_xfrm_notify_policyload();
1653 sidtab_hash_eval(&sidtab
, "sids");
1656 if (policydb_read(&newpolicydb
, fp
))
1659 if (sidtab_init(&newsidtab
)) {
1660 policydb_destroy(&newpolicydb
);
1664 /* Verify that the kernel defined classes are correct. */
1665 if (validate_classes(&newpolicydb
)) {
1667 "SELinux: the definition of a class is incorrect\n");
1672 rc
= security_preserve_bools(&newpolicydb
);
1674 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
1678 /* Clone the SID table. */
1679 sidtab_shutdown(&sidtab
);
1680 if (sidtab_map(&sidtab
, clone_sid
, &newsidtab
)) {
1686 * Convert the internal representations of contexts
1687 * in the new SID table.
1689 args
.oldp
= &policydb
;
1690 args
.newp
= &newpolicydb
;
1691 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
1695 /* Save the old policydb and SID table to free later. */
1696 memcpy(&oldpolicydb
, &policydb
, sizeof policydb
);
1697 sidtab_set(&oldsidtab
, &sidtab
);
1699 /* Install the new policydb and SID table. */
1700 write_lock_irq(&policy_rwlock
);
1701 memcpy(&policydb
, &newpolicydb
, sizeof policydb
);
1702 sidtab_set(&sidtab
, &newsidtab
);
1703 security_load_policycaps();
1704 seqno
= ++latest_granting
;
1705 policydb_loaded_version
= policydb
.policyvers
;
1706 write_unlock_irq(&policy_rwlock
);
1708 /* Free the old policydb and SID table. */
1709 policydb_destroy(&oldpolicydb
);
1710 sidtab_destroy(&oldsidtab
);
1712 avc_ss_reset(seqno
);
1713 selnl_notify_policyload(seqno
);
1714 selinux_netlbl_cache_invalidate();
1715 selinux_xfrm_notify_policyload();
1720 sidtab_destroy(&newsidtab
);
1721 policydb_destroy(&newpolicydb
);
1727 * security_port_sid - Obtain the SID for a port.
1728 * @protocol: protocol number
1729 * @port: port number
1730 * @out_sid: security identifier
1732 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
1737 read_lock(&policy_rwlock
);
1739 c
= policydb
.ocontexts
[OCON_PORT
];
1741 if (c
->u
.port
.protocol
== protocol
&&
1742 c
->u
.port
.low_port
<= port
&&
1743 c
->u
.port
.high_port
>= port
)
1750 rc
= sidtab_context_to_sid(&sidtab
,
1756 *out_sid
= c
->sid
[0];
1758 *out_sid
= SECINITSID_PORT
;
1762 read_unlock(&policy_rwlock
);
1767 * security_netif_sid - Obtain the SID for a network interface.
1768 * @name: interface name
1769 * @if_sid: interface SID
1771 int security_netif_sid(char *name
, u32
*if_sid
)
1776 read_lock(&policy_rwlock
);
1778 c
= policydb
.ocontexts
[OCON_NETIF
];
1780 if (strcmp(name
, c
->u
.name
) == 0)
1786 if (!c
->sid
[0] || !c
->sid
[1]) {
1787 rc
= sidtab_context_to_sid(&sidtab
,
1792 rc
= sidtab_context_to_sid(&sidtab
,
1798 *if_sid
= c
->sid
[0];
1800 *if_sid
= SECINITSID_NETIF
;
1803 read_unlock(&policy_rwlock
);
1807 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
1811 for (i
= 0; i
< 4; i
++)
1812 if (addr
[i
] != (input
[i
] & mask
[i
])) {
1821 * security_node_sid - Obtain the SID for a node (host).
1822 * @domain: communication domain aka address family
1824 * @addrlen: address length in bytes
1825 * @out_sid: security identifier
1827 int security_node_sid(u16 domain
,
1835 read_lock(&policy_rwlock
);
1841 if (addrlen
!= sizeof(u32
)) {
1846 addr
= *((u32
*)addrp
);
1848 c
= policydb
.ocontexts
[OCON_NODE
];
1850 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
1858 if (addrlen
!= sizeof(u64
) * 2) {
1862 c
= policydb
.ocontexts
[OCON_NODE6
];
1864 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
1872 *out_sid
= SECINITSID_NODE
;
1878 rc
= sidtab_context_to_sid(&sidtab
,
1884 *out_sid
= c
->sid
[0];
1886 *out_sid
= SECINITSID_NODE
;
1890 read_unlock(&policy_rwlock
);
1897 * security_get_user_sids - Obtain reachable SIDs for a user.
1898 * @fromsid: starting SID
1899 * @username: username
1900 * @sids: array of reachable SIDs for user
1901 * @nel: number of elements in @sids
1903 * Generate the set of SIDs for legal security contexts
1904 * for a given user that can be reached by @fromsid.
1905 * Set *@sids to point to a dynamically allocated
1906 * array containing the set of SIDs. Set *@nel to the
1907 * number of elements in the array.
1910 int security_get_user_sids(u32 fromsid
,
1915 struct context
*fromcon
, usercon
;
1916 u32
*mysids
= NULL
, *mysids2
, sid
;
1917 u32 mynel
= 0, maxnel
= SIDS_NEL
;
1918 struct user_datum
*user
;
1919 struct role_datum
*role
;
1920 struct ebitmap_node
*rnode
, *tnode
;
1926 if (!ss_initialized
)
1929 read_lock(&policy_rwlock
);
1931 context_init(&usercon
);
1933 fromcon
= sidtab_search(&sidtab
, fromsid
);
1939 user
= hashtab_search(policydb
.p_users
.table
, username
);
1944 usercon
.user
= user
->value
;
1946 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
1952 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
1953 role
= policydb
.role_val_to_struct
[i
];
1955 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
1958 if (mls_setup_user_range(fromcon
, user
, &usercon
))
1961 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
1964 if (mynel
< maxnel
) {
1965 mysids
[mynel
++] = sid
;
1968 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
1973 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
1976 mysids
[mynel
++] = sid
;
1982 read_unlock(&policy_rwlock
);
1988 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
1994 for (i
= 0, j
= 0; i
< mynel
; i
++) {
1995 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
1997 PROCESS__TRANSITION
, AVC_STRICT
,
2000 mysids2
[j
++] = mysids
[i
];
2012 * security_genfs_sid - Obtain a SID for a file in a filesystem
2013 * @fstype: filesystem type
2014 * @path: path from root of mount
2015 * @sclass: file security class
2016 * @sid: SID for path
2018 * Obtain a SID to use for a file in a filesystem that
2019 * cannot support xattr or use a fixed labeling behavior like
2020 * transition SIDs or task SIDs.
2022 int security_genfs_sid(const char *fstype
,
2028 struct genfs
*genfs
;
2030 int rc
= 0, cmp
= 0;
2032 while (path
[0] == '/' && path
[1] == '/')
2035 read_lock(&policy_rwlock
);
2037 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2038 cmp
= strcmp(fstype
, genfs
->fstype
);
2043 if (!genfs
|| cmp
) {
2044 *sid
= SECINITSID_UNLABELED
;
2049 for (c
= genfs
->head
; c
; c
= c
->next
) {
2050 len
= strlen(c
->u
.name
);
2051 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2052 (strncmp(c
->u
.name
, path
, len
) == 0))
2057 *sid
= SECINITSID_UNLABELED
;
2063 rc
= sidtab_context_to_sid(&sidtab
,
2072 read_unlock(&policy_rwlock
);
2077 * security_fs_use - Determine how to handle labeling for a filesystem.
2078 * @fstype: filesystem type
2079 * @behavior: labeling behavior
2080 * @sid: SID for filesystem (superblock)
2082 int security_fs_use(
2084 unsigned int *behavior
,
2090 read_lock(&policy_rwlock
);
2092 c
= policydb
.ocontexts
[OCON_FSUSE
];
2094 if (strcmp(fstype
, c
->u
.name
) == 0)
2100 *behavior
= c
->v
.behavior
;
2102 rc
= sidtab_context_to_sid(&sidtab
,
2110 rc
= security_genfs_sid(fstype
, "/", SECCLASS_DIR
, sid
);
2112 *behavior
= SECURITY_FS_USE_NONE
;
2115 *behavior
= SECURITY_FS_USE_GENFS
;
2120 read_unlock(&policy_rwlock
);
2124 int security_get_bools(int *len
, char ***names
, int **values
)
2126 int i
, rc
= -ENOMEM
;
2128 read_lock(&policy_rwlock
);
2132 *len
= policydb
.p_bools
.nprim
;
2138 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2142 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2146 for (i
= 0; i
< *len
; i
++) {
2148 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2149 name_len
= strlen(policydb
.p_bool_val_to_name
[i
]) + 1;
2150 (*names
)[i
] = kmalloc(sizeof(char) * name_len
, GFP_ATOMIC
);
2153 strncpy((*names
)[i
], policydb
.p_bool_val_to_name
[i
], name_len
);
2154 (*names
)[i
][name_len
- 1] = 0;
2158 read_unlock(&policy_rwlock
);
2162 for (i
= 0; i
< *len
; i
++)
2170 int security_set_bools(int len
, int *values
)
2173 int lenp
, seqno
= 0;
2174 struct cond_node
*cur
;
2176 write_lock_irq(&policy_rwlock
);
2178 lenp
= policydb
.p_bools
.nprim
;
2184 for (i
= 0; i
< len
; i
++) {
2185 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2186 audit_log(current
->audit_context
, GFP_ATOMIC
,
2187 AUDIT_MAC_CONFIG_CHANGE
,
2188 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2189 policydb
.p_bool_val_to_name
[i
],
2191 policydb
.bool_val_to_struct
[i
]->state
,
2192 audit_get_loginuid(current
),
2193 audit_get_sessionid(current
));
2196 policydb
.bool_val_to_struct
[i
]->state
= 1;
2198 policydb
.bool_val_to_struct
[i
]->state
= 0;
2201 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2202 rc
= evaluate_cond_node(&policydb
, cur
);
2207 seqno
= ++latest_granting
;
2210 write_unlock_irq(&policy_rwlock
);
2212 avc_ss_reset(seqno
);
2213 selnl_notify_policyload(seqno
);
2214 selinux_xfrm_notify_policyload();
2219 int security_get_bool_value(int bool)
2224 read_lock(&policy_rwlock
);
2226 len
= policydb
.p_bools
.nprim
;
2232 rc
= policydb
.bool_val_to_struct
[bool]->state
;
2234 read_unlock(&policy_rwlock
);
2238 static int security_preserve_bools(struct policydb
*p
)
2240 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2241 char **bnames
= NULL
;
2242 struct cond_bool_datum
*booldatum
;
2243 struct cond_node
*cur
;
2245 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2248 for (i
= 0; i
< nbools
; i
++) {
2249 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2251 booldatum
->state
= bvalues
[i
];
2253 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2254 rc
= evaluate_cond_node(p
, cur
);
2261 for (i
= 0; i
< nbools
; i
++)
2270 * security_sid_mls_copy() - computes a new sid based on the given
2271 * sid and the mls portion of mls_sid.
2273 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2275 struct context
*context1
;
2276 struct context
*context2
;
2277 struct context newcon
;
2282 if (!ss_initialized
|| !selinux_mls_enabled
) {
2287 context_init(&newcon
);
2289 read_lock(&policy_rwlock
);
2290 context1
= sidtab_search(&sidtab
, sid
);
2292 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2298 context2
= sidtab_search(&sidtab
, mls_sid
);
2300 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2306 newcon
.user
= context1
->user
;
2307 newcon
.role
= context1
->role
;
2308 newcon
.type
= context1
->type
;
2309 rc
= mls_context_cpy(&newcon
, context2
);
2313 /* Check the validity of the new context. */
2314 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2315 rc
= convert_context_handle_invalid_context(&newcon
);
2320 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2324 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2325 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2326 "security_sid_mls_copy: invalid context %s", s
);
2331 read_unlock(&policy_rwlock
);
2332 context_destroy(&newcon
);
2338 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2339 * @nlbl_sid: NetLabel SID
2340 * @nlbl_type: NetLabel labeling protocol type
2341 * @xfrm_sid: XFRM SID
2344 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2345 * resolved into a single SID it is returned via @peer_sid and the function
2346 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2347 * returns a negative value. A table summarizing the behavior is below:
2349 * | function return | @sid
2350 * ------------------------------+-----------------+-----------------
2351 * no peer labels | 0 | SECSID_NULL
2352 * single peer label | 0 | <peer_label>
2353 * multiple, consistent labels | 0 | <peer_label>
2354 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2357 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2362 struct context
*nlbl_ctx
;
2363 struct context
*xfrm_ctx
;
2365 /* handle the common (which also happens to be the set of easy) cases
2366 * right away, these two if statements catch everything involving a
2367 * single or absent peer SID/label */
2368 if (xfrm_sid
== SECSID_NULL
) {
2369 *peer_sid
= nlbl_sid
;
2372 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2373 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2375 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2376 *peer_sid
= xfrm_sid
;
2380 /* we don't need to check ss_initialized here since the only way both
2381 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2382 * security server was initialized and ss_initialized was true */
2383 if (!selinux_mls_enabled
) {
2384 *peer_sid
= SECSID_NULL
;
2388 read_lock(&policy_rwlock
);
2390 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2392 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2393 __func__
, nlbl_sid
);
2397 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2399 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2400 __func__
, xfrm_sid
);
2404 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2407 read_unlock(&policy_rwlock
);
2409 /* at present NetLabel SIDs/labels really only carry MLS
2410 * information so if the MLS portion of the NetLabel SID
2411 * matches the MLS portion of the labeled XFRM SID/label
2412 * then pass along the XFRM SID as it is the most
2414 *peer_sid
= xfrm_sid
;
2416 *peer_sid
= SECSID_NULL
;
2420 static int get_classes_callback(void *k
, void *d
, void *args
)
2422 struct class_datum
*datum
= d
;
2423 char *name
= k
, **classes
= args
;
2424 int value
= datum
->value
- 1;
2426 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
2427 if (!classes
[value
])
2433 int security_get_classes(char ***classes
, int *nclasses
)
2437 read_lock(&policy_rwlock
);
2439 *nclasses
= policydb
.p_classes
.nprim
;
2440 *classes
= kcalloc(*nclasses
, sizeof(*classes
), GFP_ATOMIC
);
2444 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
2448 for (i
= 0; i
< *nclasses
; i
++)
2449 kfree((*classes
)[i
]);
2454 read_unlock(&policy_rwlock
);
2458 static int get_permissions_callback(void *k
, void *d
, void *args
)
2460 struct perm_datum
*datum
= d
;
2461 char *name
= k
, **perms
= args
;
2462 int value
= datum
->value
- 1;
2464 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
2471 int security_get_permissions(char *class, char ***perms
, int *nperms
)
2473 int rc
= -ENOMEM
, i
;
2474 struct class_datum
*match
;
2476 read_lock(&policy_rwlock
);
2478 match
= hashtab_search(policydb
.p_classes
.table
, class);
2480 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
2486 *nperms
= match
->permissions
.nprim
;
2487 *perms
= kcalloc(*nperms
, sizeof(*perms
), GFP_ATOMIC
);
2491 if (match
->comdatum
) {
2492 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
2493 get_permissions_callback
, *perms
);
2498 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
2504 read_unlock(&policy_rwlock
);
2508 read_unlock(&policy_rwlock
);
2509 for (i
= 0; i
< *nperms
; i
++)
2515 int security_get_reject_unknown(void)
2517 return policydb
.reject_unknown
;
2520 int security_get_allow_unknown(void)
2522 return policydb
.allow_unknown
;
2526 * security_policycap_supported - Check for a specific policy capability
2527 * @req_cap: capability
2530 * This function queries the currently loaded policy to see if it supports the
2531 * capability specified by @req_cap. Returns true (1) if the capability is
2532 * supported, false (0) if it isn't supported.
2535 int security_policycap_supported(unsigned int req_cap
)
2539 read_lock(&policy_rwlock
);
2540 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
2541 read_unlock(&policy_rwlock
);
2546 struct selinux_audit_rule
{
2548 struct context au_ctxt
;
2551 void selinux_audit_rule_free(void *vrule
)
2553 struct selinux_audit_rule
*rule
= vrule
;
2556 context_destroy(&rule
->au_ctxt
);
2561 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
2563 struct selinux_audit_rule
*tmprule
;
2564 struct role_datum
*roledatum
;
2565 struct type_datum
*typedatum
;
2566 struct user_datum
*userdatum
;
2567 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
2572 if (!ss_initialized
)
2576 case AUDIT_SUBJ_USER
:
2577 case AUDIT_SUBJ_ROLE
:
2578 case AUDIT_SUBJ_TYPE
:
2579 case AUDIT_OBJ_USER
:
2580 case AUDIT_OBJ_ROLE
:
2581 case AUDIT_OBJ_TYPE
:
2582 /* only 'equals' and 'not equals' fit user, role, and type */
2583 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
2586 case AUDIT_SUBJ_SEN
:
2587 case AUDIT_SUBJ_CLR
:
2588 case AUDIT_OBJ_LEV_LOW
:
2589 case AUDIT_OBJ_LEV_HIGH
:
2590 /* we do not allow a range, indicated by the presense of '-' */
2591 if (strchr(rulestr
, '-'))
2595 /* only the above fields are valid */
2599 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
2603 context_init(&tmprule
->au_ctxt
);
2605 read_lock(&policy_rwlock
);
2607 tmprule
->au_seqno
= latest_granting
;
2610 case AUDIT_SUBJ_USER
:
2611 case AUDIT_OBJ_USER
:
2612 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
2616 tmprule
->au_ctxt
.user
= userdatum
->value
;
2618 case AUDIT_SUBJ_ROLE
:
2619 case AUDIT_OBJ_ROLE
:
2620 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
2624 tmprule
->au_ctxt
.role
= roledatum
->value
;
2626 case AUDIT_SUBJ_TYPE
:
2627 case AUDIT_OBJ_TYPE
:
2628 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
2632 tmprule
->au_ctxt
.type
= typedatum
->value
;
2634 case AUDIT_SUBJ_SEN
:
2635 case AUDIT_SUBJ_CLR
:
2636 case AUDIT_OBJ_LEV_LOW
:
2637 case AUDIT_OBJ_LEV_HIGH
:
2638 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
2642 read_unlock(&policy_rwlock
);
2645 selinux_audit_rule_free(tmprule
);
2654 /* Check to see if the rule contains any selinux fields */
2655 int selinux_audit_rule_known(struct audit_krule
*rule
)
2659 for (i
= 0; i
< rule
->field_count
; i
++) {
2660 struct audit_field
*f
= &rule
->fields
[i
];
2662 case AUDIT_SUBJ_USER
:
2663 case AUDIT_SUBJ_ROLE
:
2664 case AUDIT_SUBJ_TYPE
:
2665 case AUDIT_SUBJ_SEN
:
2666 case AUDIT_SUBJ_CLR
:
2667 case AUDIT_OBJ_USER
:
2668 case AUDIT_OBJ_ROLE
:
2669 case AUDIT_OBJ_TYPE
:
2670 case AUDIT_OBJ_LEV_LOW
:
2671 case AUDIT_OBJ_LEV_HIGH
:
2679 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
2680 struct audit_context
*actx
)
2682 struct context
*ctxt
;
2683 struct mls_level
*level
;
2684 struct selinux_audit_rule
*rule
= vrule
;
2688 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2689 "selinux_audit_rule_match: missing rule\n");
2693 read_lock(&policy_rwlock
);
2695 if (rule
->au_seqno
< latest_granting
) {
2696 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2697 "selinux_audit_rule_match: stale rule\n");
2702 ctxt
= sidtab_search(&sidtab
, sid
);
2704 audit_log(actx
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2705 "selinux_audit_rule_match: unrecognized SID %d\n",
2711 /* a field/op pair that is not caught here will simply fall through
2714 case AUDIT_SUBJ_USER
:
2715 case AUDIT_OBJ_USER
:
2718 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
2720 case Audit_not_equal
:
2721 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
2725 case AUDIT_SUBJ_ROLE
:
2726 case AUDIT_OBJ_ROLE
:
2729 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
2731 case Audit_not_equal
:
2732 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
2736 case AUDIT_SUBJ_TYPE
:
2737 case AUDIT_OBJ_TYPE
:
2740 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
2742 case Audit_not_equal
:
2743 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
2747 case AUDIT_SUBJ_SEN
:
2748 case AUDIT_SUBJ_CLR
:
2749 case AUDIT_OBJ_LEV_LOW
:
2750 case AUDIT_OBJ_LEV_HIGH
:
2751 level
= ((field
== AUDIT_SUBJ_SEN
||
2752 field
== AUDIT_OBJ_LEV_LOW
) ?
2753 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
2756 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2759 case Audit_not_equal
:
2760 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2764 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2766 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
2770 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
2774 match
= (mls_level_dom(level
,
2775 &rule
->au_ctxt
.range
.level
[0]) &&
2776 !mls_level_eq(level
,
2777 &rule
->au_ctxt
.range
.level
[0]));
2780 match
= mls_level_dom(level
,
2781 &rule
->au_ctxt
.range
.level
[0]);
2787 read_unlock(&policy_rwlock
);
2791 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
2793 static int aurule_avc_callback(u32 event
, u32 ssid
, u32 tsid
,
2794 u16
class, u32 perms
, u32
*retained
)
2798 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
2799 err
= aurule_callback();
2803 static int __init
aurule_init(void)
2807 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
,
2808 SECSID_NULL
, SECSID_NULL
, SECCLASS_NULL
, 0);
2810 panic("avc_add_callback() failed, error %d\n", err
);
2814 __initcall(aurule_init
);
2816 #ifdef CONFIG_NETLABEL
2818 * security_netlbl_cache_add - Add an entry to the NetLabel cache
2819 * @secattr: the NetLabel packet security attributes
2820 * @sid: the SELinux SID
2823 * Attempt to cache the context in @ctx, which was derived from the packet in
2824 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
2825 * already been initialized.
2828 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
2833 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
2834 if (sid_cache
== NULL
)
2836 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
2837 if (secattr
->cache
== NULL
) {
2843 secattr
->cache
->free
= kfree
;
2844 secattr
->cache
->data
= sid_cache
;
2845 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
2849 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
2850 * @secattr: the NetLabel packet security attributes
2851 * @sid: the SELinux SID
2854 * Convert the given NetLabel security attributes in @secattr into a
2855 * SELinux SID. If the @secattr field does not contain a full SELinux
2856 * SID/context then use SECINITSID_NETMSG as the foundation. If possibile the
2857 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
2858 * allow the @secattr to be used by NetLabel to cache the secattr to SID
2859 * conversion for future lookups. Returns zero on success, negative values on
2863 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
2867 struct context
*ctx
;
2868 struct context ctx_new
;
2870 if (!ss_initialized
) {
2875 read_lock(&policy_rwlock
);
2877 if (secattr
->flags
& NETLBL_SECATTR_CACHE
) {
2878 *sid
= *(u32
*)secattr
->cache
->data
;
2880 } else if (secattr
->flags
& NETLBL_SECATTR_SECID
) {
2881 *sid
= secattr
->attr
.secid
;
2883 } else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
2884 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
2886 goto netlbl_secattr_to_sid_return
;
2888 context_init(&ctx_new
);
2889 ctx_new
.user
= ctx
->user
;
2890 ctx_new
.role
= ctx
->role
;
2891 ctx_new
.type
= ctx
->type
;
2892 mls_import_netlbl_lvl(&ctx_new
, secattr
);
2893 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
2894 if (ebitmap_netlbl_import(&ctx_new
.range
.level
[0].cat
,
2895 secattr
->attr
.mls
.cat
) != 0)
2896 goto netlbl_secattr_to_sid_return
;
2897 memcpy(&ctx_new
.range
.level
[1].cat
,
2898 &ctx_new
.range
.level
[0].cat
,
2899 sizeof(ctx_new
.range
.level
[0].cat
));
2901 if (mls_context_isvalid(&policydb
, &ctx_new
) != 1)
2902 goto netlbl_secattr_to_sid_return_cleanup
;
2904 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
2906 goto netlbl_secattr_to_sid_return_cleanup
;
2908 security_netlbl_cache_add(secattr
, *sid
);
2910 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2916 netlbl_secattr_to_sid_return
:
2917 read_unlock(&policy_rwlock
);
2919 netlbl_secattr_to_sid_return_cleanup
:
2920 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
2921 goto netlbl_secattr_to_sid_return
;
2925 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
2926 * @sid: the SELinux SID
2927 * @secattr: the NetLabel packet security attributes
2930 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
2931 * Returns zero on success, negative values on failure.
2934 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
2937 struct context
*ctx
;
2939 if (!ss_initialized
)
2942 read_lock(&policy_rwlock
);
2943 ctx
= sidtab_search(&sidtab
, sid
);
2946 goto netlbl_sid_to_secattr_failure
;
2948 secattr
->domain
= kstrdup(policydb
.p_type_val_to_name
[ctx
->type
- 1],
2950 if (secattr
->domain
== NULL
) {
2952 goto netlbl_sid_to_secattr_failure
;
2954 secattr
->attr
.secid
= sid
;
2955 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
2956 mls_export_netlbl_lvl(ctx
, secattr
);
2957 rc
= mls_export_netlbl_cat(ctx
, secattr
);
2959 goto netlbl_sid_to_secattr_failure
;
2960 read_unlock(&policy_rwlock
);
2964 netlbl_sid_to_secattr_failure
:
2965 read_unlock(&policy_rwlock
);
2968 #endif /* CONFIG_NETLABEL */