2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
5 * Copyright 2007-2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2015-2017 Intel Deutschland GmbH
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/if_ether.h>
15 #include <linux/etherdevice.h>
16 #include <linux/list.h>
17 #include <linux/rcupdate.h>
18 #include <linux/rtnetlink.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
21 #include <net/mac80211.h>
22 #include <crypto/algapi.h>
23 #include <asm/unaligned.h>
24 #include "ieee80211_i.h"
25 #include "driver-ops.h"
26 #include "debugfs_key.h"
34 * DOC: Key handling basics
36 * Key handling in mac80211 is done based on per-interface (sub_if_data)
37 * keys and per-station keys. Since each station belongs to an interface,
38 * each station key also belongs to that interface.
40 * Hardware acceleration is done on a best-effort basis for algorithms
41 * that are implemented in software, for each key the hardware is asked
42 * to enable that key for offloading but if it cannot do that the key is
43 * simply kept for software encryption (unless it is for an algorithm
44 * that isn't implemented in software).
45 * There is currently no way of knowing whether a key is handled in SW
46 * or HW except by looking into debugfs.
48 * All key management is internally protected by a mutex. Within all
49 * other parts of mac80211, key references are, just as STA structure
50 * references, protected by RCU. Note, however, that some things are
51 * unprotected, namely the key->sta dereferences within the hardware
52 * acceleration functions. This means that sta_info_destroy() must
53 * remove the key which waits for an RCU grace period.
56 static const u8 bcast_addr
[ETH_ALEN
] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
58 static void assert_key_lock(struct ieee80211_local
*local
)
60 lockdep_assert_held(&local
->key_mtx
);
64 update_vlan_tailroom_need_count(struct ieee80211_sub_if_data
*sdata
, int delta
)
66 struct ieee80211_sub_if_data
*vlan
;
68 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP
)
71 /* crypto_tx_tailroom_needed_cnt is protected by this */
72 assert_key_lock(sdata
->local
);
76 list_for_each_entry_rcu(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
77 vlan
->crypto_tx_tailroom_needed_cnt
+= delta
;
82 static void increment_tailroom_need_count(struct ieee80211_sub_if_data
*sdata
)
85 * When this count is zero, SKB resizing for allocating tailroom
86 * for IV or MMIC is skipped. But, this check has created two race
87 * cases in xmit path while transiting from zero count to one:
89 * 1. SKB resize was skipped because no key was added but just before
90 * the xmit key is added and SW encryption kicks off.
92 * 2. SKB resize was skipped because all the keys were hw planted but
93 * just before xmit one of the key is deleted and SW encryption kicks
96 * In both the above case SW encryption will find not enough space for
97 * tailroom and exits with WARN_ON. (See WARN_ONs at wpa.c)
99 * Solution has been explained at
100 * http://mid.gmane.org/1308590980.4322.19.camel@jlt3.sipsolutions.net
103 assert_key_lock(sdata
->local
);
105 update_vlan_tailroom_need_count(sdata
, 1);
107 if (!sdata
->crypto_tx_tailroom_needed_cnt
++) {
109 * Flush all XMIT packets currently using HW encryption or no
110 * encryption at all if the count transition is from 0 -> 1.
116 static void decrease_tailroom_need_count(struct ieee80211_sub_if_data
*sdata
,
119 assert_key_lock(sdata
->local
);
121 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
< delta
);
123 update_vlan_tailroom_need_count(sdata
, -delta
);
124 sdata
->crypto_tx_tailroom_needed_cnt
-= delta
;
127 static int ieee80211_key_enable_hw_accel(struct ieee80211_key
*key
)
129 struct ieee80211_sub_if_data
*sdata
= key
->sdata
;
130 struct sta_info
*sta
;
131 int ret
= -EOPNOTSUPP
;
135 if (key
->flags
& KEY_FLAG_TAINTED
) {
136 /* If we get here, it's during resume and the key is
137 * tainted so shouldn't be used/programmed any more.
138 * However, its flags may still indicate that it was
139 * programmed into the device (since we're in resume)
140 * so clear that flag now to avoid trying to remove
143 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
147 if (!key
->local
->ops
->set_key
)
148 goto out_unsupported
;
150 assert_key_lock(key
->local
);
155 * If this is a per-STA GTK, check if it
156 * is supported; if not, return.
158 if (sta
&& !(key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
) &&
159 !ieee80211_hw_check(&key
->local
->hw
, SUPPORTS_PER_STA_GTK
))
160 goto out_unsupported
;
162 if (sta
&& !sta
->uploaded
)
163 goto out_unsupported
;
165 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) {
167 * The driver doesn't know anything about VLAN interfaces.
168 * Hence, don't send GTKs for VLAN interfaces to the driver.
170 if (!(key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
))
171 goto out_unsupported
;
174 ret
= drv_set_key(key
->local
, SET_KEY
, sdata
,
175 sta
? &sta
->sta
: NULL
, &key
->conf
);
178 key
->flags
|= KEY_FLAG_UPLOADED_TO_HARDWARE
;
180 if (!((key
->conf
.flags
& (IEEE80211_KEY_FLAG_GENERATE_MMIC
|
181 IEEE80211_KEY_FLAG_PUT_MIC_SPACE
)) ||
182 (key
->conf
.flags
& IEEE80211_KEY_FLAG_RESERVE_TAILROOM
)))
183 decrease_tailroom_need_count(sdata
, 1);
185 WARN_ON((key
->conf
.flags
& IEEE80211_KEY_FLAG_PUT_IV_SPACE
) &&
186 (key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_IV
));
188 WARN_ON((key
->conf
.flags
& IEEE80211_KEY_FLAG_PUT_MIC_SPACE
) &&
189 (key
->conf
.flags
& IEEE80211_KEY_FLAG_GENERATE_MMIC
));
194 if (ret
!= -ENOSPC
&& ret
!= -EOPNOTSUPP
&& ret
!= 1)
196 "failed to set key (%d, %pM) to hardware (%d)\n",
198 sta
? sta
->sta
.addr
: bcast_addr
, ret
);
201 switch (key
->conf
.cipher
) {
202 case WLAN_CIPHER_SUITE_WEP40
:
203 case WLAN_CIPHER_SUITE_WEP104
:
204 case WLAN_CIPHER_SUITE_TKIP
:
205 case WLAN_CIPHER_SUITE_CCMP
:
206 case WLAN_CIPHER_SUITE_CCMP_256
:
207 case WLAN_CIPHER_SUITE_AES_CMAC
:
208 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
209 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
210 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
211 case WLAN_CIPHER_SUITE_GCMP
:
212 case WLAN_CIPHER_SUITE_GCMP_256
:
213 /* all of these we can do in software - if driver can */
216 if (ieee80211_hw_check(&key
->local
->hw
, SW_CRYPTO_CONTROL
)) {
217 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
)
227 static void ieee80211_key_disable_hw_accel(struct ieee80211_key
*key
)
229 struct ieee80211_sub_if_data
*sdata
;
230 struct sta_info
*sta
;
235 if (!key
|| !key
->local
->ops
->set_key
)
238 assert_key_lock(key
->local
);
240 if (!(key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
))
246 if (!((key
->conf
.flags
& (IEEE80211_KEY_FLAG_GENERATE_MMIC
|
247 IEEE80211_KEY_FLAG_PUT_MIC_SPACE
)) ||
248 (key
->conf
.flags
& IEEE80211_KEY_FLAG_RESERVE_TAILROOM
)))
249 increment_tailroom_need_count(sdata
);
251 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
252 ret
= drv_set_key(key
->local
, DISABLE_KEY
, sdata
,
253 sta
? &sta
->sta
: NULL
, &key
->conf
);
257 "failed to remove key (%d, %pM) from hardware (%d)\n",
259 sta
? sta
->sta
.addr
: bcast_addr
, ret
);
262 static int ieee80211_hw_key_replace(struct ieee80211_key
*old_key
,
263 struct ieee80211_key
*new_key
,
266 struct ieee80211_sub_if_data
*sdata
;
267 struct ieee80211_local
*local
;
268 struct sta_info
*sta
;
271 /* Aggregation sessions are OK when running on SW crypto.
272 * A broken remote STA may cause issues not observed with HW
275 if (!(old_key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
))
278 assert_key_lock(old_key
->local
);
281 /* PTK only using key ID 0 needs special handling on rekey */
282 if (new_key
&& sta
&& ptk0rekey
) {
283 local
= old_key
->local
;
284 sdata
= old_key
->sdata
;
286 /* Stop TX till we are on the new key */
287 old_key
->flags
|= KEY_FLAG_TAINTED
;
288 ieee80211_clear_fast_xmit(sta
);
290 /* Aggregation sessions during rekey are complicated due to the
291 * reorder buffer and retransmits. Side step that by blocking
292 * aggregation during rekey and tear down running sessions.
294 if (ieee80211_hw_check(&local
->hw
, AMPDU_AGGREGATION
)) {
295 set_sta_flag(sta
, WLAN_STA_BLOCK_BA
);
296 ieee80211_sta_tear_down_BA_sessions(sta
,
297 AGG_STOP_LOCAL_REQUEST
);
300 if (!wiphy_ext_feature_isset(local
->hw
.wiphy
,
301 NL80211_EXT_FEATURE_CAN_REPLACE_PTK0
)) {
302 pr_warn_ratelimited("Rekeying PTK for STA %pM but driver can't safely do that.",
304 /* Flushing the driver queues *may* help prevent
305 * the clear text leaks and freezes.
307 ieee80211_flush_queues(local
, sdata
, false);
311 ieee80211_key_disable_hw_accel(old_key
);
314 ret
= ieee80211_key_enable_hw_accel(new_key
);
321 static void __ieee80211_set_default_key(struct ieee80211_sub_if_data
*sdata
,
322 int idx
, bool uni
, bool multi
)
324 struct ieee80211_key
*key
= NULL
;
326 assert_key_lock(sdata
->local
);
328 if (idx
>= 0 && idx
< NUM_DEFAULT_KEYS
)
329 key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
332 rcu_assign_pointer(sdata
->default_unicast_key
, key
);
333 ieee80211_check_fast_xmit_iface(sdata
);
334 if (sdata
->vif
.type
!= NL80211_IFTYPE_AP_VLAN
)
335 drv_set_default_unicast_key(sdata
->local
, sdata
, idx
);
339 rcu_assign_pointer(sdata
->default_multicast_key
, key
);
341 ieee80211_debugfs_key_update_default(sdata
);
344 void ieee80211_set_default_key(struct ieee80211_sub_if_data
*sdata
, int idx
,
345 bool uni
, bool multi
)
347 mutex_lock(&sdata
->local
->key_mtx
);
348 __ieee80211_set_default_key(sdata
, idx
, uni
, multi
);
349 mutex_unlock(&sdata
->local
->key_mtx
);
353 __ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data
*sdata
, int idx
)
355 struct ieee80211_key
*key
= NULL
;
357 assert_key_lock(sdata
->local
);
359 if (idx
>= NUM_DEFAULT_KEYS
&&
360 idx
< NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
)
361 key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
363 rcu_assign_pointer(sdata
->default_mgmt_key
, key
);
365 ieee80211_debugfs_key_update_default(sdata
);
368 void ieee80211_set_default_mgmt_key(struct ieee80211_sub_if_data
*sdata
,
371 mutex_lock(&sdata
->local
->key_mtx
);
372 __ieee80211_set_default_mgmt_key(sdata
, idx
);
373 mutex_unlock(&sdata
->local
->key_mtx
);
377 static int ieee80211_key_replace(struct ieee80211_sub_if_data
*sdata
,
378 struct sta_info
*sta
,
380 struct ieee80211_key
*old
,
381 struct ieee80211_key
*new)
385 bool defunikey
, defmultikey
, defmgmtkey
;
387 /* caller must provide at least one old/new */
388 if (WARN_ON(!new && !old
))
392 list_add_tail_rcu(&new->list
, &sdata
->key_list
);
394 WARN_ON(new && old
&& new->conf
.keyidx
!= old
->conf
.keyidx
);
397 idx
= old
->conf
.keyidx
;
398 /* TODO: proper implement and test "Extended Key ID for
399 * Individually Addressed Frames" from IEEE 802.11-2016.
400 * Till then always assume only key ID 0 is used for
402 ret
= ieee80211_hw_key_replace(old
, new, pairwise
);
404 /* new must be provided in case old is not */
405 idx
= new->conf
.keyidx
;
406 if (!new->local
->wowlan
)
407 ret
= ieee80211_key_enable_hw_accel(new);
417 rcu_assign_pointer(sta
->ptk
[idx
], new);
420 clear_sta_flag(sta
, WLAN_STA_BLOCK_BA
);
421 ieee80211_check_fast_xmit(sta
);
424 rcu_assign_pointer(sta
->gtk
[idx
], new);
427 ieee80211_check_fast_rx(sta
);
430 old
== key_mtx_dereference(sdata
->local
,
431 sdata
->default_unicast_key
);
433 old
== key_mtx_dereference(sdata
->local
,
434 sdata
->default_multicast_key
);
436 old
== key_mtx_dereference(sdata
->local
,
437 sdata
->default_mgmt_key
);
439 if (defunikey
&& !new)
440 __ieee80211_set_default_key(sdata
, -1, true, false);
441 if (defmultikey
&& !new)
442 __ieee80211_set_default_key(sdata
, -1, false, true);
443 if (defmgmtkey
&& !new)
444 __ieee80211_set_default_mgmt_key(sdata
, -1);
446 rcu_assign_pointer(sdata
->keys
[idx
], new);
447 if (defunikey
&& new)
448 __ieee80211_set_default_key(sdata
, new->conf
.keyidx
,
450 if (defmultikey
&& new)
451 __ieee80211_set_default_key(sdata
, new->conf
.keyidx
,
453 if (defmgmtkey
&& new)
454 __ieee80211_set_default_mgmt_key(sdata
,
459 list_del_rcu(&old
->list
);
464 struct ieee80211_key
*
465 ieee80211_key_alloc(u32 cipher
, int idx
, size_t key_len
,
467 size_t seq_len
, const u8
*seq
,
468 const struct ieee80211_cipher_scheme
*cs
)
470 struct ieee80211_key
*key
;
473 if (WARN_ON(idx
< 0 || idx
>= NUM_DEFAULT_KEYS
+ NUM_DEFAULT_MGMT_KEYS
))
474 return ERR_PTR(-EINVAL
);
476 key
= kzalloc(sizeof(struct ieee80211_key
) + key_len
, GFP_KERNEL
);
478 return ERR_PTR(-ENOMEM
);
481 * Default to software encryption; we'll later upload the
482 * key to the hardware if possible.
487 key
->conf
.cipher
= cipher
;
488 key
->conf
.keyidx
= idx
;
489 key
->conf
.keylen
= key_len
;
491 case WLAN_CIPHER_SUITE_WEP40
:
492 case WLAN_CIPHER_SUITE_WEP104
:
493 key
->conf
.iv_len
= IEEE80211_WEP_IV_LEN
;
494 key
->conf
.icv_len
= IEEE80211_WEP_ICV_LEN
;
496 case WLAN_CIPHER_SUITE_TKIP
:
497 key
->conf
.iv_len
= IEEE80211_TKIP_IV_LEN
;
498 key
->conf
.icv_len
= IEEE80211_TKIP_ICV_LEN
;
500 for (i
= 0; i
< IEEE80211_NUM_TIDS
; i
++) {
501 key
->u
.tkip
.rx
[i
].iv32
=
502 get_unaligned_le32(&seq
[2]);
503 key
->u
.tkip
.rx
[i
].iv16
=
504 get_unaligned_le16(seq
);
507 spin_lock_init(&key
->u
.tkip
.txlock
);
509 case WLAN_CIPHER_SUITE_CCMP
:
510 key
->conf
.iv_len
= IEEE80211_CCMP_HDR_LEN
;
511 key
->conf
.icv_len
= IEEE80211_CCMP_MIC_LEN
;
513 for (i
= 0; i
< IEEE80211_NUM_TIDS
+ 1; i
++)
514 for (j
= 0; j
< IEEE80211_CCMP_PN_LEN
; j
++)
515 key
->u
.ccmp
.rx_pn
[i
][j
] =
516 seq
[IEEE80211_CCMP_PN_LEN
- j
- 1];
519 * Initialize AES key state here as an optimization so that
520 * it does not need to be initialized for every packet.
522 key
->u
.ccmp
.tfm
= ieee80211_aes_key_setup_encrypt(
523 key_data
, key_len
, IEEE80211_CCMP_MIC_LEN
);
524 if (IS_ERR(key
->u
.ccmp
.tfm
)) {
525 err
= PTR_ERR(key
->u
.ccmp
.tfm
);
530 case WLAN_CIPHER_SUITE_CCMP_256
:
531 key
->conf
.iv_len
= IEEE80211_CCMP_256_HDR_LEN
;
532 key
->conf
.icv_len
= IEEE80211_CCMP_256_MIC_LEN
;
533 for (i
= 0; seq
&& i
< IEEE80211_NUM_TIDS
+ 1; i
++)
534 for (j
= 0; j
< IEEE80211_CCMP_256_PN_LEN
; j
++)
535 key
->u
.ccmp
.rx_pn
[i
][j
] =
536 seq
[IEEE80211_CCMP_256_PN_LEN
- j
- 1];
537 /* Initialize AES key state here as an optimization so that
538 * it does not need to be initialized for every packet.
540 key
->u
.ccmp
.tfm
= ieee80211_aes_key_setup_encrypt(
541 key_data
, key_len
, IEEE80211_CCMP_256_MIC_LEN
);
542 if (IS_ERR(key
->u
.ccmp
.tfm
)) {
543 err
= PTR_ERR(key
->u
.ccmp
.tfm
);
548 case WLAN_CIPHER_SUITE_AES_CMAC
:
549 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
550 key
->conf
.iv_len
= 0;
551 if (cipher
== WLAN_CIPHER_SUITE_AES_CMAC
)
552 key
->conf
.icv_len
= sizeof(struct ieee80211_mmie
);
554 key
->conf
.icv_len
= sizeof(struct ieee80211_mmie_16
);
556 for (j
= 0; j
< IEEE80211_CMAC_PN_LEN
; j
++)
557 key
->u
.aes_cmac
.rx_pn
[j
] =
558 seq
[IEEE80211_CMAC_PN_LEN
- j
- 1];
560 * Initialize AES key state here as an optimization so that
561 * it does not need to be initialized for every packet.
563 key
->u
.aes_cmac
.tfm
=
564 ieee80211_aes_cmac_key_setup(key_data
, key_len
);
565 if (IS_ERR(key
->u
.aes_cmac
.tfm
)) {
566 err
= PTR_ERR(key
->u
.aes_cmac
.tfm
);
571 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
572 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
573 key
->conf
.iv_len
= 0;
574 key
->conf
.icv_len
= sizeof(struct ieee80211_mmie_16
);
576 for (j
= 0; j
< IEEE80211_GMAC_PN_LEN
; j
++)
577 key
->u
.aes_gmac
.rx_pn
[j
] =
578 seq
[IEEE80211_GMAC_PN_LEN
- j
- 1];
579 /* Initialize AES key state here as an optimization so that
580 * it does not need to be initialized for every packet.
582 key
->u
.aes_gmac
.tfm
=
583 ieee80211_aes_gmac_key_setup(key_data
, key_len
);
584 if (IS_ERR(key
->u
.aes_gmac
.tfm
)) {
585 err
= PTR_ERR(key
->u
.aes_gmac
.tfm
);
590 case WLAN_CIPHER_SUITE_GCMP
:
591 case WLAN_CIPHER_SUITE_GCMP_256
:
592 key
->conf
.iv_len
= IEEE80211_GCMP_HDR_LEN
;
593 key
->conf
.icv_len
= IEEE80211_GCMP_MIC_LEN
;
594 for (i
= 0; seq
&& i
< IEEE80211_NUM_TIDS
+ 1; i
++)
595 for (j
= 0; j
< IEEE80211_GCMP_PN_LEN
; j
++)
596 key
->u
.gcmp
.rx_pn
[i
][j
] =
597 seq
[IEEE80211_GCMP_PN_LEN
- j
- 1];
598 /* Initialize AES key state here as an optimization so that
599 * it does not need to be initialized for every packet.
601 key
->u
.gcmp
.tfm
= ieee80211_aes_gcm_key_setup_encrypt(key_data
,
603 if (IS_ERR(key
->u
.gcmp
.tfm
)) {
604 err
= PTR_ERR(key
->u
.gcmp
.tfm
);
611 if (seq_len
&& seq_len
!= cs
->pn_len
) {
613 return ERR_PTR(-EINVAL
);
616 key
->conf
.iv_len
= cs
->hdr_len
;
617 key
->conf
.icv_len
= cs
->mic_len
;
618 for (i
= 0; i
< IEEE80211_NUM_TIDS
+ 1; i
++)
619 for (j
= 0; j
< seq_len
; j
++)
620 key
->u
.gen
.rx_pn
[i
][j
] =
621 seq
[seq_len
- j
- 1];
622 key
->flags
|= KEY_FLAG_CIPHER_SCHEME
;
625 memcpy(key
->conf
.key
, key_data
, key_len
);
626 INIT_LIST_HEAD(&key
->list
);
631 static void ieee80211_key_free_common(struct ieee80211_key
*key
)
633 switch (key
->conf
.cipher
) {
634 case WLAN_CIPHER_SUITE_CCMP
:
635 case WLAN_CIPHER_SUITE_CCMP_256
:
636 ieee80211_aes_key_free(key
->u
.ccmp
.tfm
);
638 case WLAN_CIPHER_SUITE_AES_CMAC
:
639 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
640 ieee80211_aes_cmac_key_free(key
->u
.aes_cmac
.tfm
);
642 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
643 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
644 ieee80211_aes_gmac_key_free(key
->u
.aes_gmac
.tfm
);
646 case WLAN_CIPHER_SUITE_GCMP
:
647 case WLAN_CIPHER_SUITE_GCMP_256
:
648 ieee80211_aes_gcm_key_free(key
->u
.gcmp
.tfm
);
654 static void __ieee80211_key_destroy(struct ieee80211_key
*key
,
658 struct ieee80211_sub_if_data
*sdata
= key
->sdata
;
660 ieee80211_debugfs_key_remove(key
);
662 if (delay_tailroom
) {
663 /* see ieee80211_delayed_tailroom_dec */
664 sdata
->crypto_tx_tailroom_pending_dec
++;
665 schedule_delayed_work(&sdata
->dec_tailroom_needed_wk
,
668 decrease_tailroom_need_count(sdata
, 1);
672 ieee80211_key_free_common(key
);
675 static void ieee80211_key_destroy(struct ieee80211_key
*key
,
682 * Synchronize so the TX path and rcu key iterators
683 * can no longer be using this key before we free/remove it.
687 __ieee80211_key_destroy(key
, delay_tailroom
);
690 void ieee80211_key_free_unused(struct ieee80211_key
*key
)
692 WARN_ON(key
->sdata
|| key
->local
);
693 ieee80211_key_free_common(key
);
696 static bool ieee80211_key_identical(struct ieee80211_sub_if_data
*sdata
,
697 struct ieee80211_key
*old
,
698 struct ieee80211_key
*new)
700 u8 tkip_old
[WLAN_KEY_LEN_TKIP
], tkip_new
[WLAN_KEY_LEN_TKIP
];
703 if (!old
|| new->conf
.keylen
!= old
->conf
.keylen
)
706 tk_old
= old
->conf
.key
;
707 tk_new
= new->conf
.key
;
710 * In station mode, don't compare the TX MIC key, as it's never used
711 * and offloaded rekeying may not care to send it to the host. This
712 * is the case in iwlwifi, for example.
714 if (sdata
->vif
.type
== NL80211_IFTYPE_STATION
&&
715 new->conf
.cipher
== WLAN_CIPHER_SUITE_TKIP
&&
716 new->conf
.keylen
== WLAN_KEY_LEN_TKIP
&&
717 !(new->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
)) {
718 memcpy(tkip_old
, tk_old
, WLAN_KEY_LEN_TKIP
);
719 memcpy(tkip_new
, tk_new
, WLAN_KEY_LEN_TKIP
);
720 memset(tkip_old
+ NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY
, 0, 8);
721 memset(tkip_new
+ NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY
, 0, 8);
726 return !crypto_memneq(tk_old
, tk_new
, new->conf
.keylen
);
729 int ieee80211_key_link(struct ieee80211_key
*key
,
730 struct ieee80211_sub_if_data
*sdata
,
731 struct sta_info
*sta
)
733 struct ieee80211_key
*old_key
;
734 int idx
= key
->conf
.keyidx
;
735 bool pairwise
= key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
;
737 * We want to delay tailroom updates only for station - in that
738 * case it helps roaming speed, but in other cases it hurts and
739 * can cause warnings to appear.
741 bool delay_tailroom
= sdata
->vif
.type
== NL80211_IFTYPE_STATION
;
744 mutex_lock(&sdata
->local
->key_mtx
);
747 old_key
= key_mtx_dereference(sdata
->local
, sta
->ptk
[idx
]);
749 old_key
= key_mtx_dereference(sdata
->local
, sta
->gtk
[idx
]);
751 old_key
= key_mtx_dereference(sdata
->local
, sdata
->keys
[idx
]);
754 * Silently accept key re-installation without really installing the
755 * new version of the key to avoid nonce reuse or replay issues.
757 if (ieee80211_key_identical(sdata
, old_key
, key
)) {
758 ieee80211_key_free_unused(key
);
763 key
->local
= sdata
->local
;
767 increment_tailroom_need_count(sdata
);
769 ret
= ieee80211_key_replace(sdata
, sta
, pairwise
, old_key
, key
);
772 ieee80211_debugfs_key_add(key
);
773 ieee80211_key_destroy(old_key
, delay_tailroom
);
775 ieee80211_key_free(key
, delay_tailroom
);
779 mutex_unlock(&sdata
->local
->key_mtx
);
784 void ieee80211_key_free(struct ieee80211_key
*key
, bool delay_tailroom
)
790 * Replace key with nothingness if it was ever used.
793 ieee80211_key_replace(key
->sdata
, key
->sta
,
794 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
796 ieee80211_key_destroy(key
, delay_tailroom
);
799 void ieee80211_enable_keys(struct ieee80211_sub_if_data
*sdata
)
801 struct ieee80211_key
*key
;
802 struct ieee80211_sub_if_data
*vlan
;
806 if (WARN_ON(!ieee80211_sdata_running(sdata
)))
809 mutex_lock(&sdata
->local
->key_mtx
);
811 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
||
812 sdata
->crypto_tx_tailroom_pending_dec
);
814 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
815 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
816 WARN_ON_ONCE(vlan
->crypto_tx_tailroom_needed_cnt
||
817 vlan
->crypto_tx_tailroom_pending_dec
);
820 list_for_each_entry(key
, &sdata
->key_list
, list
) {
821 increment_tailroom_need_count(sdata
);
822 ieee80211_key_enable_hw_accel(key
);
825 mutex_unlock(&sdata
->local
->key_mtx
);
828 void ieee80211_reset_crypto_tx_tailroom(struct ieee80211_sub_if_data
*sdata
)
830 struct ieee80211_sub_if_data
*vlan
;
832 mutex_lock(&sdata
->local
->key_mtx
);
834 sdata
->crypto_tx_tailroom_needed_cnt
= 0;
836 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
837 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
838 vlan
->crypto_tx_tailroom_needed_cnt
= 0;
841 mutex_unlock(&sdata
->local
->key_mtx
);
844 void ieee80211_iter_keys(struct ieee80211_hw
*hw
,
845 struct ieee80211_vif
*vif
,
846 void (*iter
)(struct ieee80211_hw
*hw
,
847 struct ieee80211_vif
*vif
,
848 struct ieee80211_sta
*sta
,
849 struct ieee80211_key_conf
*key
,
853 struct ieee80211_local
*local
= hw_to_local(hw
);
854 struct ieee80211_key
*key
, *tmp
;
855 struct ieee80211_sub_if_data
*sdata
;
859 mutex_lock(&local
->key_mtx
);
861 sdata
= vif_to_sdata(vif
);
862 list_for_each_entry_safe(key
, tmp
, &sdata
->key_list
, list
)
863 iter(hw
, &sdata
->vif
,
864 key
->sta
? &key
->sta
->sta
: NULL
,
865 &key
->conf
, iter_data
);
867 list_for_each_entry(sdata
, &local
->interfaces
, list
)
868 list_for_each_entry_safe(key
, tmp
,
869 &sdata
->key_list
, list
)
870 iter(hw
, &sdata
->vif
,
871 key
->sta
? &key
->sta
->sta
: NULL
,
872 &key
->conf
, iter_data
);
874 mutex_unlock(&local
->key_mtx
);
876 EXPORT_SYMBOL(ieee80211_iter_keys
);
879 _ieee80211_iter_keys_rcu(struct ieee80211_hw
*hw
,
880 struct ieee80211_sub_if_data
*sdata
,
881 void (*iter
)(struct ieee80211_hw
*hw
,
882 struct ieee80211_vif
*vif
,
883 struct ieee80211_sta
*sta
,
884 struct ieee80211_key_conf
*key
,
888 struct ieee80211_key
*key
;
890 list_for_each_entry_rcu(key
, &sdata
->key_list
, list
) {
891 /* skip keys of station in removal process */
892 if (key
->sta
&& key
->sta
->removed
)
894 if (!(key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
))
897 iter(hw
, &sdata
->vif
,
898 key
->sta
? &key
->sta
->sta
: NULL
,
899 &key
->conf
, iter_data
);
903 void ieee80211_iter_keys_rcu(struct ieee80211_hw
*hw
,
904 struct ieee80211_vif
*vif
,
905 void (*iter
)(struct ieee80211_hw
*hw
,
906 struct ieee80211_vif
*vif
,
907 struct ieee80211_sta
*sta
,
908 struct ieee80211_key_conf
*key
,
912 struct ieee80211_local
*local
= hw_to_local(hw
);
913 struct ieee80211_sub_if_data
*sdata
;
916 sdata
= vif_to_sdata(vif
);
917 _ieee80211_iter_keys_rcu(hw
, sdata
, iter
, iter_data
);
919 list_for_each_entry_rcu(sdata
, &local
->interfaces
, list
)
920 _ieee80211_iter_keys_rcu(hw
, sdata
, iter
, iter_data
);
923 EXPORT_SYMBOL(ieee80211_iter_keys_rcu
);
925 static void ieee80211_free_keys_iface(struct ieee80211_sub_if_data
*sdata
,
926 struct list_head
*keys
)
928 struct ieee80211_key
*key
, *tmp
;
930 decrease_tailroom_need_count(sdata
,
931 sdata
->crypto_tx_tailroom_pending_dec
);
932 sdata
->crypto_tx_tailroom_pending_dec
= 0;
934 ieee80211_debugfs_key_remove_mgmt_default(sdata
);
936 list_for_each_entry_safe(key
, tmp
, &sdata
->key_list
, list
) {
937 ieee80211_key_replace(key
->sdata
, key
->sta
,
938 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
940 list_add_tail(&key
->list
, keys
);
943 ieee80211_debugfs_key_update_default(sdata
);
946 void ieee80211_free_keys(struct ieee80211_sub_if_data
*sdata
,
947 bool force_synchronize
)
949 struct ieee80211_local
*local
= sdata
->local
;
950 struct ieee80211_sub_if_data
*vlan
;
951 struct ieee80211_sub_if_data
*master
;
952 struct ieee80211_key
*key
, *tmp
;
955 cancel_delayed_work_sync(&sdata
->dec_tailroom_needed_wk
);
957 mutex_lock(&local
->key_mtx
);
959 ieee80211_free_keys_iface(sdata
, &keys
);
961 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
962 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
963 ieee80211_free_keys_iface(vlan
, &keys
);
966 if (!list_empty(&keys
) || force_synchronize
)
968 list_for_each_entry_safe(key
, tmp
, &keys
, list
)
969 __ieee80211_key_destroy(key
, false);
971 if (sdata
->vif
.type
== NL80211_IFTYPE_AP_VLAN
) {
973 master
= container_of(sdata
->bss
,
974 struct ieee80211_sub_if_data
,
977 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
!=
978 master
->crypto_tx_tailroom_needed_cnt
);
981 WARN_ON_ONCE(sdata
->crypto_tx_tailroom_needed_cnt
||
982 sdata
->crypto_tx_tailroom_pending_dec
);
985 if (sdata
->vif
.type
== NL80211_IFTYPE_AP
) {
986 list_for_each_entry(vlan
, &sdata
->u
.ap
.vlans
, u
.vlan
.list
)
987 WARN_ON_ONCE(vlan
->crypto_tx_tailroom_needed_cnt
||
988 vlan
->crypto_tx_tailroom_pending_dec
);
991 mutex_unlock(&local
->key_mtx
);
994 void ieee80211_free_sta_keys(struct ieee80211_local
*local
,
995 struct sta_info
*sta
)
997 struct ieee80211_key
*key
;
1000 mutex_lock(&local
->key_mtx
);
1001 for (i
= 0; i
< ARRAY_SIZE(sta
->gtk
); i
++) {
1002 key
= key_mtx_dereference(local
, sta
->gtk
[i
]);
1005 ieee80211_key_replace(key
->sdata
, key
->sta
,
1006 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
1008 __ieee80211_key_destroy(key
, key
->sdata
->vif
.type
==
1009 NL80211_IFTYPE_STATION
);
1012 for (i
= 0; i
< NUM_DEFAULT_KEYS
; i
++) {
1013 key
= key_mtx_dereference(local
, sta
->ptk
[i
]);
1016 ieee80211_key_replace(key
->sdata
, key
->sta
,
1017 key
->conf
.flags
& IEEE80211_KEY_FLAG_PAIRWISE
,
1019 __ieee80211_key_destroy(key
, key
->sdata
->vif
.type
==
1020 NL80211_IFTYPE_STATION
);
1023 mutex_unlock(&local
->key_mtx
);
1026 void ieee80211_delayed_tailroom_dec(struct work_struct
*wk
)
1028 struct ieee80211_sub_if_data
*sdata
;
1030 sdata
= container_of(wk
, struct ieee80211_sub_if_data
,
1031 dec_tailroom_needed_wk
.work
);
1034 * The reason for the delayed tailroom needed decrementing is to
1035 * make roaming faster: during roaming, all keys are first deleted
1036 * and then new keys are installed. The first new key causes the
1037 * crypto_tx_tailroom_needed_cnt to go from 0 to 1, which invokes
1038 * the cost of synchronize_net() (which can be slow). Avoid this
1039 * by deferring the crypto_tx_tailroom_needed_cnt decrementing on
1040 * key removal for a while, so if we roam the value is larger than
1041 * zero and no 0->1 transition happens.
1043 * The cost is that if the AP switching was from an AP with keys
1044 * to one without, we still allocate tailroom while it would no
1045 * longer be needed. However, in the typical (fast) roaming case
1046 * within an ESS this usually won't happen.
1049 mutex_lock(&sdata
->local
->key_mtx
);
1050 decrease_tailroom_need_count(sdata
,
1051 sdata
->crypto_tx_tailroom_pending_dec
);
1052 sdata
->crypto_tx_tailroom_pending_dec
= 0;
1053 mutex_unlock(&sdata
->local
->key_mtx
);
1056 void ieee80211_gtk_rekey_notify(struct ieee80211_vif
*vif
, const u8
*bssid
,
1057 const u8
*replay_ctr
, gfp_t gfp
)
1059 struct ieee80211_sub_if_data
*sdata
= vif_to_sdata(vif
);
1061 trace_api_gtk_rekey_notify(sdata
, bssid
, replay_ctr
);
1063 cfg80211_gtk_rekey_notify(sdata
->dev
, bssid
, replay_ctr
, gfp
);
1065 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_notify
);
1067 void ieee80211_get_key_rx_seq(struct ieee80211_key_conf
*keyconf
,
1068 int tid
, struct ieee80211_key_seq
*seq
)
1070 struct ieee80211_key
*key
;
1073 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
1075 switch (key
->conf
.cipher
) {
1076 case WLAN_CIPHER_SUITE_TKIP
:
1077 if (WARN_ON(tid
< 0 || tid
>= IEEE80211_NUM_TIDS
))
1079 seq
->tkip
.iv32
= key
->u
.tkip
.rx
[tid
].iv32
;
1080 seq
->tkip
.iv16
= key
->u
.tkip
.rx
[tid
].iv16
;
1082 case WLAN_CIPHER_SUITE_CCMP
:
1083 case WLAN_CIPHER_SUITE_CCMP_256
:
1084 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
1087 pn
= key
->u
.ccmp
.rx_pn
[IEEE80211_NUM_TIDS
];
1089 pn
= key
->u
.ccmp
.rx_pn
[tid
];
1090 memcpy(seq
->ccmp
.pn
, pn
, IEEE80211_CCMP_PN_LEN
);
1092 case WLAN_CIPHER_SUITE_AES_CMAC
:
1093 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
1094 if (WARN_ON(tid
!= 0))
1096 pn
= key
->u
.aes_cmac
.rx_pn
;
1097 memcpy(seq
->aes_cmac
.pn
, pn
, IEEE80211_CMAC_PN_LEN
);
1099 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
1100 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
1101 if (WARN_ON(tid
!= 0))
1103 pn
= key
->u
.aes_gmac
.rx_pn
;
1104 memcpy(seq
->aes_gmac
.pn
, pn
, IEEE80211_GMAC_PN_LEN
);
1106 case WLAN_CIPHER_SUITE_GCMP
:
1107 case WLAN_CIPHER_SUITE_GCMP_256
:
1108 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
1111 pn
= key
->u
.gcmp
.rx_pn
[IEEE80211_NUM_TIDS
];
1113 pn
= key
->u
.gcmp
.rx_pn
[tid
];
1114 memcpy(seq
->gcmp
.pn
, pn
, IEEE80211_GCMP_PN_LEN
);
1118 EXPORT_SYMBOL(ieee80211_get_key_rx_seq
);
1120 void ieee80211_set_key_rx_seq(struct ieee80211_key_conf
*keyconf
,
1121 int tid
, struct ieee80211_key_seq
*seq
)
1123 struct ieee80211_key
*key
;
1126 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
1128 switch (key
->conf
.cipher
) {
1129 case WLAN_CIPHER_SUITE_TKIP
:
1130 if (WARN_ON(tid
< 0 || tid
>= IEEE80211_NUM_TIDS
))
1132 key
->u
.tkip
.rx
[tid
].iv32
= seq
->tkip
.iv32
;
1133 key
->u
.tkip
.rx
[tid
].iv16
= seq
->tkip
.iv16
;
1135 case WLAN_CIPHER_SUITE_CCMP
:
1136 case WLAN_CIPHER_SUITE_CCMP_256
:
1137 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
1140 pn
= key
->u
.ccmp
.rx_pn
[IEEE80211_NUM_TIDS
];
1142 pn
= key
->u
.ccmp
.rx_pn
[tid
];
1143 memcpy(pn
, seq
->ccmp
.pn
, IEEE80211_CCMP_PN_LEN
);
1145 case WLAN_CIPHER_SUITE_AES_CMAC
:
1146 case WLAN_CIPHER_SUITE_BIP_CMAC_256
:
1147 if (WARN_ON(tid
!= 0))
1149 pn
= key
->u
.aes_cmac
.rx_pn
;
1150 memcpy(pn
, seq
->aes_cmac
.pn
, IEEE80211_CMAC_PN_LEN
);
1152 case WLAN_CIPHER_SUITE_BIP_GMAC_128
:
1153 case WLAN_CIPHER_SUITE_BIP_GMAC_256
:
1154 if (WARN_ON(tid
!= 0))
1156 pn
= key
->u
.aes_gmac
.rx_pn
;
1157 memcpy(pn
, seq
->aes_gmac
.pn
, IEEE80211_GMAC_PN_LEN
);
1159 case WLAN_CIPHER_SUITE_GCMP
:
1160 case WLAN_CIPHER_SUITE_GCMP_256
:
1161 if (WARN_ON(tid
< -1 || tid
>= IEEE80211_NUM_TIDS
))
1164 pn
= key
->u
.gcmp
.rx_pn
[IEEE80211_NUM_TIDS
];
1166 pn
= key
->u
.gcmp
.rx_pn
[tid
];
1167 memcpy(pn
, seq
->gcmp
.pn
, IEEE80211_GCMP_PN_LEN
);
1174 EXPORT_SYMBOL_GPL(ieee80211_set_key_rx_seq
);
1176 void ieee80211_remove_key(struct ieee80211_key_conf
*keyconf
)
1178 struct ieee80211_key
*key
;
1180 key
= container_of(keyconf
, struct ieee80211_key
, conf
);
1182 assert_key_lock(key
->local
);
1185 * if key was uploaded, we assume the driver will/has remove(d)
1186 * it, so adjust bookkeeping accordingly
1188 if (key
->flags
& KEY_FLAG_UPLOADED_TO_HARDWARE
) {
1189 key
->flags
&= ~KEY_FLAG_UPLOADED_TO_HARDWARE
;
1191 if (!((key
->conf
.flags
& (IEEE80211_KEY_FLAG_GENERATE_MMIC
|
1192 IEEE80211_KEY_FLAG_PUT_MIC_SPACE
)) ||
1193 (key
->conf
.flags
& IEEE80211_KEY_FLAG_RESERVE_TAILROOM
)))
1194 increment_tailroom_need_count(key
->sdata
);
1197 ieee80211_key_free(key
, false);
1199 EXPORT_SYMBOL_GPL(ieee80211_remove_key
);
1201 struct ieee80211_key_conf
*
1202 ieee80211_gtk_rekey_add(struct ieee80211_vif
*vif
,
1203 struct ieee80211_key_conf
*keyconf
)
1205 struct ieee80211_sub_if_data
*sdata
= vif_to_sdata(vif
);
1206 struct ieee80211_local
*local
= sdata
->local
;
1207 struct ieee80211_key
*key
;
1210 if (WARN_ON(!local
->wowlan
))
1211 return ERR_PTR(-EINVAL
);
1213 if (WARN_ON(vif
->type
!= NL80211_IFTYPE_STATION
))
1214 return ERR_PTR(-EINVAL
);
1216 key
= ieee80211_key_alloc(keyconf
->cipher
, keyconf
->keyidx
,
1217 keyconf
->keylen
, keyconf
->key
,
1220 return ERR_CAST(key
);
1222 if (sdata
->u
.mgd
.mfp
!= IEEE80211_MFP_DISABLED
)
1223 key
->conf
.flags
|= IEEE80211_KEY_FLAG_RX_MGMT
;
1225 err
= ieee80211_key_link(key
, sdata
, NULL
);
1227 return ERR_PTR(err
);
1231 EXPORT_SYMBOL_GPL(ieee80211_gtk_rekey_add
);