2 * mm/readahead.c - address_space-level file readahead.
4 * Copyright (C) 2002, Linus Torvalds
6 * 09Apr2002 Andrew Morton
10 #include <linux/kernel.h>
11 #include <linux/gfp.h>
12 #include <linux/export.h>
13 #include <linux/blkdev.h>
14 #include <linux/backing-dev.h>
15 #include <linux/task_io_accounting_ops.h>
16 #include <linux/pagevec.h>
17 #include <linux/pagemap.h>
18 #include <linux/syscalls.h>
19 #include <linux/file.h>
20 #include <linux/mm_inline.h>
25 * Initialise a struct file's readahead state. Assumes that the caller has
29 file_ra_state_init(struct file_ra_state
*ra
, struct address_space
*mapping
)
31 ra
->ra_pages
= inode_to_bdi(mapping
->host
)->ra_pages
;
34 EXPORT_SYMBOL_GPL(file_ra_state_init
);
37 * see if a page needs releasing upon read_cache_pages() failure
38 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
39 * before calling, such as the NFS fs marking pages that are cached locally
40 * on disk, thus we need to give the fs a chance to clean up in the event of
43 static void read_cache_pages_invalidate_page(struct address_space
*mapping
,
46 if (page_has_private(page
)) {
47 if (!trylock_page(page
))
49 page
->mapping
= mapping
;
50 do_invalidatepage(page
, 0, PAGE_SIZE
);
58 * release a list of pages, invalidating them first if need be
60 static void read_cache_pages_invalidate_pages(struct address_space
*mapping
,
61 struct list_head
*pages
)
65 while (!list_empty(pages
)) {
66 victim
= lru_to_page(pages
);
67 list_del(&victim
->lru
);
68 read_cache_pages_invalidate_page(mapping
, victim
);
73 * read_cache_pages - populate an address space with some pages & start reads against them
74 * @mapping: the address_space
75 * @pages: The address of a list_head which contains the target pages. These
76 * pages have their ->index populated and are otherwise uninitialised.
77 * @filler: callback routine for filling a single page.
78 * @data: private data for the callback routine.
80 * Hides the details of the LRU cache etc from the filesystems.
82 int read_cache_pages(struct address_space
*mapping
, struct list_head
*pages
,
83 int (*filler
)(void *, struct page
*), void *data
)
88 while (!list_empty(pages
)) {
89 page
= lru_to_page(pages
);
91 if (add_to_page_cache_lru(page
, mapping
, page
->index
,
92 readahead_gfp_mask(mapping
))) {
93 read_cache_pages_invalidate_page(mapping
, page
);
98 ret
= filler(data
, page
);
100 read_cache_pages_invalidate_pages(mapping
, pages
);
103 task_io_account_read(PAGE_SIZE
);
108 EXPORT_SYMBOL(read_cache_pages
);
110 static int read_pages(struct address_space
*mapping
, struct file
*filp
,
111 struct list_head
*pages
, unsigned int nr_pages
, gfp_t gfp
)
113 struct blk_plug plug
;
117 blk_start_plug(&plug
);
119 if (mapping
->a_ops
->readpages
) {
120 ret
= mapping
->a_ops
->readpages(filp
, mapping
, pages
, nr_pages
);
121 /* Clean up the remaining pages */
122 put_pages_list(pages
);
126 for (page_idx
= 0; page_idx
< nr_pages
; page_idx
++) {
127 struct page
*page
= lru_to_page(pages
);
128 list_del(&page
->lru
);
129 if (!add_to_page_cache_lru(page
, mapping
, page
->index
, gfp
))
130 mapping
->a_ops
->readpage(filp
, page
);
136 blk_finish_plug(&plug
);
142 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
143 * the pages first, then submits them all for I/O. This avoids the very bad
144 * behaviour which would occur if page allocations are causing VM writeback.
145 * We really don't want to intermingle reads and writes like that.
147 * Returns the number of pages requested, or the maximum amount of I/O allowed.
149 int __do_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
150 pgoff_t offset
, unsigned long nr_to_read
,
151 unsigned long lookahead_size
)
153 struct inode
*inode
= mapping
->host
;
155 unsigned long end_index
; /* The last page we want to read */
156 LIST_HEAD(page_pool
);
159 loff_t isize
= i_size_read(inode
);
160 gfp_t gfp_mask
= readahead_gfp_mask(mapping
);
165 end_index
= ((isize
- 1) >> PAGE_SHIFT
);
168 * Preallocate as many pages as we will need.
170 for (page_idx
= 0; page_idx
< nr_to_read
; page_idx
++) {
171 pgoff_t page_offset
= offset
+ page_idx
;
173 if (page_offset
> end_index
)
177 page
= radix_tree_lookup(&mapping
->page_tree
, page_offset
);
179 if (page
&& !radix_tree_exceptional_entry(page
))
182 page
= __page_cache_alloc(gfp_mask
);
185 page
->index
= page_offset
;
186 list_add(&page
->lru
, &page_pool
);
187 if (page_idx
== nr_to_read
- lookahead_size
)
188 SetPageReadahead(page
);
193 * Now start the IO. We ignore I/O errors - if the page is not
194 * uptodate then the caller will launch readpage again, and
195 * will then handle the error.
198 read_pages(mapping
, filp
, &page_pool
, ret
, gfp_mask
);
199 BUG_ON(!list_empty(&page_pool
));
205 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
208 int force_page_cache_readahead(struct address_space
*mapping
, struct file
*filp
,
209 pgoff_t offset
, unsigned long nr_to_read
)
211 if (unlikely(!mapping
->a_ops
->readpage
&& !mapping
->a_ops
->readpages
))
214 nr_to_read
= min(nr_to_read
, inode_to_bdi(mapping
->host
)->ra_pages
);
218 unsigned long this_chunk
= (2 * 1024 * 1024) / PAGE_SIZE
;
220 if (this_chunk
> nr_to_read
)
221 this_chunk
= nr_to_read
;
222 err
= __do_page_cache_readahead(mapping
, filp
,
223 offset
, this_chunk
, 0);
227 offset
+= this_chunk
;
228 nr_to_read
-= this_chunk
;
234 * Set the initial window size, round to next power of 2 and square
235 * for small size, x 4 for medium, and x 2 for large
236 * for 128k (32 page) max ra
237 * 1-8 page = 32k initial, > 8 page = 128k initial
239 static unsigned long get_init_ra_size(unsigned long size
, unsigned long max
)
241 unsigned long newsize
= roundup_pow_of_two(size
);
243 if (newsize
<= max
/ 32)
244 newsize
= newsize
* 4;
245 else if (newsize
<= max
/ 4)
246 newsize
= newsize
* 2;
254 * Get the previous window size, ramp it up, and
255 * return it as the new window size.
257 static unsigned long get_next_ra_size(struct file_ra_state
*ra
,
260 unsigned long cur
= ra
->size
;
261 unsigned long newsize
;
268 return min(newsize
, max
);
272 * On-demand readahead design.
274 * The fields in struct file_ra_state represent the most-recently-executed
277 * |<----- async_size ---------|
278 * |------------------- size -------------------->|
279 * |==================#===========================|
280 * ^start ^page marked with PG_readahead
282 * To overlap application thinking time and disk I/O time, we do
283 * `readahead pipelining': Do not wait until the application consumed all
284 * readahead pages and stalled on the missing page at readahead_index;
285 * Instead, submit an asynchronous readahead I/O as soon as there are
286 * only async_size pages left in the readahead window. Normally async_size
287 * will be equal to size, for maximum pipelining.
289 * In interleaved sequential reads, concurrent streams on the same fd can
290 * be invalidating each other's readahead state. So we flag the new readahead
291 * page at (start+size-async_size) with PG_readahead, and use it as readahead
292 * indicator. The flag won't be set on already cached pages, to avoid the
293 * readahead-for-nothing fuss, saving pointless page cache lookups.
295 * prev_pos tracks the last visited byte in the _previous_ read request.
296 * It should be maintained by the caller, and will be used for detecting
297 * small random reads. Note that the readahead algorithm checks loosely
298 * for sequential patterns. Hence interleaved reads might be served as
301 * There is a special-case: if the first page which the application tries to
302 * read happens to be the first page of the file, it is assumed that a linear
303 * read is about to happen and the window is immediately set to the initial size
304 * based on I/O request size and the max_readahead.
306 * The code ramps up the readahead size aggressively at first, but slow down as
307 * it approaches max_readhead.
311 * Count contiguously cached pages from @offset-1 to @offset-@max,
312 * this count is a conservative estimation of
313 * - length of the sequential read sequence, or
314 * - thrashing threshold in memory tight systems
316 static pgoff_t
count_history_pages(struct address_space
*mapping
,
317 pgoff_t offset
, unsigned long max
)
322 head
= page_cache_prev_hole(mapping
, offset
- 1, max
);
325 return offset
- 1 - head
;
329 * page cache context based read-ahead
331 static int try_context_readahead(struct address_space
*mapping
,
332 struct file_ra_state
*ra
,
334 unsigned long req_size
,
339 size
= count_history_pages(mapping
, offset
, max
);
342 * not enough history pages:
343 * it could be a random read
345 if (size
<= req_size
)
349 * starts from beginning of file:
350 * it is a strong indication of long-run stream (or whole-file-read)
356 ra
->size
= min(size
+ req_size
, max
);
363 * A minimal readahead algorithm for trivial sequential/random reads.
366 ondemand_readahead(struct address_space
*mapping
,
367 struct file_ra_state
*ra
, struct file
*filp
,
368 bool hit_readahead_marker
, pgoff_t offset
,
369 unsigned long req_size
)
371 unsigned long max
= ra
->ra_pages
;
378 goto initial_readahead
;
381 * It's the expected callback offset, assume sequential access.
382 * Ramp up sizes, and push forward the readahead window.
384 if ((offset
== (ra
->start
+ ra
->size
- ra
->async_size
) ||
385 offset
== (ra
->start
+ ra
->size
))) {
386 ra
->start
+= ra
->size
;
387 ra
->size
= get_next_ra_size(ra
, max
);
388 ra
->async_size
= ra
->size
;
393 * Hit a marked page without valid readahead state.
394 * E.g. interleaved reads.
395 * Query the pagecache for async_size, which normally equals to
396 * readahead size. Ramp it up and use it as the new readahead size.
398 if (hit_readahead_marker
) {
402 start
= page_cache_next_hole(mapping
, offset
+ 1, max
);
405 if (!start
|| start
- offset
> max
)
409 ra
->size
= start
- offset
; /* old async_size */
410 ra
->size
+= req_size
;
411 ra
->size
= get_next_ra_size(ra
, max
);
412 ra
->async_size
= ra
->size
;
420 goto initial_readahead
;
423 * sequential cache miss
424 * trivial case: (offset - prev_offset) == 1
425 * unaligned reads: (offset - prev_offset) == 0
427 prev_offset
= (unsigned long long)ra
->prev_pos
>> PAGE_SHIFT
;
428 if (offset
- prev_offset
<= 1UL)
429 goto initial_readahead
;
432 * Query the page cache and look for the traces(cached history pages)
433 * that a sequential stream would leave behind.
435 if (try_context_readahead(mapping
, ra
, offset
, req_size
, max
))
439 * standalone, small random read
440 * Read as is, and do not pollute the readahead state.
442 return __do_page_cache_readahead(mapping
, filp
, offset
, req_size
, 0);
446 ra
->size
= get_init_ra_size(req_size
, max
);
447 ra
->async_size
= ra
->size
> req_size
? ra
->size
- req_size
: ra
->size
;
451 * Will this read hit the readahead marker made by itself?
452 * If so, trigger the readahead marker hit now, and merge
453 * the resulted next readahead window into the current one.
455 if (offset
== ra
->start
&& ra
->size
== ra
->async_size
) {
456 ra
->async_size
= get_next_ra_size(ra
, max
);
457 ra
->size
+= ra
->async_size
;
460 return ra_submit(ra
, mapping
, filp
);
464 * page_cache_sync_readahead - generic file readahead
465 * @mapping: address_space which holds the pagecache and I/O vectors
466 * @ra: file_ra_state which holds the readahead state
467 * @filp: passed on to ->readpage() and ->readpages()
468 * @offset: start offset into @mapping, in pagecache page-sized units
469 * @req_size: hint: total size of the read which the caller is performing in
472 * page_cache_sync_readahead() should be called when a cache miss happened:
473 * it will submit the read. The readahead logic may decide to piggyback more
474 * pages onto the read request if access patterns suggest it will improve
477 void page_cache_sync_readahead(struct address_space
*mapping
,
478 struct file_ra_state
*ra
, struct file
*filp
,
479 pgoff_t offset
, unsigned long req_size
)
486 if (filp
&& (filp
->f_mode
& FMODE_RANDOM
)) {
487 force_page_cache_readahead(mapping
, filp
, offset
, req_size
);
492 ondemand_readahead(mapping
, ra
, filp
, false, offset
, req_size
);
494 EXPORT_SYMBOL_GPL(page_cache_sync_readahead
);
497 * page_cache_async_readahead - file readahead for marked pages
498 * @mapping: address_space which holds the pagecache and I/O vectors
499 * @ra: file_ra_state which holds the readahead state
500 * @filp: passed on to ->readpage() and ->readpages()
501 * @page: the page at @offset which has the PG_readahead flag set
502 * @offset: start offset into @mapping, in pagecache page-sized units
503 * @req_size: hint: total size of the read which the caller is performing in
506 * page_cache_async_readahead() should be called when a page is used which
507 * has the PG_readahead flag; this is a marker to suggest that the application
508 * has used up enough of the readahead window that we should start pulling in
512 page_cache_async_readahead(struct address_space
*mapping
,
513 struct file_ra_state
*ra
, struct file
*filp
,
514 struct page
*page
, pgoff_t offset
,
515 unsigned long req_size
)
522 * Same bit is used for PG_readahead and PG_reclaim.
524 if (PageWriteback(page
))
527 ClearPageReadahead(page
);
530 * Defer asynchronous read-ahead on IO congestion.
532 if (inode_read_congested(mapping
->host
))
536 ondemand_readahead(mapping
, ra
, filp
, true, offset
, req_size
);
538 EXPORT_SYMBOL_GPL(page_cache_async_readahead
);
541 do_readahead(struct address_space
*mapping
, struct file
*filp
,
542 pgoff_t index
, unsigned long nr
)
544 if (!mapping
|| !mapping
->a_ops
)
547 return force_page_cache_readahead(mapping
, filp
, index
, nr
);
550 SYSCALL_DEFINE3(readahead
, int, fd
, loff_t
, offset
, size_t, count
)
558 if (f
.file
->f_mode
& FMODE_READ
) {
559 struct address_space
*mapping
= f
.file
->f_mapping
;
560 pgoff_t start
= offset
>> PAGE_SHIFT
;
561 pgoff_t end
= (offset
+ count
- 1) >> PAGE_SHIFT
;
562 unsigned long len
= end
- start
+ 1;
563 ret
= do_readahead(mapping
, f
.file
, start
, len
);