hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / arch / s390 / kernel / smp.c
blob35531fe1c5ea91c05b5d43a71e5de03894024287
1 /*
2 * SMP related functions
4 * Copyright IBM Corp. 1999, 2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <linux/memblock.h>
35 #include <asm/asm-offsets.h>
36 #include <asm/diag.h>
37 #include <asm/switch_to.h>
38 #include <asm/facility.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/tlbflush.h>
43 #include <asm/vtimer.h>
44 #include <asm/lowcore.h>
45 #include <asm/sclp.h>
46 #include <asm/vdso.h>
47 #include <asm/debug.h>
48 #include <asm/os_info.h>
49 #include <asm/sigp.h>
50 #include <asm/idle.h>
51 #include "entry.h"
53 enum {
54 ec_schedule = 0,
55 ec_call_function_single,
56 ec_stop_cpu,
59 enum {
60 CPU_STATE_STANDBY,
61 CPU_STATE_CONFIGURED,
64 static DEFINE_PER_CPU(struct cpu *, cpu_device);
66 struct pcpu {
67 struct lowcore *lowcore; /* lowcore page(s) for the cpu */
68 unsigned long ec_mask; /* bit mask for ec_xxx functions */
69 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
70 signed char state; /* physical cpu state */
71 signed char polarization; /* physical polarization */
72 u16 address; /* physical cpu address */
75 static u8 boot_core_type;
76 static struct pcpu pcpu_devices[NR_CPUS];
78 unsigned int smp_cpu_mt_shift;
79 EXPORT_SYMBOL(smp_cpu_mt_shift);
81 unsigned int smp_cpu_mtid;
82 EXPORT_SYMBOL(smp_cpu_mtid);
84 #ifdef CONFIG_CRASH_DUMP
85 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
86 #endif
88 static unsigned int smp_max_threads __initdata = -1U;
90 static int __init early_nosmt(char *s)
92 smp_max_threads = 1;
93 return 0;
95 early_param("nosmt", early_nosmt);
97 static int __init early_smt(char *s)
99 get_option(&s, &smp_max_threads);
100 return 0;
102 early_param("smt", early_smt);
105 * The smp_cpu_state_mutex must be held when changing the state or polarization
106 * member of a pcpu data structure within the pcpu_devices arreay.
108 DEFINE_MUTEX(smp_cpu_state_mutex);
111 * Signal processor helper functions.
113 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
115 int cc;
117 while (1) {
118 cc = __pcpu_sigp(addr, order, parm, NULL);
119 if (cc != SIGP_CC_BUSY)
120 return cc;
121 cpu_relax();
125 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
127 int cc, retry;
129 for (retry = 0; ; retry++) {
130 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
131 if (cc != SIGP_CC_BUSY)
132 break;
133 if (retry >= 3)
134 udelay(10);
136 return cc;
139 static inline int pcpu_stopped(struct pcpu *pcpu)
141 u32 uninitialized_var(status);
143 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
144 0, &status) != SIGP_CC_STATUS_STORED)
145 return 0;
146 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
149 static inline int pcpu_running(struct pcpu *pcpu)
151 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
152 0, NULL) != SIGP_CC_STATUS_STORED)
153 return 1;
154 /* Status stored condition code is equivalent to cpu not running. */
155 return 0;
159 * Find struct pcpu by cpu address.
161 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
163 int cpu;
165 for_each_cpu(cpu, mask)
166 if (pcpu_devices[cpu].address == address)
167 return pcpu_devices + cpu;
168 return NULL;
171 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
173 int order;
175 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
176 return;
177 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
178 pcpu->ec_clk = get_tod_clock_fast();
179 pcpu_sigp_retry(pcpu, order, 0);
182 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
183 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
185 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
187 unsigned long async_stack, panic_stack;
188 struct lowcore *lc;
190 if (pcpu != &pcpu_devices[0]) {
191 pcpu->lowcore = (struct lowcore *)
192 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
193 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
194 panic_stack = __get_free_page(GFP_KERNEL);
195 if (!pcpu->lowcore || !panic_stack || !async_stack)
196 goto out;
197 } else {
198 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
199 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
201 lc = pcpu->lowcore;
202 memcpy(lc, &S390_lowcore, 512);
203 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
204 lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
205 lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
206 lc->cpu_nr = cpu;
207 lc->spinlock_lockval = arch_spin_lockval(cpu);
208 if (MACHINE_HAS_VX)
209 lc->vector_save_area_addr =
210 (unsigned long) &lc->vector_save_area;
211 if (vdso_alloc_per_cpu(lc))
212 goto out;
213 lowcore_ptr[cpu] = lc;
214 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
215 return 0;
216 out:
217 if (pcpu != &pcpu_devices[0]) {
218 free_page(panic_stack);
219 free_pages(async_stack, ASYNC_ORDER);
220 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
222 return -ENOMEM;
225 #ifdef CONFIG_HOTPLUG_CPU
227 static void pcpu_free_lowcore(struct pcpu *pcpu)
229 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
230 lowcore_ptr[pcpu - pcpu_devices] = NULL;
231 vdso_free_per_cpu(pcpu->lowcore);
232 if (pcpu == &pcpu_devices[0])
233 return;
234 free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
235 free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
236 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
239 #endif /* CONFIG_HOTPLUG_CPU */
241 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
243 struct lowcore *lc = pcpu->lowcore;
245 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
246 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
247 lc->cpu_nr = cpu;
248 lc->spinlock_lockval = arch_spin_lockval(cpu);
249 lc->percpu_offset = __per_cpu_offset[cpu];
250 lc->kernel_asce = S390_lowcore.kernel_asce;
251 lc->machine_flags = S390_lowcore.machine_flags;
252 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
253 __ctl_store(lc->cregs_save_area, 0, 15);
254 save_access_regs((unsigned int *) lc->access_regs_save_area);
255 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
256 MAX_FACILITY_BIT/8);
259 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
261 struct lowcore *lc = pcpu->lowcore;
262 struct thread_info *ti = task_thread_info(tsk);
264 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
265 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
266 lc->thread_info = (unsigned long) task_thread_info(tsk);
267 lc->current_task = (unsigned long) tsk;
268 lc->lpp = LPP_MAGIC;
269 lc->current_pid = tsk->pid;
270 lc->user_timer = ti->user_timer;
271 lc->system_timer = ti->system_timer;
272 lc->steal_timer = 0;
275 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
277 struct lowcore *lc = pcpu->lowcore;
279 lc->restart_stack = lc->kernel_stack;
280 lc->restart_fn = (unsigned long) func;
281 lc->restart_data = (unsigned long) data;
282 lc->restart_source = -1UL;
283 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
287 * Call function via PSW restart on pcpu and stop the current cpu.
289 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
290 void *data, unsigned long stack)
292 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
293 unsigned long source_cpu = stap();
295 __load_psw_mask(PSW_KERNEL_BITS);
296 if (pcpu->address == source_cpu)
297 func(data); /* should not return */
298 /* Stop target cpu (if func returns this stops the current cpu). */
299 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
300 /* Restart func on the target cpu and stop the current cpu. */
301 mem_assign_absolute(lc->restart_stack, stack);
302 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
303 mem_assign_absolute(lc->restart_data, (unsigned long) data);
304 mem_assign_absolute(lc->restart_source, source_cpu);
305 asm volatile(
306 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
307 " brc 2,0b # busy, try again\n"
308 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
309 " brc 2,1b # busy, try again\n"
310 : : "d" (pcpu->address), "d" (source_cpu),
311 "K" (SIGP_RESTART), "K" (SIGP_STOP)
312 : "0", "1", "cc");
313 for (;;) ;
317 * Enable additional logical cpus for multi-threading.
319 static int pcpu_set_smt(unsigned int mtid)
321 int cc;
323 if (smp_cpu_mtid == mtid)
324 return 0;
325 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
326 if (cc == 0) {
327 smp_cpu_mtid = mtid;
328 smp_cpu_mt_shift = 0;
329 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
330 smp_cpu_mt_shift++;
331 pcpu_devices[0].address = stap();
333 return cc;
337 * Call function on an online CPU.
339 void smp_call_online_cpu(void (*func)(void *), void *data)
341 struct pcpu *pcpu;
343 /* Use the current cpu if it is online. */
344 pcpu = pcpu_find_address(cpu_online_mask, stap());
345 if (!pcpu)
346 /* Use the first online cpu. */
347 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
348 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
352 * Call function on the ipl CPU.
354 void smp_call_ipl_cpu(void (*func)(void *), void *data)
356 pcpu_delegate(&pcpu_devices[0], func, data,
357 pcpu_devices->lowcore->panic_stack -
358 PANIC_FRAME_OFFSET + PAGE_SIZE);
361 int smp_find_processor_id(u16 address)
363 int cpu;
365 for_each_present_cpu(cpu)
366 if (pcpu_devices[cpu].address == address)
367 return cpu;
368 return -1;
371 int smp_vcpu_scheduled(int cpu)
373 return pcpu_running(pcpu_devices + cpu);
376 void smp_yield_cpu(int cpu)
378 if (MACHINE_HAS_DIAG9C) {
379 diag_stat_inc_norecursion(DIAG_STAT_X09C);
380 asm volatile("diag %0,0,0x9c"
381 : : "d" (pcpu_devices[cpu].address));
382 } else if (MACHINE_HAS_DIAG44) {
383 diag_stat_inc_norecursion(DIAG_STAT_X044);
384 asm volatile("diag 0,0,0x44");
389 * Send cpus emergency shutdown signal. This gives the cpus the
390 * opportunity to complete outstanding interrupts.
392 static void smp_emergency_stop(cpumask_t *cpumask)
394 u64 end;
395 int cpu;
397 end = get_tod_clock() + (1000000UL << 12);
398 for_each_cpu(cpu, cpumask) {
399 struct pcpu *pcpu = pcpu_devices + cpu;
400 set_bit(ec_stop_cpu, &pcpu->ec_mask);
401 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
402 0, NULL) == SIGP_CC_BUSY &&
403 get_tod_clock() < end)
404 cpu_relax();
406 while (get_tod_clock() < end) {
407 for_each_cpu(cpu, cpumask)
408 if (pcpu_stopped(pcpu_devices + cpu))
409 cpumask_clear_cpu(cpu, cpumask);
410 if (cpumask_empty(cpumask))
411 break;
412 cpu_relax();
417 * Stop all cpus but the current one.
419 void smp_send_stop(void)
421 cpumask_t cpumask;
422 int cpu;
424 /* Disable all interrupts/machine checks */
425 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
426 trace_hardirqs_off();
428 debug_set_critical();
429 cpumask_copy(&cpumask, cpu_online_mask);
430 cpumask_clear_cpu(smp_processor_id(), &cpumask);
432 if (oops_in_progress)
433 smp_emergency_stop(&cpumask);
435 /* stop all processors */
436 for_each_cpu(cpu, &cpumask) {
437 struct pcpu *pcpu = pcpu_devices + cpu;
438 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
439 while (!pcpu_stopped(pcpu))
440 cpu_relax();
445 * This is the main routine where commands issued by other
446 * cpus are handled.
448 static void smp_handle_ext_call(void)
450 unsigned long bits;
452 /* handle bit signal external calls */
453 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
454 if (test_bit(ec_stop_cpu, &bits))
455 smp_stop_cpu();
456 if (test_bit(ec_schedule, &bits))
457 scheduler_ipi();
458 if (test_bit(ec_call_function_single, &bits))
459 generic_smp_call_function_single_interrupt();
462 static void do_ext_call_interrupt(struct ext_code ext_code,
463 unsigned int param32, unsigned long param64)
465 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
466 smp_handle_ext_call();
469 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
471 int cpu;
473 for_each_cpu(cpu, mask)
474 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
477 void arch_send_call_function_single_ipi(int cpu)
479 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
483 * this function sends a 'reschedule' IPI to another CPU.
484 * it goes straight through and wastes no time serializing
485 * anything. Worst case is that we lose a reschedule ...
487 void smp_send_reschedule(int cpu)
489 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
493 * parameter area for the set/clear control bit callbacks
495 struct ec_creg_mask_parms {
496 unsigned long orval;
497 unsigned long andval;
498 int cr;
502 * callback for setting/clearing control bits
504 static void smp_ctl_bit_callback(void *info)
506 struct ec_creg_mask_parms *pp = info;
507 unsigned long cregs[16];
509 __ctl_store(cregs, 0, 15);
510 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
511 __ctl_load(cregs, 0, 15);
515 * Set a bit in a control register of all cpus
517 void smp_ctl_set_bit(int cr, int bit)
519 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
521 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
523 EXPORT_SYMBOL(smp_ctl_set_bit);
526 * Clear a bit in a control register of all cpus
528 void smp_ctl_clear_bit(int cr, int bit)
530 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
532 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
534 EXPORT_SYMBOL(smp_ctl_clear_bit);
536 #ifdef CONFIG_CRASH_DUMP
538 int smp_store_status(int cpu)
540 struct pcpu *pcpu = pcpu_devices + cpu;
541 unsigned long pa;
543 pa = __pa(&pcpu->lowcore->floating_pt_save_area);
544 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
545 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
546 return -EIO;
547 if (!MACHINE_HAS_VX)
548 return 0;
549 pa = __pa(pcpu->lowcore->vector_save_area_addr);
550 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
551 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
552 return -EIO;
553 return 0;
557 * Collect CPU state of the previous, crashed system.
558 * There are four cases:
559 * 1) standard zfcp dump
560 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
561 * The state for all CPUs except the boot CPU needs to be collected
562 * with sigp stop-and-store-status. The boot CPU state is located in
563 * the absolute lowcore of the memory stored in the HSA. The zcore code
564 * will copy the boot CPU state from the HSA.
565 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
566 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
567 * The state for all CPUs except the boot CPU needs to be collected
568 * with sigp stop-and-store-status. The firmware or the boot-loader
569 * stored the registers of the boot CPU in the absolute lowcore in the
570 * memory of the old system.
571 * 3) kdump and the old kernel did not store the CPU state,
572 * or stand-alone kdump for DASD
573 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
574 * The state for all CPUs except the boot CPU needs to be collected
575 * with sigp stop-and-store-status. The kexec code or the boot-loader
576 * stored the registers of the boot CPU in the memory of the old system.
577 * 4) kdump and the old kernel stored the CPU state
578 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
579 * This case does not exist for s390 anymore, setup_arch explicitly
580 * deactivates the elfcorehdr= kernel parameter
582 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
583 bool is_boot_cpu, unsigned long page)
585 __vector128 *vxrs = (__vector128 *) page;
587 if (is_boot_cpu)
588 vxrs = boot_cpu_vector_save_area;
589 else
590 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
591 save_area_add_vxrs(sa, vxrs);
594 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
595 bool is_boot_cpu, unsigned long page)
597 void *regs = (void *) page;
599 if (is_boot_cpu)
600 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
601 else
602 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
603 save_area_add_regs(sa, regs);
606 void __init smp_save_dump_cpus(void)
608 int addr, boot_cpu_addr, max_cpu_addr;
609 struct save_area *sa;
610 unsigned long page;
611 bool is_boot_cpu;
613 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
614 /* No previous system present, normal boot. */
615 return;
616 /* Allocate a page as dumping area for the store status sigps */
617 page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
618 /* Set multi-threading state to the previous system. */
619 pcpu_set_smt(sclp.mtid_prev);
620 boot_cpu_addr = stap();
621 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
622 for (addr = 0; addr <= max_cpu_addr; addr++) {
623 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
624 SIGP_CC_NOT_OPERATIONAL)
625 continue;
626 is_boot_cpu = (addr == boot_cpu_addr);
627 /* Allocate save area */
628 sa = save_area_alloc(is_boot_cpu);
629 if (!sa)
630 panic("could not allocate memory for save area\n");
631 if (MACHINE_HAS_VX)
632 /* Get the vector registers */
633 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
635 * For a zfcp dump OLDMEM_BASE == NULL and the registers
636 * of the boot CPU are stored in the HSA. To retrieve
637 * these registers an SCLP request is required which is
638 * done by drivers/s390/char/zcore.c:init_cpu_info()
640 if (!is_boot_cpu || OLDMEM_BASE)
641 /* Get the CPU registers */
642 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
644 memblock_free(page, PAGE_SIZE);
645 diag308_reset();
646 pcpu_set_smt(0);
648 #endif /* CONFIG_CRASH_DUMP */
650 void smp_cpu_set_polarization(int cpu, int val)
652 pcpu_devices[cpu].polarization = val;
655 int smp_cpu_get_polarization(int cpu)
657 return pcpu_devices[cpu].polarization;
660 static struct sclp_core_info *smp_get_core_info(void)
662 static int use_sigp_detection;
663 struct sclp_core_info *info;
664 int address;
666 info = kzalloc(sizeof(*info), GFP_KERNEL);
667 if (info && (use_sigp_detection || sclp_get_core_info(info))) {
668 use_sigp_detection = 1;
669 for (address = 0;
670 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
671 address += (1U << smp_cpu_mt_shift)) {
672 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
673 SIGP_CC_NOT_OPERATIONAL)
674 continue;
675 info->core[info->configured].core_id =
676 address >> smp_cpu_mt_shift;
677 info->configured++;
679 info->combined = info->configured;
681 return info;
684 static int smp_add_present_cpu(int cpu);
686 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
688 struct pcpu *pcpu;
689 cpumask_t avail;
690 int cpu, nr, i, j;
691 u16 address;
693 nr = 0;
694 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
695 cpu = cpumask_first(&avail);
696 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
697 if (sclp.has_core_type && info->core[i].type != boot_core_type)
698 continue;
699 address = info->core[i].core_id << smp_cpu_mt_shift;
700 for (j = 0; j <= smp_cpu_mtid; j++) {
701 if (pcpu_find_address(cpu_present_mask, address + j))
702 continue;
703 pcpu = pcpu_devices + cpu;
704 pcpu->address = address + j;
705 pcpu->state =
706 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
707 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
708 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
709 set_cpu_present(cpu, true);
710 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
711 set_cpu_present(cpu, false);
712 else
713 nr++;
714 cpu = cpumask_next(cpu, &avail);
715 if (cpu >= nr_cpu_ids)
716 break;
719 return nr;
722 static void __init smp_detect_cpus(void)
724 unsigned int cpu, mtid, c_cpus, s_cpus;
725 struct sclp_core_info *info;
726 u16 address;
728 /* Get CPU information */
729 info = smp_get_core_info();
730 if (!info)
731 panic("smp_detect_cpus failed to allocate memory\n");
733 /* Find boot CPU type */
734 if (sclp.has_core_type) {
735 address = stap();
736 for (cpu = 0; cpu < info->combined; cpu++)
737 if (info->core[cpu].core_id == address) {
738 /* The boot cpu dictates the cpu type. */
739 boot_core_type = info->core[cpu].type;
740 break;
742 if (cpu >= info->combined)
743 panic("Could not find boot CPU type");
746 /* Set multi-threading state for the current system */
747 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
748 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
749 pcpu_set_smt(mtid);
751 /* Print number of CPUs */
752 c_cpus = s_cpus = 0;
753 for (cpu = 0; cpu < info->combined; cpu++) {
754 if (sclp.has_core_type &&
755 info->core[cpu].type != boot_core_type)
756 continue;
757 if (cpu < info->configured)
758 c_cpus += smp_cpu_mtid + 1;
759 else
760 s_cpus += smp_cpu_mtid + 1;
762 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
764 /* Add CPUs present at boot */
765 get_online_cpus();
766 __smp_rescan_cpus(info, 0);
767 put_online_cpus();
768 kfree(info);
772 * Activate a secondary processor.
774 static void smp_start_secondary(void *cpuvoid)
776 S390_lowcore.last_update_clock = get_tod_clock();
777 S390_lowcore.restart_stack = (unsigned long) restart_stack;
778 S390_lowcore.restart_fn = (unsigned long) do_restart;
779 S390_lowcore.restart_data = 0;
780 S390_lowcore.restart_source = -1UL;
781 restore_access_regs(S390_lowcore.access_regs_save_area);
782 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
783 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
784 cpu_init();
785 preempt_disable();
786 init_cpu_timer();
787 vtime_init();
788 pfault_init();
789 notify_cpu_starting(smp_processor_id());
790 set_cpu_online(smp_processor_id(), true);
791 inc_irq_stat(CPU_RST);
792 local_irq_enable();
793 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
796 /* Upping and downing of CPUs */
797 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
799 struct pcpu *pcpu;
800 int base, i, rc;
802 pcpu = pcpu_devices + cpu;
803 if (pcpu->state != CPU_STATE_CONFIGURED)
804 return -EIO;
805 base = cpu - (cpu % (smp_cpu_mtid + 1));
806 for (i = 0; i <= smp_cpu_mtid; i++) {
807 if (base + i < nr_cpu_ids)
808 if (cpu_online(base + i))
809 break;
812 * If this is the first CPU of the core to get online
813 * do an initial CPU reset.
815 if (i > smp_cpu_mtid &&
816 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
817 SIGP_CC_ORDER_CODE_ACCEPTED)
818 return -EIO;
820 rc = pcpu_alloc_lowcore(pcpu, cpu);
821 if (rc)
822 return rc;
823 pcpu_prepare_secondary(pcpu, cpu);
824 pcpu_attach_task(pcpu, tidle);
825 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
826 /* Wait until cpu puts itself in the online & active maps */
827 while (!cpu_online(cpu))
828 cpu_relax();
829 return 0;
832 static unsigned int setup_possible_cpus __initdata;
834 static int __init _setup_possible_cpus(char *s)
836 get_option(&s, &setup_possible_cpus);
837 return 0;
839 early_param("possible_cpus", _setup_possible_cpus);
841 #ifdef CONFIG_HOTPLUG_CPU
843 int __cpu_disable(void)
845 unsigned long cregs[16];
847 /* Handle possible pending IPIs */
848 smp_handle_ext_call();
849 set_cpu_online(smp_processor_id(), false);
850 /* Disable pseudo page faults on this cpu. */
851 pfault_fini();
852 /* Disable interrupt sources via control register. */
853 __ctl_store(cregs, 0, 15);
854 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
855 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
856 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
857 __ctl_load(cregs, 0, 15);
858 clear_cpu_flag(CIF_NOHZ_DELAY);
859 return 0;
862 void __cpu_die(unsigned int cpu)
864 struct pcpu *pcpu;
866 /* Wait until target cpu is down */
867 pcpu = pcpu_devices + cpu;
868 while (!pcpu_stopped(pcpu))
869 cpu_relax();
870 pcpu_free_lowcore(pcpu);
871 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
872 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
875 void __noreturn cpu_die(void)
877 idle_task_exit();
878 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
879 for (;;) ;
882 #endif /* CONFIG_HOTPLUG_CPU */
884 void __init smp_fill_possible_mask(void)
886 unsigned int possible, sclp_max, cpu;
888 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
889 sclp_max = min(smp_max_threads, sclp_max);
890 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
891 possible = setup_possible_cpus ?: nr_cpu_ids;
892 possible = min(possible, sclp_max);
893 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
894 set_cpu_possible(cpu, true);
897 void __init smp_prepare_cpus(unsigned int max_cpus)
899 /* request the 0x1201 emergency signal external interrupt */
900 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
901 panic("Couldn't request external interrupt 0x1201");
902 /* request the 0x1202 external call external interrupt */
903 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
904 panic("Couldn't request external interrupt 0x1202");
905 smp_detect_cpus();
908 void __init smp_prepare_boot_cpu(void)
910 struct pcpu *pcpu = pcpu_devices;
912 pcpu->state = CPU_STATE_CONFIGURED;
913 pcpu->address = stap();
914 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
915 S390_lowcore.percpu_offset = __per_cpu_offset[0];
916 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
917 set_cpu_present(0, true);
918 set_cpu_online(0, true);
921 void __init smp_cpus_done(unsigned int max_cpus)
925 void __init smp_setup_processor_id(void)
927 S390_lowcore.cpu_nr = 0;
928 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
932 * the frequency of the profiling timer can be changed
933 * by writing a multiplier value into /proc/profile.
935 * usually you want to run this on all CPUs ;)
937 int setup_profiling_timer(unsigned int multiplier)
939 return 0;
942 #ifdef CONFIG_HOTPLUG_CPU
943 static ssize_t cpu_configure_show(struct device *dev,
944 struct device_attribute *attr, char *buf)
946 ssize_t count;
948 mutex_lock(&smp_cpu_state_mutex);
949 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
950 mutex_unlock(&smp_cpu_state_mutex);
951 return count;
954 static ssize_t cpu_configure_store(struct device *dev,
955 struct device_attribute *attr,
956 const char *buf, size_t count)
958 struct pcpu *pcpu;
959 int cpu, val, rc, i;
960 char delim;
962 if (sscanf(buf, "%d %c", &val, &delim) != 1)
963 return -EINVAL;
964 if (val != 0 && val != 1)
965 return -EINVAL;
966 get_online_cpus();
967 mutex_lock(&smp_cpu_state_mutex);
968 rc = -EBUSY;
969 /* disallow configuration changes of online cpus and cpu 0 */
970 cpu = dev->id;
971 cpu -= cpu % (smp_cpu_mtid + 1);
972 if (cpu == 0)
973 goto out;
974 for (i = 0; i <= smp_cpu_mtid; i++)
975 if (cpu_online(cpu + i))
976 goto out;
977 pcpu = pcpu_devices + cpu;
978 rc = 0;
979 switch (val) {
980 case 0:
981 if (pcpu->state != CPU_STATE_CONFIGURED)
982 break;
983 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
984 if (rc)
985 break;
986 for (i = 0; i <= smp_cpu_mtid; i++) {
987 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
988 continue;
989 pcpu[i].state = CPU_STATE_STANDBY;
990 smp_cpu_set_polarization(cpu + i,
991 POLARIZATION_UNKNOWN);
993 topology_expect_change();
994 break;
995 case 1:
996 if (pcpu->state != CPU_STATE_STANDBY)
997 break;
998 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
999 if (rc)
1000 break;
1001 for (i = 0; i <= smp_cpu_mtid; i++) {
1002 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1003 continue;
1004 pcpu[i].state = CPU_STATE_CONFIGURED;
1005 smp_cpu_set_polarization(cpu + i,
1006 POLARIZATION_UNKNOWN);
1008 topology_expect_change();
1009 break;
1010 default:
1011 break;
1013 out:
1014 mutex_unlock(&smp_cpu_state_mutex);
1015 put_online_cpus();
1016 return rc ? rc : count;
1018 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1019 #endif /* CONFIG_HOTPLUG_CPU */
1021 static ssize_t show_cpu_address(struct device *dev,
1022 struct device_attribute *attr, char *buf)
1024 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1026 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1028 static struct attribute *cpu_common_attrs[] = {
1029 #ifdef CONFIG_HOTPLUG_CPU
1030 &dev_attr_configure.attr,
1031 #endif
1032 &dev_attr_address.attr,
1033 NULL,
1036 static struct attribute_group cpu_common_attr_group = {
1037 .attrs = cpu_common_attrs,
1040 static struct attribute *cpu_online_attrs[] = {
1041 &dev_attr_idle_count.attr,
1042 &dev_attr_idle_time_us.attr,
1043 NULL,
1046 static struct attribute_group cpu_online_attr_group = {
1047 .attrs = cpu_online_attrs,
1050 static int smp_cpu_notify(struct notifier_block *self, unsigned long action,
1051 void *hcpu)
1053 unsigned int cpu = (unsigned int)(long)hcpu;
1054 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1055 int err = 0;
1057 switch (action & ~CPU_TASKS_FROZEN) {
1058 case CPU_ONLINE:
1059 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1060 break;
1061 case CPU_DEAD:
1062 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1063 break;
1065 return notifier_from_errno(err);
1068 static int smp_add_present_cpu(int cpu)
1070 struct device *s;
1071 struct cpu *c;
1072 int rc;
1074 c = kzalloc(sizeof(*c), GFP_KERNEL);
1075 if (!c)
1076 return -ENOMEM;
1077 per_cpu(cpu_device, cpu) = c;
1078 s = &c->dev;
1079 c->hotpluggable = 1;
1080 rc = register_cpu(c, cpu);
1081 if (rc)
1082 goto out;
1083 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1084 if (rc)
1085 goto out_cpu;
1086 if (cpu_online(cpu)) {
1087 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1088 if (rc)
1089 goto out_online;
1091 rc = topology_cpu_init(c);
1092 if (rc)
1093 goto out_topology;
1094 return 0;
1096 out_topology:
1097 if (cpu_online(cpu))
1098 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1099 out_online:
1100 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1101 out_cpu:
1102 #ifdef CONFIG_HOTPLUG_CPU
1103 unregister_cpu(c);
1104 #endif
1105 out:
1106 return rc;
1109 #ifdef CONFIG_HOTPLUG_CPU
1111 int __ref smp_rescan_cpus(void)
1113 struct sclp_core_info *info;
1114 int nr;
1116 info = smp_get_core_info();
1117 if (!info)
1118 return -ENOMEM;
1119 get_online_cpus();
1120 mutex_lock(&smp_cpu_state_mutex);
1121 nr = __smp_rescan_cpus(info, 1);
1122 mutex_unlock(&smp_cpu_state_mutex);
1123 put_online_cpus();
1124 kfree(info);
1125 if (nr)
1126 topology_schedule_update();
1127 return 0;
1130 static ssize_t __ref rescan_store(struct device *dev,
1131 struct device_attribute *attr,
1132 const char *buf,
1133 size_t count)
1135 int rc;
1137 rc = smp_rescan_cpus();
1138 return rc ? rc : count;
1140 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1141 #endif /* CONFIG_HOTPLUG_CPU */
1143 static int __init s390_smp_init(void)
1145 int cpu, rc = 0;
1147 #ifdef CONFIG_HOTPLUG_CPU
1148 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1149 if (rc)
1150 return rc;
1151 #endif
1152 cpu_notifier_register_begin();
1153 for_each_present_cpu(cpu) {
1154 rc = smp_add_present_cpu(cpu);
1155 if (rc)
1156 goto out;
1159 __hotcpu_notifier(smp_cpu_notify, 0);
1161 out:
1162 cpu_notifier_register_done();
1163 return rc;
1165 subsys_initcall(s390_smp_init);