hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / acpi / processor_idle.c
blob2237d3f24f0e735a1e04294ea273595cce98e049
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26 #define pr_fmt(fmt) "ACPI: " fmt
28 #include <linux/module.h>
29 #include <linux/acpi.h>
30 #include <linux/dmi.h>
31 #include <linux/sched.h> /* need_resched() */
32 #include <linux/tick.h>
33 #include <linux/cpuidle.h>
34 #include <linux/cpu.h>
35 #include <acpi/processor.h>
38 * Include the apic definitions for x86 to have the APIC timer related defines
39 * available also for UP (on SMP it gets magically included via linux/smp.h).
40 * asm/acpi.h is not an option, as it would require more include magic. Also
41 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
43 #ifdef CONFIG_X86
44 #include <asm/apic.h>
45 #endif
47 #define ACPI_PROCESSOR_CLASS "processor"
48 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
49 ACPI_MODULE_NAME("processor_idle");
51 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
52 module_param(max_cstate, uint, 0000);
53 static unsigned int nocst __read_mostly;
54 module_param(nocst, uint, 0000);
55 static int bm_check_disable __read_mostly;
56 module_param(bm_check_disable, uint, 0000);
58 static unsigned int latency_factor __read_mostly = 2;
59 module_param(latency_factor, uint, 0644);
61 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
63 struct cpuidle_driver acpi_idle_driver = {
64 .name = "acpi_idle",
65 .owner = THIS_MODULE,
68 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
69 static
70 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
72 static int disabled_by_idle_boot_param(void)
74 return boot_option_idle_override == IDLE_POLL ||
75 boot_option_idle_override == IDLE_HALT;
79 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
80 * For now disable this. Probably a bug somewhere else.
82 * To skip this limit, boot/load with a large max_cstate limit.
84 static int set_max_cstate(const struct dmi_system_id *id)
86 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
87 return 0;
89 pr_notice("%s detected - limiting to C%ld max_cstate."
90 " Override with \"processor.max_cstate=%d\"\n", id->ident,
91 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
93 max_cstate = (long)id->driver_data;
95 return 0;
98 static const struct dmi_system_id processor_power_dmi_table[] = {
99 { set_max_cstate, "Clevo 5600D", {
100 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
101 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
102 (void *)2},
103 { set_max_cstate, "Pavilion zv5000", {
104 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
105 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
106 (void *)1},
107 { set_max_cstate, "Asus L8400B", {
108 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
109 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
110 (void *)1},
116 * Callers should disable interrupts before the call and enable
117 * interrupts after return.
119 static void __cpuidle acpi_safe_halt(void)
121 if (!tif_need_resched()) {
122 safe_halt();
123 local_irq_disable();
127 #ifdef ARCH_APICTIMER_STOPS_ON_C3
130 * Some BIOS implementations switch to C3 in the published C2 state.
131 * This seems to be a common problem on AMD boxen, but other vendors
132 * are affected too. We pick the most conservative approach: we assume
133 * that the local APIC stops in both C2 and C3.
135 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
136 struct acpi_processor_cx *cx)
138 struct acpi_processor_power *pwr = &pr->power;
139 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
141 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
142 return;
144 if (amd_e400_c1e_detected)
145 type = ACPI_STATE_C1;
148 * Check, if one of the previous states already marked the lapic
149 * unstable
151 if (pwr->timer_broadcast_on_state < state)
152 return;
154 if (cx->type >= type)
155 pr->power.timer_broadcast_on_state = state;
158 static void __lapic_timer_propagate_broadcast(void *arg)
160 struct acpi_processor *pr = (struct acpi_processor *) arg;
162 if (pr->power.timer_broadcast_on_state < INT_MAX)
163 tick_broadcast_enable();
164 else
165 tick_broadcast_disable();
168 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
170 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
171 (void *)pr, 1);
174 /* Power(C) State timer broadcast control */
175 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
176 struct acpi_processor_cx *cx,
177 int broadcast)
179 int state = cx - pr->power.states;
181 if (state >= pr->power.timer_broadcast_on_state) {
182 if (broadcast)
183 tick_broadcast_enter();
184 else
185 tick_broadcast_exit();
189 #else
191 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
192 struct acpi_processor_cx *cstate) { }
193 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
194 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
195 struct acpi_processor_cx *cx,
196 int broadcast)
200 #endif
202 #if defined(CONFIG_X86)
203 static void tsc_check_state(int state)
205 switch (boot_cpu_data.x86_vendor) {
206 case X86_VENDOR_AMD:
207 case X86_VENDOR_INTEL:
209 * AMD Fam10h TSC will tick in all
210 * C/P/S0/S1 states when this bit is set.
212 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
213 return;
215 /*FALL THROUGH*/
216 default:
217 /* TSC could halt in idle, so notify users */
218 if (state > ACPI_STATE_C1)
219 mark_tsc_unstable("TSC halts in idle");
222 #else
223 static void tsc_check_state(int state) { return; }
224 #endif
226 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
229 if (!pr->pblk)
230 return -ENODEV;
232 /* if info is obtained from pblk/fadt, type equals state */
233 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
234 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
236 #ifndef CONFIG_HOTPLUG_CPU
238 * Check for P_LVL2_UP flag before entering C2 and above on
239 * an SMP system.
241 if ((num_online_cpus() > 1) &&
242 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
243 return -ENODEV;
244 #endif
246 /* determine C2 and C3 address from pblk */
247 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
248 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
250 /* determine latencies from FADT */
251 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
252 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
255 * FADT specified C2 latency must be less than or equal to
256 * 100 microseconds.
258 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
259 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
260 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
261 /* invalidate C2 */
262 pr->power.states[ACPI_STATE_C2].address = 0;
266 * FADT supplied C3 latency must be less than or equal to
267 * 1000 microseconds.
269 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
270 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
271 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
272 /* invalidate C3 */
273 pr->power.states[ACPI_STATE_C3].address = 0;
276 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
277 "lvl2[0x%08x] lvl3[0x%08x]\n",
278 pr->power.states[ACPI_STATE_C2].address,
279 pr->power.states[ACPI_STATE_C3].address));
281 return 0;
284 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
286 if (!pr->power.states[ACPI_STATE_C1].valid) {
287 /* set the first C-State to C1 */
288 /* all processors need to support C1 */
289 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
290 pr->power.states[ACPI_STATE_C1].valid = 1;
291 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
293 /* the C0 state only exists as a filler in our array */
294 pr->power.states[ACPI_STATE_C0].valid = 1;
295 return 0;
298 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
300 acpi_status status;
301 u64 count;
302 int current_count;
303 int i, ret = 0;
304 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
305 union acpi_object *cst;
307 if (nocst)
308 return -ENODEV;
310 current_count = 0;
312 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
313 if (ACPI_FAILURE(status)) {
314 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
315 return -ENODEV;
318 cst = buffer.pointer;
320 /* There must be at least 2 elements */
321 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
322 pr_err("not enough elements in _CST\n");
323 ret = -EFAULT;
324 goto end;
327 count = cst->package.elements[0].integer.value;
329 /* Validate number of power states. */
330 if (count < 1 || count != cst->package.count - 1) {
331 pr_err("count given by _CST is not valid\n");
332 ret = -EFAULT;
333 goto end;
336 /* Tell driver that at least _CST is supported. */
337 pr->flags.has_cst = 1;
339 for (i = 1; i <= count; i++) {
340 union acpi_object *element;
341 union acpi_object *obj;
342 struct acpi_power_register *reg;
343 struct acpi_processor_cx cx;
345 memset(&cx, 0, sizeof(cx));
347 element = &(cst->package.elements[i]);
348 if (element->type != ACPI_TYPE_PACKAGE)
349 continue;
351 if (element->package.count != 4)
352 continue;
354 obj = &(element->package.elements[0]);
356 if (obj->type != ACPI_TYPE_BUFFER)
357 continue;
359 reg = (struct acpi_power_register *)obj->buffer.pointer;
361 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
362 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
363 continue;
365 /* There should be an easy way to extract an integer... */
366 obj = &(element->package.elements[1]);
367 if (obj->type != ACPI_TYPE_INTEGER)
368 continue;
370 cx.type = obj->integer.value;
372 * Some buggy BIOSes won't list C1 in _CST -
373 * Let acpi_processor_get_power_info_default() handle them later
375 if (i == 1 && cx.type != ACPI_STATE_C1)
376 current_count++;
378 cx.address = reg->address;
379 cx.index = current_count + 1;
381 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
382 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
383 if (acpi_processor_ffh_cstate_probe
384 (pr->id, &cx, reg) == 0) {
385 cx.entry_method = ACPI_CSTATE_FFH;
386 } else if (cx.type == ACPI_STATE_C1) {
388 * C1 is a special case where FIXED_HARDWARE
389 * can be handled in non-MWAIT way as well.
390 * In that case, save this _CST entry info.
391 * Otherwise, ignore this info and continue.
393 cx.entry_method = ACPI_CSTATE_HALT;
394 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
395 } else {
396 continue;
398 if (cx.type == ACPI_STATE_C1 &&
399 (boot_option_idle_override == IDLE_NOMWAIT)) {
401 * In most cases the C1 space_id obtained from
402 * _CST object is FIXED_HARDWARE access mode.
403 * But when the option of idle=halt is added,
404 * the entry_method type should be changed from
405 * CSTATE_FFH to CSTATE_HALT.
406 * When the option of idle=nomwait is added,
407 * the C1 entry_method type should be
408 * CSTATE_HALT.
410 cx.entry_method = ACPI_CSTATE_HALT;
411 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
413 } else {
414 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
415 cx.address);
418 if (cx.type == ACPI_STATE_C1) {
419 cx.valid = 1;
422 obj = &(element->package.elements[2]);
423 if (obj->type != ACPI_TYPE_INTEGER)
424 continue;
426 cx.latency = obj->integer.value;
428 obj = &(element->package.elements[3]);
429 if (obj->type != ACPI_TYPE_INTEGER)
430 continue;
432 current_count++;
433 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
436 * We support total ACPI_PROCESSOR_MAX_POWER - 1
437 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
439 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
440 pr_warn("Limiting number of power states to max (%d)\n",
441 ACPI_PROCESSOR_MAX_POWER);
442 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
443 break;
447 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
448 current_count));
450 /* Validate number of power states discovered */
451 if (current_count < 2)
452 ret = -EFAULT;
454 end:
455 kfree(buffer.pointer);
457 return ret;
460 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
461 struct acpi_processor_cx *cx)
463 static int bm_check_flag = -1;
464 static int bm_control_flag = -1;
467 if (!cx->address)
468 return;
471 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
472 * DMA transfers are used by any ISA device to avoid livelock.
473 * Note that we could disable Type-F DMA (as recommended by
474 * the erratum), but this is known to disrupt certain ISA
475 * devices thus we take the conservative approach.
477 else if (errata.piix4.fdma) {
478 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
479 "C3 not supported on PIIX4 with Type-F DMA\n"));
480 return;
483 /* All the logic here assumes flags.bm_check is same across all CPUs */
484 if (bm_check_flag == -1) {
485 /* Determine whether bm_check is needed based on CPU */
486 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
487 bm_check_flag = pr->flags.bm_check;
488 bm_control_flag = pr->flags.bm_control;
489 } else {
490 pr->flags.bm_check = bm_check_flag;
491 pr->flags.bm_control = bm_control_flag;
494 if (pr->flags.bm_check) {
495 if (!pr->flags.bm_control) {
496 if (pr->flags.has_cst != 1) {
497 /* bus mastering control is necessary */
498 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
499 "C3 support requires BM control\n"));
500 return;
501 } else {
502 /* Here we enter C3 without bus mastering */
503 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
504 "C3 support without BM control\n"));
507 } else {
509 * WBINVD should be set in fadt, for C3 state to be
510 * supported on when bm_check is not required.
512 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
513 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
514 "Cache invalidation should work properly"
515 " for C3 to be enabled on SMP systems\n"));
516 return;
521 * Otherwise we've met all of our C3 requirements.
522 * Normalize the C3 latency to expidite policy. Enable
523 * checking of bus mastering status (bm_check) so we can
524 * use this in our C3 policy
526 cx->valid = 1;
529 * On older chipsets, BM_RLD needs to be set
530 * in order for Bus Master activity to wake the
531 * system from C3. Newer chipsets handle DMA
532 * during C3 automatically and BM_RLD is a NOP.
533 * In either case, the proper way to
534 * handle BM_RLD is to set it and leave it set.
536 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
538 return;
541 static int acpi_processor_power_verify(struct acpi_processor *pr)
543 unsigned int i;
544 unsigned int working = 0;
546 pr->power.timer_broadcast_on_state = INT_MAX;
548 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
549 struct acpi_processor_cx *cx = &pr->power.states[i];
551 switch (cx->type) {
552 case ACPI_STATE_C1:
553 cx->valid = 1;
554 break;
556 case ACPI_STATE_C2:
557 if (!cx->address)
558 break;
559 cx->valid = 1;
560 break;
562 case ACPI_STATE_C3:
563 acpi_processor_power_verify_c3(pr, cx);
564 break;
566 if (!cx->valid)
567 continue;
569 lapic_timer_check_state(i, pr, cx);
570 tsc_check_state(cx->type);
571 working++;
574 lapic_timer_propagate_broadcast(pr);
576 return (working);
579 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
581 unsigned int i;
582 int result;
585 /* NOTE: the idle thread may not be running while calling
586 * this function */
588 /* Zero initialize all the C-states info. */
589 memset(pr->power.states, 0, sizeof(pr->power.states));
591 result = acpi_processor_get_power_info_cst(pr);
592 if (result == -ENODEV)
593 result = acpi_processor_get_power_info_fadt(pr);
595 if (result)
596 return result;
598 acpi_processor_get_power_info_default(pr);
600 pr->power.count = acpi_processor_power_verify(pr);
603 * if one state of type C2 or C3 is available, mark this
604 * CPU as being "idle manageable"
606 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
607 if (pr->power.states[i].valid) {
608 pr->power.count = i;
609 if (pr->power.states[i].type >= ACPI_STATE_C2)
610 pr->flags.power = 1;
614 return 0;
618 * acpi_idle_bm_check - checks if bus master activity was detected
620 static int acpi_idle_bm_check(void)
622 u32 bm_status = 0;
624 if (bm_check_disable)
625 return 0;
627 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
628 if (bm_status)
629 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
631 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
632 * the true state of bus mastering activity; forcing us to
633 * manually check the BMIDEA bit of each IDE channel.
635 else if (errata.piix4.bmisx) {
636 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
637 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
638 bm_status = 1;
640 return bm_status;
644 * acpi_idle_do_entry - enter idle state using the appropriate method
645 * @cx: cstate data
647 * Caller disables interrupt before call and enables interrupt after return.
649 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
651 if (cx->entry_method == ACPI_CSTATE_FFH) {
652 /* Call into architectural FFH based C-state */
653 acpi_processor_ffh_cstate_enter(cx);
654 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
655 acpi_safe_halt();
656 } else {
657 /* IO port based C-state */
658 inb(cx->address);
659 /* Dummy wait op - must do something useless after P_LVL2 read
660 because chipsets cannot guarantee that STPCLK# signal
661 gets asserted in time to freeze execution properly. */
662 inl(acpi_gbl_FADT.xpm_timer_block.address);
667 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
668 * @dev: the target CPU
669 * @index: the index of suggested state
671 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
673 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
675 ACPI_FLUSH_CPU_CACHE();
677 while (1) {
679 if (cx->entry_method == ACPI_CSTATE_HALT)
680 safe_halt();
681 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
682 inb(cx->address);
683 /* See comment in acpi_idle_do_entry() */
684 inl(acpi_gbl_FADT.xpm_timer_block.address);
685 } else
686 return -ENODEV;
689 /* Never reached */
690 return 0;
693 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
695 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
696 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
699 static int c3_cpu_count;
700 static DEFINE_RAW_SPINLOCK(c3_lock);
703 * acpi_idle_enter_bm - enters C3 with proper BM handling
704 * @pr: Target processor
705 * @cx: Target state context
706 * @timer_bc: Whether or not to change timer mode to broadcast
708 static void acpi_idle_enter_bm(struct acpi_processor *pr,
709 struct acpi_processor_cx *cx, bool timer_bc)
711 acpi_unlazy_tlb(smp_processor_id());
714 * Must be done before busmaster disable as we might need to
715 * access HPET !
717 if (timer_bc)
718 lapic_timer_state_broadcast(pr, cx, 1);
721 * disable bus master
722 * bm_check implies we need ARB_DIS
723 * bm_control implies whether we can do ARB_DIS
725 * That leaves a case where bm_check is set and bm_control is
726 * not set. In that case we cannot do much, we enter C3
727 * without doing anything.
729 if (pr->flags.bm_control) {
730 raw_spin_lock(&c3_lock);
731 c3_cpu_count++;
732 /* Disable bus master arbitration when all CPUs are in C3 */
733 if (c3_cpu_count == num_online_cpus())
734 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
735 raw_spin_unlock(&c3_lock);
738 acpi_idle_do_entry(cx);
740 /* Re-enable bus master arbitration */
741 if (pr->flags.bm_control) {
742 raw_spin_lock(&c3_lock);
743 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
744 c3_cpu_count--;
745 raw_spin_unlock(&c3_lock);
748 if (timer_bc)
749 lapic_timer_state_broadcast(pr, cx, 0);
752 static int acpi_idle_enter(struct cpuidle_device *dev,
753 struct cpuidle_driver *drv, int index)
755 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
756 struct acpi_processor *pr;
758 pr = __this_cpu_read(processors);
759 if (unlikely(!pr))
760 return -EINVAL;
762 if (cx->type != ACPI_STATE_C1) {
763 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
764 index = CPUIDLE_DRIVER_STATE_START;
765 cx = per_cpu(acpi_cstate[index], dev->cpu);
766 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
767 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
768 acpi_idle_enter_bm(pr, cx, true);
769 return index;
770 } else if (drv->safe_state_index >= 0) {
771 index = drv->safe_state_index;
772 cx = per_cpu(acpi_cstate[index], dev->cpu);
773 } else {
774 acpi_safe_halt();
775 return -EBUSY;
780 lapic_timer_state_broadcast(pr, cx, 1);
782 if (cx->type == ACPI_STATE_C3)
783 ACPI_FLUSH_CPU_CACHE();
785 acpi_idle_do_entry(cx);
787 lapic_timer_state_broadcast(pr, cx, 0);
789 return index;
792 static void acpi_idle_enter_freeze(struct cpuidle_device *dev,
793 struct cpuidle_driver *drv, int index)
795 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
797 if (cx->type == ACPI_STATE_C3) {
798 struct acpi_processor *pr = __this_cpu_read(processors);
800 if (unlikely(!pr))
801 return;
803 if (pr->flags.bm_check) {
804 acpi_idle_enter_bm(pr, cx, false);
805 return;
806 } else {
807 ACPI_FLUSH_CPU_CACHE();
810 acpi_idle_do_entry(cx);
813 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
814 struct cpuidle_device *dev)
816 int i, count = CPUIDLE_DRIVER_STATE_START;
817 struct acpi_processor_cx *cx;
819 if (max_cstate == 0)
820 max_cstate = 1;
822 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
823 cx = &pr->power.states[i];
825 if (!cx->valid)
826 continue;
828 per_cpu(acpi_cstate[count], dev->cpu) = cx;
830 count++;
831 if (count == CPUIDLE_STATE_MAX)
832 break;
835 if (!count)
836 return -EINVAL;
838 return 0;
841 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
843 int i, count = CPUIDLE_DRIVER_STATE_START;
844 struct acpi_processor_cx *cx;
845 struct cpuidle_state *state;
846 struct cpuidle_driver *drv = &acpi_idle_driver;
848 if (max_cstate == 0)
849 max_cstate = 1;
851 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
852 cx = &pr->power.states[i];
854 if (!cx->valid)
855 continue;
857 state = &drv->states[count];
858 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
859 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
860 state->exit_latency = cx->latency;
861 state->target_residency = cx->latency * latency_factor;
862 state->enter = acpi_idle_enter;
864 state->flags = 0;
865 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
866 state->enter_dead = acpi_idle_play_dead;
867 drv->safe_state_index = count;
870 * Halt-induced C1 is not good for ->enter_freeze, because it
871 * re-enables interrupts on exit. Moreover, C1 is generally not
872 * particularly interesting from the suspend-to-idle angle, so
873 * avoid C1 and the situations in which we may need to fall back
874 * to it altogether.
876 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
877 state->enter_freeze = acpi_idle_enter_freeze;
879 count++;
880 if (count == CPUIDLE_STATE_MAX)
881 break;
884 drv->state_count = count;
886 if (!count)
887 return -EINVAL;
889 return 0;
892 static inline void acpi_processor_cstate_first_run_checks(void)
894 acpi_status status;
895 static int first_run;
897 if (first_run)
898 return;
899 dmi_check_system(processor_power_dmi_table);
900 max_cstate = acpi_processor_cstate_check(max_cstate);
901 if (max_cstate < ACPI_C_STATES_MAX)
902 pr_notice("ACPI: processor limited to max C-state %d\n",
903 max_cstate);
904 first_run++;
906 if (acpi_gbl_FADT.cst_control && !nocst) {
907 status = acpi_os_write_port(acpi_gbl_FADT.smi_command,
908 acpi_gbl_FADT.cst_control, 8);
909 if (ACPI_FAILURE(status))
910 ACPI_EXCEPTION((AE_INFO, status,
911 "Notifying BIOS of _CST ability failed"));
914 #else
916 static inline int disabled_by_idle_boot_param(void) { return 0; }
917 static inline void acpi_processor_cstate_first_run_checks(void) { }
918 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
920 return -ENODEV;
923 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
924 struct cpuidle_device *dev)
926 return -EINVAL;
929 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
931 return -EINVAL;
934 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
936 struct acpi_lpi_states_array {
937 unsigned int size;
938 unsigned int composite_states_size;
939 struct acpi_lpi_state *entries;
940 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
943 static int obj_get_integer(union acpi_object *obj, u32 *value)
945 if (obj->type != ACPI_TYPE_INTEGER)
946 return -EINVAL;
948 *value = obj->integer.value;
949 return 0;
952 static int acpi_processor_evaluate_lpi(acpi_handle handle,
953 struct acpi_lpi_states_array *info)
955 acpi_status status;
956 int ret = 0;
957 int pkg_count, state_idx = 1, loop;
958 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
959 union acpi_object *lpi_data;
960 struct acpi_lpi_state *lpi_state;
962 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
963 if (ACPI_FAILURE(status)) {
964 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
965 return -ENODEV;
968 lpi_data = buffer.pointer;
970 /* There must be at least 4 elements = 3 elements + 1 package */
971 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
972 lpi_data->package.count < 4) {
973 pr_debug("not enough elements in _LPI\n");
974 ret = -ENODATA;
975 goto end;
978 pkg_count = lpi_data->package.elements[2].integer.value;
980 /* Validate number of power states. */
981 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
982 pr_debug("count given by _LPI is not valid\n");
983 ret = -ENODATA;
984 goto end;
987 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
988 if (!lpi_state) {
989 ret = -ENOMEM;
990 goto end;
993 info->size = pkg_count;
994 info->entries = lpi_state;
996 /* LPI States start at index 3 */
997 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
998 union acpi_object *element, *pkg_elem, *obj;
1000 element = &lpi_data->package.elements[loop];
1001 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
1002 continue;
1004 pkg_elem = element->package.elements;
1006 obj = pkg_elem + 6;
1007 if (obj->type == ACPI_TYPE_BUFFER) {
1008 struct acpi_power_register *reg;
1010 reg = (struct acpi_power_register *)obj->buffer.pointer;
1011 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
1012 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
1013 continue;
1015 lpi_state->address = reg->address;
1016 lpi_state->entry_method =
1017 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
1018 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
1019 } else if (obj->type == ACPI_TYPE_INTEGER) {
1020 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
1021 lpi_state->address = obj->integer.value;
1022 } else {
1023 continue;
1026 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
1028 obj = pkg_elem + 9;
1029 if (obj->type == ACPI_TYPE_STRING)
1030 strlcpy(lpi_state->desc, obj->string.pointer,
1031 ACPI_CX_DESC_LEN);
1033 lpi_state->index = state_idx;
1034 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
1035 pr_debug("No min. residency found, assuming 10 us\n");
1036 lpi_state->min_residency = 10;
1039 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
1040 pr_debug("No wakeup residency found, assuming 10 us\n");
1041 lpi_state->wake_latency = 10;
1044 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
1045 lpi_state->flags = 0;
1047 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
1048 lpi_state->arch_flags = 0;
1050 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
1051 lpi_state->res_cnt_freq = 1;
1053 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
1054 lpi_state->enable_parent_state = 0;
1057 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
1058 end:
1059 kfree(buffer.pointer);
1060 return ret;
1064 * flat_state_cnt - the number of composite LPI states after the process of flattening
1066 static int flat_state_cnt;
1069 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
1071 * @local: local LPI state
1072 * @parent: parent LPI state
1073 * @result: composite LPI state
1075 static bool combine_lpi_states(struct acpi_lpi_state *local,
1076 struct acpi_lpi_state *parent,
1077 struct acpi_lpi_state *result)
1079 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
1080 if (!parent->address) /* 0 means autopromotable */
1081 return false;
1082 result->address = local->address + parent->address;
1083 } else {
1084 result->address = parent->address;
1087 result->min_residency = max(local->min_residency, parent->min_residency);
1088 result->wake_latency = local->wake_latency + parent->wake_latency;
1089 result->enable_parent_state = parent->enable_parent_state;
1090 result->entry_method = local->entry_method;
1092 result->flags = parent->flags;
1093 result->arch_flags = parent->arch_flags;
1094 result->index = parent->index;
1096 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
1097 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
1098 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
1099 return true;
1102 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
1104 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
1105 struct acpi_lpi_state *t)
1107 curr_level->composite_states[curr_level->composite_states_size++] = t;
1110 static int flatten_lpi_states(struct acpi_processor *pr,
1111 struct acpi_lpi_states_array *curr_level,
1112 struct acpi_lpi_states_array *prev_level)
1114 int i, j, state_count = curr_level->size;
1115 struct acpi_lpi_state *p, *t = curr_level->entries;
1117 curr_level->composite_states_size = 0;
1118 for (j = 0; j < state_count; j++, t++) {
1119 struct acpi_lpi_state *flpi;
1121 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
1122 continue;
1124 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
1125 pr_warn("Limiting number of LPI states to max (%d)\n",
1126 ACPI_PROCESSOR_MAX_POWER);
1127 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1128 break;
1131 flpi = &pr->power.lpi_states[flat_state_cnt];
1133 if (!prev_level) { /* leaf/processor node */
1134 memcpy(flpi, t, sizeof(*t));
1135 stash_composite_state(curr_level, flpi);
1136 flat_state_cnt++;
1137 continue;
1140 for (i = 0; i < prev_level->composite_states_size; i++) {
1141 p = prev_level->composite_states[i];
1142 if (t->index <= p->enable_parent_state &&
1143 combine_lpi_states(p, t, flpi)) {
1144 stash_composite_state(curr_level, flpi);
1145 flat_state_cnt++;
1146 flpi++;
1151 kfree(curr_level->entries);
1152 return 0;
1155 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1157 int ret, i;
1158 acpi_status status;
1159 acpi_handle handle = pr->handle, pr_ahandle;
1160 struct acpi_device *d = NULL;
1161 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1163 if (!osc_pc_lpi_support_confirmed)
1164 return -EOPNOTSUPP;
1166 if (!acpi_has_method(handle, "_LPI"))
1167 return -EINVAL;
1169 flat_state_cnt = 0;
1170 prev = &info[0];
1171 curr = &info[1];
1172 handle = pr->handle;
1173 ret = acpi_processor_evaluate_lpi(handle, prev);
1174 if (ret)
1175 return ret;
1176 flatten_lpi_states(pr, prev, NULL);
1178 status = acpi_get_parent(handle, &pr_ahandle);
1179 while (ACPI_SUCCESS(status)) {
1180 acpi_bus_get_device(pr_ahandle, &d);
1181 handle = pr_ahandle;
1183 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1184 break;
1186 /* can be optional ? */
1187 if (!acpi_has_method(handle, "_LPI"))
1188 break;
1190 ret = acpi_processor_evaluate_lpi(handle, curr);
1191 if (ret)
1192 break;
1194 /* flatten all the LPI states in this level of hierarchy */
1195 flatten_lpi_states(pr, curr, prev);
1197 tmp = prev, prev = curr, curr = tmp;
1199 status = acpi_get_parent(handle, &pr_ahandle);
1202 pr->power.count = flat_state_cnt;
1203 /* reset the index after flattening */
1204 for (i = 0; i < pr->power.count; i++)
1205 pr->power.lpi_states[i].index = i;
1207 /* Tell driver that _LPI is supported. */
1208 pr->flags.has_lpi = 1;
1209 pr->flags.power = 1;
1211 return 0;
1214 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1216 return -ENODEV;
1219 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1221 return -ENODEV;
1225 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1226 * @dev: the target CPU
1227 * @drv: cpuidle driver containing cpuidle state info
1228 * @index: index of target state
1230 * Return: 0 for success or negative value for error
1232 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1233 struct cpuidle_driver *drv, int index)
1235 struct acpi_processor *pr;
1236 struct acpi_lpi_state *lpi;
1238 pr = __this_cpu_read(processors);
1240 if (unlikely(!pr))
1241 return -EINVAL;
1243 lpi = &pr->power.lpi_states[index];
1244 if (lpi->entry_method == ACPI_CSTATE_FFH)
1245 return acpi_processor_ffh_lpi_enter(lpi);
1247 return -EINVAL;
1250 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1252 int i;
1253 struct acpi_lpi_state *lpi;
1254 struct cpuidle_state *state;
1255 struct cpuidle_driver *drv = &acpi_idle_driver;
1257 if (!pr->flags.has_lpi)
1258 return -EOPNOTSUPP;
1260 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1261 lpi = &pr->power.lpi_states[i];
1263 state = &drv->states[i];
1264 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1265 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1266 state->exit_latency = lpi->wake_latency;
1267 state->target_residency = lpi->min_residency;
1268 if (lpi->arch_flags)
1269 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1270 state->enter = acpi_idle_lpi_enter;
1271 drv->safe_state_index = i;
1274 drv->state_count = i;
1276 return 0;
1280 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1281 * global state data i.e. idle routines
1283 * @pr: the ACPI processor
1285 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1287 int i;
1288 struct cpuidle_driver *drv = &acpi_idle_driver;
1290 if (!pr->flags.power_setup_done || !pr->flags.power)
1291 return -EINVAL;
1293 drv->safe_state_index = -1;
1294 for (i = CPUIDLE_DRIVER_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1295 drv->states[i].name[0] = '\0';
1296 drv->states[i].desc[0] = '\0';
1299 if (pr->flags.has_lpi)
1300 return acpi_processor_setup_lpi_states(pr);
1302 return acpi_processor_setup_cstates(pr);
1306 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1307 * device i.e. per-cpu data
1309 * @pr: the ACPI processor
1310 * @dev : the cpuidle device
1312 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1313 struct cpuidle_device *dev)
1315 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1316 return -EINVAL;
1318 dev->cpu = pr->id;
1319 if (pr->flags.has_lpi)
1320 return acpi_processor_ffh_lpi_probe(pr->id);
1322 return acpi_processor_setup_cpuidle_cx(pr, dev);
1325 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1327 int ret;
1329 ret = acpi_processor_get_lpi_info(pr);
1330 if (ret)
1331 ret = acpi_processor_get_cstate_info(pr);
1333 return ret;
1336 int acpi_processor_hotplug(struct acpi_processor *pr)
1338 int ret = 0;
1339 struct cpuidle_device *dev;
1341 if (disabled_by_idle_boot_param())
1342 return 0;
1344 if (!pr->flags.power_setup_done)
1345 return -ENODEV;
1347 dev = per_cpu(acpi_cpuidle_device, pr->id);
1348 cpuidle_pause_and_lock();
1349 cpuidle_disable_device(dev);
1350 ret = acpi_processor_get_power_info(pr);
1351 if (!ret && pr->flags.power) {
1352 acpi_processor_setup_cpuidle_dev(pr, dev);
1353 ret = cpuidle_enable_device(dev);
1355 cpuidle_resume_and_unlock();
1357 return ret;
1360 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1362 int cpu;
1363 struct acpi_processor *_pr;
1364 struct cpuidle_device *dev;
1366 if (disabled_by_idle_boot_param())
1367 return 0;
1369 if (!pr->flags.power_setup_done)
1370 return -ENODEV;
1373 * FIXME: Design the ACPI notification to make it once per
1374 * system instead of once per-cpu. This condition is a hack
1375 * to make the code that updates C-States be called once.
1378 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1380 /* Protect against cpu-hotplug */
1381 get_online_cpus();
1382 cpuidle_pause_and_lock();
1384 /* Disable all cpuidle devices */
1385 for_each_online_cpu(cpu) {
1386 _pr = per_cpu(processors, cpu);
1387 if (!_pr || !_pr->flags.power_setup_done)
1388 continue;
1389 dev = per_cpu(acpi_cpuidle_device, cpu);
1390 cpuidle_disable_device(dev);
1393 /* Populate Updated C-state information */
1394 acpi_processor_get_power_info(pr);
1395 acpi_processor_setup_cpuidle_states(pr);
1397 /* Enable all cpuidle devices */
1398 for_each_online_cpu(cpu) {
1399 _pr = per_cpu(processors, cpu);
1400 if (!_pr || !_pr->flags.power_setup_done)
1401 continue;
1402 acpi_processor_get_power_info(_pr);
1403 if (_pr->flags.power) {
1404 dev = per_cpu(acpi_cpuidle_device, cpu);
1405 acpi_processor_setup_cpuidle_dev(_pr, dev);
1406 cpuidle_enable_device(dev);
1409 cpuidle_resume_and_unlock();
1410 put_online_cpus();
1413 return 0;
1416 static int acpi_processor_registered;
1418 int acpi_processor_power_init(struct acpi_processor *pr)
1420 int retval;
1421 struct cpuidle_device *dev;
1423 if (disabled_by_idle_boot_param())
1424 return 0;
1426 acpi_processor_cstate_first_run_checks();
1428 if (!acpi_processor_get_power_info(pr))
1429 pr->flags.power_setup_done = 1;
1432 * Install the idle handler if processor power management is supported.
1433 * Note that we use previously set idle handler will be used on
1434 * platforms that only support C1.
1436 if (pr->flags.power) {
1437 /* Register acpi_idle_driver if not already registered */
1438 if (!acpi_processor_registered) {
1439 acpi_processor_setup_cpuidle_states(pr);
1440 retval = cpuidle_register_driver(&acpi_idle_driver);
1441 if (retval)
1442 return retval;
1443 pr_debug("%s registered with cpuidle\n",
1444 acpi_idle_driver.name);
1447 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1448 if (!dev)
1449 return -ENOMEM;
1450 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1452 acpi_processor_setup_cpuidle_dev(pr, dev);
1454 /* Register per-cpu cpuidle_device. Cpuidle driver
1455 * must already be registered before registering device
1457 retval = cpuidle_register_device(dev);
1458 if (retval) {
1459 if (acpi_processor_registered == 0)
1460 cpuidle_unregister_driver(&acpi_idle_driver);
1461 return retval;
1463 acpi_processor_registered++;
1465 return 0;
1468 int acpi_processor_power_exit(struct acpi_processor *pr)
1470 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1472 if (disabled_by_idle_boot_param())
1473 return 0;
1475 if (pr->flags.power) {
1476 cpuidle_unregister_device(dev);
1477 acpi_processor_registered--;
1478 if (acpi_processor_registered == 0)
1479 cpuidle_unregister_driver(&acpi_idle_driver);
1482 pr->flags.power_setup_done = 0;
1483 return 0;