hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / crypto / atmel-aes.c
blobe3d40a8dfffbc35259f3d2342d6343da343b0521
1 /*
2 * Cryptographic API.
4 * Support for ATMEL AES HW acceleration.
6 * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7 * Author: Nicolas Royer <nicolas@eukrea.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as published
11 * by the Free Software Foundation.
13 * Some ideas are from omap-aes.c driver.
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/internal/aead.h>
40 #include <linux/platform_data/crypto-atmel.h>
41 #include <dt-bindings/dma/at91.h>
42 #include "atmel-aes-regs.h"
44 #define ATMEL_AES_PRIORITY 300
46 #define ATMEL_AES_BUFFER_ORDER 2
47 #define ATMEL_AES_BUFFER_SIZE (PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
49 #define CFB8_BLOCK_SIZE 1
50 #define CFB16_BLOCK_SIZE 2
51 #define CFB32_BLOCK_SIZE 4
52 #define CFB64_BLOCK_SIZE 8
54 #define SIZE_IN_WORDS(x) ((x) >> 2)
56 /* AES flags */
57 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
58 #define AES_FLAGS_ENCRYPT AES_MR_CYPHER_ENC
59 #define AES_FLAGS_GTAGEN AES_MR_GTAGEN
60 #define AES_FLAGS_OPMODE_MASK (AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
61 #define AES_FLAGS_ECB AES_MR_OPMOD_ECB
62 #define AES_FLAGS_CBC AES_MR_OPMOD_CBC
63 #define AES_FLAGS_OFB AES_MR_OPMOD_OFB
64 #define AES_FLAGS_CFB128 (AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
65 #define AES_FLAGS_CFB64 (AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
66 #define AES_FLAGS_CFB32 (AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
67 #define AES_FLAGS_CFB16 (AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
68 #define AES_FLAGS_CFB8 (AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
69 #define AES_FLAGS_CTR AES_MR_OPMOD_CTR
70 #define AES_FLAGS_GCM AES_MR_OPMOD_GCM
72 #define AES_FLAGS_MODE_MASK (AES_FLAGS_OPMODE_MASK | \
73 AES_FLAGS_ENCRYPT | \
74 AES_FLAGS_GTAGEN)
76 #define AES_FLAGS_INIT BIT(2)
77 #define AES_FLAGS_BUSY BIT(3)
78 #define AES_FLAGS_DUMP_REG BIT(4)
80 #define AES_FLAGS_PERSISTENT (AES_FLAGS_INIT | AES_FLAGS_BUSY)
82 #define ATMEL_AES_QUEUE_LENGTH 50
84 #define ATMEL_AES_DMA_THRESHOLD 256
87 struct atmel_aes_caps {
88 bool has_dualbuff;
89 bool has_cfb64;
90 bool has_ctr32;
91 bool has_gcm;
92 u32 max_burst_size;
95 struct atmel_aes_dev;
98 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
101 struct atmel_aes_base_ctx {
102 struct atmel_aes_dev *dd;
103 atmel_aes_fn_t start;
104 int keylen;
105 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
106 u16 block_size;
109 struct atmel_aes_ctx {
110 struct atmel_aes_base_ctx base;
113 struct atmel_aes_ctr_ctx {
114 struct atmel_aes_base_ctx base;
116 u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
117 size_t offset;
118 struct scatterlist src[2];
119 struct scatterlist dst[2];
122 struct atmel_aes_gcm_ctx {
123 struct atmel_aes_base_ctx base;
125 struct scatterlist src[2];
126 struct scatterlist dst[2];
128 u32 j0[AES_BLOCK_SIZE / sizeof(u32)];
129 u32 tag[AES_BLOCK_SIZE / sizeof(u32)];
130 u32 ghash[AES_BLOCK_SIZE / sizeof(u32)];
131 size_t textlen;
133 const u32 *ghash_in;
134 u32 *ghash_out;
135 atmel_aes_fn_t ghash_resume;
138 struct atmel_aes_reqctx {
139 unsigned long mode;
142 struct atmel_aes_dma {
143 struct dma_chan *chan;
144 struct scatterlist *sg;
145 int nents;
146 unsigned int remainder;
147 unsigned int sg_len;
150 struct atmel_aes_dev {
151 struct list_head list;
152 unsigned long phys_base;
153 void __iomem *io_base;
155 struct crypto_async_request *areq;
156 struct atmel_aes_base_ctx *ctx;
158 bool is_async;
159 atmel_aes_fn_t resume;
160 atmel_aes_fn_t cpu_transfer_complete;
162 struct device *dev;
163 struct clk *iclk;
164 int irq;
166 unsigned long flags;
168 spinlock_t lock;
169 struct crypto_queue queue;
171 struct tasklet_struct done_task;
172 struct tasklet_struct queue_task;
174 size_t total;
175 size_t datalen;
176 u32 *data;
178 struct atmel_aes_dma src;
179 struct atmel_aes_dma dst;
181 size_t buflen;
182 void *buf;
183 struct scatterlist aligned_sg;
184 struct scatterlist *real_dst;
186 struct atmel_aes_caps caps;
188 u32 hw_version;
191 struct atmel_aes_drv {
192 struct list_head dev_list;
193 spinlock_t lock;
196 static struct atmel_aes_drv atmel_aes = {
197 .dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
198 .lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
201 #ifdef VERBOSE_DEBUG
202 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
204 switch (offset) {
205 case AES_CR:
206 return "CR";
208 case AES_MR:
209 return "MR";
211 case AES_ISR:
212 return "ISR";
214 case AES_IMR:
215 return "IMR";
217 case AES_IER:
218 return "IER";
220 case AES_IDR:
221 return "IDR";
223 case AES_KEYWR(0):
224 case AES_KEYWR(1):
225 case AES_KEYWR(2):
226 case AES_KEYWR(3):
227 case AES_KEYWR(4):
228 case AES_KEYWR(5):
229 case AES_KEYWR(6):
230 case AES_KEYWR(7):
231 snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
232 break;
234 case AES_IDATAR(0):
235 case AES_IDATAR(1):
236 case AES_IDATAR(2):
237 case AES_IDATAR(3):
238 snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
239 break;
241 case AES_ODATAR(0):
242 case AES_ODATAR(1):
243 case AES_ODATAR(2):
244 case AES_ODATAR(3):
245 snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
246 break;
248 case AES_IVR(0):
249 case AES_IVR(1):
250 case AES_IVR(2):
251 case AES_IVR(3):
252 snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
253 break;
255 case AES_AADLENR:
256 return "AADLENR";
258 case AES_CLENR:
259 return "CLENR";
261 case AES_GHASHR(0):
262 case AES_GHASHR(1):
263 case AES_GHASHR(2):
264 case AES_GHASHR(3):
265 snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
266 break;
268 case AES_TAGR(0):
269 case AES_TAGR(1):
270 case AES_TAGR(2):
271 case AES_TAGR(3):
272 snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
273 break;
275 case AES_CTRR:
276 return "CTRR";
278 case AES_GCMHR(0):
279 case AES_GCMHR(1):
280 case AES_GCMHR(2):
281 case AES_GCMHR(3):
282 snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
283 break;
285 default:
286 snprintf(tmp, sz, "0x%02x", offset);
287 break;
290 return tmp;
292 #endif /* VERBOSE_DEBUG */
294 /* Shared functions */
296 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
298 u32 value = readl_relaxed(dd->io_base + offset);
300 #ifdef VERBOSE_DEBUG
301 if (dd->flags & AES_FLAGS_DUMP_REG) {
302 char tmp[16];
304 dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
305 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
307 #endif /* VERBOSE_DEBUG */
309 return value;
312 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
313 u32 offset, u32 value)
315 #ifdef VERBOSE_DEBUG
316 if (dd->flags & AES_FLAGS_DUMP_REG) {
317 char tmp[16];
319 dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
320 atmel_aes_reg_name(offset, tmp));
322 #endif /* VERBOSE_DEBUG */
324 writel_relaxed(value, dd->io_base + offset);
327 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
328 u32 *value, int count)
330 for (; count--; value++, offset += 4)
331 *value = atmel_aes_read(dd, offset);
334 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
335 const u32 *value, int count)
337 for (; count--; value++, offset += 4)
338 atmel_aes_write(dd, offset, *value);
341 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
342 u32 *value)
344 atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
347 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
348 const u32 *value)
350 atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
353 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
354 atmel_aes_fn_t resume)
356 u32 isr = atmel_aes_read(dd, AES_ISR);
358 if (unlikely(isr & AES_INT_DATARDY))
359 return resume(dd);
361 dd->resume = resume;
362 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
363 return -EINPROGRESS;
366 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
368 len &= block_size - 1;
369 return len ? block_size - len : 0;
372 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
374 struct atmel_aes_dev *aes_dd = NULL;
375 struct atmel_aes_dev *tmp;
377 spin_lock_bh(&atmel_aes.lock);
378 if (!ctx->dd) {
379 list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
380 aes_dd = tmp;
381 break;
383 ctx->dd = aes_dd;
384 } else {
385 aes_dd = ctx->dd;
388 spin_unlock_bh(&atmel_aes.lock);
390 return aes_dd;
393 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
395 int err;
397 err = clk_enable(dd->iclk);
398 if (err)
399 return err;
401 if (!(dd->flags & AES_FLAGS_INIT)) {
402 atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
403 atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
404 dd->flags |= AES_FLAGS_INIT;
407 return 0;
410 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
412 return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
415 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
417 int err;
419 err = atmel_aes_hw_init(dd);
420 if (err)
421 return err;
423 dd->hw_version = atmel_aes_get_version(dd);
425 dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
427 clk_disable(dd->iclk);
428 return 0;
431 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
432 const struct atmel_aes_reqctx *rctx)
434 /* Clear all but persistent flags and set request flags. */
435 dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
438 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
440 return (dd->flags & AES_FLAGS_ENCRYPT);
443 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
445 clk_disable(dd->iclk);
446 dd->flags &= ~AES_FLAGS_BUSY;
448 if (dd->is_async)
449 dd->areq->complete(dd->areq, err);
451 tasklet_schedule(&dd->queue_task);
453 return err;
456 static void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
457 const u32 *iv)
459 u32 valmr = 0;
461 /* MR register must be set before IV registers */
462 if (dd->ctx->keylen == AES_KEYSIZE_128)
463 valmr |= AES_MR_KEYSIZE_128;
464 else if (dd->ctx->keylen == AES_KEYSIZE_192)
465 valmr |= AES_MR_KEYSIZE_192;
466 else
467 valmr |= AES_MR_KEYSIZE_256;
469 valmr |= dd->flags & AES_FLAGS_MODE_MASK;
471 if (use_dma) {
472 valmr |= AES_MR_SMOD_IDATAR0;
473 if (dd->caps.has_dualbuff)
474 valmr |= AES_MR_DUALBUFF;
475 } else {
476 valmr |= AES_MR_SMOD_AUTO;
479 atmel_aes_write(dd, AES_MR, valmr);
481 atmel_aes_write_n(dd, AES_KEYWR(0), dd->ctx->key,
482 SIZE_IN_WORDS(dd->ctx->keylen));
484 if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
485 atmel_aes_write_block(dd, AES_IVR(0), iv);
489 /* CPU transfer */
491 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
493 int err = 0;
494 u32 isr;
496 for (;;) {
497 atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
498 dd->data += 4;
499 dd->datalen -= AES_BLOCK_SIZE;
501 if (dd->datalen < AES_BLOCK_SIZE)
502 break;
504 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
506 isr = atmel_aes_read(dd, AES_ISR);
507 if (!(isr & AES_INT_DATARDY)) {
508 dd->resume = atmel_aes_cpu_transfer;
509 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
510 return -EINPROGRESS;
514 if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
515 dd->buf, dd->total))
516 err = -EINVAL;
518 if (err)
519 return atmel_aes_complete(dd, err);
521 return dd->cpu_transfer_complete(dd);
524 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
525 struct scatterlist *src,
526 struct scatterlist *dst,
527 size_t len,
528 atmel_aes_fn_t resume)
530 size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
532 if (unlikely(len == 0))
533 return -EINVAL;
535 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
537 dd->total = len;
538 dd->real_dst = dst;
539 dd->cpu_transfer_complete = resume;
540 dd->datalen = len + padlen;
541 dd->data = (u32 *)dd->buf;
542 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
543 return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
547 /* DMA transfer */
549 static void atmel_aes_dma_callback(void *data);
551 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
552 struct scatterlist *sg,
553 size_t len,
554 struct atmel_aes_dma *dma)
556 int nents;
558 if (!IS_ALIGNED(len, dd->ctx->block_size))
559 return false;
561 for (nents = 0; sg; sg = sg_next(sg), ++nents) {
562 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
563 return false;
565 if (len <= sg->length) {
566 if (!IS_ALIGNED(len, dd->ctx->block_size))
567 return false;
569 dma->nents = nents+1;
570 dma->remainder = sg->length - len;
571 sg->length = len;
572 return true;
575 if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
576 return false;
578 len -= sg->length;
581 return false;
584 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
586 struct scatterlist *sg = dma->sg;
587 int nents = dma->nents;
589 if (!dma->remainder)
590 return;
592 while (--nents > 0 && sg)
593 sg = sg_next(sg);
595 if (!sg)
596 return;
598 sg->length += dma->remainder;
601 static int atmel_aes_map(struct atmel_aes_dev *dd,
602 struct scatterlist *src,
603 struct scatterlist *dst,
604 size_t len)
606 bool src_aligned, dst_aligned;
607 size_t padlen;
609 dd->total = len;
610 dd->src.sg = src;
611 dd->dst.sg = dst;
612 dd->real_dst = dst;
614 src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
615 if (src == dst)
616 dst_aligned = src_aligned;
617 else
618 dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
619 if (!src_aligned || !dst_aligned) {
620 padlen = atmel_aes_padlen(len, dd->ctx->block_size);
622 if (dd->buflen < len + padlen)
623 return -ENOMEM;
625 if (!src_aligned) {
626 sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
627 dd->src.sg = &dd->aligned_sg;
628 dd->src.nents = 1;
629 dd->src.remainder = 0;
632 if (!dst_aligned) {
633 dd->dst.sg = &dd->aligned_sg;
634 dd->dst.nents = 1;
635 dd->dst.remainder = 0;
638 sg_init_table(&dd->aligned_sg, 1);
639 sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
642 if (dd->src.sg == dd->dst.sg) {
643 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
644 DMA_BIDIRECTIONAL);
645 dd->dst.sg_len = dd->src.sg_len;
646 if (!dd->src.sg_len)
647 return -EFAULT;
648 } else {
649 dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
650 DMA_TO_DEVICE);
651 if (!dd->src.sg_len)
652 return -EFAULT;
654 dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
655 DMA_FROM_DEVICE);
656 if (!dd->dst.sg_len) {
657 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
658 DMA_TO_DEVICE);
659 return -EFAULT;
663 return 0;
666 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
668 if (dd->src.sg == dd->dst.sg) {
669 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
670 DMA_BIDIRECTIONAL);
672 if (dd->src.sg != &dd->aligned_sg)
673 atmel_aes_restore_sg(&dd->src);
674 } else {
675 dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
676 DMA_FROM_DEVICE);
678 if (dd->dst.sg != &dd->aligned_sg)
679 atmel_aes_restore_sg(&dd->dst);
681 dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
682 DMA_TO_DEVICE);
684 if (dd->src.sg != &dd->aligned_sg)
685 atmel_aes_restore_sg(&dd->src);
688 if (dd->dst.sg == &dd->aligned_sg)
689 sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
690 dd->buf, dd->total);
693 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
694 enum dma_slave_buswidth addr_width,
695 enum dma_transfer_direction dir,
696 u32 maxburst)
698 struct dma_async_tx_descriptor *desc;
699 struct dma_slave_config config;
700 dma_async_tx_callback callback;
701 struct atmel_aes_dma *dma;
702 int err;
704 memset(&config, 0, sizeof(config));
705 config.direction = dir;
706 config.src_addr_width = addr_width;
707 config.dst_addr_width = addr_width;
708 config.src_maxburst = maxburst;
709 config.dst_maxburst = maxburst;
711 switch (dir) {
712 case DMA_MEM_TO_DEV:
713 dma = &dd->src;
714 callback = NULL;
715 config.dst_addr = dd->phys_base + AES_IDATAR(0);
716 break;
718 case DMA_DEV_TO_MEM:
719 dma = &dd->dst;
720 callback = atmel_aes_dma_callback;
721 config.src_addr = dd->phys_base + AES_ODATAR(0);
722 break;
724 default:
725 return -EINVAL;
728 err = dmaengine_slave_config(dma->chan, &config);
729 if (err)
730 return err;
732 desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
733 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
734 if (!desc)
735 return -ENOMEM;
737 desc->callback = callback;
738 desc->callback_param = dd;
739 dmaengine_submit(desc);
740 dma_async_issue_pending(dma->chan);
742 return 0;
745 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
746 enum dma_transfer_direction dir)
748 struct atmel_aes_dma *dma;
750 switch (dir) {
751 case DMA_MEM_TO_DEV:
752 dma = &dd->src;
753 break;
755 case DMA_DEV_TO_MEM:
756 dma = &dd->dst;
757 break;
759 default:
760 return;
763 dmaengine_terminate_all(dma->chan);
766 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
767 struct scatterlist *src,
768 struct scatterlist *dst,
769 size_t len,
770 atmel_aes_fn_t resume)
772 enum dma_slave_buswidth addr_width;
773 u32 maxburst;
774 int err;
776 switch (dd->ctx->block_size) {
777 case CFB8_BLOCK_SIZE:
778 addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
779 maxburst = 1;
780 break;
782 case CFB16_BLOCK_SIZE:
783 addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
784 maxburst = 1;
785 break;
787 case CFB32_BLOCK_SIZE:
788 case CFB64_BLOCK_SIZE:
789 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
790 maxburst = 1;
791 break;
793 case AES_BLOCK_SIZE:
794 addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
795 maxburst = dd->caps.max_burst_size;
796 break;
798 default:
799 err = -EINVAL;
800 goto exit;
803 err = atmel_aes_map(dd, src, dst, len);
804 if (err)
805 goto exit;
807 dd->resume = resume;
809 /* Set output DMA transfer first */
810 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
811 maxburst);
812 if (err)
813 goto unmap;
815 /* Then set input DMA transfer */
816 err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
817 maxburst);
818 if (err)
819 goto output_transfer_stop;
821 return -EINPROGRESS;
823 output_transfer_stop:
824 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
825 unmap:
826 atmel_aes_unmap(dd);
827 exit:
828 return atmel_aes_complete(dd, err);
831 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
833 atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
834 atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
835 atmel_aes_unmap(dd);
838 static void atmel_aes_dma_callback(void *data)
840 struct atmel_aes_dev *dd = data;
842 atmel_aes_dma_stop(dd);
843 dd->is_async = true;
844 (void)dd->resume(dd);
847 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
848 struct crypto_async_request *new_areq)
850 struct crypto_async_request *areq, *backlog;
851 struct atmel_aes_base_ctx *ctx;
852 unsigned long flags;
853 int err, ret = 0;
855 spin_lock_irqsave(&dd->lock, flags);
856 if (new_areq)
857 ret = crypto_enqueue_request(&dd->queue, new_areq);
858 if (dd->flags & AES_FLAGS_BUSY) {
859 spin_unlock_irqrestore(&dd->lock, flags);
860 return ret;
862 backlog = crypto_get_backlog(&dd->queue);
863 areq = crypto_dequeue_request(&dd->queue);
864 if (areq)
865 dd->flags |= AES_FLAGS_BUSY;
866 spin_unlock_irqrestore(&dd->lock, flags);
868 if (!areq)
869 return ret;
871 if (backlog)
872 backlog->complete(backlog, -EINPROGRESS);
874 ctx = crypto_tfm_ctx(areq->tfm);
876 dd->areq = areq;
877 dd->ctx = ctx;
878 dd->is_async = (areq != new_areq);
880 err = ctx->start(dd);
881 return (dd->is_async) ? ret : err;
885 /* AES async block ciphers */
887 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
889 return atmel_aes_complete(dd, 0);
892 static int atmel_aes_start(struct atmel_aes_dev *dd)
894 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
895 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
896 bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
897 dd->ctx->block_size != AES_BLOCK_SIZE);
898 int err;
900 atmel_aes_set_mode(dd, rctx);
902 err = atmel_aes_hw_init(dd);
903 if (err)
904 return atmel_aes_complete(dd, err);
906 atmel_aes_write_ctrl(dd, use_dma, req->info);
907 if (use_dma)
908 return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
909 atmel_aes_transfer_complete);
911 return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
912 atmel_aes_transfer_complete);
915 static inline struct atmel_aes_ctr_ctx *
916 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
918 return container_of(ctx, struct atmel_aes_ctr_ctx, base);
921 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
923 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
924 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
925 struct scatterlist *src, *dst;
926 u32 ctr, blocks;
927 size_t datalen;
928 bool use_dma, fragmented = false;
930 /* Check for transfer completion. */
931 ctx->offset += dd->total;
932 if (ctx->offset >= req->nbytes)
933 return atmel_aes_transfer_complete(dd);
935 /* Compute data length. */
936 datalen = req->nbytes - ctx->offset;
937 blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
938 ctr = be32_to_cpu(ctx->iv[3]);
939 if (dd->caps.has_ctr32) {
940 /* Check 32bit counter overflow. */
941 u32 start = ctr;
942 u32 end = start + blocks - 1;
944 if (end < start) {
945 ctr |= 0xffffffff;
946 datalen = AES_BLOCK_SIZE * -start;
947 fragmented = true;
949 } else {
950 /* Check 16bit counter overflow. */
951 u16 start = ctr & 0xffff;
952 u16 end = start + (u16)blocks - 1;
954 if (blocks >> 16 || end < start) {
955 ctr |= 0xffff;
956 datalen = AES_BLOCK_SIZE * (0x10000-start);
957 fragmented = true;
960 use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
962 /* Jump to offset. */
963 src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
964 dst = ((req->src == req->dst) ? src :
965 scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
967 /* Configure hardware. */
968 atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
969 if (unlikely(fragmented)) {
971 * Increment the counter manually to cope with the hardware
972 * counter overflow.
974 ctx->iv[3] = cpu_to_be32(ctr);
975 crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
978 if (use_dma)
979 return atmel_aes_dma_start(dd, src, dst, datalen,
980 atmel_aes_ctr_transfer);
982 return atmel_aes_cpu_start(dd, src, dst, datalen,
983 atmel_aes_ctr_transfer);
986 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
988 struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
989 struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
990 struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
991 int err;
993 atmel_aes_set_mode(dd, rctx);
995 err = atmel_aes_hw_init(dd);
996 if (err)
997 return atmel_aes_complete(dd, err);
999 memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1000 ctx->offset = 0;
1001 dd->total = 0;
1002 return atmel_aes_ctr_transfer(dd);
1005 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1007 struct atmel_aes_base_ctx *ctx;
1008 struct atmel_aes_reqctx *rctx;
1009 struct atmel_aes_dev *dd;
1011 ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
1012 switch (mode & AES_FLAGS_OPMODE_MASK) {
1013 case AES_FLAGS_CFB8:
1014 ctx->block_size = CFB8_BLOCK_SIZE;
1015 break;
1017 case AES_FLAGS_CFB16:
1018 ctx->block_size = CFB16_BLOCK_SIZE;
1019 break;
1021 case AES_FLAGS_CFB32:
1022 ctx->block_size = CFB32_BLOCK_SIZE;
1023 break;
1025 case AES_FLAGS_CFB64:
1026 ctx->block_size = CFB64_BLOCK_SIZE;
1027 break;
1029 default:
1030 ctx->block_size = AES_BLOCK_SIZE;
1031 break;
1034 dd = atmel_aes_find_dev(ctx);
1035 if (!dd)
1036 return -ENODEV;
1038 rctx = ablkcipher_request_ctx(req);
1039 rctx->mode = mode;
1041 return atmel_aes_handle_queue(dd, &req->base);
1044 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1045 unsigned int keylen)
1047 struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1049 if (keylen != AES_KEYSIZE_128 &&
1050 keylen != AES_KEYSIZE_192 &&
1051 keylen != AES_KEYSIZE_256) {
1052 crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1053 return -EINVAL;
1056 memcpy(ctx->key, key, keylen);
1057 ctx->keylen = keylen;
1059 return 0;
1062 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1064 return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1067 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1069 return atmel_aes_crypt(req, AES_FLAGS_ECB);
1072 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1074 return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1077 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1079 return atmel_aes_crypt(req, AES_FLAGS_CBC);
1082 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1084 return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1087 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1089 return atmel_aes_crypt(req, AES_FLAGS_OFB);
1092 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1094 return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1097 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1099 return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1102 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1104 return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1107 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1109 return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1112 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1114 return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1117 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1119 return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1122 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1124 return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1127 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1129 return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1132 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1134 return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1137 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1139 return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1142 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1144 return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1147 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1149 return atmel_aes_crypt(req, AES_FLAGS_CTR);
1152 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1154 struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1156 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1157 ctx->base.start = atmel_aes_start;
1159 return 0;
1162 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1164 struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1166 tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1167 ctx->base.start = atmel_aes_ctr_start;
1169 return 0;
1172 static void atmel_aes_cra_exit(struct crypto_tfm *tfm)
1176 static struct crypto_alg aes_algs[] = {
1178 .cra_name = "ecb(aes)",
1179 .cra_driver_name = "atmel-ecb-aes",
1180 .cra_priority = ATMEL_AES_PRIORITY,
1181 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1182 .cra_blocksize = AES_BLOCK_SIZE,
1183 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1184 .cra_alignmask = 0xf,
1185 .cra_type = &crypto_ablkcipher_type,
1186 .cra_module = THIS_MODULE,
1187 .cra_init = atmel_aes_cra_init,
1188 .cra_exit = atmel_aes_cra_exit,
1189 .cra_u.ablkcipher = {
1190 .min_keysize = AES_MIN_KEY_SIZE,
1191 .max_keysize = AES_MAX_KEY_SIZE,
1192 .setkey = atmel_aes_setkey,
1193 .encrypt = atmel_aes_ecb_encrypt,
1194 .decrypt = atmel_aes_ecb_decrypt,
1198 .cra_name = "cbc(aes)",
1199 .cra_driver_name = "atmel-cbc-aes",
1200 .cra_priority = ATMEL_AES_PRIORITY,
1201 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1202 .cra_blocksize = AES_BLOCK_SIZE,
1203 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1204 .cra_alignmask = 0xf,
1205 .cra_type = &crypto_ablkcipher_type,
1206 .cra_module = THIS_MODULE,
1207 .cra_init = atmel_aes_cra_init,
1208 .cra_exit = atmel_aes_cra_exit,
1209 .cra_u.ablkcipher = {
1210 .min_keysize = AES_MIN_KEY_SIZE,
1211 .max_keysize = AES_MAX_KEY_SIZE,
1212 .ivsize = AES_BLOCK_SIZE,
1213 .setkey = atmel_aes_setkey,
1214 .encrypt = atmel_aes_cbc_encrypt,
1215 .decrypt = atmel_aes_cbc_decrypt,
1219 .cra_name = "ofb(aes)",
1220 .cra_driver_name = "atmel-ofb-aes",
1221 .cra_priority = ATMEL_AES_PRIORITY,
1222 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1223 .cra_blocksize = AES_BLOCK_SIZE,
1224 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1225 .cra_alignmask = 0xf,
1226 .cra_type = &crypto_ablkcipher_type,
1227 .cra_module = THIS_MODULE,
1228 .cra_init = atmel_aes_cra_init,
1229 .cra_exit = atmel_aes_cra_exit,
1230 .cra_u.ablkcipher = {
1231 .min_keysize = AES_MIN_KEY_SIZE,
1232 .max_keysize = AES_MAX_KEY_SIZE,
1233 .ivsize = AES_BLOCK_SIZE,
1234 .setkey = atmel_aes_setkey,
1235 .encrypt = atmel_aes_ofb_encrypt,
1236 .decrypt = atmel_aes_ofb_decrypt,
1240 .cra_name = "cfb(aes)",
1241 .cra_driver_name = "atmel-cfb-aes",
1242 .cra_priority = ATMEL_AES_PRIORITY,
1243 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1244 .cra_blocksize = AES_BLOCK_SIZE,
1245 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1246 .cra_alignmask = 0xf,
1247 .cra_type = &crypto_ablkcipher_type,
1248 .cra_module = THIS_MODULE,
1249 .cra_init = atmel_aes_cra_init,
1250 .cra_exit = atmel_aes_cra_exit,
1251 .cra_u.ablkcipher = {
1252 .min_keysize = AES_MIN_KEY_SIZE,
1253 .max_keysize = AES_MAX_KEY_SIZE,
1254 .ivsize = AES_BLOCK_SIZE,
1255 .setkey = atmel_aes_setkey,
1256 .encrypt = atmel_aes_cfb_encrypt,
1257 .decrypt = atmel_aes_cfb_decrypt,
1261 .cra_name = "cfb32(aes)",
1262 .cra_driver_name = "atmel-cfb32-aes",
1263 .cra_priority = ATMEL_AES_PRIORITY,
1264 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1265 .cra_blocksize = CFB32_BLOCK_SIZE,
1266 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1267 .cra_alignmask = 0x3,
1268 .cra_type = &crypto_ablkcipher_type,
1269 .cra_module = THIS_MODULE,
1270 .cra_init = atmel_aes_cra_init,
1271 .cra_exit = atmel_aes_cra_exit,
1272 .cra_u.ablkcipher = {
1273 .min_keysize = AES_MIN_KEY_SIZE,
1274 .max_keysize = AES_MAX_KEY_SIZE,
1275 .ivsize = AES_BLOCK_SIZE,
1276 .setkey = atmel_aes_setkey,
1277 .encrypt = atmel_aes_cfb32_encrypt,
1278 .decrypt = atmel_aes_cfb32_decrypt,
1282 .cra_name = "cfb16(aes)",
1283 .cra_driver_name = "atmel-cfb16-aes",
1284 .cra_priority = ATMEL_AES_PRIORITY,
1285 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1286 .cra_blocksize = CFB16_BLOCK_SIZE,
1287 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1288 .cra_alignmask = 0x1,
1289 .cra_type = &crypto_ablkcipher_type,
1290 .cra_module = THIS_MODULE,
1291 .cra_init = atmel_aes_cra_init,
1292 .cra_exit = atmel_aes_cra_exit,
1293 .cra_u.ablkcipher = {
1294 .min_keysize = AES_MIN_KEY_SIZE,
1295 .max_keysize = AES_MAX_KEY_SIZE,
1296 .ivsize = AES_BLOCK_SIZE,
1297 .setkey = atmel_aes_setkey,
1298 .encrypt = atmel_aes_cfb16_encrypt,
1299 .decrypt = atmel_aes_cfb16_decrypt,
1303 .cra_name = "cfb8(aes)",
1304 .cra_driver_name = "atmel-cfb8-aes",
1305 .cra_priority = ATMEL_AES_PRIORITY,
1306 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1307 .cra_blocksize = CFB8_BLOCK_SIZE,
1308 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1309 .cra_alignmask = 0x0,
1310 .cra_type = &crypto_ablkcipher_type,
1311 .cra_module = THIS_MODULE,
1312 .cra_init = atmel_aes_cra_init,
1313 .cra_exit = atmel_aes_cra_exit,
1314 .cra_u.ablkcipher = {
1315 .min_keysize = AES_MIN_KEY_SIZE,
1316 .max_keysize = AES_MAX_KEY_SIZE,
1317 .ivsize = AES_BLOCK_SIZE,
1318 .setkey = atmel_aes_setkey,
1319 .encrypt = atmel_aes_cfb8_encrypt,
1320 .decrypt = atmel_aes_cfb8_decrypt,
1324 .cra_name = "ctr(aes)",
1325 .cra_driver_name = "atmel-ctr-aes",
1326 .cra_priority = ATMEL_AES_PRIORITY,
1327 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1328 .cra_blocksize = 1,
1329 .cra_ctxsize = sizeof(struct atmel_aes_ctr_ctx),
1330 .cra_alignmask = 0xf,
1331 .cra_type = &crypto_ablkcipher_type,
1332 .cra_module = THIS_MODULE,
1333 .cra_init = atmel_aes_ctr_cra_init,
1334 .cra_exit = atmel_aes_cra_exit,
1335 .cra_u.ablkcipher = {
1336 .min_keysize = AES_MIN_KEY_SIZE,
1337 .max_keysize = AES_MAX_KEY_SIZE,
1338 .ivsize = AES_BLOCK_SIZE,
1339 .setkey = atmel_aes_setkey,
1340 .encrypt = atmel_aes_ctr_encrypt,
1341 .decrypt = atmel_aes_ctr_decrypt,
1346 static struct crypto_alg aes_cfb64_alg = {
1347 .cra_name = "cfb64(aes)",
1348 .cra_driver_name = "atmel-cfb64-aes",
1349 .cra_priority = ATMEL_AES_PRIORITY,
1350 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1351 .cra_blocksize = CFB64_BLOCK_SIZE,
1352 .cra_ctxsize = sizeof(struct atmel_aes_ctx),
1353 .cra_alignmask = 0x7,
1354 .cra_type = &crypto_ablkcipher_type,
1355 .cra_module = THIS_MODULE,
1356 .cra_init = atmel_aes_cra_init,
1357 .cra_exit = atmel_aes_cra_exit,
1358 .cra_u.ablkcipher = {
1359 .min_keysize = AES_MIN_KEY_SIZE,
1360 .max_keysize = AES_MAX_KEY_SIZE,
1361 .ivsize = AES_BLOCK_SIZE,
1362 .setkey = atmel_aes_setkey,
1363 .encrypt = atmel_aes_cfb64_encrypt,
1364 .decrypt = atmel_aes_cfb64_decrypt,
1369 /* gcm aead functions */
1371 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1372 const u32 *data, size_t datalen,
1373 const u32 *ghash_in, u32 *ghash_out,
1374 atmel_aes_fn_t resume);
1375 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1376 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1378 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1379 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1380 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1381 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1382 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1383 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1384 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1386 static inline struct atmel_aes_gcm_ctx *
1387 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1389 return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1392 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1393 const u32 *data, size_t datalen,
1394 const u32 *ghash_in, u32 *ghash_out,
1395 atmel_aes_fn_t resume)
1397 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1399 dd->data = (u32 *)data;
1400 dd->datalen = datalen;
1401 ctx->ghash_in = ghash_in;
1402 ctx->ghash_out = ghash_out;
1403 ctx->ghash_resume = resume;
1405 atmel_aes_write_ctrl(dd, false, NULL);
1406 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1409 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1411 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1413 /* Set the data length. */
1414 atmel_aes_write(dd, AES_AADLENR, dd->total);
1415 atmel_aes_write(dd, AES_CLENR, 0);
1417 /* If needed, overwrite the GCM Intermediate Hash Word Registers */
1418 if (ctx->ghash_in)
1419 atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1421 return atmel_aes_gcm_ghash_finalize(dd);
1424 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1426 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1427 u32 isr;
1429 /* Write data into the Input Data Registers. */
1430 while (dd->datalen > 0) {
1431 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1432 dd->data += 4;
1433 dd->datalen -= AES_BLOCK_SIZE;
1435 isr = atmel_aes_read(dd, AES_ISR);
1436 if (!(isr & AES_INT_DATARDY)) {
1437 dd->resume = atmel_aes_gcm_ghash_finalize;
1438 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1439 return -EINPROGRESS;
1443 /* Read the computed hash from GHASHRx. */
1444 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1446 return ctx->ghash_resume(dd);
1450 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1452 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1453 struct aead_request *req = aead_request_cast(dd->areq);
1454 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1455 struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1456 size_t ivsize = crypto_aead_ivsize(tfm);
1457 size_t datalen, padlen;
1458 const void *iv = req->iv;
1459 u8 *data = dd->buf;
1460 int err;
1462 atmel_aes_set_mode(dd, rctx);
1464 err = atmel_aes_hw_init(dd);
1465 if (err)
1466 return atmel_aes_complete(dd, err);
1468 if (likely(ivsize == 12)) {
1469 memcpy(ctx->j0, iv, ivsize);
1470 ctx->j0[3] = cpu_to_be32(1);
1471 return atmel_aes_gcm_process(dd);
1474 padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1475 datalen = ivsize + padlen + AES_BLOCK_SIZE;
1476 if (datalen > dd->buflen)
1477 return atmel_aes_complete(dd, -EINVAL);
1479 memcpy(data, iv, ivsize);
1480 memset(data + ivsize, 0, padlen + sizeof(u64));
1481 ((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1483 return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1484 NULL, ctx->j0, atmel_aes_gcm_process);
1487 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1489 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1490 struct aead_request *req = aead_request_cast(dd->areq);
1491 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1492 bool enc = atmel_aes_is_encrypt(dd);
1493 u32 authsize;
1495 /* Compute text length. */
1496 authsize = crypto_aead_authsize(tfm);
1497 ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1500 * According to tcrypt test suite, the GCM Automatic Tag Generation
1501 * fails when both the message and its associated data are empty.
1503 if (likely(req->assoclen != 0 || ctx->textlen != 0))
1504 dd->flags |= AES_FLAGS_GTAGEN;
1506 atmel_aes_write_ctrl(dd, false, NULL);
1507 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1510 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1512 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1513 struct aead_request *req = aead_request_cast(dd->areq);
1514 u32 j0_lsw, *j0 = ctx->j0;
1515 size_t padlen;
1517 /* Write incr32(J0) into IV. */
1518 j0_lsw = j0[3];
1519 j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1520 atmel_aes_write_block(dd, AES_IVR(0), j0);
1521 j0[3] = j0_lsw;
1523 /* Set aad and text lengths. */
1524 atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1525 atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1527 /* Check whether AAD are present. */
1528 if (unlikely(req->assoclen == 0)) {
1529 dd->datalen = 0;
1530 return atmel_aes_gcm_data(dd);
1533 /* Copy assoc data and add padding. */
1534 padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1535 if (unlikely(req->assoclen + padlen > dd->buflen))
1536 return atmel_aes_complete(dd, -EINVAL);
1537 sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1539 /* Write assoc data into the Input Data register. */
1540 dd->data = (u32 *)dd->buf;
1541 dd->datalen = req->assoclen + padlen;
1542 return atmel_aes_gcm_data(dd);
1545 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1547 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1548 struct aead_request *req = aead_request_cast(dd->areq);
1549 bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1550 struct scatterlist *src, *dst;
1551 u32 isr, mr;
1553 /* Write AAD first. */
1554 while (dd->datalen > 0) {
1555 atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1556 dd->data += 4;
1557 dd->datalen -= AES_BLOCK_SIZE;
1559 isr = atmel_aes_read(dd, AES_ISR);
1560 if (!(isr & AES_INT_DATARDY)) {
1561 dd->resume = atmel_aes_gcm_data;
1562 atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1563 return -EINPROGRESS;
1567 /* GMAC only. */
1568 if (unlikely(ctx->textlen == 0))
1569 return atmel_aes_gcm_tag_init(dd);
1571 /* Prepare src and dst scatter lists to transfer cipher/plain texts */
1572 src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1573 dst = ((req->src == req->dst) ? src :
1574 scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1576 if (use_dma) {
1577 /* Update the Mode Register for DMA transfers. */
1578 mr = atmel_aes_read(dd, AES_MR);
1579 mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1580 mr |= AES_MR_SMOD_IDATAR0;
1581 if (dd->caps.has_dualbuff)
1582 mr |= AES_MR_DUALBUFF;
1583 atmel_aes_write(dd, AES_MR, mr);
1585 return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1586 atmel_aes_gcm_tag_init);
1589 return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1590 atmel_aes_gcm_tag_init);
1593 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1595 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1596 struct aead_request *req = aead_request_cast(dd->areq);
1597 u64 *data = dd->buf;
1599 if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1600 if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1601 dd->resume = atmel_aes_gcm_tag_init;
1602 atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1603 return -EINPROGRESS;
1606 return atmel_aes_gcm_finalize(dd);
1609 /* Read the GCM Intermediate Hash Word Registers. */
1610 atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1612 data[0] = cpu_to_be64(req->assoclen * 8);
1613 data[1] = cpu_to_be64(ctx->textlen * 8);
1615 return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1616 ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1619 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1621 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1622 unsigned long flags;
1625 * Change mode to CTR to complete the tag generation.
1626 * Use J0 as Initialization Vector.
1628 flags = dd->flags;
1629 dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1630 dd->flags |= AES_FLAGS_CTR;
1631 atmel_aes_write_ctrl(dd, false, ctx->j0);
1632 dd->flags = flags;
1634 atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1635 return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1638 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1640 struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1641 struct aead_request *req = aead_request_cast(dd->areq);
1642 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1643 bool enc = atmel_aes_is_encrypt(dd);
1644 u32 offset, authsize, itag[4], *otag = ctx->tag;
1645 int err;
1647 /* Read the computed tag. */
1648 if (likely(dd->flags & AES_FLAGS_GTAGEN))
1649 atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1650 else
1651 atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1653 offset = req->assoclen + ctx->textlen;
1654 authsize = crypto_aead_authsize(tfm);
1655 if (enc) {
1656 scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1657 err = 0;
1658 } else {
1659 scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1660 err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1663 return atmel_aes_complete(dd, err);
1666 static int atmel_aes_gcm_crypt(struct aead_request *req,
1667 unsigned long mode)
1669 struct atmel_aes_base_ctx *ctx;
1670 struct atmel_aes_reqctx *rctx;
1671 struct atmel_aes_dev *dd;
1673 ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1674 ctx->block_size = AES_BLOCK_SIZE;
1676 dd = atmel_aes_find_dev(ctx);
1677 if (!dd)
1678 return -ENODEV;
1680 rctx = aead_request_ctx(req);
1681 rctx->mode = AES_FLAGS_GCM | mode;
1683 return atmel_aes_handle_queue(dd, &req->base);
1686 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1687 unsigned int keylen)
1689 struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1691 if (keylen != AES_KEYSIZE_256 &&
1692 keylen != AES_KEYSIZE_192 &&
1693 keylen != AES_KEYSIZE_128) {
1694 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1695 return -EINVAL;
1698 memcpy(ctx->key, key, keylen);
1699 ctx->keylen = keylen;
1701 return 0;
1704 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1705 unsigned int authsize)
1707 /* Same as crypto_gcm_authsize() from crypto/gcm.c */
1708 switch (authsize) {
1709 case 4:
1710 case 8:
1711 case 12:
1712 case 13:
1713 case 14:
1714 case 15:
1715 case 16:
1716 break;
1717 default:
1718 return -EINVAL;
1721 return 0;
1724 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1726 return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1729 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1731 return atmel_aes_gcm_crypt(req, 0);
1734 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1736 struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1738 crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1739 ctx->base.start = atmel_aes_gcm_start;
1741 return 0;
1744 static void atmel_aes_gcm_exit(struct crypto_aead *tfm)
1749 static struct aead_alg aes_gcm_alg = {
1750 .setkey = atmel_aes_gcm_setkey,
1751 .setauthsize = atmel_aes_gcm_setauthsize,
1752 .encrypt = atmel_aes_gcm_encrypt,
1753 .decrypt = atmel_aes_gcm_decrypt,
1754 .init = atmel_aes_gcm_init,
1755 .exit = atmel_aes_gcm_exit,
1756 .ivsize = 12,
1757 .maxauthsize = AES_BLOCK_SIZE,
1759 .base = {
1760 .cra_name = "gcm(aes)",
1761 .cra_driver_name = "atmel-gcm-aes",
1762 .cra_priority = ATMEL_AES_PRIORITY,
1763 .cra_flags = CRYPTO_ALG_ASYNC,
1764 .cra_blocksize = 1,
1765 .cra_ctxsize = sizeof(struct atmel_aes_gcm_ctx),
1766 .cra_alignmask = 0xf,
1767 .cra_module = THIS_MODULE,
1772 /* Probe functions */
1774 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
1776 dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
1777 dd->buflen = ATMEL_AES_BUFFER_SIZE;
1778 dd->buflen &= ~(AES_BLOCK_SIZE - 1);
1780 if (!dd->buf) {
1781 dev_err(dd->dev, "unable to alloc pages.\n");
1782 return -ENOMEM;
1785 return 0;
1788 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
1790 free_page((unsigned long)dd->buf);
1793 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
1795 struct at_dma_slave *sl = slave;
1797 if (sl && sl->dma_dev == chan->device->dev) {
1798 chan->private = sl;
1799 return true;
1800 } else {
1801 return false;
1805 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
1806 struct crypto_platform_data *pdata)
1808 struct at_dma_slave *slave;
1809 int err = -ENOMEM;
1810 dma_cap_mask_t mask;
1812 dma_cap_zero(mask);
1813 dma_cap_set(DMA_SLAVE, mask);
1815 /* Try to grab 2 DMA channels */
1816 slave = &pdata->dma_slave->rxdata;
1817 dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1818 slave, dd->dev, "tx");
1819 if (!dd->src.chan)
1820 goto err_dma_in;
1822 slave = &pdata->dma_slave->txdata;
1823 dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
1824 slave, dd->dev, "rx");
1825 if (!dd->dst.chan)
1826 goto err_dma_out;
1828 return 0;
1830 err_dma_out:
1831 dma_release_channel(dd->src.chan);
1832 err_dma_in:
1833 dev_warn(dd->dev, "no DMA channel available\n");
1834 return err;
1837 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
1839 dma_release_channel(dd->dst.chan);
1840 dma_release_channel(dd->src.chan);
1843 static void atmel_aes_queue_task(unsigned long data)
1845 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1847 atmel_aes_handle_queue(dd, NULL);
1850 static void atmel_aes_done_task(unsigned long data)
1852 struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
1854 dd->is_async = true;
1855 (void)dd->resume(dd);
1858 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
1860 struct atmel_aes_dev *aes_dd = dev_id;
1861 u32 reg;
1863 reg = atmel_aes_read(aes_dd, AES_ISR);
1864 if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
1865 atmel_aes_write(aes_dd, AES_IDR, reg);
1866 if (AES_FLAGS_BUSY & aes_dd->flags)
1867 tasklet_schedule(&aes_dd->done_task);
1868 else
1869 dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
1870 return IRQ_HANDLED;
1873 return IRQ_NONE;
1876 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
1878 int i;
1880 if (dd->caps.has_gcm)
1881 crypto_unregister_aead(&aes_gcm_alg);
1883 if (dd->caps.has_cfb64)
1884 crypto_unregister_alg(&aes_cfb64_alg);
1886 for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
1887 crypto_unregister_alg(&aes_algs[i]);
1890 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
1892 int err, i, j;
1894 for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
1895 err = crypto_register_alg(&aes_algs[i]);
1896 if (err)
1897 goto err_aes_algs;
1900 if (dd->caps.has_cfb64) {
1901 err = crypto_register_alg(&aes_cfb64_alg);
1902 if (err)
1903 goto err_aes_cfb64_alg;
1906 if (dd->caps.has_gcm) {
1907 err = crypto_register_aead(&aes_gcm_alg);
1908 if (err)
1909 goto err_aes_gcm_alg;
1912 return 0;
1914 err_aes_gcm_alg:
1915 crypto_unregister_alg(&aes_cfb64_alg);
1916 err_aes_cfb64_alg:
1917 i = ARRAY_SIZE(aes_algs);
1918 err_aes_algs:
1919 for (j = 0; j < i; j++)
1920 crypto_unregister_alg(&aes_algs[j]);
1922 return err;
1925 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
1927 dd->caps.has_dualbuff = 0;
1928 dd->caps.has_cfb64 = 0;
1929 dd->caps.has_ctr32 = 0;
1930 dd->caps.has_gcm = 0;
1931 dd->caps.max_burst_size = 1;
1933 /* keep only major version number */
1934 switch (dd->hw_version & 0xff0) {
1935 case 0x500:
1936 dd->caps.has_dualbuff = 1;
1937 dd->caps.has_cfb64 = 1;
1938 dd->caps.has_ctr32 = 1;
1939 dd->caps.has_gcm = 1;
1940 dd->caps.max_burst_size = 4;
1941 break;
1942 case 0x200:
1943 dd->caps.has_dualbuff = 1;
1944 dd->caps.has_cfb64 = 1;
1945 dd->caps.has_ctr32 = 1;
1946 dd->caps.has_gcm = 1;
1947 dd->caps.max_burst_size = 4;
1948 break;
1949 case 0x130:
1950 dd->caps.has_dualbuff = 1;
1951 dd->caps.has_cfb64 = 1;
1952 dd->caps.max_burst_size = 4;
1953 break;
1954 case 0x120:
1955 break;
1956 default:
1957 dev_warn(dd->dev,
1958 "Unmanaged aes version, set minimum capabilities\n");
1959 break;
1963 #if defined(CONFIG_OF)
1964 static const struct of_device_id atmel_aes_dt_ids[] = {
1965 { .compatible = "atmel,at91sam9g46-aes" },
1966 { /* sentinel */ }
1968 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
1970 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
1972 struct device_node *np = pdev->dev.of_node;
1973 struct crypto_platform_data *pdata;
1975 if (!np) {
1976 dev_err(&pdev->dev, "device node not found\n");
1977 return ERR_PTR(-EINVAL);
1980 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1981 if (!pdata) {
1982 dev_err(&pdev->dev, "could not allocate memory for pdata\n");
1983 return ERR_PTR(-ENOMEM);
1986 pdata->dma_slave = devm_kzalloc(&pdev->dev,
1987 sizeof(*(pdata->dma_slave)),
1988 GFP_KERNEL);
1989 if (!pdata->dma_slave) {
1990 dev_err(&pdev->dev, "could not allocate memory for dma_slave\n");
1991 devm_kfree(&pdev->dev, pdata);
1992 return ERR_PTR(-ENOMEM);
1995 return pdata;
1997 #else
1998 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2000 return ERR_PTR(-EINVAL);
2002 #endif
2004 static int atmel_aes_probe(struct platform_device *pdev)
2006 struct atmel_aes_dev *aes_dd;
2007 struct crypto_platform_data *pdata;
2008 struct device *dev = &pdev->dev;
2009 struct resource *aes_res;
2010 int err;
2012 pdata = pdev->dev.platform_data;
2013 if (!pdata) {
2014 pdata = atmel_aes_of_init(pdev);
2015 if (IS_ERR(pdata)) {
2016 err = PTR_ERR(pdata);
2017 goto aes_dd_err;
2021 if (!pdata->dma_slave) {
2022 err = -ENXIO;
2023 goto aes_dd_err;
2026 aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2027 if (aes_dd == NULL) {
2028 dev_err(dev, "unable to alloc data struct.\n");
2029 err = -ENOMEM;
2030 goto aes_dd_err;
2033 aes_dd->dev = dev;
2035 platform_set_drvdata(pdev, aes_dd);
2037 INIT_LIST_HEAD(&aes_dd->list);
2038 spin_lock_init(&aes_dd->lock);
2040 tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2041 (unsigned long)aes_dd);
2042 tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2043 (unsigned long)aes_dd);
2045 crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2047 aes_dd->irq = -1;
2049 /* Get the base address */
2050 aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2051 if (!aes_res) {
2052 dev_err(dev, "no MEM resource info\n");
2053 err = -ENODEV;
2054 goto res_err;
2056 aes_dd->phys_base = aes_res->start;
2058 /* Get the IRQ */
2059 aes_dd->irq = platform_get_irq(pdev, 0);
2060 if (aes_dd->irq < 0) {
2061 dev_err(dev, "no IRQ resource info\n");
2062 err = aes_dd->irq;
2063 goto res_err;
2066 err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2067 IRQF_SHARED, "atmel-aes", aes_dd);
2068 if (err) {
2069 dev_err(dev, "unable to request aes irq.\n");
2070 goto res_err;
2073 /* Initializing the clock */
2074 aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2075 if (IS_ERR(aes_dd->iclk)) {
2076 dev_err(dev, "clock initialization failed.\n");
2077 err = PTR_ERR(aes_dd->iclk);
2078 goto res_err;
2081 aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2082 if (IS_ERR(aes_dd->io_base)) {
2083 dev_err(dev, "can't ioremap\n");
2084 err = PTR_ERR(aes_dd->io_base);
2085 goto res_err;
2088 err = clk_prepare(aes_dd->iclk);
2089 if (err)
2090 goto res_err;
2092 err = atmel_aes_hw_version_init(aes_dd);
2093 if (err)
2094 goto iclk_unprepare;
2096 atmel_aes_get_cap(aes_dd);
2098 err = atmel_aes_buff_init(aes_dd);
2099 if (err)
2100 goto err_aes_buff;
2102 err = atmel_aes_dma_init(aes_dd, pdata);
2103 if (err)
2104 goto err_aes_dma;
2106 spin_lock(&atmel_aes.lock);
2107 list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2108 spin_unlock(&atmel_aes.lock);
2110 err = atmel_aes_register_algs(aes_dd);
2111 if (err)
2112 goto err_algs;
2114 dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2115 dma_chan_name(aes_dd->src.chan),
2116 dma_chan_name(aes_dd->dst.chan));
2118 return 0;
2120 err_algs:
2121 spin_lock(&atmel_aes.lock);
2122 list_del(&aes_dd->list);
2123 spin_unlock(&atmel_aes.lock);
2124 atmel_aes_dma_cleanup(aes_dd);
2125 err_aes_dma:
2126 atmel_aes_buff_cleanup(aes_dd);
2127 err_aes_buff:
2128 iclk_unprepare:
2129 clk_unprepare(aes_dd->iclk);
2130 res_err:
2131 tasklet_kill(&aes_dd->done_task);
2132 tasklet_kill(&aes_dd->queue_task);
2133 aes_dd_err:
2134 dev_err(dev, "initialization failed.\n");
2136 return err;
2139 static int atmel_aes_remove(struct platform_device *pdev)
2141 static struct atmel_aes_dev *aes_dd;
2143 aes_dd = platform_get_drvdata(pdev);
2144 if (!aes_dd)
2145 return -ENODEV;
2146 spin_lock(&atmel_aes.lock);
2147 list_del(&aes_dd->list);
2148 spin_unlock(&atmel_aes.lock);
2150 atmel_aes_unregister_algs(aes_dd);
2152 tasklet_kill(&aes_dd->done_task);
2153 tasklet_kill(&aes_dd->queue_task);
2155 atmel_aes_dma_cleanup(aes_dd);
2156 atmel_aes_buff_cleanup(aes_dd);
2158 clk_unprepare(aes_dd->iclk);
2160 return 0;
2163 static struct platform_driver atmel_aes_driver = {
2164 .probe = atmel_aes_probe,
2165 .remove = atmel_aes_remove,
2166 .driver = {
2167 .name = "atmel_aes",
2168 .of_match_table = of_match_ptr(atmel_aes_dt_ids),
2172 module_platform_driver(atmel_aes_driver);
2174 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2175 MODULE_LICENSE("GPL v2");
2176 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");