hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / crypto / ccp / ccp-dev-v3.c
blob8d2dbacc6161fd071a5ef64f063f49ccba7e5c36
1 /*
2 * AMD Cryptographic Coprocessor (CCP) driver
4 * Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 * Author: Gary R Hook <gary.hook@amd.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/pci.h>
17 #include <linux/kthread.h>
18 #include <linux/interrupt.h>
19 #include <linux/ccp.h>
21 #include "ccp-dev.h"
23 static u32 ccp_alloc_ksb(struct ccp_cmd_queue *cmd_q, unsigned int count)
25 int start;
26 struct ccp_device *ccp = cmd_q->ccp;
28 for (;;) {
29 mutex_lock(&ccp->sb_mutex);
31 start = (u32)bitmap_find_next_zero_area(ccp->sb,
32 ccp->sb_count,
33 ccp->sb_start,
34 count, 0);
35 if (start <= ccp->sb_count) {
36 bitmap_set(ccp->sb, start, count);
38 mutex_unlock(&ccp->sb_mutex);
39 break;
42 ccp->sb_avail = 0;
44 mutex_unlock(&ccp->sb_mutex);
46 /* Wait for KSB entries to become available */
47 if (wait_event_interruptible(ccp->sb_queue, ccp->sb_avail))
48 return 0;
51 return KSB_START + start;
54 static void ccp_free_ksb(struct ccp_cmd_queue *cmd_q, unsigned int start,
55 unsigned int count)
57 struct ccp_device *ccp = cmd_q->ccp;
59 if (!start)
60 return;
62 mutex_lock(&ccp->sb_mutex);
64 bitmap_clear(ccp->sb, start - KSB_START, count);
66 ccp->sb_avail = 1;
68 mutex_unlock(&ccp->sb_mutex);
70 wake_up_interruptible_all(&ccp->sb_queue);
73 static unsigned int ccp_get_free_slots(struct ccp_cmd_queue *cmd_q)
75 return CMD_Q_DEPTH(ioread32(cmd_q->reg_status));
78 static int ccp_do_cmd(struct ccp_op *op, u32 *cr, unsigned int cr_count)
80 struct ccp_cmd_queue *cmd_q = op->cmd_q;
81 struct ccp_device *ccp = cmd_q->ccp;
82 void __iomem *cr_addr;
83 u32 cr0, cmd;
84 unsigned int i;
85 int ret = 0;
87 /* We could read a status register to see how many free slots
88 * are actually available, but reading that register resets it
89 * and you could lose some error information.
91 cmd_q->free_slots--;
93 cr0 = (cmd_q->id << REQ0_CMD_Q_SHIFT)
94 | (op->jobid << REQ0_JOBID_SHIFT)
95 | REQ0_WAIT_FOR_WRITE;
97 if (op->soc)
98 cr0 |= REQ0_STOP_ON_COMPLETE
99 | REQ0_INT_ON_COMPLETE;
101 if (op->ioc || !cmd_q->free_slots)
102 cr0 |= REQ0_INT_ON_COMPLETE;
104 /* Start at CMD_REQ1 */
105 cr_addr = ccp->io_regs + CMD_REQ0 + CMD_REQ_INCR;
107 mutex_lock(&ccp->req_mutex);
109 /* Write CMD_REQ1 through CMD_REQx first */
110 for (i = 0; i < cr_count; i++, cr_addr += CMD_REQ_INCR)
111 iowrite32(*(cr + i), cr_addr);
113 /* Tell the CCP to start */
114 wmb();
115 iowrite32(cr0, ccp->io_regs + CMD_REQ0);
117 mutex_unlock(&ccp->req_mutex);
119 if (cr0 & REQ0_INT_ON_COMPLETE) {
120 /* Wait for the job to complete */
121 ret = wait_event_interruptible(cmd_q->int_queue,
122 cmd_q->int_rcvd);
123 if (ret || cmd_q->cmd_error) {
124 /* On error delete all related jobs from the queue */
125 cmd = (cmd_q->id << DEL_Q_ID_SHIFT)
126 | op->jobid;
127 if (cmd_q->cmd_error)
128 ccp_log_error(cmd_q->ccp,
129 cmd_q->cmd_error);
131 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
133 if (!ret)
134 ret = -EIO;
135 } else if (op->soc) {
136 /* Delete just head job from the queue on SoC */
137 cmd = DEL_Q_ACTIVE
138 | (cmd_q->id << DEL_Q_ID_SHIFT)
139 | op->jobid;
141 iowrite32(cmd, ccp->io_regs + DEL_CMD_Q_JOB);
144 cmd_q->free_slots = CMD_Q_DEPTH(cmd_q->q_status);
146 cmd_q->int_rcvd = 0;
149 return ret;
152 static int ccp_perform_aes(struct ccp_op *op)
154 u32 cr[6];
156 /* Fill out the register contents for REQ1 through REQ6 */
157 cr[0] = (CCP_ENGINE_AES << REQ1_ENGINE_SHIFT)
158 | (op->u.aes.type << REQ1_AES_TYPE_SHIFT)
159 | (op->u.aes.mode << REQ1_AES_MODE_SHIFT)
160 | (op->u.aes.action << REQ1_AES_ACTION_SHIFT)
161 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
162 cr[1] = op->src.u.dma.length - 1;
163 cr[2] = ccp_addr_lo(&op->src.u.dma);
164 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
165 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
166 | ccp_addr_hi(&op->src.u.dma);
167 cr[4] = ccp_addr_lo(&op->dst.u.dma);
168 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
169 | ccp_addr_hi(&op->dst.u.dma);
171 if (op->u.aes.mode == CCP_AES_MODE_CFB)
172 cr[0] |= ((0x7f) << REQ1_AES_CFB_SIZE_SHIFT);
174 if (op->eom)
175 cr[0] |= REQ1_EOM;
177 if (op->init)
178 cr[0] |= REQ1_INIT;
180 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
183 static int ccp_perform_xts_aes(struct ccp_op *op)
185 u32 cr[6];
187 /* Fill out the register contents for REQ1 through REQ6 */
188 cr[0] = (CCP_ENGINE_XTS_AES_128 << REQ1_ENGINE_SHIFT)
189 | (op->u.xts.action << REQ1_AES_ACTION_SHIFT)
190 | (op->u.xts.unit_size << REQ1_XTS_AES_SIZE_SHIFT)
191 | (op->sb_key << REQ1_KEY_KSB_SHIFT);
192 cr[1] = op->src.u.dma.length - 1;
193 cr[2] = ccp_addr_lo(&op->src.u.dma);
194 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
195 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
196 | ccp_addr_hi(&op->src.u.dma);
197 cr[4] = ccp_addr_lo(&op->dst.u.dma);
198 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
199 | ccp_addr_hi(&op->dst.u.dma);
201 if (op->eom)
202 cr[0] |= REQ1_EOM;
204 if (op->init)
205 cr[0] |= REQ1_INIT;
207 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
210 static int ccp_perform_sha(struct ccp_op *op)
212 u32 cr[6];
214 /* Fill out the register contents for REQ1 through REQ6 */
215 cr[0] = (CCP_ENGINE_SHA << REQ1_ENGINE_SHIFT)
216 | (op->u.sha.type << REQ1_SHA_TYPE_SHIFT)
217 | REQ1_INIT;
218 cr[1] = op->src.u.dma.length - 1;
219 cr[2] = ccp_addr_lo(&op->src.u.dma);
220 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
221 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
222 | ccp_addr_hi(&op->src.u.dma);
224 if (op->eom) {
225 cr[0] |= REQ1_EOM;
226 cr[4] = lower_32_bits(op->u.sha.msg_bits);
227 cr[5] = upper_32_bits(op->u.sha.msg_bits);
228 } else {
229 cr[4] = 0;
230 cr[5] = 0;
233 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
236 static int ccp_perform_rsa(struct ccp_op *op)
238 u32 cr[6];
240 /* Fill out the register contents for REQ1 through REQ6 */
241 cr[0] = (CCP_ENGINE_RSA << REQ1_ENGINE_SHIFT)
242 | (op->u.rsa.mod_size << REQ1_RSA_MOD_SIZE_SHIFT)
243 | (op->sb_key << REQ1_KEY_KSB_SHIFT)
244 | REQ1_EOM;
245 cr[1] = op->u.rsa.input_len - 1;
246 cr[2] = ccp_addr_lo(&op->src.u.dma);
247 cr[3] = (op->sb_ctx << REQ4_KSB_SHIFT)
248 | (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
249 | ccp_addr_hi(&op->src.u.dma);
250 cr[4] = ccp_addr_lo(&op->dst.u.dma);
251 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
252 | ccp_addr_hi(&op->dst.u.dma);
254 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
257 static int ccp_perform_passthru(struct ccp_op *op)
259 u32 cr[6];
261 /* Fill out the register contents for REQ1 through REQ6 */
262 cr[0] = (CCP_ENGINE_PASSTHRU << REQ1_ENGINE_SHIFT)
263 | (op->u.passthru.bit_mod << REQ1_PT_BW_SHIFT)
264 | (op->u.passthru.byte_swap << REQ1_PT_BS_SHIFT);
266 if (op->src.type == CCP_MEMTYPE_SYSTEM)
267 cr[1] = op->src.u.dma.length - 1;
268 else
269 cr[1] = op->dst.u.dma.length - 1;
271 if (op->src.type == CCP_MEMTYPE_SYSTEM) {
272 cr[2] = ccp_addr_lo(&op->src.u.dma);
273 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
274 | ccp_addr_hi(&op->src.u.dma);
276 if (op->u.passthru.bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
277 cr[3] |= (op->sb_key << REQ4_KSB_SHIFT);
278 } else {
279 cr[2] = op->src.u.sb * CCP_SB_BYTES;
280 cr[3] = (CCP_MEMTYPE_SB << REQ4_MEMTYPE_SHIFT);
283 if (op->dst.type == CCP_MEMTYPE_SYSTEM) {
284 cr[4] = ccp_addr_lo(&op->dst.u.dma);
285 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
286 | ccp_addr_hi(&op->dst.u.dma);
287 } else {
288 cr[4] = op->dst.u.sb * CCP_SB_BYTES;
289 cr[5] = (CCP_MEMTYPE_SB << REQ6_MEMTYPE_SHIFT);
292 if (op->eom)
293 cr[0] |= REQ1_EOM;
295 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
298 static int ccp_perform_ecc(struct ccp_op *op)
300 u32 cr[6];
302 /* Fill out the register contents for REQ1 through REQ6 */
303 cr[0] = REQ1_ECC_AFFINE_CONVERT
304 | (CCP_ENGINE_ECC << REQ1_ENGINE_SHIFT)
305 | (op->u.ecc.function << REQ1_ECC_FUNCTION_SHIFT)
306 | REQ1_EOM;
307 cr[1] = op->src.u.dma.length - 1;
308 cr[2] = ccp_addr_lo(&op->src.u.dma);
309 cr[3] = (CCP_MEMTYPE_SYSTEM << REQ4_MEMTYPE_SHIFT)
310 | ccp_addr_hi(&op->src.u.dma);
311 cr[4] = ccp_addr_lo(&op->dst.u.dma);
312 cr[5] = (CCP_MEMTYPE_SYSTEM << REQ6_MEMTYPE_SHIFT)
313 | ccp_addr_hi(&op->dst.u.dma);
315 return ccp_do_cmd(op, cr, ARRAY_SIZE(cr));
318 static int ccp_init(struct ccp_device *ccp)
320 struct device *dev = ccp->dev;
321 struct ccp_cmd_queue *cmd_q;
322 struct dma_pool *dma_pool;
323 char dma_pool_name[MAX_DMAPOOL_NAME_LEN];
324 unsigned int qmr, qim, i;
325 int ret;
327 /* Find available queues */
328 qim = 0;
329 qmr = ioread32(ccp->io_regs + Q_MASK_REG);
330 for (i = 0; i < MAX_HW_QUEUES; i++) {
331 if (!(qmr & (1 << i)))
332 continue;
334 /* Allocate a dma pool for this queue */
335 snprintf(dma_pool_name, sizeof(dma_pool_name), "%s_q%d",
336 ccp->name, i);
337 dma_pool = dma_pool_create(dma_pool_name, dev,
338 CCP_DMAPOOL_MAX_SIZE,
339 CCP_DMAPOOL_ALIGN, 0);
340 if (!dma_pool) {
341 dev_err(dev, "unable to allocate dma pool\n");
342 ret = -ENOMEM;
343 goto e_pool;
346 cmd_q = &ccp->cmd_q[ccp->cmd_q_count];
347 ccp->cmd_q_count++;
349 cmd_q->ccp = ccp;
350 cmd_q->id = i;
351 cmd_q->dma_pool = dma_pool;
353 /* Reserve 2 KSB regions for the queue */
354 cmd_q->sb_key = KSB_START + ccp->sb_start++;
355 cmd_q->sb_ctx = KSB_START + ccp->sb_start++;
356 ccp->sb_count -= 2;
358 /* Preset some register values and masks that are queue
359 * number dependent
361 cmd_q->reg_status = ccp->io_regs + CMD_Q_STATUS_BASE +
362 (CMD_Q_STATUS_INCR * i);
363 cmd_q->reg_int_status = ccp->io_regs + CMD_Q_INT_STATUS_BASE +
364 (CMD_Q_STATUS_INCR * i);
365 cmd_q->int_ok = 1 << (i * 2);
366 cmd_q->int_err = 1 << ((i * 2) + 1);
368 cmd_q->free_slots = ccp_get_free_slots(cmd_q);
370 init_waitqueue_head(&cmd_q->int_queue);
372 /* Build queue interrupt mask (two interrupts per queue) */
373 qim |= cmd_q->int_ok | cmd_q->int_err;
375 #ifdef CONFIG_ARM64
376 /* For arm64 set the recommended queue cache settings */
377 iowrite32(ccp->axcache, ccp->io_regs + CMD_Q_CACHE_BASE +
378 (CMD_Q_CACHE_INC * i));
379 #endif
381 dev_dbg(dev, "queue #%u available\n", i);
383 if (ccp->cmd_q_count == 0) {
384 dev_notice(dev, "no command queues available\n");
385 ret = -EIO;
386 goto e_pool;
388 dev_notice(dev, "%u command queues available\n", ccp->cmd_q_count);
390 /* Disable and clear interrupts until ready */
391 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
392 for (i = 0; i < ccp->cmd_q_count; i++) {
393 cmd_q = &ccp->cmd_q[i];
395 ioread32(cmd_q->reg_int_status);
396 ioread32(cmd_q->reg_status);
398 iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
400 /* Request an irq */
401 ret = ccp->get_irq(ccp);
402 if (ret) {
403 dev_err(dev, "unable to allocate an IRQ\n");
404 goto e_pool;
407 /* Initialize the queues used to wait for KSB space and suspend */
408 init_waitqueue_head(&ccp->sb_queue);
409 init_waitqueue_head(&ccp->suspend_queue);
411 dev_dbg(dev, "Starting threads...\n");
412 /* Create a kthread for each queue */
413 for (i = 0; i < ccp->cmd_q_count; i++) {
414 struct task_struct *kthread;
416 cmd_q = &ccp->cmd_q[i];
418 kthread = kthread_create(ccp_cmd_queue_thread, cmd_q,
419 "%s-q%u", ccp->name, cmd_q->id);
420 if (IS_ERR(kthread)) {
421 dev_err(dev, "error creating queue thread (%ld)\n",
422 PTR_ERR(kthread));
423 ret = PTR_ERR(kthread);
424 goto e_kthread;
427 cmd_q->kthread = kthread;
428 wake_up_process(kthread);
431 dev_dbg(dev, "Enabling interrupts...\n");
432 /* Enable interrupts */
433 iowrite32(qim, ccp->io_regs + IRQ_MASK_REG);
435 dev_dbg(dev, "Registering device...\n");
436 ccp_add_device(ccp);
438 ret = ccp_register_rng(ccp);
439 if (ret)
440 goto e_kthread;
442 /* Register the DMA engine support */
443 ret = ccp_dmaengine_register(ccp);
444 if (ret)
445 goto e_hwrng;
447 return 0;
449 e_hwrng:
450 ccp_unregister_rng(ccp);
452 e_kthread:
453 for (i = 0; i < ccp->cmd_q_count; i++)
454 if (ccp->cmd_q[i].kthread)
455 kthread_stop(ccp->cmd_q[i].kthread);
457 ccp->free_irq(ccp);
459 e_pool:
460 for (i = 0; i < ccp->cmd_q_count; i++)
461 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
463 return ret;
466 static void ccp_destroy(struct ccp_device *ccp)
468 struct ccp_cmd_queue *cmd_q;
469 struct ccp_cmd *cmd;
470 unsigned int qim, i;
472 /* Unregister the DMA engine */
473 ccp_dmaengine_unregister(ccp);
475 /* Unregister the RNG */
476 ccp_unregister_rng(ccp);
478 /* Remove this device from the list of available units */
479 ccp_del_device(ccp);
481 /* Build queue interrupt mask (two interrupt masks per queue) */
482 qim = 0;
483 for (i = 0; i < ccp->cmd_q_count; i++) {
484 cmd_q = &ccp->cmd_q[i];
485 qim |= cmd_q->int_ok | cmd_q->int_err;
488 /* Disable and clear interrupts */
489 iowrite32(0x00, ccp->io_regs + IRQ_MASK_REG);
490 for (i = 0; i < ccp->cmd_q_count; i++) {
491 cmd_q = &ccp->cmd_q[i];
493 ioread32(cmd_q->reg_int_status);
494 ioread32(cmd_q->reg_status);
496 iowrite32(qim, ccp->io_regs + IRQ_STATUS_REG);
498 /* Stop the queue kthreads */
499 for (i = 0; i < ccp->cmd_q_count; i++)
500 if (ccp->cmd_q[i].kthread)
501 kthread_stop(ccp->cmd_q[i].kthread);
503 ccp->free_irq(ccp);
505 for (i = 0; i < ccp->cmd_q_count; i++)
506 dma_pool_destroy(ccp->cmd_q[i].dma_pool);
508 /* Flush the cmd and backlog queue */
509 while (!list_empty(&ccp->cmd)) {
510 /* Invoke the callback directly with an error code */
511 cmd = list_first_entry(&ccp->cmd, struct ccp_cmd, entry);
512 list_del(&cmd->entry);
513 cmd->callback(cmd->data, -ENODEV);
515 while (!list_empty(&ccp->backlog)) {
516 /* Invoke the callback directly with an error code */
517 cmd = list_first_entry(&ccp->backlog, struct ccp_cmd, entry);
518 list_del(&cmd->entry);
519 cmd->callback(cmd->data, -ENODEV);
523 static irqreturn_t ccp_irq_handler(int irq, void *data)
525 struct device *dev = data;
526 struct ccp_device *ccp = dev_get_drvdata(dev);
527 struct ccp_cmd_queue *cmd_q;
528 u32 q_int, status;
529 unsigned int i;
531 status = ioread32(ccp->io_regs + IRQ_STATUS_REG);
533 for (i = 0; i < ccp->cmd_q_count; i++) {
534 cmd_q = &ccp->cmd_q[i];
536 q_int = status & (cmd_q->int_ok | cmd_q->int_err);
537 if (q_int) {
538 cmd_q->int_status = status;
539 cmd_q->q_status = ioread32(cmd_q->reg_status);
540 cmd_q->q_int_status = ioread32(cmd_q->reg_int_status);
542 /* On error, only save the first error value */
543 if ((q_int & cmd_q->int_err) && !cmd_q->cmd_error)
544 cmd_q->cmd_error = CMD_Q_ERROR(cmd_q->q_status);
546 cmd_q->int_rcvd = 1;
548 /* Acknowledge the interrupt and wake the kthread */
549 iowrite32(q_int, ccp->io_regs + IRQ_STATUS_REG);
550 wake_up_interruptible(&cmd_q->int_queue);
554 return IRQ_HANDLED;
557 static const struct ccp_actions ccp3_actions = {
558 .aes = ccp_perform_aes,
559 .xts_aes = ccp_perform_xts_aes,
560 .sha = ccp_perform_sha,
561 .rsa = ccp_perform_rsa,
562 .passthru = ccp_perform_passthru,
563 .ecc = ccp_perform_ecc,
564 .sballoc = ccp_alloc_ksb,
565 .sbfree = ccp_free_ksb,
566 .init = ccp_init,
567 .destroy = ccp_destroy,
568 .get_free_slots = ccp_get_free_slots,
569 .irqhandler = ccp_irq_handler,
572 const struct ccp_vdata ccpv3 = {
573 .version = CCP_VERSION(3, 0),
574 .setup = NULL,
575 .perform = &ccp3_actions,
576 .bar = 2,
577 .offset = 0x20000,