hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / crypto / mxs-dcp.c
blob625ee50fd78bf4e585845436bdeaeb99d678309c
1 /*
2 * Freescale i.MX23/i.MX28 Data Co-Processor driver
4 * Copyright (C) 2013 Marek Vasut <marex@denx.de>
6 * The code contained herein is licensed under the GNU General Public
7 * License. You may obtain a copy of the GNU General Public License
8 * Version 2 or later at the following locations:
10 * http://www.opensource.org/licenses/gpl-license.html
11 * http://www.gnu.org/copyleft/gpl.html
14 #include <linux/dma-mapping.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/stmp_device.h>
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
29 #define DCP_MAX_CHANS 4
30 #define DCP_BUF_SZ PAGE_SIZE
32 #define DCP_ALIGNMENT 64
34 /* DCP DMA descriptor. */
35 struct dcp_dma_desc {
36 uint32_t next_cmd_addr;
37 uint32_t control0;
38 uint32_t control1;
39 uint32_t source;
40 uint32_t destination;
41 uint32_t size;
42 uint32_t payload;
43 uint32_t status;
46 /* Coherent aligned block for bounce buffering. */
47 struct dcp_coherent_block {
48 uint8_t aes_in_buf[DCP_BUF_SZ];
49 uint8_t aes_out_buf[DCP_BUF_SZ];
50 uint8_t sha_in_buf[DCP_BUF_SZ];
52 uint8_t aes_key[2 * AES_KEYSIZE_128];
54 struct dcp_dma_desc desc[DCP_MAX_CHANS];
57 struct dcp {
58 struct device *dev;
59 void __iomem *base;
61 uint32_t caps;
63 struct dcp_coherent_block *coh;
65 struct completion completion[DCP_MAX_CHANS];
66 struct mutex mutex[DCP_MAX_CHANS];
67 struct task_struct *thread[DCP_MAX_CHANS];
68 struct crypto_queue queue[DCP_MAX_CHANS];
71 enum dcp_chan {
72 DCP_CHAN_HASH_SHA = 0,
73 DCP_CHAN_CRYPTO = 2,
76 struct dcp_async_ctx {
77 /* Common context */
78 enum dcp_chan chan;
79 uint32_t fill;
81 /* SHA Hash-specific context */
82 struct mutex mutex;
83 uint32_t alg;
84 unsigned int hot:1;
86 /* Crypto-specific context */
87 struct crypto_skcipher *fallback;
88 unsigned int key_len;
89 uint8_t key[AES_KEYSIZE_128];
92 struct dcp_aes_req_ctx {
93 unsigned int enc:1;
94 unsigned int ecb:1;
97 struct dcp_sha_req_ctx {
98 unsigned int init:1;
99 unsigned int fini:1;
103 * There can even be only one instance of the MXS DCP due to the
104 * design of Linux Crypto API.
106 static struct dcp *global_sdcp;
108 /* DCP register layout. */
109 #define MXS_DCP_CTRL 0x00
110 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
111 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
113 #define MXS_DCP_STAT 0x10
114 #define MXS_DCP_STAT_CLR 0x18
115 #define MXS_DCP_STAT_IRQ_MASK 0xf
117 #define MXS_DCP_CHANNELCTRL 0x20
118 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
120 #define MXS_DCP_CAPABILITY1 0x40
121 #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
122 #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
123 #define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
125 #define MXS_DCP_CONTEXT 0x50
127 #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
129 #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
131 #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
132 #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
134 /* DMA descriptor bits. */
135 #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
136 #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
137 #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
138 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
139 #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
140 #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
141 #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
142 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
143 #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
145 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
146 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
147 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
148 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
149 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
151 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
153 struct dcp *sdcp = global_sdcp;
154 const int chan = actx->chan;
155 uint32_t stat;
156 unsigned long ret;
157 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
159 dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
160 DMA_TO_DEVICE);
162 reinit_completion(&sdcp->completion[chan]);
164 /* Clear status register. */
165 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
167 /* Load the DMA descriptor. */
168 writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
170 /* Increment the semaphore to start the DMA transfer. */
171 writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
173 ret = wait_for_completion_timeout(&sdcp->completion[chan],
174 msecs_to_jiffies(1000));
175 if (!ret) {
176 dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
177 chan, readl(sdcp->base + MXS_DCP_STAT));
178 return -ETIMEDOUT;
181 stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
182 if (stat & 0xff) {
183 dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
184 chan, stat);
185 return -EINVAL;
188 dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
190 return 0;
194 * Encryption (AES128)
196 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
197 struct ablkcipher_request *req, int init)
199 struct dcp *sdcp = global_sdcp;
200 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
201 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
202 int ret;
204 dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
205 2 * AES_KEYSIZE_128,
206 DMA_TO_DEVICE);
207 dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
208 DCP_BUF_SZ, DMA_TO_DEVICE);
209 dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
210 DCP_BUF_SZ, DMA_FROM_DEVICE);
212 /* Fill in the DMA descriptor. */
213 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
214 MXS_DCP_CONTROL0_INTERRUPT |
215 MXS_DCP_CONTROL0_ENABLE_CIPHER;
217 /* Payload contains the key. */
218 desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
220 if (rctx->enc)
221 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
222 if (init)
223 desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
225 desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
227 if (rctx->ecb)
228 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
229 else
230 desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
232 desc->next_cmd_addr = 0;
233 desc->source = src_phys;
234 desc->destination = dst_phys;
235 desc->size = actx->fill;
236 desc->payload = key_phys;
237 desc->status = 0;
239 ret = mxs_dcp_start_dma(actx);
241 dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
242 DMA_TO_DEVICE);
243 dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
244 dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
246 return ret;
249 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
251 struct dcp *sdcp = global_sdcp;
253 struct ablkcipher_request *req = ablkcipher_request_cast(arq);
254 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
255 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
257 struct scatterlist *dst = req->dst;
258 struct scatterlist *src = req->src;
259 const int nents = sg_nents(req->src);
261 const int out_off = DCP_BUF_SZ;
262 uint8_t *in_buf = sdcp->coh->aes_in_buf;
263 uint8_t *out_buf = sdcp->coh->aes_out_buf;
265 uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
266 uint32_t dst_off = 0;
268 uint8_t *key = sdcp->coh->aes_key;
270 int ret = 0;
271 int split = 0;
272 unsigned int i, len, clen, rem = 0;
273 int init = 0;
275 actx->fill = 0;
277 /* Copy the key from the temporary location. */
278 memcpy(key, actx->key, actx->key_len);
280 if (!rctx->ecb) {
281 /* Copy the CBC IV just past the key. */
282 memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
283 /* CBC needs the INIT set. */
284 init = 1;
285 } else {
286 memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
289 for_each_sg(req->src, src, nents, i) {
290 src_buf = sg_virt(src);
291 len = sg_dma_len(src);
293 do {
294 if (actx->fill + len > out_off)
295 clen = out_off - actx->fill;
296 else
297 clen = len;
299 memcpy(in_buf + actx->fill, src_buf, clen);
300 len -= clen;
301 src_buf += clen;
302 actx->fill += clen;
305 * If we filled the buffer or this is the last SG,
306 * submit the buffer.
308 if (actx->fill == out_off || sg_is_last(src)) {
309 ret = mxs_dcp_run_aes(actx, req, init);
310 if (ret)
311 return ret;
312 init = 0;
314 out_tmp = out_buf;
315 while (dst && actx->fill) {
316 if (!split) {
317 dst_buf = sg_virt(dst);
318 dst_off = 0;
320 rem = min(sg_dma_len(dst) - dst_off,
321 actx->fill);
323 memcpy(dst_buf + dst_off, out_tmp, rem);
324 out_tmp += rem;
325 dst_off += rem;
326 actx->fill -= rem;
328 if (dst_off == sg_dma_len(dst)) {
329 dst = sg_next(dst);
330 split = 0;
331 } else {
332 split = 1;
336 } while (len);
339 return ret;
342 static int dcp_chan_thread_aes(void *data)
344 struct dcp *sdcp = global_sdcp;
345 const int chan = DCP_CHAN_CRYPTO;
347 struct crypto_async_request *backlog;
348 struct crypto_async_request *arq;
350 int ret;
352 do {
353 __set_current_state(TASK_INTERRUPTIBLE);
355 mutex_lock(&sdcp->mutex[chan]);
356 backlog = crypto_get_backlog(&sdcp->queue[chan]);
357 arq = crypto_dequeue_request(&sdcp->queue[chan]);
358 mutex_unlock(&sdcp->mutex[chan]);
360 if (backlog)
361 backlog->complete(backlog, -EINPROGRESS);
363 if (arq) {
364 ret = mxs_dcp_aes_block_crypt(arq);
365 arq->complete(arq, ret);
366 continue;
369 schedule();
370 } while (!kthread_should_stop());
372 return 0;
375 static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
377 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
378 struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
379 SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
380 int ret;
382 skcipher_request_set_tfm(subreq, ctx->fallback);
383 skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
384 skcipher_request_set_crypt(subreq, req->src, req->dst,
385 req->nbytes, req->info);
387 if (enc)
388 ret = crypto_skcipher_encrypt(subreq);
389 else
390 ret = crypto_skcipher_decrypt(subreq);
392 skcipher_request_zero(subreq);
394 return ret;
397 static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
399 struct dcp *sdcp = global_sdcp;
400 struct crypto_async_request *arq = &req->base;
401 struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
402 struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
403 int ret;
405 if (unlikely(actx->key_len != AES_KEYSIZE_128))
406 return mxs_dcp_block_fallback(req, enc);
408 rctx->enc = enc;
409 rctx->ecb = ecb;
410 actx->chan = DCP_CHAN_CRYPTO;
412 mutex_lock(&sdcp->mutex[actx->chan]);
413 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
414 mutex_unlock(&sdcp->mutex[actx->chan]);
416 wake_up_process(sdcp->thread[actx->chan]);
418 return -EINPROGRESS;
421 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
423 return mxs_dcp_aes_enqueue(req, 0, 1);
426 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
428 return mxs_dcp_aes_enqueue(req, 1, 1);
431 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
433 return mxs_dcp_aes_enqueue(req, 0, 0);
436 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
438 return mxs_dcp_aes_enqueue(req, 1, 0);
441 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
442 unsigned int len)
444 struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
445 unsigned int ret;
448 * AES 128 is supposed by the hardware, store key into temporary
449 * buffer and exit. We must use the temporary buffer here, since
450 * there can still be an operation in progress.
452 actx->key_len = len;
453 if (len == AES_KEYSIZE_128) {
454 memcpy(actx->key, key, len);
455 return 0;
459 * If the requested AES key size is not supported by the hardware,
460 * but is supported by in-kernel software implementation, we use
461 * software fallback.
463 crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
464 crypto_skcipher_set_flags(actx->fallback,
465 tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
467 ret = crypto_skcipher_setkey(actx->fallback, key, len);
468 if (!ret)
469 return 0;
471 tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
472 tfm->base.crt_flags |= crypto_skcipher_get_flags(actx->fallback) &
473 CRYPTO_TFM_RES_MASK;
475 return ret;
478 static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
480 const char *name = crypto_tfm_alg_name(tfm);
481 const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
482 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
483 struct crypto_skcipher *blk;
485 blk = crypto_alloc_skcipher(name, 0, flags);
486 if (IS_ERR(blk))
487 return PTR_ERR(blk);
489 actx->fallback = blk;
490 tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
491 return 0;
494 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
496 struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
498 crypto_free_skcipher(actx->fallback);
502 * Hashing (SHA1/SHA256)
504 static int mxs_dcp_run_sha(struct ahash_request *req)
506 struct dcp *sdcp = global_sdcp;
507 int ret;
509 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
510 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
511 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
512 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
514 struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
516 dma_addr_t digest_phys = 0;
517 dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
518 DCP_BUF_SZ, DMA_TO_DEVICE);
520 /* Fill in the DMA descriptor. */
521 desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
522 MXS_DCP_CONTROL0_INTERRUPT |
523 MXS_DCP_CONTROL0_ENABLE_HASH;
524 if (rctx->init)
525 desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
527 desc->control1 = actx->alg;
528 desc->next_cmd_addr = 0;
529 desc->source = buf_phys;
530 desc->destination = 0;
531 desc->size = actx->fill;
532 desc->payload = 0;
533 desc->status = 0;
535 /* Set HASH_TERM bit for last transfer block. */
536 if (rctx->fini) {
537 digest_phys = dma_map_single(sdcp->dev, req->result,
538 halg->digestsize, DMA_FROM_DEVICE);
539 desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
540 desc->payload = digest_phys;
543 ret = mxs_dcp_start_dma(actx);
545 if (rctx->fini)
546 dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
547 DMA_FROM_DEVICE);
549 dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
551 return ret;
554 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
556 struct dcp *sdcp = global_sdcp;
558 struct ahash_request *req = ahash_request_cast(arq);
559 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
560 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
561 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
562 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
563 const int nents = sg_nents(req->src);
565 uint8_t *in_buf = sdcp->coh->sha_in_buf;
567 uint8_t *src_buf;
569 struct scatterlist *src;
571 unsigned int i, len, clen;
572 int ret;
574 int fin = rctx->fini;
575 if (fin)
576 rctx->fini = 0;
578 for_each_sg(req->src, src, nents, i) {
579 src_buf = sg_virt(src);
580 len = sg_dma_len(src);
582 do {
583 if (actx->fill + len > DCP_BUF_SZ)
584 clen = DCP_BUF_SZ - actx->fill;
585 else
586 clen = len;
588 memcpy(in_buf + actx->fill, src_buf, clen);
589 len -= clen;
590 src_buf += clen;
591 actx->fill += clen;
594 * If we filled the buffer and still have some
595 * more data, submit the buffer.
597 if (len && actx->fill == DCP_BUF_SZ) {
598 ret = mxs_dcp_run_sha(req);
599 if (ret)
600 return ret;
601 actx->fill = 0;
602 rctx->init = 0;
604 } while (len);
607 if (fin) {
608 rctx->fini = 1;
610 /* Submit whatever is left. */
611 if (!req->result)
612 return -EINVAL;
614 ret = mxs_dcp_run_sha(req);
615 if (ret)
616 return ret;
618 actx->fill = 0;
620 /* For some reason, the result is flipped. */
621 for (i = 0; i < halg->digestsize / 2; i++) {
622 swap(req->result[i],
623 req->result[halg->digestsize - i - 1]);
627 return 0;
630 static int dcp_chan_thread_sha(void *data)
632 struct dcp *sdcp = global_sdcp;
633 const int chan = DCP_CHAN_HASH_SHA;
635 struct crypto_async_request *backlog;
636 struct crypto_async_request *arq;
638 struct dcp_sha_req_ctx *rctx;
640 struct ahash_request *req;
641 int ret, fini;
643 do {
644 __set_current_state(TASK_INTERRUPTIBLE);
646 mutex_lock(&sdcp->mutex[chan]);
647 backlog = crypto_get_backlog(&sdcp->queue[chan]);
648 arq = crypto_dequeue_request(&sdcp->queue[chan]);
649 mutex_unlock(&sdcp->mutex[chan]);
651 if (backlog)
652 backlog->complete(backlog, -EINPROGRESS);
654 if (arq) {
655 req = ahash_request_cast(arq);
656 rctx = ahash_request_ctx(req);
658 ret = dcp_sha_req_to_buf(arq);
659 fini = rctx->fini;
660 arq->complete(arq, ret);
661 if (!fini)
662 continue;
665 schedule();
666 } while (!kthread_should_stop());
668 return 0;
671 static int dcp_sha_init(struct ahash_request *req)
673 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
674 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
676 struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
679 * Start hashing session. The code below only inits the
680 * hashing session context, nothing more.
682 memset(actx, 0, sizeof(*actx));
684 if (strcmp(halg->base.cra_name, "sha1") == 0)
685 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
686 else
687 actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
689 actx->fill = 0;
690 actx->hot = 0;
691 actx->chan = DCP_CHAN_HASH_SHA;
693 mutex_init(&actx->mutex);
695 return 0;
698 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
700 struct dcp *sdcp = global_sdcp;
702 struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
703 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
704 struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
706 int ret;
709 * Ignore requests that have no data in them and are not
710 * the trailing requests in the stream of requests.
712 if (!req->nbytes && !fini)
713 return 0;
715 mutex_lock(&actx->mutex);
717 rctx->fini = fini;
719 if (!actx->hot) {
720 actx->hot = 1;
721 rctx->init = 1;
724 mutex_lock(&sdcp->mutex[actx->chan]);
725 ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
726 mutex_unlock(&sdcp->mutex[actx->chan]);
728 wake_up_process(sdcp->thread[actx->chan]);
729 mutex_unlock(&actx->mutex);
731 return -EINPROGRESS;
734 static int dcp_sha_update(struct ahash_request *req)
736 return dcp_sha_update_fx(req, 0);
739 static int dcp_sha_final(struct ahash_request *req)
741 ahash_request_set_crypt(req, NULL, req->result, 0);
742 req->nbytes = 0;
743 return dcp_sha_update_fx(req, 1);
746 static int dcp_sha_finup(struct ahash_request *req)
748 return dcp_sha_update_fx(req, 1);
751 static int dcp_sha_digest(struct ahash_request *req)
753 int ret;
755 ret = dcp_sha_init(req);
756 if (ret)
757 return ret;
759 return dcp_sha_finup(req);
762 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
764 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
765 sizeof(struct dcp_sha_req_ctx));
766 return 0;
769 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
773 /* AES 128 ECB and AES 128 CBC */
774 static struct crypto_alg dcp_aes_algs[] = {
776 .cra_name = "ecb(aes)",
777 .cra_driver_name = "ecb-aes-dcp",
778 .cra_priority = 400,
779 .cra_alignmask = 15,
780 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
781 CRYPTO_ALG_ASYNC |
782 CRYPTO_ALG_NEED_FALLBACK,
783 .cra_init = mxs_dcp_aes_fallback_init,
784 .cra_exit = mxs_dcp_aes_fallback_exit,
785 .cra_blocksize = AES_BLOCK_SIZE,
786 .cra_ctxsize = sizeof(struct dcp_async_ctx),
787 .cra_type = &crypto_ablkcipher_type,
788 .cra_module = THIS_MODULE,
789 .cra_u = {
790 .ablkcipher = {
791 .min_keysize = AES_MIN_KEY_SIZE,
792 .max_keysize = AES_MAX_KEY_SIZE,
793 .setkey = mxs_dcp_aes_setkey,
794 .encrypt = mxs_dcp_aes_ecb_encrypt,
795 .decrypt = mxs_dcp_aes_ecb_decrypt
798 }, {
799 .cra_name = "cbc(aes)",
800 .cra_driver_name = "cbc-aes-dcp",
801 .cra_priority = 400,
802 .cra_alignmask = 15,
803 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
804 CRYPTO_ALG_ASYNC |
805 CRYPTO_ALG_NEED_FALLBACK,
806 .cra_init = mxs_dcp_aes_fallback_init,
807 .cra_exit = mxs_dcp_aes_fallback_exit,
808 .cra_blocksize = AES_BLOCK_SIZE,
809 .cra_ctxsize = sizeof(struct dcp_async_ctx),
810 .cra_type = &crypto_ablkcipher_type,
811 .cra_module = THIS_MODULE,
812 .cra_u = {
813 .ablkcipher = {
814 .min_keysize = AES_MIN_KEY_SIZE,
815 .max_keysize = AES_MAX_KEY_SIZE,
816 .setkey = mxs_dcp_aes_setkey,
817 .encrypt = mxs_dcp_aes_cbc_encrypt,
818 .decrypt = mxs_dcp_aes_cbc_decrypt,
819 .ivsize = AES_BLOCK_SIZE,
825 /* SHA1 */
826 static struct ahash_alg dcp_sha1_alg = {
827 .init = dcp_sha_init,
828 .update = dcp_sha_update,
829 .final = dcp_sha_final,
830 .finup = dcp_sha_finup,
831 .digest = dcp_sha_digest,
832 .halg = {
833 .digestsize = SHA1_DIGEST_SIZE,
834 .base = {
835 .cra_name = "sha1",
836 .cra_driver_name = "sha1-dcp",
837 .cra_priority = 400,
838 .cra_alignmask = 63,
839 .cra_flags = CRYPTO_ALG_ASYNC,
840 .cra_blocksize = SHA1_BLOCK_SIZE,
841 .cra_ctxsize = sizeof(struct dcp_async_ctx),
842 .cra_module = THIS_MODULE,
843 .cra_init = dcp_sha_cra_init,
844 .cra_exit = dcp_sha_cra_exit,
849 /* SHA256 */
850 static struct ahash_alg dcp_sha256_alg = {
851 .init = dcp_sha_init,
852 .update = dcp_sha_update,
853 .final = dcp_sha_final,
854 .finup = dcp_sha_finup,
855 .digest = dcp_sha_digest,
856 .halg = {
857 .digestsize = SHA256_DIGEST_SIZE,
858 .base = {
859 .cra_name = "sha256",
860 .cra_driver_name = "sha256-dcp",
861 .cra_priority = 400,
862 .cra_alignmask = 63,
863 .cra_flags = CRYPTO_ALG_ASYNC,
864 .cra_blocksize = SHA256_BLOCK_SIZE,
865 .cra_ctxsize = sizeof(struct dcp_async_ctx),
866 .cra_module = THIS_MODULE,
867 .cra_init = dcp_sha_cra_init,
868 .cra_exit = dcp_sha_cra_exit,
873 static irqreturn_t mxs_dcp_irq(int irq, void *context)
875 struct dcp *sdcp = context;
876 uint32_t stat;
877 int i;
879 stat = readl(sdcp->base + MXS_DCP_STAT);
880 stat &= MXS_DCP_STAT_IRQ_MASK;
881 if (!stat)
882 return IRQ_NONE;
884 /* Clear the interrupts. */
885 writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
887 /* Complete the DMA requests that finished. */
888 for (i = 0; i < DCP_MAX_CHANS; i++)
889 if (stat & (1 << i))
890 complete(&sdcp->completion[i]);
892 return IRQ_HANDLED;
895 static int mxs_dcp_probe(struct platform_device *pdev)
897 struct device *dev = &pdev->dev;
898 struct dcp *sdcp = NULL;
899 int i, ret;
901 struct resource *iores;
902 int dcp_vmi_irq, dcp_irq;
904 if (global_sdcp) {
905 dev_err(dev, "Only one DCP instance allowed!\n");
906 return -ENODEV;
909 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
910 dcp_vmi_irq = platform_get_irq(pdev, 0);
911 if (dcp_vmi_irq < 0)
912 return dcp_vmi_irq;
914 dcp_irq = platform_get_irq(pdev, 1);
915 if (dcp_irq < 0)
916 return dcp_irq;
918 sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
919 if (!sdcp)
920 return -ENOMEM;
922 sdcp->dev = dev;
923 sdcp->base = devm_ioremap_resource(dev, iores);
924 if (IS_ERR(sdcp->base))
925 return PTR_ERR(sdcp->base);
928 ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
929 "dcp-vmi-irq", sdcp);
930 if (ret) {
931 dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
932 return ret;
935 ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
936 "dcp-irq", sdcp);
937 if (ret) {
938 dev_err(dev, "Failed to claim DCP IRQ!\n");
939 return ret;
942 /* Allocate coherent helper block. */
943 sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
944 GFP_KERNEL);
945 if (!sdcp->coh)
946 return -ENOMEM;
948 /* Re-align the structure so it fits the DCP constraints. */
949 sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
951 /* Restart the DCP block. */
952 ret = stmp_reset_block(sdcp->base);
953 if (ret)
954 return ret;
956 /* Initialize control register. */
957 writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
958 MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
959 sdcp->base + MXS_DCP_CTRL);
961 /* Enable all DCP DMA channels. */
962 writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
963 sdcp->base + MXS_DCP_CHANNELCTRL);
966 * We do not enable context switching. Give the context buffer a
967 * pointer to an illegal address so if context switching is
968 * inadvertantly enabled, the DCP will return an error instead of
969 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
970 * address will do.
972 writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
973 for (i = 0; i < DCP_MAX_CHANS; i++)
974 writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
975 writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
977 global_sdcp = sdcp;
979 platform_set_drvdata(pdev, sdcp);
981 for (i = 0; i < DCP_MAX_CHANS; i++) {
982 mutex_init(&sdcp->mutex[i]);
983 init_completion(&sdcp->completion[i]);
984 crypto_init_queue(&sdcp->queue[i], 50);
987 /* Create the SHA and AES handler threads. */
988 sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
989 NULL, "mxs_dcp_chan/sha");
990 if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
991 dev_err(dev, "Error starting SHA thread!\n");
992 return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
995 sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
996 NULL, "mxs_dcp_chan/aes");
997 if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
998 dev_err(dev, "Error starting SHA thread!\n");
999 ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1000 goto err_destroy_sha_thread;
1003 /* Register the various crypto algorithms. */
1004 sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1006 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1007 ret = crypto_register_algs(dcp_aes_algs,
1008 ARRAY_SIZE(dcp_aes_algs));
1009 if (ret) {
1010 /* Failed to register algorithm. */
1011 dev_err(dev, "Failed to register AES crypto!\n");
1012 goto err_destroy_aes_thread;
1016 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1017 ret = crypto_register_ahash(&dcp_sha1_alg);
1018 if (ret) {
1019 dev_err(dev, "Failed to register %s hash!\n",
1020 dcp_sha1_alg.halg.base.cra_name);
1021 goto err_unregister_aes;
1025 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1026 ret = crypto_register_ahash(&dcp_sha256_alg);
1027 if (ret) {
1028 dev_err(dev, "Failed to register %s hash!\n",
1029 dcp_sha256_alg.halg.base.cra_name);
1030 goto err_unregister_sha1;
1034 return 0;
1036 err_unregister_sha1:
1037 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1038 crypto_unregister_ahash(&dcp_sha1_alg);
1040 err_unregister_aes:
1041 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1042 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1044 err_destroy_aes_thread:
1045 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1047 err_destroy_sha_thread:
1048 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1049 return ret;
1052 static int mxs_dcp_remove(struct platform_device *pdev)
1054 struct dcp *sdcp = platform_get_drvdata(pdev);
1056 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1057 crypto_unregister_ahash(&dcp_sha256_alg);
1059 if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1060 crypto_unregister_ahash(&dcp_sha1_alg);
1062 if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1063 crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1065 kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1066 kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1068 platform_set_drvdata(pdev, NULL);
1070 global_sdcp = NULL;
1072 return 0;
1075 static const struct of_device_id mxs_dcp_dt_ids[] = {
1076 { .compatible = "fsl,imx23-dcp", .data = NULL, },
1077 { .compatible = "fsl,imx28-dcp", .data = NULL, },
1078 { /* sentinel */ }
1081 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1083 static struct platform_driver mxs_dcp_driver = {
1084 .probe = mxs_dcp_probe,
1085 .remove = mxs_dcp_remove,
1086 .driver = {
1087 .name = "mxs-dcp",
1088 .of_match_table = mxs_dcp_dt_ids,
1092 module_platform_driver(mxs_dcp_driver);
1094 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1095 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1096 MODULE_LICENSE("GPL");
1097 MODULE_ALIAS("platform:mxs-dcp");