2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
34 struct iommu_dma_msi_page
{
35 struct list_head list
;
40 struct iommu_dma_cookie
{
41 struct iova_domain iovad
;
42 struct list_head msi_page_list
;
46 static inline struct iova_domain
*cookie_iovad(struct iommu_domain
*domain
)
48 return &((struct iommu_dma_cookie
*)domain
->iova_cookie
)->iovad
;
51 int iommu_dma_init(void)
53 return iova_cache_get();
57 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
58 * @domain: IOMMU domain to prepare for DMA-API usage
60 * IOMMU drivers should normally call this from their domain_alloc
61 * callback when domain->type == IOMMU_DOMAIN_DMA.
63 int iommu_get_dma_cookie(struct iommu_domain
*domain
)
65 struct iommu_dma_cookie
*cookie
;
67 if (domain
->iova_cookie
)
70 cookie
= kzalloc(sizeof(*cookie
), GFP_KERNEL
);
74 spin_lock_init(&cookie
->msi_lock
);
75 INIT_LIST_HEAD(&cookie
->msi_page_list
);
76 domain
->iova_cookie
= cookie
;
79 EXPORT_SYMBOL(iommu_get_dma_cookie
);
82 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
83 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
85 * IOMMU drivers should normally call this from their domain_free callback.
87 void iommu_put_dma_cookie(struct iommu_domain
*domain
)
89 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
90 struct iommu_dma_msi_page
*msi
, *tmp
;
95 if (cookie
->iovad
.granule
)
96 put_iova_domain(&cookie
->iovad
);
98 list_for_each_entry_safe(msi
, tmp
, &cookie
->msi_page_list
, list
) {
103 domain
->iova_cookie
= NULL
;
105 EXPORT_SYMBOL(iommu_put_dma_cookie
);
107 static void iova_reserve_pci_windows(struct pci_dev
*dev
,
108 struct iova_domain
*iovad
)
110 struct pci_host_bridge
*bridge
= pci_find_host_bridge(dev
->bus
);
111 struct resource_entry
*window
;
112 unsigned long lo
, hi
;
114 resource_list_for_each_entry(window
, &bridge
->windows
) {
115 if (resource_type(window
->res
) != IORESOURCE_MEM
&&
116 resource_type(window
->res
) != IORESOURCE_IO
)
119 lo
= iova_pfn(iovad
, window
->res
->start
- window
->offset
);
120 hi
= iova_pfn(iovad
, window
->res
->end
- window
->offset
);
121 reserve_iova(iovad
, lo
, hi
);
126 * iommu_dma_init_domain - Initialise a DMA mapping domain
127 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
128 * @base: IOVA at which the mappable address space starts
129 * @size: Size of IOVA space
130 * @dev: Device the domain is being initialised for
132 * @base and @size should be exact multiples of IOMMU page granularity to
133 * avoid rounding surprises. If necessary, we reserve the page at address 0
134 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
135 * any change which could make prior IOVAs invalid will fail.
137 int iommu_dma_init_domain(struct iommu_domain
*domain
, dma_addr_t base
,
138 u64 size
, struct device
*dev
)
140 struct iova_domain
*iovad
= cookie_iovad(domain
);
141 unsigned long order
, base_pfn
, end_pfn
;
146 /* Use the smallest supported page size for IOVA granularity */
147 order
= __ffs(domain
->pgsize_bitmap
);
148 base_pfn
= max_t(unsigned long, 1, base
>> order
);
149 end_pfn
= (base
+ size
- 1) >> order
;
151 /* Check the domain allows at least some access to the device... */
152 if (domain
->geometry
.force_aperture
) {
153 if (base
> domain
->geometry
.aperture_end
||
154 base
+ size
<= domain
->geometry
.aperture_start
) {
155 pr_warn("specified DMA range outside IOMMU capability\n");
158 /* ...then finally give it a kicking to make sure it fits */
159 base_pfn
= max_t(unsigned long, base_pfn
,
160 domain
->geometry
.aperture_start
>> order
);
161 end_pfn
= min_t(unsigned long, end_pfn
,
162 domain
->geometry
.aperture_end
>> order
);
165 /* All we can safely do with an existing domain is enlarge it */
166 if (iovad
->start_pfn
) {
167 if (1UL << order
!= iovad
->granule
||
168 base_pfn
!= iovad
->start_pfn
||
169 end_pfn
< iovad
->dma_32bit_pfn
) {
170 pr_warn("Incompatible range for DMA domain\n");
173 iovad
->dma_32bit_pfn
= end_pfn
;
175 init_iova_domain(iovad
, 1UL << order
, base_pfn
, end_pfn
);
176 if (dev
&& dev_is_pci(dev
))
177 iova_reserve_pci_windows(to_pci_dev(dev
), iovad
);
181 EXPORT_SYMBOL(iommu_dma_init_domain
);
184 * dma_direction_to_prot - Translate DMA API directions to IOMMU API page flags
185 * @dir: Direction of DMA transfer
186 * @coherent: Is the DMA master cache-coherent?
188 * Return: corresponding IOMMU API page protection flags
190 int dma_direction_to_prot(enum dma_data_direction dir
, bool coherent
)
192 int prot
= coherent
? IOMMU_CACHE
: 0;
195 case DMA_BIDIRECTIONAL
:
196 return prot
| IOMMU_READ
| IOMMU_WRITE
;
198 return prot
| IOMMU_READ
;
199 case DMA_FROM_DEVICE
:
200 return prot
| IOMMU_WRITE
;
206 static struct iova
*__alloc_iova(struct iommu_domain
*domain
, size_t size
,
207 dma_addr_t dma_limit
)
209 struct iova_domain
*iovad
= cookie_iovad(domain
);
210 unsigned long shift
= iova_shift(iovad
);
211 unsigned long length
= iova_align(iovad
, size
) >> shift
;
213 if (domain
->geometry
.force_aperture
)
214 dma_limit
= min(dma_limit
, domain
->geometry
.aperture_end
);
216 * Enforce size-alignment to be safe - there could perhaps be an
217 * attribute to control this per-device, or at least per-domain...
219 return alloc_iova(iovad
, length
, dma_limit
>> shift
, true);
222 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
223 static void __iommu_dma_unmap(struct iommu_domain
*domain
, dma_addr_t dma_addr
)
225 struct iova_domain
*iovad
= cookie_iovad(domain
);
226 unsigned long shift
= iova_shift(iovad
);
227 unsigned long pfn
= dma_addr
>> shift
;
228 struct iova
*iova
= find_iova(iovad
, pfn
);
234 size
= iova_size(iova
) << shift
;
235 size
-= iommu_unmap(domain
, pfn
<< shift
, size
);
236 /* ...and if we can't, then something is horribly, horribly wrong */
238 __free_iova(iovad
, iova
);
241 static void __iommu_dma_free_pages(struct page
**pages
, int count
)
244 __free_page(pages
[count
]);
248 static struct page
**__iommu_dma_alloc_pages(unsigned int count
,
249 unsigned long order_mask
, gfp_t gfp
)
252 unsigned int i
= 0, array_size
= count
* sizeof(*pages
);
254 order_mask
&= (2U << MAX_ORDER
) - 1;
258 if (array_size
<= PAGE_SIZE
)
259 pages
= kzalloc(array_size
, GFP_KERNEL
);
261 pages
= vzalloc(array_size
);
265 /* IOMMU can map any pages, so himem can also be used here */
266 gfp
|= __GFP_NOWARN
| __GFP_HIGHMEM
;
269 struct page
*page
= NULL
;
270 unsigned int order_size
;
273 * Higher-order allocations are a convenience rather
274 * than a necessity, hence using __GFP_NORETRY until
275 * falling back to minimum-order allocations.
277 for (order_mask
&= (2U << __fls(count
)) - 1;
278 order_mask
; order_mask
&= ~order_size
) {
279 unsigned int order
= __fls(order_mask
);
281 order_size
= 1U << order
;
282 page
= alloc_pages((order_mask
- order_size
) ?
283 gfp
| __GFP_NORETRY
: gfp
, order
);
288 if (!PageCompound(page
)) {
289 split_page(page
, order
);
291 } else if (!split_huge_page(page
)) {
294 __free_pages(page
, order
);
297 __iommu_dma_free_pages(pages
, i
);
308 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
309 * @dev: Device which owns this buffer
310 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
311 * @size: Size of buffer in bytes
312 * @handle: DMA address of buffer
314 * Frees both the pages associated with the buffer, and the array
317 void iommu_dma_free(struct device
*dev
, struct page
**pages
, size_t size
,
320 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), *handle
);
321 __iommu_dma_free_pages(pages
, PAGE_ALIGN(size
) >> PAGE_SHIFT
);
322 *handle
= DMA_ERROR_CODE
;
326 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
327 * @dev: Device to allocate memory for. Must be a real device
328 * attached to an iommu_dma_domain
329 * @size: Size of buffer in bytes
330 * @gfp: Allocation flags
331 * @attrs: DMA attributes for this allocation
332 * @prot: IOMMU mapping flags
333 * @handle: Out argument for allocated DMA handle
334 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
335 * given VA/PA are visible to the given non-coherent device.
337 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
338 * but an IOMMU which supports smaller pages might not map the whole thing.
340 * Return: Array of struct page pointers describing the buffer,
341 * or NULL on failure.
343 struct page
**iommu_dma_alloc(struct device
*dev
, size_t size
, gfp_t gfp
,
344 unsigned long attrs
, int prot
, dma_addr_t
*handle
,
345 void (*flush_page
)(struct device
*, const void *, phys_addr_t
))
347 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
348 struct iova_domain
*iovad
= cookie_iovad(domain
);
353 unsigned int count
, min_size
, alloc_sizes
= domain
->pgsize_bitmap
;
355 *handle
= DMA_ERROR_CODE
;
357 min_size
= alloc_sizes
& -alloc_sizes
;
358 if (min_size
< PAGE_SIZE
) {
359 min_size
= PAGE_SIZE
;
360 alloc_sizes
|= PAGE_SIZE
;
362 size
= ALIGN(size
, min_size
);
364 if (attrs
& DMA_ATTR_ALLOC_SINGLE_PAGES
)
365 alloc_sizes
= min_size
;
367 count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
368 pages
= __iommu_dma_alloc_pages(count
, alloc_sizes
>> PAGE_SHIFT
, gfp
);
372 iova
= __alloc_iova(domain
, size
, dev
->coherent_dma_mask
);
376 size
= iova_align(iovad
, size
);
377 if (sg_alloc_table_from_pages(&sgt
, pages
, count
, 0, size
, GFP_KERNEL
))
380 if (!(prot
& IOMMU_CACHE
)) {
381 struct sg_mapping_iter miter
;
383 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
384 * sufficient here, so skip it by using the "wrong" direction.
386 sg_miter_start(&miter
, sgt
.sgl
, sgt
.orig_nents
, SG_MITER_FROM_SG
);
387 while (sg_miter_next(&miter
))
388 flush_page(dev
, miter
.addr
, page_to_phys(miter
.page
));
389 sg_miter_stop(&miter
);
392 dma_addr
= iova_dma_addr(iovad
, iova
);
393 if (iommu_map_sg(domain
, dma_addr
, sgt
.sgl
, sgt
.orig_nents
, prot
)
404 __free_iova(iovad
, iova
);
406 __iommu_dma_free_pages(pages
, count
);
411 * iommu_dma_mmap - Map a buffer into provided user VMA
412 * @pages: Array representing buffer from iommu_dma_alloc()
413 * @size: Size of buffer in bytes
414 * @vma: VMA describing requested userspace mapping
416 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
417 * for verifying the correct size and protection of @vma beforehand.
420 int iommu_dma_mmap(struct page
**pages
, size_t size
, struct vm_area_struct
*vma
)
422 unsigned long uaddr
= vma
->vm_start
;
423 unsigned int i
, count
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
426 for (i
= vma
->vm_pgoff
; i
< count
&& uaddr
< vma
->vm_end
; i
++) {
427 ret
= vm_insert_page(vma
, uaddr
, pages
[i
]);
435 dma_addr_t
iommu_dma_map_page(struct device
*dev
, struct page
*page
,
436 unsigned long offset
, size_t size
, int prot
)
439 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
440 struct iova_domain
*iovad
= cookie_iovad(domain
);
441 phys_addr_t phys
= page_to_phys(page
) + offset
;
442 size_t iova_off
= iova_offset(iovad
, phys
);
443 size_t len
= iova_align(iovad
, size
+ iova_off
);
444 struct iova
*iova
= __alloc_iova(domain
, len
, dma_get_mask(dev
));
447 return DMA_ERROR_CODE
;
449 dma_addr
= iova_dma_addr(iovad
, iova
);
450 if (iommu_map(domain
, dma_addr
, phys
- iova_off
, len
, prot
)) {
451 __free_iova(iovad
, iova
);
452 return DMA_ERROR_CODE
;
454 return dma_addr
+ iova_off
;
457 void iommu_dma_unmap_page(struct device
*dev
, dma_addr_t handle
, size_t size
,
458 enum dma_data_direction dir
, unsigned long attrs
)
460 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), handle
);
464 * Prepare a successfully-mapped scatterlist to give back to the caller.
466 * At this point the segments are already laid out by iommu_dma_map_sg() to
467 * avoid individually crossing any boundaries, so we merely need to check a
468 * segment's start address to avoid concatenating across one.
470 static int __finalise_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
473 struct scatterlist
*s
, *cur
= sg
;
474 unsigned long seg_mask
= dma_get_seg_boundary(dev
);
475 unsigned int cur_len
= 0, max_len
= dma_get_max_seg_size(dev
);
478 for_each_sg(sg
, s
, nents
, i
) {
479 /* Restore this segment's original unaligned fields first */
480 unsigned int s_iova_off
= sg_dma_address(s
);
481 unsigned int s_length
= sg_dma_len(s
);
482 unsigned int s_iova_len
= s
->length
;
484 s
->offset
+= s_iova_off
;
485 s
->length
= s_length
;
486 sg_dma_address(s
) = DMA_ERROR_CODE
;
490 * Now fill in the real DMA data. If...
491 * - there is a valid output segment to append to
492 * - and this segment starts on an IOVA page boundary
493 * - but doesn't fall at a segment boundary
494 * - and wouldn't make the resulting output segment too long
496 if (cur_len
&& !s_iova_off
&& (dma_addr
& seg_mask
) &&
497 (cur_len
+ s_length
<= max_len
)) {
498 /* ...then concatenate it with the previous one */
501 /* Otherwise start the next output segment */
507 sg_dma_address(cur
) = dma_addr
+ s_iova_off
;
510 sg_dma_len(cur
) = cur_len
;
511 dma_addr
+= s_iova_len
;
513 if (s_length
+ s_iova_off
< s_iova_len
)
520 * If mapping failed, then just restore the original list,
521 * but making sure the DMA fields are invalidated.
523 static void __invalidate_sg(struct scatterlist
*sg
, int nents
)
525 struct scatterlist
*s
;
528 for_each_sg(sg
, s
, nents
, i
) {
529 if (sg_dma_address(s
) != DMA_ERROR_CODE
)
530 s
->offset
+= sg_dma_address(s
);
532 s
->length
= sg_dma_len(s
);
533 sg_dma_address(s
) = DMA_ERROR_CODE
;
539 * The DMA API client is passing in a scatterlist which could describe
540 * any old buffer layout, but the IOMMU API requires everything to be
541 * aligned to IOMMU pages. Hence the need for this complicated bit of
542 * impedance-matching, to be able to hand off a suitably-aligned list,
543 * but still preserve the original offsets and sizes for the caller.
545 int iommu_dma_map_sg(struct device
*dev
, struct scatterlist
*sg
,
548 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
549 struct iova_domain
*iovad
= cookie_iovad(domain
);
551 struct scatterlist
*s
, *prev
= NULL
;
554 unsigned long mask
= dma_get_seg_boundary(dev
);
558 * Work out how much IOVA space we need, and align the segments to
559 * IOVA granules for the IOMMU driver to handle. With some clever
560 * trickery we can modify the list in-place, but reversibly, by
561 * stashing the unaligned parts in the as-yet-unused DMA fields.
563 for_each_sg(sg
, s
, nents
, i
) {
564 size_t s_iova_off
= iova_offset(iovad
, s
->offset
);
565 size_t s_length
= s
->length
;
566 size_t pad_len
= (mask
- iova_len
+ 1) & mask
;
568 sg_dma_address(s
) = s_iova_off
;
569 sg_dma_len(s
) = s_length
;
570 s
->offset
-= s_iova_off
;
571 s_length
= iova_align(iovad
, s_length
+ s_iova_off
);
572 s
->length
= s_length
;
575 * Due to the alignment of our single IOVA allocation, we can
576 * depend on these assumptions about the segment boundary mask:
577 * - If mask size >= IOVA size, then the IOVA range cannot
578 * possibly fall across a boundary, so we don't care.
579 * - If mask size < IOVA size, then the IOVA range must start
580 * exactly on a boundary, therefore we can lay things out
581 * based purely on segment lengths without needing to know
582 * the actual addresses beforehand.
583 * - The mask must be a power of 2, so pad_len == 0 if
584 * iova_len == 0, thus we cannot dereference prev the first
585 * time through here (i.e. before it has a meaningful value).
587 if (pad_len
&& pad_len
< s_length
- 1) {
588 prev
->length
+= pad_len
;
592 iova_len
+= s_length
;
596 iova
= __alloc_iova(domain
, iova_len
, dma_get_mask(dev
));
601 * We'll leave any physical concatenation to the IOMMU driver's
602 * implementation - it knows better than we do.
604 dma_addr
= iova_dma_addr(iovad
, iova
);
605 if (iommu_map_sg(domain
, dma_addr
, sg
, nents
, prot
) < iova_len
)
608 return __finalise_sg(dev
, sg
, nents
, dma_addr
);
611 __free_iova(iovad
, iova
);
613 __invalidate_sg(sg
, nents
);
617 void iommu_dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
618 enum dma_data_direction dir
, unsigned long attrs
)
621 * The scatterlist segments are mapped into a single
622 * contiguous IOVA allocation, so this is incredibly easy.
624 __iommu_dma_unmap(iommu_get_domain_for_dev(dev
), sg_dma_address(sg
));
627 int iommu_dma_supported(struct device
*dev
, u64 mask
)
630 * 'Special' IOMMUs which don't have the same addressing capability
631 * as the CPU will have to wait until we have some way to query that
632 * before they'll be able to use this framework.
637 int iommu_dma_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
639 return dma_addr
== DMA_ERROR_CODE
;
642 static struct iommu_dma_msi_page
*iommu_dma_get_msi_page(struct device
*dev
,
643 phys_addr_t msi_addr
, struct iommu_domain
*domain
)
645 struct iommu_dma_cookie
*cookie
= domain
->iova_cookie
;
646 struct iommu_dma_msi_page
*msi_page
;
647 struct iova_domain
*iovad
= &cookie
->iovad
;
649 int prot
= IOMMU_WRITE
| IOMMU_NOEXEC
| IOMMU_MMIO
;
651 msi_addr
&= ~(phys_addr_t
)iova_mask(iovad
);
652 list_for_each_entry(msi_page
, &cookie
->msi_page_list
, list
)
653 if (msi_page
->phys
== msi_addr
)
656 msi_page
= kzalloc(sizeof(*msi_page
), GFP_ATOMIC
);
660 iova
= __alloc_iova(domain
, iovad
->granule
, dma_get_mask(dev
));
664 msi_page
->phys
= msi_addr
;
665 msi_page
->iova
= iova_dma_addr(iovad
, iova
);
666 if (iommu_map(domain
, msi_page
->iova
, msi_addr
, iovad
->granule
, prot
))
669 INIT_LIST_HEAD(&msi_page
->list
);
670 list_add(&msi_page
->list
, &cookie
->msi_page_list
);
674 __free_iova(iovad
, iova
);
680 void iommu_dma_map_msi_msg(int irq
, struct msi_msg
*msg
)
682 struct device
*dev
= msi_desc_to_dev(irq_get_msi_desc(irq
));
683 struct iommu_domain
*domain
= iommu_get_domain_for_dev(dev
);
684 struct iommu_dma_cookie
*cookie
;
685 struct iommu_dma_msi_page
*msi_page
;
686 phys_addr_t msi_addr
= (u64
)msg
->address_hi
<< 32 | msg
->address_lo
;
689 if (!domain
|| !domain
->iova_cookie
)
692 cookie
= domain
->iova_cookie
;
695 * We disable IRQs to rule out a possible inversion against
696 * irq_desc_lock if, say, someone tries to retarget the affinity
697 * of an MSI from within an IPI handler.
699 spin_lock_irqsave(&cookie
->msi_lock
, flags
);
700 msi_page
= iommu_dma_get_msi_page(dev
, msi_addr
, domain
);
701 spin_unlock_irqrestore(&cookie
->msi_lock
, flags
);
703 if (WARN_ON(!msi_page
)) {
705 * We're called from a void callback, so the best we can do is
706 * 'fail' by filling the message with obviously bogus values.
707 * Since we got this far due to an IOMMU being present, it's
708 * not like the existing address would have worked anyway...
710 msg
->address_hi
= ~0U;
711 msg
->address_lo
= ~0U;
714 msg
->address_hi
= upper_32_bits(msi_page
->iova
);
715 msg
->address_lo
&= iova_mask(&cookie
->iovad
);
716 msg
->address_lo
+= lower_32_bits(msi_page
->iova
);