hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / irqchip / irq-gic-v3-its.c
blob003495d91f9cfd34ea77eec0b52a4f070e58bfd5
1 /*
2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
18 #include <linux/acpi.h>
19 #include <linux/bitmap.h>
20 #include <linux/cpu.h>
21 #include <linux/delay.h>
22 #include <linux/dma-iommu.h>
23 #include <linux/interrupt.h>
24 #include <linux/irqdomain.h>
25 #include <linux/acpi_iort.h>
26 #include <linux/log2.h>
27 #include <linux/mm.h>
28 #include <linux/msi.h>
29 #include <linux/of.h>
30 #include <linux/of_address.h>
31 #include <linux/of_irq.h>
32 #include <linux/of_pci.h>
33 #include <linux/of_platform.h>
34 #include <linux/percpu.h>
35 #include <linux/slab.h>
37 #include <linux/irqchip.h>
38 #include <linux/irqchip/arm-gic-v3.h>
40 #include <asm/cacheflush.h>
41 #include <asm/cputype.h>
42 #include <asm/exception.h>
44 #include "irq-gic-common.h"
46 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
47 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
48 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
50 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
53 * Collection structure - just an ID, and a redistributor address to
54 * ping. We use one per CPU as a bag of interrupts assigned to this
55 * CPU.
57 struct its_collection {
58 u64 target_address;
59 u16 col_id;
63 * The ITS_BASER structure - contains memory information, cached
64 * value of BASER register configuration and ITS page size.
66 struct its_baser {
67 void *base;
68 u64 val;
69 u32 order;
70 u32 psz;
74 * The ITS structure - contains most of the infrastructure, with the
75 * top-level MSI domain, the command queue, the collections, and the
76 * list of devices writing to it.
78 struct its_node {
79 raw_spinlock_t lock;
80 struct list_head entry;
81 void __iomem *base;
82 phys_addr_t phys_base;
83 struct its_cmd_block *cmd_base;
84 struct its_cmd_block *cmd_write;
85 struct its_baser tables[GITS_BASER_NR_REGS];
86 struct its_collection *collections;
87 struct list_head its_device_list;
88 u64 flags;
89 u32 ite_size;
90 u32 device_ids;
91 int numa_node;
94 #define ITS_ITT_ALIGN SZ_256
96 /* Convert page order to size in bytes */
97 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
99 struct event_lpi_map {
100 unsigned long *lpi_map;
101 u16 *col_map;
102 irq_hw_number_t lpi_base;
103 int nr_lpis;
107 * The ITS view of a device - belongs to an ITS, a collection, owns an
108 * interrupt translation table, and a list of interrupts.
110 struct its_device {
111 struct list_head entry;
112 struct its_node *its;
113 struct event_lpi_map event_map;
114 void *itt;
115 u32 nr_ites;
116 u32 device_id;
119 static LIST_HEAD(its_nodes);
120 static DEFINE_SPINLOCK(its_lock);
121 static struct rdists *gic_rdists;
122 static struct irq_domain *its_parent;
124 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
125 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
127 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
128 u32 event)
130 struct its_node *its = its_dev->its;
132 return its->collections + its_dev->event_map.col_map[event];
136 * ITS command descriptors - parameters to be encoded in a command
137 * block.
139 struct its_cmd_desc {
140 union {
141 struct {
142 struct its_device *dev;
143 u32 event_id;
144 } its_inv_cmd;
146 struct {
147 struct its_device *dev;
148 u32 event_id;
149 } its_int_cmd;
151 struct {
152 struct its_device *dev;
153 int valid;
154 } its_mapd_cmd;
156 struct {
157 struct its_collection *col;
158 int valid;
159 } its_mapc_cmd;
161 struct {
162 struct its_device *dev;
163 u32 phys_id;
164 u32 event_id;
165 } its_mapvi_cmd;
167 struct {
168 struct its_device *dev;
169 struct its_collection *col;
170 u32 event_id;
171 } its_movi_cmd;
173 struct {
174 struct its_device *dev;
175 u32 event_id;
176 } its_discard_cmd;
178 struct {
179 struct its_collection *col;
180 } its_invall_cmd;
185 * The ITS command block, which is what the ITS actually parses.
187 struct its_cmd_block {
188 u64 raw_cmd[4];
191 #define ITS_CMD_QUEUE_SZ SZ_64K
192 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
194 typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
195 struct its_cmd_desc *);
197 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
199 cmd->raw_cmd[0] &= ~0xffUL;
200 cmd->raw_cmd[0] |= cmd_nr;
203 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
205 cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
206 cmd->raw_cmd[0] |= ((u64)devid) << 32;
209 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
211 cmd->raw_cmd[1] &= ~0xffffffffUL;
212 cmd->raw_cmd[1] |= id;
215 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
217 cmd->raw_cmd[1] &= 0xffffffffUL;
218 cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
221 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
223 cmd->raw_cmd[1] &= ~0x1fUL;
224 cmd->raw_cmd[1] |= size & 0x1f;
227 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
229 cmd->raw_cmd[2] &= ~0xffffffffffffUL;
230 cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00UL;
233 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
235 cmd->raw_cmd[2] &= ~(1UL << 63);
236 cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
239 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
241 cmd->raw_cmd[2] &= ~(0xffffffffUL << 16);
242 cmd->raw_cmd[2] |= (target_addr & (0xffffffffUL << 16));
245 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
247 cmd->raw_cmd[2] &= ~0xffffUL;
248 cmd->raw_cmd[2] |= col;
251 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
253 /* Let's fixup BE commands */
254 cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
255 cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
256 cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
257 cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
260 static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
261 struct its_cmd_desc *desc)
263 unsigned long itt_addr;
264 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
266 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
267 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
269 its_encode_cmd(cmd, GITS_CMD_MAPD);
270 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
271 its_encode_size(cmd, size - 1);
272 its_encode_itt(cmd, itt_addr);
273 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
275 its_fixup_cmd(cmd);
277 return NULL;
280 static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
281 struct its_cmd_desc *desc)
283 its_encode_cmd(cmd, GITS_CMD_MAPC);
284 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
285 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
286 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
288 its_fixup_cmd(cmd);
290 return desc->its_mapc_cmd.col;
293 static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
294 struct its_cmd_desc *desc)
296 struct its_collection *col;
298 col = dev_event_to_col(desc->its_mapvi_cmd.dev,
299 desc->its_mapvi_cmd.event_id);
301 its_encode_cmd(cmd, GITS_CMD_MAPVI);
302 its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
303 its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
304 its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
305 its_encode_collection(cmd, col->col_id);
307 its_fixup_cmd(cmd);
309 return col;
312 static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
313 struct its_cmd_desc *desc)
315 struct its_collection *col;
317 col = dev_event_to_col(desc->its_movi_cmd.dev,
318 desc->its_movi_cmd.event_id);
320 its_encode_cmd(cmd, GITS_CMD_MOVI);
321 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
322 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
323 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
325 its_fixup_cmd(cmd);
327 return col;
330 static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
331 struct its_cmd_desc *desc)
333 struct its_collection *col;
335 col = dev_event_to_col(desc->its_discard_cmd.dev,
336 desc->its_discard_cmd.event_id);
338 its_encode_cmd(cmd, GITS_CMD_DISCARD);
339 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
340 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
342 its_fixup_cmd(cmd);
344 return col;
347 static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
348 struct its_cmd_desc *desc)
350 struct its_collection *col;
352 col = dev_event_to_col(desc->its_inv_cmd.dev,
353 desc->its_inv_cmd.event_id);
355 its_encode_cmd(cmd, GITS_CMD_INV);
356 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
357 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
359 its_fixup_cmd(cmd);
361 return col;
364 static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
365 struct its_cmd_desc *desc)
367 its_encode_cmd(cmd, GITS_CMD_INVALL);
368 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
370 its_fixup_cmd(cmd);
372 return NULL;
375 static u64 its_cmd_ptr_to_offset(struct its_node *its,
376 struct its_cmd_block *ptr)
378 return (ptr - its->cmd_base) * sizeof(*ptr);
381 static int its_queue_full(struct its_node *its)
383 int widx;
384 int ridx;
386 widx = its->cmd_write - its->cmd_base;
387 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
389 /* This is incredibly unlikely to happen, unless the ITS locks up. */
390 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
391 return 1;
393 return 0;
396 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
398 struct its_cmd_block *cmd;
399 u32 count = 1000000; /* 1s! */
401 while (its_queue_full(its)) {
402 count--;
403 if (!count) {
404 pr_err_ratelimited("ITS queue not draining\n");
405 return NULL;
407 cpu_relax();
408 udelay(1);
411 cmd = its->cmd_write++;
413 /* Handle queue wrapping */
414 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
415 its->cmd_write = its->cmd_base;
417 return cmd;
420 static struct its_cmd_block *its_post_commands(struct its_node *its)
422 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
424 writel_relaxed(wr, its->base + GITS_CWRITER);
426 return its->cmd_write;
429 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
432 * Make sure the commands written to memory are observable by
433 * the ITS.
435 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
436 __flush_dcache_area(cmd, sizeof(*cmd));
437 else
438 dsb(ishst);
441 static void its_wait_for_range_completion(struct its_node *its,
442 struct its_cmd_block *from,
443 struct its_cmd_block *to)
445 u64 rd_idx, from_idx, to_idx;
446 u32 count = 1000000; /* 1s! */
448 from_idx = its_cmd_ptr_to_offset(its, from);
449 to_idx = its_cmd_ptr_to_offset(its, to);
451 while (1) {
452 rd_idx = readl_relaxed(its->base + GITS_CREADR);
453 if (rd_idx >= to_idx || rd_idx < from_idx)
454 break;
456 count--;
457 if (!count) {
458 pr_err_ratelimited("ITS queue timeout\n");
459 return;
461 cpu_relax();
462 udelay(1);
466 static void its_send_single_command(struct its_node *its,
467 its_cmd_builder_t builder,
468 struct its_cmd_desc *desc)
470 struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
471 struct its_collection *sync_col;
472 unsigned long flags;
474 raw_spin_lock_irqsave(&its->lock, flags);
476 cmd = its_allocate_entry(its);
477 if (!cmd) { /* We're soooooo screewed... */
478 pr_err_ratelimited("ITS can't allocate, dropping command\n");
479 raw_spin_unlock_irqrestore(&its->lock, flags);
480 return;
482 sync_col = builder(cmd, desc);
483 its_flush_cmd(its, cmd);
485 if (sync_col) {
486 sync_cmd = its_allocate_entry(its);
487 if (!sync_cmd) {
488 pr_err_ratelimited("ITS can't SYNC, skipping\n");
489 goto post;
491 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
492 its_encode_target(sync_cmd, sync_col->target_address);
493 its_fixup_cmd(sync_cmd);
494 its_flush_cmd(its, sync_cmd);
497 post:
498 next_cmd = its_post_commands(its);
499 raw_spin_unlock_irqrestore(&its->lock, flags);
501 its_wait_for_range_completion(its, cmd, next_cmd);
504 static void its_send_inv(struct its_device *dev, u32 event_id)
506 struct its_cmd_desc desc;
508 desc.its_inv_cmd.dev = dev;
509 desc.its_inv_cmd.event_id = event_id;
511 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
514 static void its_send_mapd(struct its_device *dev, int valid)
516 struct its_cmd_desc desc;
518 desc.its_mapd_cmd.dev = dev;
519 desc.its_mapd_cmd.valid = !!valid;
521 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
524 static void its_send_mapc(struct its_node *its, struct its_collection *col,
525 int valid)
527 struct its_cmd_desc desc;
529 desc.its_mapc_cmd.col = col;
530 desc.its_mapc_cmd.valid = !!valid;
532 its_send_single_command(its, its_build_mapc_cmd, &desc);
535 static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
537 struct its_cmd_desc desc;
539 desc.its_mapvi_cmd.dev = dev;
540 desc.its_mapvi_cmd.phys_id = irq_id;
541 desc.its_mapvi_cmd.event_id = id;
543 its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
546 static void its_send_movi(struct its_device *dev,
547 struct its_collection *col, u32 id)
549 struct its_cmd_desc desc;
551 desc.its_movi_cmd.dev = dev;
552 desc.its_movi_cmd.col = col;
553 desc.its_movi_cmd.event_id = id;
555 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
558 static void its_send_discard(struct its_device *dev, u32 id)
560 struct its_cmd_desc desc;
562 desc.its_discard_cmd.dev = dev;
563 desc.its_discard_cmd.event_id = id;
565 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
568 static void its_send_invall(struct its_node *its, struct its_collection *col)
570 struct its_cmd_desc desc;
572 desc.its_invall_cmd.col = col;
574 its_send_single_command(its, its_build_invall_cmd, &desc);
578 * irqchip functions - assumes MSI, mostly.
581 static inline u32 its_get_event_id(struct irq_data *d)
583 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
584 return d->hwirq - its_dev->event_map.lpi_base;
587 static void lpi_set_config(struct irq_data *d, bool enable)
589 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
590 irq_hw_number_t hwirq = d->hwirq;
591 u32 id = its_get_event_id(d);
592 u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
594 if (enable)
595 *cfg |= LPI_PROP_ENABLED;
596 else
597 *cfg &= ~LPI_PROP_ENABLED;
600 * Make the above write visible to the redistributors.
601 * And yes, we're flushing exactly: One. Single. Byte.
602 * Humpf...
604 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
605 __flush_dcache_area(cfg, sizeof(*cfg));
606 else
607 dsb(ishst);
608 its_send_inv(its_dev, id);
611 static void its_mask_irq(struct irq_data *d)
613 lpi_set_config(d, false);
616 static void its_unmask_irq(struct irq_data *d)
618 lpi_set_config(d, true);
621 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
622 bool force)
624 unsigned int cpu;
625 const struct cpumask *cpu_mask = cpu_online_mask;
626 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
627 struct its_collection *target_col;
628 u32 id = its_get_event_id(d);
630 /* lpi cannot be routed to a redistributor that is on a foreign node */
631 if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
632 if (its_dev->its->numa_node >= 0) {
633 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
634 if (!cpumask_intersects(mask_val, cpu_mask))
635 return -EINVAL;
639 cpu = cpumask_any_and(mask_val, cpu_mask);
641 if (cpu >= nr_cpu_ids)
642 return -EINVAL;
644 target_col = &its_dev->its->collections[cpu];
645 its_send_movi(its_dev, target_col, id);
646 its_dev->event_map.col_map[id] = cpu;
648 return IRQ_SET_MASK_OK_DONE;
651 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
653 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
654 struct its_node *its;
655 u64 addr;
657 its = its_dev->its;
658 addr = its->phys_base + GITS_TRANSLATER;
660 msg->address_lo = addr & ((1UL << 32) - 1);
661 msg->address_hi = addr >> 32;
662 msg->data = its_get_event_id(d);
664 iommu_dma_map_msi_msg(d->irq, msg);
667 static struct irq_chip its_irq_chip = {
668 .name = "ITS",
669 .irq_mask = its_mask_irq,
670 .irq_unmask = its_unmask_irq,
671 .irq_eoi = irq_chip_eoi_parent,
672 .irq_set_affinity = its_set_affinity,
673 .irq_compose_msi_msg = its_irq_compose_msi_msg,
677 * How we allocate LPIs:
679 * The GIC has id_bits bits for interrupt identifiers. From there, we
680 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
681 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
682 * bits to the right.
684 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
686 #define IRQS_PER_CHUNK_SHIFT 5
687 #define IRQS_PER_CHUNK (1 << IRQS_PER_CHUNK_SHIFT)
689 static unsigned long *lpi_bitmap;
690 static u32 lpi_chunks;
691 static DEFINE_SPINLOCK(lpi_lock);
693 static int its_lpi_to_chunk(int lpi)
695 return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
698 static int its_chunk_to_lpi(int chunk)
700 return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
703 static int __init its_lpi_init(u32 id_bits)
705 lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
707 lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
708 GFP_KERNEL);
709 if (!lpi_bitmap) {
710 lpi_chunks = 0;
711 return -ENOMEM;
714 pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
715 return 0;
718 static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
720 unsigned long *bitmap = NULL;
721 int chunk_id;
722 int nr_chunks;
723 int i;
725 nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
727 spin_lock(&lpi_lock);
729 do {
730 chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
731 0, nr_chunks, 0);
732 if (chunk_id < lpi_chunks)
733 break;
735 nr_chunks--;
736 } while (nr_chunks > 0);
738 if (!nr_chunks)
739 goto out;
741 bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
742 GFP_ATOMIC);
743 if (!bitmap)
744 goto out;
746 for (i = 0; i < nr_chunks; i++)
747 set_bit(chunk_id + i, lpi_bitmap);
749 *base = its_chunk_to_lpi(chunk_id);
750 *nr_ids = nr_chunks * IRQS_PER_CHUNK;
752 out:
753 spin_unlock(&lpi_lock);
755 if (!bitmap)
756 *base = *nr_ids = 0;
758 return bitmap;
761 static void its_lpi_free(struct event_lpi_map *map)
763 int base = map->lpi_base;
764 int nr_ids = map->nr_lpis;
765 int lpi;
767 spin_lock(&lpi_lock);
769 for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
770 int chunk = its_lpi_to_chunk(lpi);
771 BUG_ON(chunk > lpi_chunks);
772 if (test_bit(chunk, lpi_bitmap)) {
773 clear_bit(chunk, lpi_bitmap);
774 } else {
775 pr_err("Bad LPI chunk %d\n", chunk);
779 spin_unlock(&lpi_lock);
781 kfree(map->lpi_map);
782 kfree(map->col_map);
786 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
787 * deal with (one configuration byte per interrupt). PENDBASE has to
788 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
790 #define LPI_PROPBASE_SZ SZ_64K
791 #define LPI_PENDBASE_SZ (LPI_PROPBASE_SZ / 8 + SZ_1K)
794 * This is how many bits of ID we need, including the useless ones.
796 #define LPI_NRBITS ilog2(LPI_PROPBASE_SZ + SZ_8K)
798 #define LPI_PROP_DEFAULT_PRIO 0xa0
800 static int __init its_alloc_lpi_tables(void)
802 phys_addr_t paddr;
804 gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
805 get_order(LPI_PROPBASE_SZ));
806 if (!gic_rdists->prop_page) {
807 pr_err("Failed to allocate PROPBASE\n");
808 return -ENOMEM;
811 paddr = page_to_phys(gic_rdists->prop_page);
812 pr_info("GIC: using LPI property table @%pa\n", &paddr);
814 /* Priority 0xa0, Group-1, disabled */
815 memset(page_address(gic_rdists->prop_page),
816 LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
817 LPI_PROPBASE_SZ);
819 /* Make sure the GIC will observe the written configuration */
820 __flush_dcache_area(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
822 return 0;
825 static const char *its_base_type_string[] = {
826 [GITS_BASER_TYPE_DEVICE] = "Devices",
827 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
828 [GITS_BASER_TYPE_CPU] = "Physical CPUs",
829 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
830 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
831 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
832 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
835 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
837 u32 idx = baser - its->tables;
839 return readq_relaxed(its->base + GITS_BASER + (idx << 3));
842 static void its_write_baser(struct its_node *its, struct its_baser *baser,
843 u64 val)
845 u32 idx = baser - its->tables;
847 writeq_relaxed(val, its->base + GITS_BASER + (idx << 3));
848 baser->val = its_read_baser(its, baser);
851 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
852 u64 cache, u64 shr, u32 psz, u32 order,
853 bool indirect)
855 u64 val = its_read_baser(its, baser);
856 u64 esz = GITS_BASER_ENTRY_SIZE(val);
857 u64 type = GITS_BASER_TYPE(val);
858 u32 alloc_pages;
859 void *base;
860 u64 tmp;
862 retry_alloc_baser:
863 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
864 if (alloc_pages > GITS_BASER_PAGES_MAX) {
865 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
866 &its->phys_base, its_base_type_string[type],
867 alloc_pages, GITS_BASER_PAGES_MAX);
868 alloc_pages = GITS_BASER_PAGES_MAX;
869 order = get_order(GITS_BASER_PAGES_MAX * psz);
872 base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
873 if (!base)
874 return -ENOMEM;
876 retry_baser:
877 val = (virt_to_phys(base) |
878 (type << GITS_BASER_TYPE_SHIFT) |
879 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
880 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
881 cache |
882 shr |
883 GITS_BASER_VALID);
885 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
887 switch (psz) {
888 case SZ_4K:
889 val |= GITS_BASER_PAGE_SIZE_4K;
890 break;
891 case SZ_16K:
892 val |= GITS_BASER_PAGE_SIZE_16K;
893 break;
894 case SZ_64K:
895 val |= GITS_BASER_PAGE_SIZE_64K;
896 break;
899 its_write_baser(its, baser, val);
900 tmp = baser->val;
902 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
904 * Shareability didn't stick. Just use
905 * whatever the read reported, which is likely
906 * to be the only thing this redistributor
907 * supports. If that's zero, make it
908 * non-cacheable as well.
910 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
911 if (!shr) {
912 cache = GITS_BASER_nC;
913 __flush_dcache_area(base, PAGE_ORDER_TO_SIZE(order));
915 goto retry_baser;
918 if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
920 * Page size didn't stick. Let's try a smaller
921 * size and retry. If we reach 4K, then
922 * something is horribly wrong...
924 free_pages((unsigned long)base, order);
925 baser->base = NULL;
927 switch (psz) {
928 case SZ_16K:
929 psz = SZ_4K;
930 goto retry_alloc_baser;
931 case SZ_64K:
932 psz = SZ_16K;
933 goto retry_alloc_baser;
937 if (val != tmp) {
938 pr_err("ITS@%pa: %s doesn't stick: %lx %lx\n",
939 &its->phys_base, its_base_type_string[type],
940 (unsigned long) val, (unsigned long) tmp);
941 free_pages((unsigned long)base, order);
942 return -ENXIO;
945 baser->order = order;
946 baser->base = base;
947 baser->psz = psz;
948 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
950 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
951 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / tmp),
952 its_base_type_string[type],
953 (unsigned long)virt_to_phys(base),
954 indirect ? "indirect" : "flat", (int)esz,
955 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
957 return 0;
960 static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
961 u32 psz, u32 *order)
963 u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
964 u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb;
965 u32 ids = its->device_ids;
966 u32 new_order = *order;
967 bool indirect = false;
969 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
970 if ((esz << ids) > (psz * 2)) {
972 * Find out whether hw supports a single or two-level table by
973 * table by reading bit at offset '62' after writing '1' to it.
975 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
976 indirect = !!(baser->val & GITS_BASER_INDIRECT);
978 if (indirect) {
980 * The size of the lvl2 table is equal to ITS page size
981 * which is 'psz'. For computing lvl1 table size,
982 * subtract ID bits that sparse lvl2 table from 'ids'
983 * which is reported by ITS hardware times lvl1 table
984 * entry size.
986 ids -= ilog2(psz / esz);
987 esz = GITS_LVL1_ENTRY_SIZE;
992 * Allocate as many entries as required to fit the
993 * range of device IDs that the ITS can grok... The ID
994 * space being incredibly sparse, this results in a
995 * massive waste of memory if two-level device table
996 * feature is not supported by hardware.
998 new_order = max_t(u32, get_order(esz << ids), new_order);
999 if (new_order >= MAX_ORDER) {
1000 new_order = MAX_ORDER - 1;
1001 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / esz);
1002 pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1003 &its->phys_base, its->device_ids, ids);
1006 *order = new_order;
1008 return indirect;
1011 static void its_free_tables(struct its_node *its)
1013 int i;
1015 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1016 if (its->tables[i].base) {
1017 free_pages((unsigned long)its->tables[i].base,
1018 its->tables[i].order);
1019 its->tables[i].base = NULL;
1024 static int its_alloc_tables(struct its_node *its)
1026 u64 typer = readq_relaxed(its->base + GITS_TYPER);
1027 u32 ids = GITS_TYPER_DEVBITS(typer);
1028 u64 shr = GITS_BASER_InnerShareable;
1029 u64 cache = GITS_BASER_WaWb;
1030 u32 psz = SZ_64K;
1031 int err, i;
1033 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1035 * erratum 22375: only alloc 8MB table size
1036 * erratum 24313: ignore memory access type
1038 cache = GITS_BASER_nCnB;
1039 ids = 0x14; /* 20 bits, 8MB */
1042 its->device_ids = ids;
1044 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1045 struct its_baser *baser = its->tables + i;
1046 u64 val = its_read_baser(its, baser);
1047 u64 type = GITS_BASER_TYPE(val);
1048 u32 order = get_order(psz);
1049 bool indirect = false;
1051 if (type == GITS_BASER_TYPE_NONE)
1052 continue;
1054 if (type == GITS_BASER_TYPE_DEVICE)
1055 indirect = its_parse_baser_device(its, baser, psz, &order);
1057 err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1058 if (err < 0) {
1059 its_free_tables(its);
1060 return err;
1063 /* Update settings which will be used for next BASERn */
1064 psz = baser->psz;
1065 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1066 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1069 return 0;
1072 static int its_alloc_collections(struct its_node *its)
1074 its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1075 GFP_KERNEL);
1076 if (!its->collections)
1077 return -ENOMEM;
1079 return 0;
1082 static void its_cpu_init_lpis(void)
1084 void __iomem *rbase = gic_data_rdist_rd_base();
1085 struct page *pend_page;
1086 u64 val, tmp;
1088 /* If we didn't allocate the pending table yet, do it now */
1089 pend_page = gic_data_rdist()->pend_page;
1090 if (!pend_page) {
1091 phys_addr_t paddr;
1093 * The pending pages have to be at least 64kB aligned,
1094 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1096 pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1097 get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1098 if (!pend_page) {
1099 pr_err("Failed to allocate PENDBASE for CPU%d\n",
1100 smp_processor_id());
1101 return;
1104 /* Make sure the GIC will observe the zero-ed page */
1105 __flush_dcache_area(page_address(pend_page), LPI_PENDBASE_SZ);
1107 paddr = page_to_phys(pend_page);
1108 pr_info("CPU%d: using LPI pending table @%pa\n",
1109 smp_processor_id(), &paddr);
1110 gic_data_rdist()->pend_page = pend_page;
1113 /* Disable LPIs */
1114 val = readl_relaxed(rbase + GICR_CTLR);
1115 val &= ~GICR_CTLR_ENABLE_LPIS;
1116 writel_relaxed(val, rbase + GICR_CTLR);
1119 * Make sure any change to the table is observable by the GIC.
1121 dsb(sy);
1123 /* set PROPBASE */
1124 val = (page_to_phys(gic_rdists->prop_page) |
1125 GICR_PROPBASER_InnerShareable |
1126 GICR_PROPBASER_WaWb |
1127 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1129 writeq_relaxed(val, rbase + GICR_PROPBASER);
1130 tmp = readq_relaxed(rbase + GICR_PROPBASER);
1132 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1133 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1135 * The HW reports non-shareable, we must
1136 * remove the cacheability attributes as
1137 * well.
1139 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1140 GICR_PROPBASER_CACHEABILITY_MASK);
1141 val |= GICR_PROPBASER_nC;
1142 writeq_relaxed(val, rbase + GICR_PROPBASER);
1144 pr_info_once("GIC: using cache flushing for LPI property table\n");
1145 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1148 /* set PENDBASE */
1149 val = (page_to_phys(pend_page) |
1150 GICR_PENDBASER_InnerShareable |
1151 GICR_PENDBASER_WaWb);
1153 writeq_relaxed(val, rbase + GICR_PENDBASER);
1154 tmp = readq_relaxed(rbase + GICR_PENDBASER);
1156 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1158 * The HW reports non-shareable, we must remove the
1159 * cacheability attributes as well.
1161 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1162 GICR_PENDBASER_CACHEABILITY_MASK);
1163 val |= GICR_PENDBASER_nC;
1164 writeq_relaxed(val, rbase + GICR_PENDBASER);
1167 /* Enable LPIs */
1168 val = readl_relaxed(rbase + GICR_CTLR);
1169 val |= GICR_CTLR_ENABLE_LPIS;
1170 writel_relaxed(val, rbase + GICR_CTLR);
1172 /* Make sure the GIC has seen the above */
1173 dsb(sy);
1176 static void its_cpu_init_collection(void)
1178 struct its_node *its;
1179 int cpu;
1181 spin_lock(&its_lock);
1182 cpu = smp_processor_id();
1184 list_for_each_entry(its, &its_nodes, entry) {
1185 u64 target;
1187 /* avoid cross node collections and its mapping */
1188 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1189 struct device_node *cpu_node;
1191 cpu_node = of_get_cpu_node(cpu, NULL);
1192 if (its->numa_node != NUMA_NO_NODE &&
1193 its->numa_node != of_node_to_nid(cpu_node))
1194 continue;
1198 * We now have to bind each collection to its target
1199 * redistributor.
1201 if (readq_relaxed(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1203 * This ITS wants the physical address of the
1204 * redistributor.
1206 target = gic_data_rdist()->phys_base;
1207 } else {
1209 * This ITS wants a linear CPU number.
1211 target = readq_relaxed(gic_data_rdist_rd_base() + GICR_TYPER);
1212 target = GICR_TYPER_CPU_NUMBER(target) << 16;
1215 /* Perform collection mapping */
1216 its->collections[cpu].target_address = target;
1217 its->collections[cpu].col_id = cpu;
1219 its_send_mapc(its, &its->collections[cpu], 1);
1220 its_send_invall(its, &its->collections[cpu]);
1223 spin_unlock(&its_lock);
1226 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1228 struct its_device *its_dev = NULL, *tmp;
1229 unsigned long flags;
1231 raw_spin_lock_irqsave(&its->lock, flags);
1233 list_for_each_entry(tmp, &its->its_device_list, entry) {
1234 if (tmp->device_id == dev_id) {
1235 its_dev = tmp;
1236 break;
1240 raw_spin_unlock_irqrestore(&its->lock, flags);
1242 return its_dev;
1245 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1247 int i;
1249 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1250 if (GITS_BASER_TYPE(its->tables[i].val) == type)
1251 return &its->tables[i];
1254 return NULL;
1257 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1259 struct its_baser *baser;
1260 struct page *page;
1261 u32 esz, idx;
1262 __le64 *table;
1264 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1266 /* Don't allow device id that exceeds ITS hardware limit */
1267 if (!baser)
1268 return (ilog2(dev_id) < its->device_ids);
1270 /* Don't allow device id that exceeds single, flat table limit */
1271 esz = GITS_BASER_ENTRY_SIZE(baser->val);
1272 if (!(baser->val & GITS_BASER_INDIRECT))
1273 return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1275 /* Compute 1st level table index & check if that exceeds table limit */
1276 idx = dev_id >> ilog2(baser->psz / esz);
1277 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1278 return false;
1280 table = baser->base;
1282 /* Allocate memory for 2nd level table */
1283 if (!table[idx]) {
1284 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1285 if (!page)
1286 return false;
1288 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
1289 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1290 __flush_dcache_area(page_address(page), baser->psz);
1292 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1294 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1295 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1296 __flush_dcache_area(table + idx, GITS_LVL1_ENTRY_SIZE);
1298 /* Ensure updated table contents are visible to ITS hardware */
1299 dsb(sy);
1302 return true;
1305 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1306 int nvecs)
1308 struct its_device *dev;
1309 unsigned long *lpi_map;
1310 unsigned long flags;
1311 u16 *col_map = NULL;
1312 void *itt;
1313 int lpi_base;
1314 int nr_lpis;
1315 int nr_ites;
1316 int sz;
1318 if (!its_alloc_device_table(its, dev_id))
1319 return NULL;
1321 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1323 * At least one bit of EventID is being used, hence a minimum
1324 * of two entries. No, the architecture doesn't let you
1325 * express an ITT with a single entry.
1327 nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1328 sz = nr_ites * its->ite_size;
1329 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1330 itt = kzalloc(sz, GFP_KERNEL);
1331 lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1332 if (lpi_map)
1333 col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1335 if (!dev || !itt || !lpi_map || !col_map) {
1336 kfree(dev);
1337 kfree(itt);
1338 kfree(lpi_map);
1339 kfree(col_map);
1340 return NULL;
1343 __flush_dcache_area(itt, sz);
1345 dev->its = its;
1346 dev->itt = itt;
1347 dev->nr_ites = nr_ites;
1348 dev->event_map.lpi_map = lpi_map;
1349 dev->event_map.col_map = col_map;
1350 dev->event_map.lpi_base = lpi_base;
1351 dev->event_map.nr_lpis = nr_lpis;
1352 dev->device_id = dev_id;
1353 INIT_LIST_HEAD(&dev->entry);
1355 raw_spin_lock_irqsave(&its->lock, flags);
1356 list_add(&dev->entry, &its->its_device_list);
1357 raw_spin_unlock_irqrestore(&its->lock, flags);
1359 /* Map device to its ITT */
1360 its_send_mapd(dev, 1);
1362 return dev;
1365 static void its_free_device(struct its_device *its_dev)
1367 unsigned long flags;
1369 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1370 list_del(&its_dev->entry);
1371 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1372 kfree(its_dev->itt);
1373 kfree(its_dev);
1376 static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1378 int idx;
1380 idx = find_first_zero_bit(dev->event_map.lpi_map,
1381 dev->event_map.nr_lpis);
1382 if (idx == dev->event_map.nr_lpis)
1383 return -ENOSPC;
1385 *hwirq = dev->event_map.lpi_base + idx;
1386 set_bit(idx, dev->event_map.lpi_map);
1388 return 0;
1391 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1392 int nvec, msi_alloc_info_t *info)
1394 struct its_node *its;
1395 struct its_device *its_dev;
1396 struct msi_domain_info *msi_info;
1397 u32 dev_id;
1400 * We ignore "dev" entierely, and rely on the dev_id that has
1401 * been passed via the scratchpad. This limits this domain's
1402 * usefulness to upper layers that definitely know that they
1403 * are built on top of the ITS.
1405 dev_id = info->scratchpad[0].ul;
1407 msi_info = msi_get_domain_info(domain);
1408 its = msi_info->data;
1410 its_dev = its_find_device(its, dev_id);
1411 if (its_dev) {
1413 * We already have seen this ID, probably through
1414 * another alias (PCI bridge of some sort). No need to
1415 * create the device.
1417 pr_debug("Reusing ITT for devID %x\n", dev_id);
1418 goto out;
1421 its_dev = its_create_device(its, dev_id, nvec);
1422 if (!its_dev)
1423 return -ENOMEM;
1425 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1426 out:
1427 info->scratchpad[0].ptr = its_dev;
1428 return 0;
1431 static struct msi_domain_ops its_msi_domain_ops = {
1432 .msi_prepare = its_msi_prepare,
1435 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1436 unsigned int virq,
1437 irq_hw_number_t hwirq)
1439 struct irq_fwspec fwspec;
1441 if (irq_domain_get_of_node(domain->parent)) {
1442 fwspec.fwnode = domain->parent->fwnode;
1443 fwspec.param_count = 3;
1444 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1445 fwspec.param[1] = hwirq;
1446 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1447 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1448 fwspec.fwnode = domain->parent->fwnode;
1449 fwspec.param_count = 2;
1450 fwspec.param[0] = hwirq;
1451 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1452 } else {
1453 return -EINVAL;
1456 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1459 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1460 unsigned int nr_irqs, void *args)
1462 msi_alloc_info_t *info = args;
1463 struct its_device *its_dev = info->scratchpad[0].ptr;
1464 irq_hw_number_t hwirq;
1465 int err;
1466 int i;
1468 for (i = 0; i < nr_irqs; i++) {
1469 err = its_alloc_device_irq(its_dev, &hwirq);
1470 if (err)
1471 return err;
1473 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1474 if (err)
1475 return err;
1477 irq_domain_set_hwirq_and_chip(domain, virq + i,
1478 hwirq, &its_irq_chip, its_dev);
1479 pr_debug("ID:%d pID:%d vID:%d\n",
1480 (int)(hwirq - its_dev->event_map.lpi_base),
1481 (int) hwirq, virq + i);
1484 return 0;
1487 static void its_irq_domain_activate(struct irq_domain *domain,
1488 struct irq_data *d)
1490 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1491 u32 event = its_get_event_id(d);
1492 const struct cpumask *cpu_mask = cpu_online_mask;
1494 /* get the cpu_mask of local node */
1495 if (its_dev->its->numa_node >= 0)
1496 cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1498 /* Bind the LPI to the first possible CPU */
1499 its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1501 /* Map the GIC IRQ and event to the device */
1502 its_send_mapvi(its_dev, d->hwirq, event);
1505 static void its_irq_domain_deactivate(struct irq_domain *domain,
1506 struct irq_data *d)
1508 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1509 u32 event = its_get_event_id(d);
1511 /* Stop the delivery of interrupts */
1512 its_send_discard(its_dev, event);
1515 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1516 unsigned int nr_irqs)
1518 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1519 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1520 int i;
1522 for (i = 0; i < nr_irqs; i++) {
1523 struct irq_data *data = irq_domain_get_irq_data(domain,
1524 virq + i);
1525 u32 event = its_get_event_id(data);
1527 /* Mark interrupt index as unused */
1528 clear_bit(event, its_dev->event_map.lpi_map);
1530 /* Nuke the entry in the domain */
1531 irq_domain_reset_irq_data(data);
1534 /* If all interrupts have been freed, start mopping the floor */
1535 if (bitmap_empty(its_dev->event_map.lpi_map,
1536 its_dev->event_map.nr_lpis)) {
1537 its_lpi_free(&its_dev->event_map);
1539 /* Unmap device/itt */
1540 its_send_mapd(its_dev, 0);
1541 its_free_device(its_dev);
1544 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1547 static const struct irq_domain_ops its_domain_ops = {
1548 .alloc = its_irq_domain_alloc,
1549 .free = its_irq_domain_free,
1550 .activate = its_irq_domain_activate,
1551 .deactivate = its_irq_domain_deactivate,
1554 static int its_force_quiescent(void __iomem *base)
1556 u32 count = 1000000; /* 1s */
1557 u32 val;
1559 val = readl_relaxed(base + GITS_CTLR);
1561 * GIC architecture specification requires the ITS to be both
1562 * disabled and quiescent for writes to GITS_BASER<n> or
1563 * GITS_CBASER to not have UNPREDICTABLE results.
1565 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1566 return 0;
1568 /* Disable the generation of all interrupts to this ITS */
1569 val &= ~GITS_CTLR_ENABLE;
1570 writel_relaxed(val, base + GITS_CTLR);
1572 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
1573 while (1) {
1574 val = readl_relaxed(base + GITS_CTLR);
1575 if (val & GITS_CTLR_QUIESCENT)
1576 return 0;
1578 count--;
1579 if (!count)
1580 return -EBUSY;
1582 cpu_relax();
1583 udelay(1);
1587 static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1589 struct its_node *its = data;
1591 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1594 static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1596 struct its_node *its = data;
1598 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1601 static const struct gic_quirk its_quirks[] = {
1602 #ifdef CONFIG_CAVIUM_ERRATUM_22375
1604 .desc = "ITS: Cavium errata 22375, 24313",
1605 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1606 .mask = 0xffff0fff,
1607 .init = its_enable_quirk_cavium_22375,
1609 #endif
1610 #ifdef CONFIG_CAVIUM_ERRATUM_23144
1612 .desc = "ITS: Cavium erratum 23144",
1613 .iidr = 0xa100034c, /* ThunderX pass 1.x */
1614 .mask = 0xffff0fff,
1615 .init = its_enable_quirk_cavium_23144,
1617 #endif
1622 static void its_enable_quirks(struct its_node *its)
1624 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1626 gic_enable_quirks(iidr, its_quirks, its);
1629 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1631 struct irq_domain *inner_domain;
1632 struct msi_domain_info *info;
1634 info = kzalloc(sizeof(*info), GFP_KERNEL);
1635 if (!info)
1636 return -ENOMEM;
1638 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1639 if (!inner_domain) {
1640 kfree(info);
1641 return -ENOMEM;
1644 inner_domain->parent = its_parent;
1645 inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1646 info->ops = &its_msi_domain_ops;
1647 info->data = its;
1648 inner_domain->host_data = info;
1650 return 0;
1653 static int __init its_probe_one(struct resource *res,
1654 struct fwnode_handle *handle, int numa_node)
1656 struct its_node *its;
1657 void __iomem *its_base;
1658 u32 val;
1659 u64 baser, tmp;
1660 int err;
1662 its_base = ioremap(res->start, resource_size(res));
1663 if (!its_base) {
1664 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1665 return -ENOMEM;
1668 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1669 if (val != 0x30 && val != 0x40) {
1670 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1671 err = -ENODEV;
1672 goto out_unmap;
1675 err = its_force_quiescent(its_base);
1676 if (err) {
1677 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1678 goto out_unmap;
1681 pr_info("ITS %pR\n", res);
1683 its = kzalloc(sizeof(*its), GFP_KERNEL);
1684 if (!its) {
1685 err = -ENOMEM;
1686 goto out_unmap;
1689 raw_spin_lock_init(&its->lock);
1690 INIT_LIST_HEAD(&its->entry);
1691 INIT_LIST_HEAD(&its->its_device_list);
1692 its->base = its_base;
1693 its->phys_base = res->start;
1694 its->ite_size = ((readl_relaxed(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1695 its->numa_node = numa_node;
1697 its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1698 if (!its->cmd_base) {
1699 err = -ENOMEM;
1700 goto out_free_its;
1702 its->cmd_write = its->cmd_base;
1704 its_enable_quirks(its);
1706 err = its_alloc_tables(its);
1707 if (err)
1708 goto out_free_cmd;
1710 err = its_alloc_collections(its);
1711 if (err)
1712 goto out_free_tables;
1714 baser = (virt_to_phys(its->cmd_base) |
1715 GITS_CBASER_WaWb |
1716 GITS_CBASER_InnerShareable |
1717 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
1718 GITS_CBASER_VALID);
1720 writeq_relaxed(baser, its->base + GITS_CBASER);
1721 tmp = readq_relaxed(its->base + GITS_CBASER);
1723 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1724 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1726 * The HW reports non-shareable, we must
1727 * remove the cacheability attributes as
1728 * well.
1730 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1731 GITS_CBASER_CACHEABILITY_MASK);
1732 baser |= GITS_CBASER_nC;
1733 writeq_relaxed(baser, its->base + GITS_CBASER);
1735 pr_info("ITS: using cache flushing for cmd queue\n");
1736 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1739 writeq_relaxed(0, its->base + GITS_CWRITER);
1740 writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1742 err = its_init_domain(handle, its);
1743 if (err)
1744 goto out_free_tables;
1746 spin_lock(&its_lock);
1747 list_add(&its->entry, &its_nodes);
1748 spin_unlock(&its_lock);
1750 return 0;
1752 out_free_tables:
1753 its_free_tables(its);
1754 out_free_cmd:
1755 kfree(its->cmd_base);
1756 out_free_its:
1757 kfree(its);
1758 out_unmap:
1759 iounmap(its_base);
1760 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1761 return err;
1764 static bool gic_rdists_supports_plpis(void)
1766 return !!(readl_relaxed(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1769 int its_cpu_init(void)
1771 if (!list_empty(&its_nodes)) {
1772 if (!gic_rdists_supports_plpis()) {
1773 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1774 return -ENXIO;
1776 its_cpu_init_lpis();
1777 its_cpu_init_collection();
1780 return 0;
1783 static struct of_device_id its_device_id[] = {
1784 { .compatible = "arm,gic-v3-its", },
1788 static int __init its_of_probe(struct device_node *node)
1790 struct device_node *np;
1791 struct resource res;
1793 for (np = of_find_matching_node(node, its_device_id); np;
1794 np = of_find_matching_node(np, its_device_id)) {
1795 if (!of_property_read_bool(np, "msi-controller")) {
1796 pr_warn("%s: no msi-controller property, ITS ignored\n",
1797 np->full_name);
1798 continue;
1801 if (of_address_to_resource(np, 0, &res)) {
1802 pr_warn("%s: no regs?\n", np->full_name);
1803 continue;
1806 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1808 return 0;
1811 #ifdef CONFIG_ACPI
1813 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1815 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1816 const unsigned long end)
1818 struct acpi_madt_generic_translator *its_entry;
1819 struct fwnode_handle *dom_handle;
1820 struct resource res;
1821 int err;
1823 its_entry = (struct acpi_madt_generic_translator *)header;
1824 memset(&res, 0, sizeof(res));
1825 res.start = its_entry->base_address;
1826 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1827 res.flags = IORESOURCE_MEM;
1829 dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1830 if (!dom_handle) {
1831 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1832 &res.start);
1833 return -ENOMEM;
1836 err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1837 if (err) {
1838 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1839 &res.start, its_entry->translation_id);
1840 goto dom_err;
1843 err = its_probe_one(&res, dom_handle, NUMA_NO_NODE);
1844 if (!err)
1845 return 0;
1847 iort_deregister_domain_token(its_entry->translation_id);
1848 dom_err:
1849 irq_domain_free_fwnode(dom_handle);
1850 return err;
1853 static void __init its_acpi_probe(void)
1855 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1856 gic_acpi_parse_madt_its, 0);
1858 #else
1859 static void __init its_acpi_probe(void) { }
1860 #endif
1862 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1863 struct irq_domain *parent_domain)
1865 struct device_node *of_node;
1867 its_parent = parent_domain;
1868 of_node = to_of_node(handle);
1869 if (of_node)
1870 its_of_probe(of_node);
1871 else
1872 its_acpi_probe();
1874 if (list_empty(&its_nodes)) {
1875 pr_warn("ITS: No ITS available, not enabling LPIs\n");
1876 return -ENXIO;
1879 gic_rdists = rdists;
1880 its_alloc_lpi_tables();
1881 its_lpi_init(rdists->id_bits);
1883 return 0;