2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
67 static int max_queued_requests
= 1024;
69 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
71 static void lower_barrier(struct r1conf
*conf
);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
75 struct pool_info
*pi
= data
;
76 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size
, gfp_flags
);
82 static void r1bio_pool_free(void *r1_bio
, void *data
)
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
97 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
99 struct pool_info
*pi
= data
;
100 struct r1bio
*r1_bio
;
105 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
110 * Allocate bios : 1 for reading, n-1 for writing
112 for (j
= pi
->raid_disks
; j
-- ; ) {
113 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
116 r1_bio
->bios
[j
] = bio
;
119 * Allocate RESYNC_PAGES data pages and attach them to
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
124 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
125 need_pages
= pi
->raid_disks
;
128 for (j
= 0; j
< need_pages
; j
++) {
129 bio
= r1_bio
->bios
[j
];
130 bio
->bi_vcnt
= RESYNC_PAGES
;
132 if (bio_alloc_pages(bio
, gfp_flags
))
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
)) {
137 for (i
=0; i
<RESYNC_PAGES
; i
++)
138 for (j
=1; j
<pi
->raid_disks
; j
++)
139 r1_bio
->bios
[j
]->bi_io_vec
[i
].bv_page
=
140 r1_bio
->bios
[0]->bi_io_vec
[i
].bv_page
;
143 r1_bio
->master_bio
= NULL
;
149 bio_free_pages(r1_bio
->bios
[j
]);
152 while (++j
< pi
->raid_disks
)
153 bio_put(r1_bio
->bios
[j
]);
154 r1bio_pool_free(r1_bio
, data
);
158 static void r1buf_pool_free(void *__r1_bio
, void *data
)
160 struct pool_info
*pi
= data
;
162 struct r1bio
*r1bio
= __r1_bio
;
164 for (i
= 0; i
< RESYNC_PAGES
; i
++)
165 for (j
= pi
->raid_disks
; j
-- ;) {
167 r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
!=
168 r1bio
->bios
[0]->bi_io_vec
[i
].bv_page
)
169 safe_put_page(r1bio
->bios
[j
]->bi_io_vec
[i
].bv_page
);
171 for (i
=0 ; i
< pi
->raid_disks
; i
++)
172 bio_put(r1bio
->bios
[i
]);
174 r1bio_pool_free(r1bio
, data
);
177 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
181 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
182 struct bio
**bio
= r1_bio
->bios
+ i
;
183 if (!BIO_SPECIAL(*bio
))
189 static void free_r1bio(struct r1bio
*r1_bio
)
191 struct r1conf
*conf
= r1_bio
->mddev
->private;
193 put_all_bios(conf
, r1_bio
);
194 mempool_free(r1_bio
, conf
->r1bio_pool
);
197 static void put_buf(struct r1bio
*r1_bio
)
199 struct r1conf
*conf
= r1_bio
->mddev
->private;
202 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
203 struct bio
*bio
= r1_bio
->bios
[i
];
205 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
208 mempool_free(r1_bio
, conf
->r1buf_pool
);
213 static void reschedule_retry(struct r1bio
*r1_bio
)
216 struct mddev
*mddev
= r1_bio
->mddev
;
217 struct r1conf
*conf
= mddev
->private;
219 spin_lock_irqsave(&conf
->device_lock
, flags
);
220 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
222 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
224 wake_up(&conf
->wait_barrier
);
225 md_wakeup_thread(mddev
->thread
);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
233 static void call_bio_endio(struct r1bio
*r1_bio
)
235 struct bio
*bio
= r1_bio
->master_bio
;
237 struct r1conf
*conf
= r1_bio
->mddev
->private;
238 sector_t start_next_window
= r1_bio
->start_next_window
;
239 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
241 if (bio
->bi_phys_segments
) {
243 spin_lock_irqsave(&conf
->device_lock
, flags
);
244 bio
->bi_phys_segments
--;
245 done
= (bio
->bi_phys_segments
== 0);
246 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
248 * make_request() might be waiting for
249 * bi_phys_segments to decrease
251 wake_up(&conf
->wait_barrier
);
255 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
256 bio
->bi_error
= -EIO
;
261 * Wake up any possible resync thread that waits for the device
264 allow_barrier(conf
, start_next_window
, bi_sector
);
268 static void raid_end_bio_io(struct r1bio
*r1_bio
)
270 struct bio
*bio
= r1_bio
->master_bio
;
272 /* if nobody has done the final endio yet, do it now */
273 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
274 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
276 (unsigned long long) bio
->bi_iter
.bi_sector
,
277 (unsigned long long) bio_end_sector(bio
) - 1);
279 call_bio_endio(r1_bio
);
285 * Update disk head position estimator based on IRQ completion info.
287 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
289 struct r1conf
*conf
= r1_bio
->mddev
->private;
291 conf
->mirrors
[disk
].head_position
=
292 r1_bio
->sector
+ (r1_bio
->sectors
);
296 * Find the disk number which triggered given bio
298 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
301 struct r1conf
*conf
= r1_bio
->mddev
->private;
302 int raid_disks
= conf
->raid_disks
;
304 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
305 if (r1_bio
->bios
[mirror
] == bio
)
308 BUG_ON(mirror
== raid_disks
* 2);
309 update_head_pos(mirror
, r1_bio
);
314 static void raid1_end_read_request(struct bio
*bio
)
316 int uptodate
= !bio
->bi_error
;
317 struct r1bio
*r1_bio
= bio
->bi_private
;
318 struct r1conf
*conf
= r1_bio
->mddev
->private;
319 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
322 * this branch is our 'one mirror IO has finished' event handler:
324 update_head_pos(r1_bio
->read_disk
, r1_bio
);
327 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
329 /* If all other devices have failed, we want to return
330 * the error upwards rather than fail the last device.
331 * Here we redefine "uptodate" to mean "Don't want to retry"
334 spin_lock_irqsave(&conf
->device_lock
, flags
);
335 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
336 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
337 test_bit(In_sync
, &rdev
->flags
)))
339 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
343 raid_end_bio_io(r1_bio
);
344 rdev_dec_pending(rdev
, conf
->mddev
);
349 char b
[BDEVNAME_SIZE
];
351 KERN_ERR
"md/raid1:%s: %s: "
352 "rescheduling sector %llu\n",
356 (unsigned long long)r1_bio
->sector
);
357 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
358 reschedule_retry(r1_bio
);
359 /* don't drop the reference on read_disk yet */
363 static void close_write(struct r1bio
*r1_bio
)
365 /* it really is the end of this request */
366 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
367 /* free extra copy of the data pages */
368 int i
= r1_bio
->behind_page_count
;
370 safe_put_page(r1_bio
->behind_bvecs
[i
].bv_page
);
371 kfree(r1_bio
->behind_bvecs
);
372 r1_bio
->behind_bvecs
= NULL
;
374 /* clear the bitmap if all writes complete successfully */
375 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
377 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
378 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
379 md_write_end(r1_bio
->mddev
);
382 static void r1_bio_write_done(struct r1bio
*r1_bio
)
384 if (!atomic_dec_and_test(&r1_bio
->remaining
))
387 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
388 reschedule_retry(r1_bio
);
391 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
392 reschedule_retry(r1_bio
);
394 raid_end_bio_io(r1_bio
);
398 static void raid1_end_write_request(struct bio
*bio
)
400 struct r1bio
*r1_bio
= bio
->bi_private
;
401 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
402 struct r1conf
*conf
= r1_bio
->mddev
->private;
403 struct bio
*to_put
= NULL
;
404 int mirror
= find_bio_disk(r1_bio
, bio
);
405 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
408 * 'one mirror IO has finished' event handler:
411 set_bit(WriteErrorSeen
, &rdev
->flags
);
412 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
413 set_bit(MD_RECOVERY_NEEDED
, &
414 conf
->mddev
->recovery
);
416 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
419 * Set R1BIO_Uptodate in our master bio, so that we
420 * will return a good error code for to the higher
421 * levels even if IO on some other mirrored buffer
424 * The 'master' represents the composite IO operation
425 * to user-side. So if something waits for IO, then it
426 * will wait for the 'master' bio.
431 r1_bio
->bios
[mirror
] = NULL
;
434 * Do not set R1BIO_Uptodate if the current device is
435 * rebuilding or Faulty. This is because we cannot use
436 * such device for properly reading the data back (we could
437 * potentially use it, if the current write would have felt
438 * before rdev->recovery_offset, but for simplicity we don't
441 if (test_bit(In_sync
, &rdev
->flags
) &&
442 !test_bit(Faulty
, &rdev
->flags
))
443 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
445 /* Maybe we can clear some bad blocks. */
446 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
447 &first_bad
, &bad_sectors
)) {
448 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
449 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
454 if (test_bit(WriteMostly
, &rdev
->flags
))
455 atomic_dec(&r1_bio
->behind_remaining
);
458 * In behind mode, we ACK the master bio once the I/O
459 * has safely reached all non-writemostly
460 * disks. Setting the Returned bit ensures that this
461 * gets done only once -- we don't ever want to return
462 * -EIO here, instead we'll wait
464 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
465 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
466 /* Maybe we can return now */
467 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
468 struct bio
*mbio
= r1_bio
->master_bio
;
469 pr_debug("raid1: behind end write sectors"
471 (unsigned long long) mbio
->bi_iter
.bi_sector
,
472 (unsigned long long) bio_end_sector(mbio
) - 1);
473 call_bio_endio(r1_bio
);
477 if (r1_bio
->bios
[mirror
] == NULL
)
478 rdev_dec_pending(rdev
, conf
->mddev
);
481 * Let's see if all mirrored write operations have finished
484 r1_bio_write_done(r1_bio
);
491 * This routine returns the disk from which the requested read should
492 * be done. There is a per-array 'next expected sequential IO' sector
493 * number - if this matches on the next IO then we use the last disk.
494 * There is also a per-disk 'last know head position' sector that is
495 * maintained from IRQ contexts, both the normal and the resync IO
496 * completion handlers update this position correctly. If there is no
497 * perfect sequential match then we pick the disk whose head is closest.
499 * If there are 2 mirrors in the same 2 devices, performance degrades
500 * because position is mirror, not device based.
502 * The rdev for the device selected will have nr_pending incremented.
504 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
506 const sector_t this_sector
= r1_bio
->sector
;
508 int best_good_sectors
;
509 int best_disk
, best_dist_disk
, best_pending_disk
;
513 unsigned int min_pending
;
514 struct md_rdev
*rdev
;
516 int choose_next_idle
;
520 * Check if we can balance. We can balance on the whole
521 * device if no resync is going on, or below the resync window.
522 * We take the first readable disk when above the resync window.
525 sectors
= r1_bio
->sectors
;
528 best_dist
= MaxSector
;
529 best_pending_disk
= -1;
530 min_pending
= UINT_MAX
;
531 best_good_sectors
= 0;
533 choose_next_idle
= 0;
535 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
536 (mddev_is_clustered(conf
->mddev
) &&
537 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
538 this_sector
+ sectors
)))
543 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
547 unsigned int pending
;
550 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
551 if (r1_bio
->bios
[disk
] == IO_BLOCKED
553 || test_bit(Faulty
, &rdev
->flags
))
555 if (!test_bit(In_sync
, &rdev
->flags
) &&
556 rdev
->recovery_offset
< this_sector
+ sectors
)
558 if (test_bit(WriteMostly
, &rdev
->flags
)) {
559 /* Don't balance among write-mostly, just
560 * use the first as a last resort */
561 if (best_dist_disk
< 0) {
562 if (is_badblock(rdev
, this_sector
, sectors
,
563 &first_bad
, &bad_sectors
)) {
564 if (first_bad
<= this_sector
)
565 /* Cannot use this */
567 best_good_sectors
= first_bad
- this_sector
;
569 best_good_sectors
= sectors
;
570 best_dist_disk
= disk
;
571 best_pending_disk
= disk
;
575 /* This is a reasonable device to use. It might
578 if (is_badblock(rdev
, this_sector
, sectors
,
579 &first_bad
, &bad_sectors
)) {
580 if (best_dist
< MaxSector
)
581 /* already have a better device */
583 if (first_bad
<= this_sector
) {
584 /* cannot read here. If this is the 'primary'
585 * device, then we must not read beyond
586 * bad_sectors from another device..
588 bad_sectors
-= (this_sector
- first_bad
);
589 if (choose_first
&& sectors
> bad_sectors
)
590 sectors
= bad_sectors
;
591 if (best_good_sectors
> sectors
)
592 best_good_sectors
= sectors
;
595 sector_t good_sectors
= first_bad
- this_sector
;
596 if (good_sectors
> best_good_sectors
) {
597 best_good_sectors
= good_sectors
;
605 best_good_sectors
= sectors
;
607 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
608 has_nonrot_disk
|= nonrot
;
609 pending
= atomic_read(&rdev
->nr_pending
);
610 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
615 /* Don't change to another disk for sequential reads */
616 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
618 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
619 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
623 * If buffered sequential IO size exceeds optimal
624 * iosize, check if there is idle disk. If yes, choose
625 * the idle disk. read_balance could already choose an
626 * idle disk before noticing it's a sequential IO in
627 * this disk. This doesn't matter because this disk
628 * will idle, next time it will be utilized after the
629 * first disk has IO size exceeds optimal iosize. In
630 * this way, iosize of the first disk will be optimal
631 * iosize at least. iosize of the second disk might be
632 * small, but not a big deal since when the second disk
633 * starts IO, the first disk is likely still busy.
635 if (nonrot
&& opt_iosize
> 0 &&
636 mirror
->seq_start
!= MaxSector
&&
637 mirror
->next_seq_sect
> opt_iosize
&&
638 mirror
->next_seq_sect
- opt_iosize
>=
640 choose_next_idle
= 1;
645 /* If device is idle, use it */
651 if (choose_next_idle
)
654 if (min_pending
> pending
) {
655 min_pending
= pending
;
656 best_pending_disk
= disk
;
659 if (dist
< best_dist
) {
661 best_dist_disk
= disk
;
666 * If all disks are rotational, choose the closest disk. If any disk is
667 * non-rotational, choose the disk with less pending request even the
668 * disk is rotational, which might/might not be optimal for raids with
669 * mixed ratation/non-rotational disks depending on workload.
671 if (best_disk
== -1) {
673 best_disk
= best_pending_disk
;
675 best_disk
= best_dist_disk
;
678 if (best_disk
>= 0) {
679 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
682 atomic_inc(&rdev
->nr_pending
);
683 sectors
= best_good_sectors
;
685 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
686 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
688 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
691 *max_sectors
= sectors
;
696 static int raid1_congested(struct mddev
*mddev
, int bits
)
698 struct r1conf
*conf
= mddev
->private;
701 if ((bits
& (1 << WB_async_congested
)) &&
702 conf
->pending_count
>= max_queued_requests
)
706 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
707 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
708 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
709 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
713 /* Note the '|| 1' - when read_balance prefers
714 * non-congested targets, it can be removed
716 if ((bits
& (1 << WB_async_congested
)) || 1)
717 ret
|= bdi_congested(&q
->backing_dev_info
, bits
);
719 ret
&= bdi_congested(&q
->backing_dev_info
, bits
);
726 static void flush_pending_writes(struct r1conf
*conf
)
728 /* Any writes that have been queued but are awaiting
729 * bitmap updates get flushed here.
731 spin_lock_irq(&conf
->device_lock
);
733 if (conf
->pending_bio_list
.head
) {
735 bio
= bio_list_get(&conf
->pending_bio_list
);
736 conf
->pending_count
= 0;
737 spin_unlock_irq(&conf
->device_lock
);
738 /* flush any pending bitmap writes to
739 * disk before proceeding w/ I/O */
740 bitmap_unplug(conf
->mddev
->bitmap
);
741 wake_up(&conf
->wait_barrier
);
743 while (bio
) { /* submit pending writes */
744 struct bio
*next
= bio
->bi_next
;
746 if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
747 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
751 generic_make_request(bio
);
755 spin_unlock_irq(&conf
->device_lock
);
759 * Sometimes we need to suspend IO while we do something else,
760 * either some resync/recovery, or reconfigure the array.
761 * To do this we raise a 'barrier'.
762 * The 'barrier' is a counter that can be raised multiple times
763 * to count how many activities are happening which preclude
765 * We can only raise the barrier if there is no pending IO.
766 * i.e. if nr_pending == 0.
767 * We choose only to raise the barrier if no-one is waiting for the
768 * barrier to go down. This means that as soon as an IO request
769 * is ready, no other operations which require a barrier will start
770 * until the IO request has had a chance.
772 * So: regular IO calls 'wait_barrier'. When that returns there
773 * is no backgroup IO happening, It must arrange to call
774 * allow_barrier when it has finished its IO.
775 * backgroup IO calls must call raise_barrier. Once that returns
776 * there is no normal IO happeing. It must arrange to call
777 * lower_barrier when the particular background IO completes.
779 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
781 spin_lock_irq(&conf
->resync_lock
);
783 /* Wait until no block IO is waiting */
784 wait_event_lock_irq(conf
->wait_barrier
, !conf
->nr_waiting
,
787 /* block any new IO from starting */
789 conf
->next_resync
= sector_nr
;
791 /* For these conditions we must wait:
792 * A: while the array is in frozen state
793 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
794 * the max count which allowed.
795 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
796 * next resync will reach to the window which normal bios are
798 * D: while there are any active requests in the current window.
800 wait_event_lock_irq(conf
->wait_barrier
,
801 !conf
->array_frozen
&&
802 conf
->barrier
< RESYNC_DEPTH
&&
803 conf
->current_window_requests
== 0 &&
804 (conf
->start_next_window
>=
805 conf
->next_resync
+ RESYNC_SECTORS
),
809 spin_unlock_irq(&conf
->resync_lock
);
812 static void lower_barrier(struct r1conf
*conf
)
815 BUG_ON(conf
->barrier
<= 0);
816 spin_lock_irqsave(&conf
->resync_lock
, flags
);
819 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
820 wake_up(&conf
->wait_barrier
);
823 static bool need_to_wait_for_sync(struct r1conf
*conf
, struct bio
*bio
)
827 if (conf
->array_frozen
|| !bio
)
829 else if (conf
->barrier
&& bio_data_dir(bio
) == WRITE
) {
830 if ((conf
->mddev
->curr_resync_completed
831 >= bio_end_sector(bio
)) ||
832 (conf
->next_resync
+ NEXT_NORMALIO_DISTANCE
833 <= bio
->bi_iter
.bi_sector
))
842 static sector_t
wait_barrier(struct r1conf
*conf
, struct bio
*bio
)
846 spin_lock_irq(&conf
->resync_lock
);
847 if (need_to_wait_for_sync(conf
, bio
)) {
849 /* Wait for the barrier to drop.
850 * However if there are already pending
851 * requests (preventing the barrier from
852 * rising completely), and the
853 * per-process bio queue isn't empty,
854 * then don't wait, as we need to empty
855 * that queue to allow conf->start_next_window
858 wait_event_lock_irq(conf
->wait_barrier
,
859 !conf
->array_frozen
&&
861 ((conf
->start_next_window
<
862 conf
->next_resync
+ RESYNC_SECTORS
) &&
864 !bio_list_empty(current
->bio_list
))),
869 if (bio
&& bio_data_dir(bio
) == WRITE
) {
870 if (bio
->bi_iter
.bi_sector
>= conf
->next_resync
) {
871 if (conf
->start_next_window
== MaxSector
)
872 conf
->start_next_window
=
874 NEXT_NORMALIO_DISTANCE
;
876 if ((conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
)
877 <= bio
->bi_iter
.bi_sector
)
878 conf
->next_window_requests
++;
880 conf
->current_window_requests
++;
881 sector
= conf
->start_next_window
;
886 spin_unlock_irq(&conf
->resync_lock
);
890 static void allow_barrier(struct r1conf
*conf
, sector_t start_next_window
,
895 spin_lock_irqsave(&conf
->resync_lock
, flags
);
897 if (start_next_window
) {
898 if (start_next_window
== conf
->start_next_window
) {
899 if (conf
->start_next_window
+ NEXT_NORMALIO_DISTANCE
901 conf
->next_window_requests
--;
903 conf
->current_window_requests
--;
905 conf
->current_window_requests
--;
907 if (!conf
->current_window_requests
) {
908 if (conf
->next_window_requests
) {
909 conf
->current_window_requests
=
910 conf
->next_window_requests
;
911 conf
->next_window_requests
= 0;
912 conf
->start_next_window
+=
913 NEXT_NORMALIO_DISTANCE
;
915 conf
->start_next_window
= MaxSector
;
918 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
919 wake_up(&conf
->wait_barrier
);
922 static void freeze_array(struct r1conf
*conf
, int extra
)
924 /* stop syncio and normal IO and wait for everything to
926 * We wait until nr_pending match nr_queued+extra
927 * This is called in the context of one normal IO request
928 * that has failed. Thus any sync request that might be pending
929 * will be blocked by nr_pending, and we need to wait for
930 * pending IO requests to complete or be queued for re-try.
931 * Thus the number queued (nr_queued) plus this request (extra)
932 * must match the number of pending IOs (nr_pending) before
935 spin_lock_irq(&conf
->resync_lock
);
936 conf
->array_frozen
= 1;
937 wait_event_lock_irq_cmd(conf
->wait_barrier
,
938 conf
->nr_pending
== conf
->nr_queued
+extra
,
940 flush_pending_writes(conf
));
941 spin_unlock_irq(&conf
->resync_lock
);
943 static void unfreeze_array(struct r1conf
*conf
)
945 /* reverse the effect of the freeze */
946 spin_lock_irq(&conf
->resync_lock
);
947 conf
->array_frozen
= 0;
948 wake_up(&conf
->wait_barrier
);
949 spin_unlock_irq(&conf
->resync_lock
);
952 /* duplicate the data pages for behind I/O
954 static void alloc_behind_pages(struct bio
*bio
, struct r1bio
*r1_bio
)
957 struct bio_vec
*bvec
;
958 struct bio_vec
*bvecs
= kzalloc(bio
->bi_vcnt
* sizeof(struct bio_vec
),
960 if (unlikely(!bvecs
))
963 bio_for_each_segment_all(bvec
, bio
, i
) {
965 bvecs
[i
].bv_page
= alloc_page(GFP_NOIO
);
966 if (unlikely(!bvecs
[i
].bv_page
))
968 memcpy(kmap(bvecs
[i
].bv_page
) + bvec
->bv_offset
,
969 kmap(bvec
->bv_page
) + bvec
->bv_offset
, bvec
->bv_len
);
970 kunmap(bvecs
[i
].bv_page
);
971 kunmap(bvec
->bv_page
);
973 r1_bio
->behind_bvecs
= bvecs
;
974 r1_bio
->behind_page_count
= bio
->bi_vcnt
;
975 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
979 for (i
= 0; i
< bio
->bi_vcnt
; i
++)
980 if (bvecs
[i
].bv_page
)
981 put_page(bvecs
[i
].bv_page
);
983 pr_debug("%dB behind alloc failed, doing sync I/O\n",
984 bio
->bi_iter
.bi_size
);
987 struct raid1_plug_cb
{
988 struct blk_plug_cb cb
;
989 struct bio_list pending
;
993 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
995 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
997 struct mddev
*mddev
= plug
->cb
.data
;
998 struct r1conf
*conf
= mddev
->private;
1001 if (from_schedule
|| current
->bio_list
) {
1002 spin_lock_irq(&conf
->device_lock
);
1003 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1004 conf
->pending_count
+= plug
->pending_cnt
;
1005 spin_unlock_irq(&conf
->device_lock
);
1006 wake_up(&conf
->wait_barrier
);
1007 md_wakeup_thread(mddev
->thread
);
1012 /* we aren't scheduling, so we can do the write-out directly. */
1013 bio
= bio_list_get(&plug
->pending
);
1014 bitmap_unplug(mddev
->bitmap
);
1015 wake_up(&conf
->wait_barrier
);
1017 while (bio
) { /* submit pending writes */
1018 struct bio
*next
= bio
->bi_next
;
1019 bio
->bi_next
= NULL
;
1020 if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1021 !blk_queue_discard(bdev_get_queue(bio
->bi_bdev
))))
1022 /* Just ignore it */
1025 generic_make_request(bio
);
1031 static void raid1_make_request(struct mddev
*mddev
, struct bio
* bio
)
1033 struct r1conf
*conf
= mddev
->private;
1034 struct raid1_info
*mirror
;
1035 struct r1bio
*r1_bio
;
1036 struct bio
*read_bio
;
1038 struct bitmap
*bitmap
;
1039 unsigned long flags
;
1040 const int op
= bio_op(bio
);
1041 const int rw
= bio_data_dir(bio
);
1042 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1043 const unsigned long do_flush_fua
= (bio
->bi_opf
&
1044 (REQ_PREFLUSH
| REQ_FUA
));
1045 struct md_rdev
*blocked_rdev
;
1046 struct blk_plug_cb
*cb
;
1047 struct raid1_plug_cb
*plug
= NULL
;
1049 int sectors_handled
;
1051 sector_t start_next_window
;
1054 * Register the new request and wait if the reconstruction
1055 * thread has put up a bar for new requests.
1056 * Continue immediately if no resync is active currently.
1059 md_write_start(mddev
, bio
); /* wait on superblock update early */
1061 if (bio_data_dir(bio
) == WRITE
&&
1062 ((bio_end_sector(bio
) > mddev
->suspend_lo
&&
1063 bio
->bi_iter
.bi_sector
< mddev
->suspend_hi
) ||
1064 (mddev_is_clustered(mddev
) &&
1065 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1066 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))))) {
1067 /* As the suspend_* range is controlled by
1068 * userspace, we want an interruptible
1073 flush_signals(current
);
1074 prepare_to_wait(&conf
->wait_barrier
,
1075 &w
, TASK_INTERRUPTIBLE
);
1076 if (bio_end_sector(bio
) <= mddev
->suspend_lo
||
1077 bio
->bi_iter
.bi_sector
>= mddev
->suspend_hi
||
1078 (mddev_is_clustered(mddev
) &&
1079 !md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1080 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))))
1084 finish_wait(&conf
->wait_barrier
, &w
);
1087 start_next_window
= wait_barrier(conf
, bio
);
1089 bitmap
= mddev
->bitmap
;
1092 * make_request() can abort the operation when read-ahead is being
1093 * used and no empty request is available.
1096 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1098 r1_bio
->master_bio
= bio
;
1099 r1_bio
->sectors
= bio_sectors(bio
);
1101 r1_bio
->mddev
= mddev
;
1102 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1104 /* We might need to issue multiple reads to different
1105 * devices if there are bad blocks around, so we keep
1106 * track of the number of reads in bio->bi_phys_segments.
1107 * If this is 0, there is only one r1_bio and no locking
1108 * will be needed when requests complete. If it is
1109 * non-zero, then it is the number of not-completed requests.
1111 bio
->bi_phys_segments
= 0;
1112 bio_clear_flag(bio
, BIO_SEG_VALID
);
1116 * read balancing logic:
1121 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1124 /* couldn't find anywhere to read from */
1125 raid_end_bio_io(r1_bio
);
1128 mirror
= conf
->mirrors
+ rdisk
;
1130 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1132 /* Reading from a write-mostly device must
1133 * take care not to over-take any writes
1136 wait_event(bitmap
->behind_wait
,
1137 atomic_read(&bitmap
->behind_writes
) == 0);
1139 r1_bio
->read_disk
= rdisk
;
1140 r1_bio
->start_next_window
= 0;
1142 read_bio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1143 bio_trim(read_bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
1146 r1_bio
->bios
[rdisk
] = read_bio
;
1148 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1149 mirror
->rdev
->data_offset
;
1150 read_bio
->bi_bdev
= mirror
->rdev
->bdev
;
1151 read_bio
->bi_end_io
= raid1_end_read_request
;
1152 bio_set_op_attrs(read_bio
, op
, do_sync
);
1153 read_bio
->bi_private
= r1_bio
;
1155 if (max_sectors
< r1_bio
->sectors
) {
1156 /* could not read all from this device, so we will
1157 * need another r1_bio.
1160 sectors_handled
= (r1_bio
->sector
+ max_sectors
1161 - bio
->bi_iter
.bi_sector
);
1162 r1_bio
->sectors
= max_sectors
;
1163 spin_lock_irq(&conf
->device_lock
);
1164 if (bio
->bi_phys_segments
== 0)
1165 bio
->bi_phys_segments
= 2;
1167 bio
->bi_phys_segments
++;
1168 spin_unlock_irq(&conf
->device_lock
);
1169 /* Cannot call generic_make_request directly
1170 * as that will be queued in __make_request
1171 * and subsequent mempool_alloc might block waiting
1172 * for it. So hand bio over to raid1d.
1174 reschedule_retry(r1_bio
);
1176 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1178 r1_bio
->master_bio
= bio
;
1179 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1181 r1_bio
->mddev
= mddev
;
1182 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+
1186 generic_make_request(read_bio
);
1193 if (conf
->pending_count
>= max_queued_requests
) {
1194 md_wakeup_thread(mddev
->thread
);
1195 wait_event(conf
->wait_barrier
,
1196 conf
->pending_count
< max_queued_requests
);
1198 /* first select target devices under rcu_lock and
1199 * inc refcount on their rdev. Record them by setting
1201 * If there are known/acknowledged bad blocks on any device on
1202 * which we have seen a write error, we want to avoid writing those
1204 * This potentially requires several writes to write around
1205 * the bad blocks. Each set of writes gets it's own r1bio
1206 * with a set of bios attached.
1209 disks
= conf
->raid_disks
* 2;
1211 r1_bio
->start_next_window
= start_next_window
;
1212 blocked_rdev
= NULL
;
1214 max_sectors
= r1_bio
->sectors
;
1215 for (i
= 0; i
< disks
; i
++) {
1216 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1217 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1218 atomic_inc(&rdev
->nr_pending
);
1219 blocked_rdev
= rdev
;
1222 r1_bio
->bios
[i
] = NULL
;
1223 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1224 if (i
< conf
->raid_disks
)
1225 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1229 atomic_inc(&rdev
->nr_pending
);
1230 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1235 is_bad
= is_badblock(rdev
, r1_bio
->sector
,
1237 &first_bad
, &bad_sectors
);
1239 /* mustn't write here until the bad block is
1241 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1242 blocked_rdev
= rdev
;
1245 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1246 /* Cannot write here at all */
1247 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1248 if (bad_sectors
< max_sectors
)
1249 /* mustn't write more than bad_sectors
1250 * to other devices yet
1252 max_sectors
= bad_sectors
;
1253 rdev_dec_pending(rdev
, mddev
);
1254 /* We don't set R1BIO_Degraded as that
1255 * only applies if the disk is
1256 * missing, so it might be re-added,
1257 * and we want to know to recover this
1259 * In this case the device is here,
1260 * and the fact that this chunk is not
1261 * in-sync is recorded in the bad
1267 int good_sectors
= first_bad
- r1_bio
->sector
;
1268 if (good_sectors
< max_sectors
)
1269 max_sectors
= good_sectors
;
1272 r1_bio
->bios
[i
] = bio
;
1276 if (unlikely(blocked_rdev
)) {
1277 /* Wait for this device to become unblocked */
1279 sector_t old
= start_next_window
;
1281 for (j
= 0; j
< i
; j
++)
1282 if (r1_bio
->bios
[j
])
1283 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1285 allow_barrier(conf
, start_next_window
, bio
->bi_iter
.bi_sector
);
1286 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1287 start_next_window
= wait_barrier(conf
, bio
);
1289 * We must make sure the multi r1bios of bio have
1290 * the same value of bi_phys_segments
1292 if (bio
->bi_phys_segments
&& old
&&
1293 old
!= start_next_window
)
1294 /* Wait for the former r1bio(s) to complete */
1295 wait_event(conf
->wait_barrier
,
1296 bio
->bi_phys_segments
== 1);
1300 if (max_sectors
< r1_bio
->sectors
) {
1301 /* We are splitting this write into multiple parts, so
1302 * we need to prepare for allocating another r1_bio.
1304 r1_bio
->sectors
= max_sectors
;
1305 spin_lock_irq(&conf
->device_lock
);
1306 if (bio
->bi_phys_segments
== 0)
1307 bio
->bi_phys_segments
= 2;
1309 bio
->bi_phys_segments
++;
1310 spin_unlock_irq(&conf
->device_lock
);
1312 sectors_handled
= r1_bio
->sector
+ max_sectors
- bio
->bi_iter
.bi_sector
;
1314 atomic_set(&r1_bio
->remaining
, 1);
1315 atomic_set(&r1_bio
->behind_remaining
, 0);
1318 for (i
= 0; i
< disks
; i
++) {
1320 if (!r1_bio
->bios
[i
])
1323 mbio
= bio_clone_mddev(bio
, GFP_NOIO
, mddev
);
1324 bio_trim(mbio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
, max_sectors
);
1328 * Not if there are too many, or cannot
1329 * allocate memory, or a reader on WriteMostly
1330 * is waiting for behind writes to flush */
1332 (atomic_read(&bitmap
->behind_writes
)
1333 < mddev
->bitmap_info
.max_write_behind
) &&
1334 !waitqueue_active(&bitmap
->behind_wait
))
1335 alloc_behind_pages(mbio
, r1_bio
);
1337 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1339 test_bit(R1BIO_BehindIO
,
1343 if (r1_bio
->behind_bvecs
) {
1344 struct bio_vec
*bvec
;
1348 * We trimmed the bio, so _all is legit
1350 bio_for_each_segment_all(bvec
, mbio
, j
)
1351 bvec
->bv_page
= r1_bio
->behind_bvecs
[j
].bv_page
;
1352 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1353 atomic_inc(&r1_bio
->behind_remaining
);
1356 r1_bio
->bios
[i
] = mbio
;
1358 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1359 conf
->mirrors
[i
].rdev
->data_offset
);
1360 mbio
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1361 mbio
->bi_end_io
= raid1_end_write_request
;
1362 bio_set_op_attrs(mbio
, op
, do_flush_fua
| do_sync
);
1363 mbio
->bi_private
= r1_bio
;
1365 atomic_inc(&r1_bio
->remaining
);
1367 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1369 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1372 spin_lock_irqsave(&conf
->device_lock
, flags
);
1374 bio_list_add(&plug
->pending
, mbio
);
1375 plug
->pending_cnt
++;
1377 bio_list_add(&conf
->pending_bio_list
, mbio
);
1378 conf
->pending_count
++;
1380 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1382 md_wakeup_thread(mddev
->thread
);
1384 /* Mustn't call r1_bio_write_done before this next test,
1385 * as it could result in the bio being freed.
1387 if (sectors_handled
< bio_sectors(bio
)) {
1388 r1_bio_write_done(r1_bio
);
1389 /* We need another r1_bio. It has already been counted
1390 * in bio->bi_phys_segments
1392 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1393 r1_bio
->master_bio
= bio
;
1394 r1_bio
->sectors
= bio_sectors(bio
) - sectors_handled
;
1396 r1_bio
->mddev
= mddev
;
1397 r1_bio
->sector
= bio
->bi_iter
.bi_sector
+ sectors_handled
;
1401 r1_bio_write_done(r1_bio
);
1403 /* In case raid1d snuck in to freeze_array */
1404 wake_up(&conf
->wait_barrier
);
1407 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1409 struct r1conf
*conf
= mddev
->private;
1412 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1413 conf
->raid_disks
- mddev
->degraded
);
1415 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1416 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1417 seq_printf(seq
, "%s",
1418 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1421 seq_printf(seq
, "]");
1424 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1426 char b
[BDEVNAME_SIZE
];
1427 struct r1conf
*conf
= mddev
->private;
1428 unsigned long flags
;
1431 * If it is not operational, then we have already marked it as dead
1432 * else if it is the last working disks, ignore the error, let the
1433 * next level up know.
1434 * else mark the drive as failed
1436 if (test_bit(In_sync
, &rdev
->flags
)
1437 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1439 * Don't fail the drive, act as though we were just a
1440 * normal single drive.
1441 * However don't try a recovery from this drive as
1442 * it is very likely to fail.
1444 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1447 set_bit(Blocked
, &rdev
->flags
);
1448 spin_lock_irqsave(&conf
->device_lock
, flags
);
1449 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1451 set_bit(Faulty
, &rdev
->flags
);
1453 set_bit(Faulty
, &rdev
->flags
);
1454 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1456 * if recovery is running, make sure it aborts.
1458 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1459 set_mask_bits(&mddev
->flags
, 0,
1460 BIT(MD_CHANGE_DEVS
) | BIT(MD_CHANGE_PENDING
));
1462 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1463 "md/raid1:%s: Operation continuing on %d devices.\n",
1464 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1465 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1468 static void print_conf(struct r1conf
*conf
)
1472 printk(KERN_DEBUG
"RAID1 conf printout:\n");
1474 printk(KERN_DEBUG
"(!conf)\n");
1477 printk(KERN_DEBUG
" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1481 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1482 char b
[BDEVNAME_SIZE
];
1483 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1485 printk(KERN_DEBUG
" disk %d, wo:%d, o:%d, dev:%s\n",
1486 i
, !test_bit(In_sync
, &rdev
->flags
),
1487 !test_bit(Faulty
, &rdev
->flags
),
1488 bdevname(rdev
->bdev
,b
));
1493 static void close_sync(struct r1conf
*conf
)
1495 wait_barrier(conf
, NULL
);
1496 allow_barrier(conf
, 0, 0);
1498 mempool_destroy(conf
->r1buf_pool
);
1499 conf
->r1buf_pool
= NULL
;
1501 spin_lock_irq(&conf
->resync_lock
);
1502 conf
->next_resync
= MaxSector
- 2 * NEXT_NORMALIO_DISTANCE
;
1503 conf
->start_next_window
= MaxSector
;
1504 conf
->current_window_requests
+=
1505 conf
->next_window_requests
;
1506 conf
->next_window_requests
= 0;
1507 spin_unlock_irq(&conf
->resync_lock
);
1510 static int raid1_spare_active(struct mddev
*mddev
)
1513 struct r1conf
*conf
= mddev
->private;
1515 unsigned long flags
;
1518 * Find all failed disks within the RAID1 configuration
1519 * and mark them readable.
1520 * Called under mddev lock, so rcu protection not needed.
1521 * device_lock used to avoid races with raid1_end_read_request
1522 * which expects 'In_sync' flags and ->degraded to be consistent.
1524 spin_lock_irqsave(&conf
->device_lock
, flags
);
1525 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1526 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1527 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1529 && !test_bit(Candidate
, &repl
->flags
)
1530 && repl
->recovery_offset
== MaxSector
1531 && !test_bit(Faulty
, &repl
->flags
)
1532 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1533 /* replacement has just become active */
1535 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1538 /* Replaced device not technically
1539 * faulty, but we need to be sure
1540 * it gets removed and never re-added
1542 set_bit(Faulty
, &rdev
->flags
);
1543 sysfs_notify_dirent_safe(
1548 && rdev
->recovery_offset
== MaxSector
1549 && !test_bit(Faulty
, &rdev
->flags
)
1550 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1552 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1555 mddev
->degraded
-= count
;
1556 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1562 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1564 struct r1conf
*conf
= mddev
->private;
1567 struct raid1_info
*p
;
1569 int last
= conf
->raid_disks
- 1;
1571 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1574 if (md_integrity_add_rdev(rdev
, mddev
))
1577 if (rdev
->raid_disk
>= 0)
1578 first
= last
= rdev
->raid_disk
;
1581 * find the disk ... but prefer rdev->saved_raid_disk
1584 if (rdev
->saved_raid_disk
>= 0 &&
1585 rdev
->saved_raid_disk
>= first
&&
1586 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1587 first
= last
= rdev
->saved_raid_disk
;
1589 for (mirror
= first
; mirror
<= last
; mirror
++) {
1590 p
= conf
->mirrors
+mirror
;
1594 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1595 rdev
->data_offset
<< 9);
1597 p
->head_position
= 0;
1598 rdev
->raid_disk
= mirror
;
1600 /* As all devices are equivalent, we don't need a full recovery
1601 * if this was recently any drive of the array
1603 if (rdev
->saved_raid_disk
< 0)
1605 rcu_assign_pointer(p
->rdev
, rdev
);
1608 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1609 p
[conf
->raid_disks
].rdev
== NULL
) {
1610 /* Add this device as a replacement */
1611 clear_bit(In_sync
, &rdev
->flags
);
1612 set_bit(Replacement
, &rdev
->flags
);
1613 rdev
->raid_disk
= mirror
;
1616 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1620 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1621 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1626 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1628 struct r1conf
*conf
= mddev
->private;
1630 int number
= rdev
->raid_disk
;
1631 struct raid1_info
*p
= conf
->mirrors
+ number
;
1633 if (rdev
!= p
->rdev
)
1634 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1637 if (rdev
== p
->rdev
) {
1638 if (test_bit(In_sync
, &rdev
->flags
) ||
1639 atomic_read(&rdev
->nr_pending
)) {
1643 /* Only remove non-faulty devices if recovery
1646 if (!test_bit(Faulty
, &rdev
->flags
) &&
1647 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1648 mddev
->degraded
< conf
->raid_disks
) {
1653 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1655 if (atomic_read(&rdev
->nr_pending
)) {
1656 /* lost the race, try later */
1662 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1663 /* We just removed a device that is being replaced.
1664 * Move down the replacement. We drain all IO before
1665 * doing this to avoid confusion.
1667 struct md_rdev
*repl
=
1668 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1669 freeze_array(conf
, 0);
1670 clear_bit(Replacement
, &repl
->flags
);
1672 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1673 unfreeze_array(conf
);
1674 clear_bit(WantReplacement
, &rdev
->flags
);
1676 clear_bit(WantReplacement
, &rdev
->flags
);
1677 err
= md_integrity_register(mddev
);
1685 static void end_sync_read(struct bio
*bio
)
1687 struct r1bio
*r1_bio
= bio
->bi_private
;
1689 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1692 * we have read a block, now it needs to be re-written,
1693 * or re-read if the read failed.
1694 * We don't do much here, just schedule handling by raid1d
1697 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1699 if (atomic_dec_and_test(&r1_bio
->remaining
))
1700 reschedule_retry(r1_bio
);
1703 static void end_sync_write(struct bio
*bio
)
1705 int uptodate
= !bio
->bi_error
;
1706 struct r1bio
*r1_bio
= bio
->bi_private
;
1707 struct mddev
*mddev
= r1_bio
->mddev
;
1708 struct r1conf
*conf
= mddev
->private;
1711 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1714 sector_t sync_blocks
= 0;
1715 sector_t s
= r1_bio
->sector
;
1716 long sectors_to_go
= r1_bio
->sectors
;
1717 /* make sure these bits doesn't get cleared. */
1719 bitmap_end_sync(mddev
->bitmap
, s
,
1722 sectors_to_go
-= sync_blocks
;
1723 } while (sectors_to_go
> 0);
1724 set_bit(WriteErrorSeen
, &rdev
->flags
);
1725 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1726 set_bit(MD_RECOVERY_NEEDED
, &
1728 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1729 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1730 &first_bad
, &bad_sectors
) &&
1731 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1734 &first_bad
, &bad_sectors
)
1736 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1738 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1739 int s
= r1_bio
->sectors
;
1740 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1741 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1742 reschedule_retry(r1_bio
);
1745 md_done_sync(mddev
, s
, uptodate
);
1750 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1751 int sectors
, struct page
*page
, int rw
)
1753 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1757 set_bit(WriteErrorSeen
, &rdev
->flags
);
1758 if (!test_and_set_bit(WantReplacement
,
1760 set_bit(MD_RECOVERY_NEEDED
, &
1761 rdev
->mddev
->recovery
);
1763 /* need to record an error - either for the block or the device */
1764 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1765 md_error(rdev
->mddev
, rdev
);
1769 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1771 /* Try some synchronous reads of other devices to get
1772 * good data, much like with normal read errors. Only
1773 * read into the pages we already have so we don't
1774 * need to re-issue the read request.
1775 * We don't need to freeze the array, because being in an
1776 * active sync request, there is no normal IO, and
1777 * no overlapping syncs.
1778 * We don't need to check is_badblock() again as we
1779 * made sure that anything with a bad block in range
1780 * will have bi_end_io clear.
1782 struct mddev
*mddev
= r1_bio
->mddev
;
1783 struct r1conf
*conf
= mddev
->private;
1784 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1785 sector_t sect
= r1_bio
->sector
;
1786 int sectors
= r1_bio
->sectors
;
1791 int d
= r1_bio
->read_disk
;
1793 struct md_rdev
*rdev
;
1796 if (s
> (PAGE_SIZE
>>9))
1799 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1800 /* No rcu protection needed here devices
1801 * can only be removed when no resync is
1802 * active, and resync is currently active
1804 rdev
= conf
->mirrors
[d
].rdev
;
1805 if (sync_page_io(rdev
, sect
, s
<<9,
1806 bio
->bi_io_vec
[idx
].bv_page
,
1807 REQ_OP_READ
, 0, false)) {
1813 if (d
== conf
->raid_disks
* 2)
1815 } while (!success
&& d
!= r1_bio
->read_disk
);
1818 char b
[BDEVNAME_SIZE
];
1820 /* Cannot read from anywhere, this block is lost.
1821 * Record a bad block on each device. If that doesn't
1822 * work just disable and interrupt the recovery.
1823 * Don't fail devices as that won't really help.
1825 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O read error"
1826 " for block %llu\n",
1828 bdevname(bio
->bi_bdev
, b
),
1829 (unsigned long long)r1_bio
->sector
);
1830 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1831 rdev
= conf
->mirrors
[d
].rdev
;
1832 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1834 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1838 conf
->recovery_disabled
=
1839 mddev
->recovery_disabled
;
1840 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1841 md_done_sync(mddev
, r1_bio
->sectors
, 0);
1853 /* write it back and re-read */
1854 while (d
!= r1_bio
->read_disk
) {
1856 d
= conf
->raid_disks
* 2;
1858 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1860 rdev
= conf
->mirrors
[d
].rdev
;
1861 if (r1_sync_page_io(rdev
, sect
, s
,
1862 bio
->bi_io_vec
[idx
].bv_page
,
1864 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
1865 rdev_dec_pending(rdev
, mddev
);
1869 while (d
!= r1_bio
->read_disk
) {
1871 d
= conf
->raid_disks
* 2;
1873 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
1875 rdev
= conf
->mirrors
[d
].rdev
;
1876 if (r1_sync_page_io(rdev
, sect
, s
,
1877 bio
->bi_io_vec
[idx
].bv_page
,
1879 atomic_add(s
, &rdev
->corrected_errors
);
1885 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1890 static void process_checks(struct r1bio
*r1_bio
)
1892 /* We have read all readable devices. If we haven't
1893 * got the block, then there is no hope left.
1894 * If we have, then we want to do a comparison
1895 * and skip the write if everything is the same.
1896 * If any blocks failed to read, then we need to
1897 * attempt an over-write
1899 struct mddev
*mddev
= r1_bio
->mddev
;
1900 struct r1conf
*conf
= mddev
->private;
1905 /* Fix variable parts of all bios */
1906 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
1907 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1911 struct bio
*b
= r1_bio
->bios
[i
];
1912 if (b
->bi_end_io
!= end_sync_read
)
1914 /* fixup the bio for reuse, but preserve errno */
1915 error
= b
->bi_error
;
1917 b
->bi_error
= error
;
1919 b
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
1920 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
1921 conf
->mirrors
[i
].rdev
->data_offset
;
1922 b
->bi_bdev
= conf
->mirrors
[i
].rdev
->bdev
;
1923 b
->bi_end_io
= end_sync_read
;
1924 b
->bi_private
= r1_bio
;
1926 size
= b
->bi_iter
.bi_size
;
1927 for (j
= 0; j
< vcnt
; j
++) {
1929 bi
= &b
->bi_io_vec
[j
];
1931 if (size
> PAGE_SIZE
)
1932 bi
->bv_len
= PAGE_SIZE
;
1938 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
1939 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
1940 !r1_bio
->bios
[primary
]->bi_error
) {
1941 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
1942 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
1945 r1_bio
->read_disk
= primary
;
1946 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
1948 struct bio
*pbio
= r1_bio
->bios
[primary
];
1949 struct bio
*sbio
= r1_bio
->bios
[i
];
1950 int error
= sbio
->bi_error
;
1952 if (sbio
->bi_end_io
!= end_sync_read
)
1954 /* Now we can 'fixup' the error value */
1958 for (j
= vcnt
; j
-- ; ) {
1960 p
= pbio
->bi_io_vec
[j
].bv_page
;
1961 s
= sbio
->bi_io_vec
[j
].bv_page
;
1962 if (memcmp(page_address(p
),
1964 sbio
->bi_io_vec
[j
].bv_len
))
1970 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
1971 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
1973 /* No need to write to this device. */
1974 sbio
->bi_end_io
= NULL
;
1975 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
1979 bio_copy_data(sbio
, pbio
);
1983 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
1985 struct r1conf
*conf
= mddev
->private;
1987 int disks
= conf
->raid_disks
* 2;
1988 struct bio
*bio
, *wbio
;
1990 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1992 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
1993 /* ouch - failed to read all of that. */
1994 if (!fix_sync_read_error(r1_bio
))
1997 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
1998 process_checks(r1_bio
);
2003 atomic_set(&r1_bio
->remaining
, 1);
2004 for (i
= 0; i
< disks
; i
++) {
2005 wbio
= r1_bio
->bios
[i
];
2006 if (wbio
->bi_end_io
== NULL
||
2007 (wbio
->bi_end_io
== end_sync_read
&&
2008 (i
== r1_bio
->read_disk
||
2009 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2012 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2013 wbio
->bi_end_io
= end_sync_write
;
2014 atomic_inc(&r1_bio
->remaining
);
2015 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2017 generic_make_request(wbio
);
2020 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2021 /* if we're here, all write(s) have completed, so clean up */
2022 int s
= r1_bio
->sectors
;
2023 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2024 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2025 reschedule_retry(r1_bio
);
2028 md_done_sync(mddev
, s
, 1);
2034 * This is a kernel thread which:
2036 * 1. Retries failed read operations on working mirrors.
2037 * 2. Updates the raid superblock when problems encounter.
2038 * 3. Performs writes following reads for array synchronising.
2041 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2042 sector_t sect
, int sectors
)
2044 struct mddev
*mddev
= conf
->mddev
;
2050 struct md_rdev
*rdev
;
2052 if (s
> (PAGE_SIZE
>>9))
2060 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2062 (test_bit(In_sync
, &rdev
->flags
) ||
2063 (!test_bit(Faulty
, &rdev
->flags
) &&
2064 rdev
->recovery_offset
>= sect
+ s
)) &&
2065 is_badblock(rdev
, sect
, s
,
2066 &first_bad
, &bad_sectors
) == 0) {
2067 atomic_inc(&rdev
->nr_pending
);
2069 if (sync_page_io(rdev
, sect
, s
<<9,
2070 conf
->tmppage
, REQ_OP_READ
, 0, false))
2072 rdev_dec_pending(rdev
, mddev
);
2078 if (d
== conf
->raid_disks
* 2)
2080 } while (!success
&& d
!= read_disk
);
2083 /* Cannot read from anywhere - mark it bad */
2084 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2085 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2086 md_error(mddev
, rdev
);
2089 /* write it back and re-read */
2091 while (d
!= read_disk
) {
2093 d
= conf
->raid_disks
* 2;
2096 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2098 !test_bit(Faulty
, &rdev
->flags
)) {
2099 atomic_inc(&rdev
->nr_pending
);
2101 r1_sync_page_io(rdev
, sect
, s
,
2102 conf
->tmppage
, WRITE
);
2103 rdev_dec_pending(rdev
, mddev
);
2108 while (d
!= read_disk
) {
2109 char b
[BDEVNAME_SIZE
];
2111 d
= conf
->raid_disks
* 2;
2114 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2116 !test_bit(Faulty
, &rdev
->flags
)) {
2117 atomic_inc(&rdev
->nr_pending
);
2119 if (r1_sync_page_io(rdev
, sect
, s
,
2120 conf
->tmppage
, READ
)) {
2121 atomic_add(s
, &rdev
->corrected_errors
);
2123 "md/raid1:%s: read error corrected "
2124 "(%d sectors at %llu on %s)\n",
2126 (unsigned long long)(sect
+
2128 bdevname(rdev
->bdev
, b
));
2130 rdev_dec_pending(rdev
, mddev
);
2139 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2141 struct mddev
*mddev
= r1_bio
->mddev
;
2142 struct r1conf
*conf
= mddev
->private;
2143 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2145 /* bio has the data to be written to device 'i' where
2146 * we just recently had a write error.
2147 * We repeatedly clone the bio and trim down to one block,
2148 * then try the write. Where the write fails we record
2150 * It is conceivable that the bio doesn't exactly align with
2151 * blocks. We must handle this somehow.
2153 * We currently own a reference on the rdev.
2159 int sect_to_write
= r1_bio
->sectors
;
2162 if (rdev
->badblocks
.shift
< 0)
2165 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2166 bdev_logical_block_size(rdev
->bdev
) >> 9);
2167 sector
= r1_bio
->sector
;
2168 sectors
= ((sector
+ block_sectors
)
2169 & ~(sector_t
)(block_sectors
- 1))
2172 while (sect_to_write
) {
2174 if (sectors
> sect_to_write
)
2175 sectors
= sect_to_write
;
2176 /* Write at 'sector' for 'sectors'*/
2178 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2179 unsigned vcnt
= r1_bio
->behind_page_count
;
2180 struct bio_vec
*vec
= r1_bio
->behind_bvecs
;
2182 while (!vec
->bv_page
) {
2187 wbio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, mddev
);
2188 memcpy(wbio
->bi_io_vec
, vec
, vcnt
* sizeof(struct bio_vec
));
2190 wbio
->bi_vcnt
= vcnt
;
2192 wbio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2195 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2196 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2197 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2199 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2200 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2201 wbio
->bi_bdev
= rdev
->bdev
;
2203 if (submit_bio_wait(wbio
) < 0)
2205 ok
= rdev_set_badblocks(rdev
, sector
,
2210 sect_to_write
-= sectors
;
2212 sectors
= block_sectors
;
2217 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2220 int s
= r1_bio
->sectors
;
2221 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2222 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2223 struct bio
*bio
= r1_bio
->bios
[m
];
2224 if (bio
->bi_end_io
== NULL
)
2226 if (!bio
->bi_error
&&
2227 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2228 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2230 if (bio
->bi_error
&&
2231 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2232 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2233 md_error(conf
->mddev
, rdev
);
2237 md_done_sync(conf
->mddev
, s
, 1);
2240 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2244 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2245 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2246 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2247 rdev_clear_badblocks(rdev
,
2249 r1_bio
->sectors
, 0);
2250 rdev_dec_pending(rdev
, conf
->mddev
);
2251 } else if (r1_bio
->bios
[m
] != NULL
) {
2252 /* This drive got a write error. We need to
2253 * narrow down and record precise write
2257 if (!narrow_write_error(r1_bio
, m
)) {
2258 md_error(conf
->mddev
,
2259 conf
->mirrors
[m
].rdev
);
2260 /* an I/O failed, we can't clear the bitmap */
2261 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2263 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2267 spin_lock_irq(&conf
->device_lock
);
2268 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2270 spin_unlock_irq(&conf
->device_lock
);
2271 md_wakeup_thread(conf
->mddev
->thread
);
2273 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2274 close_write(r1_bio
);
2275 raid_end_bio_io(r1_bio
);
2279 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2283 struct mddev
*mddev
= conf
->mddev
;
2285 char b
[BDEVNAME_SIZE
];
2286 struct md_rdev
*rdev
;
2288 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2289 /* we got a read error. Maybe the drive is bad. Maybe just
2290 * the block and we can fix it.
2291 * We freeze all other IO, and try reading the block from
2292 * other devices. When we find one, we re-write
2293 * and check it that fixes the read error.
2294 * This is all done synchronously while the array is
2297 if (mddev
->ro
== 0) {
2298 freeze_array(conf
, 1);
2299 fix_read_error(conf
, r1_bio
->read_disk
,
2300 r1_bio
->sector
, r1_bio
->sectors
);
2301 unfreeze_array(conf
);
2303 md_error(mddev
, conf
->mirrors
[r1_bio
->read_disk
].rdev
);
2304 rdev_dec_pending(conf
->mirrors
[r1_bio
->read_disk
].rdev
, conf
->mddev
);
2306 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2307 bdevname(bio
->bi_bdev
, b
);
2309 disk
= read_balance(conf
, r1_bio
, &max_sectors
);
2311 printk(KERN_ALERT
"md/raid1:%s: %s: unrecoverable I/O"
2312 " read error for block %llu\n",
2313 mdname(mddev
), b
, (unsigned long long)r1_bio
->sector
);
2314 raid_end_bio_io(r1_bio
);
2316 const unsigned long do_sync
2317 = r1_bio
->master_bio
->bi_opf
& REQ_SYNC
;
2319 r1_bio
->bios
[r1_bio
->read_disk
] =
2320 mddev
->ro
? IO_BLOCKED
: NULL
;
2323 r1_bio
->read_disk
= disk
;
2324 bio
= bio_clone_mddev(r1_bio
->master_bio
, GFP_NOIO
, mddev
);
2325 bio_trim(bio
, r1_bio
->sector
- bio
->bi_iter
.bi_sector
,
2327 r1_bio
->bios
[r1_bio
->read_disk
] = bio
;
2328 rdev
= conf
->mirrors
[disk
].rdev
;
2329 printk_ratelimited(KERN_ERR
2330 "md/raid1:%s: redirecting sector %llu"
2331 " to other mirror: %s\n",
2333 (unsigned long long)r1_bio
->sector
,
2334 bdevname(rdev
->bdev
, b
));
2335 bio
->bi_iter
.bi_sector
= r1_bio
->sector
+ rdev
->data_offset
;
2336 bio
->bi_bdev
= rdev
->bdev
;
2337 bio
->bi_end_io
= raid1_end_read_request
;
2338 bio_set_op_attrs(bio
, REQ_OP_READ
, do_sync
);
2339 bio
->bi_private
= r1_bio
;
2340 if (max_sectors
< r1_bio
->sectors
) {
2341 /* Drat - have to split this up more */
2342 struct bio
*mbio
= r1_bio
->master_bio
;
2343 int sectors_handled
= (r1_bio
->sector
+ max_sectors
2344 - mbio
->bi_iter
.bi_sector
);
2345 r1_bio
->sectors
= max_sectors
;
2346 spin_lock_irq(&conf
->device_lock
);
2347 if (mbio
->bi_phys_segments
== 0)
2348 mbio
->bi_phys_segments
= 2;
2350 mbio
->bi_phys_segments
++;
2351 spin_unlock_irq(&conf
->device_lock
);
2352 generic_make_request(bio
);
2355 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
2357 r1_bio
->master_bio
= mbio
;
2358 r1_bio
->sectors
= bio_sectors(mbio
) - sectors_handled
;
2360 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
2361 r1_bio
->mddev
= mddev
;
2362 r1_bio
->sector
= mbio
->bi_iter
.bi_sector
+
2367 generic_make_request(bio
);
2371 static void raid1d(struct md_thread
*thread
)
2373 struct mddev
*mddev
= thread
->mddev
;
2374 struct r1bio
*r1_bio
;
2375 unsigned long flags
;
2376 struct r1conf
*conf
= mddev
->private;
2377 struct list_head
*head
= &conf
->retry_list
;
2378 struct blk_plug plug
;
2380 md_check_recovery(mddev
);
2382 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2383 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2385 spin_lock_irqsave(&conf
->device_lock
, flags
);
2386 if (!test_bit(MD_CHANGE_PENDING
, &mddev
->flags
)) {
2387 while (!list_empty(&conf
->bio_end_io_list
)) {
2388 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2392 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2393 while (!list_empty(&tmp
)) {
2394 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2396 list_del(&r1_bio
->retry_list
);
2397 if (mddev
->degraded
)
2398 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2399 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2400 close_write(r1_bio
);
2401 raid_end_bio_io(r1_bio
);
2405 blk_start_plug(&plug
);
2408 flush_pending_writes(conf
);
2410 spin_lock_irqsave(&conf
->device_lock
, flags
);
2411 if (list_empty(head
)) {
2412 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2415 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2416 list_del(head
->prev
);
2418 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2420 mddev
= r1_bio
->mddev
;
2421 conf
= mddev
->private;
2422 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2423 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2424 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2425 handle_sync_write_finished(conf
, r1_bio
);
2427 sync_request_write(mddev
, r1_bio
);
2428 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2429 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2430 handle_write_finished(conf
, r1_bio
);
2431 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2432 handle_read_error(conf
, r1_bio
);
2434 /* just a partial read to be scheduled from separate
2437 generic_make_request(r1_bio
->bios
[r1_bio
->read_disk
]);
2440 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
2441 md_check_recovery(mddev
);
2443 blk_finish_plug(&plug
);
2446 static int init_resync(struct r1conf
*conf
)
2450 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2451 BUG_ON(conf
->r1buf_pool
);
2452 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2454 if (!conf
->r1buf_pool
)
2456 conf
->next_resync
= 0;
2461 * perform a "sync" on one "block"
2463 * We need to make sure that no normal I/O request - particularly write
2464 * requests - conflict with active sync requests.
2466 * This is achieved by tracking pending requests and a 'barrier' concept
2467 * that can be installed to exclude normal IO requests.
2470 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2473 struct r1conf
*conf
= mddev
->private;
2474 struct r1bio
*r1_bio
;
2476 sector_t max_sector
, nr_sectors
;
2480 int write_targets
= 0, read_targets
= 0;
2481 sector_t sync_blocks
;
2482 int still_degraded
= 0;
2483 int good_sectors
= RESYNC_SECTORS
;
2484 int min_bad
= 0; /* number of sectors that are bad in all devices */
2486 if (!conf
->r1buf_pool
)
2487 if (init_resync(conf
))
2490 max_sector
= mddev
->dev_sectors
;
2491 if (sector_nr
>= max_sector
) {
2492 /* If we aborted, we need to abort the
2493 * sync on the 'current' bitmap chunk (there will
2494 * only be one in raid1 resync.
2495 * We can find the current addess in mddev->curr_resync
2497 if (mddev
->curr_resync
< max_sector
) /* aborted */
2498 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2500 else /* completed sync */
2503 bitmap_close_sync(mddev
->bitmap
);
2506 if (mddev_is_clustered(mddev
)) {
2507 conf
->cluster_sync_low
= 0;
2508 conf
->cluster_sync_high
= 0;
2513 if (mddev
->bitmap
== NULL
&&
2514 mddev
->recovery_cp
== MaxSector
&&
2515 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2516 conf
->fullsync
== 0) {
2518 return max_sector
- sector_nr
;
2520 /* before building a request, check if we can skip these blocks..
2521 * This call the bitmap_start_sync doesn't actually record anything
2523 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2524 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2525 /* We can skip this block, and probably several more */
2531 * If there is non-resync activity waiting for a turn, then let it
2532 * though before starting on this new sync request.
2534 if (conf
->nr_waiting
)
2535 schedule_timeout_uninterruptible(1);
2537 /* we are incrementing sector_nr below. To be safe, we check against
2538 * sector_nr + two times RESYNC_SECTORS
2541 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2542 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2543 r1_bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2545 raise_barrier(conf
, sector_nr
);
2549 * If we get a correctably read error during resync or recovery,
2550 * we might want to read from a different device. So we
2551 * flag all drives that could conceivably be read from for READ,
2552 * and any others (which will be non-In_sync devices) for WRITE.
2553 * If a read fails, we try reading from something else for which READ
2557 r1_bio
->mddev
= mddev
;
2558 r1_bio
->sector
= sector_nr
;
2560 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2562 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2563 struct md_rdev
*rdev
;
2564 bio
= r1_bio
->bios
[i
];
2567 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2569 test_bit(Faulty
, &rdev
->flags
)) {
2570 if (i
< conf
->raid_disks
)
2572 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2573 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2574 bio
->bi_end_io
= end_sync_write
;
2577 /* may need to read from here */
2578 sector_t first_bad
= MaxSector
;
2581 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2582 &first_bad
, &bad_sectors
)) {
2583 if (first_bad
> sector_nr
)
2584 good_sectors
= first_bad
- sector_nr
;
2586 bad_sectors
-= (sector_nr
- first_bad
);
2588 min_bad
> bad_sectors
)
2589 min_bad
= bad_sectors
;
2592 if (sector_nr
< first_bad
) {
2593 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2600 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2601 bio
->bi_end_io
= end_sync_read
;
2603 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2604 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2605 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2607 * The device is suitable for reading (InSync),
2608 * but has bad block(s) here. Let's try to correct them,
2609 * if we are doing resync or repair. Otherwise, leave
2610 * this device alone for this sync request.
2612 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2613 bio
->bi_end_io
= end_sync_write
;
2617 if (bio
->bi_end_io
) {
2618 atomic_inc(&rdev
->nr_pending
);
2619 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2620 bio
->bi_bdev
= rdev
->bdev
;
2621 bio
->bi_private
= r1_bio
;
2627 r1_bio
->read_disk
= disk
;
2629 if (read_targets
== 0 && min_bad
> 0) {
2630 /* These sectors are bad on all InSync devices, so we
2631 * need to mark them bad on all write targets
2634 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2635 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2636 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2637 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2641 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2646 /* Cannot record the badblocks, so need to
2648 * If there are multiple read targets, could just
2649 * fail the really bad ones ???
2651 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2652 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2658 if (min_bad
> 0 && min_bad
< good_sectors
) {
2659 /* only resync enough to reach the next bad->good
2661 good_sectors
= min_bad
;
2664 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2665 /* extra read targets are also write targets */
2666 write_targets
+= read_targets
-1;
2668 if (write_targets
== 0 || read_targets
== 0) {
2669 /* There is nowhere to write, so all non-sync
2670 * drives must be failed - so we are finished
2674 max_sector
= sector_nr
+ min_bad
;
2675 rv
= max_sector
- sector_nr
;
2681 if (max_sector
> mddev
->resync_max
)
2682 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2683 if (max_sector
> sector_nr
+ good_sectors
)
2684 max_sector
= sector_nr
+ good_sectors
;
2689 int len
= PAGE_SIZE
;
2690 if (sector_nr
+ (len
>>9) > max_sector
)
2691 len
= (max_sector
- sector_nr
) << 9;
2694 if (sync_blocks
== 0) {
2695 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2696 &sync_blocks
, still_degraded
) &&
2698 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2700 if ((len
>> 9) > sync_blocks
)
2701 len
= sync_blocks
<<9;
2704 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2705 bio
= r1_bio
->bios
[i
];
2706 if (bio
->bi_end_io
) {
2707 page
= bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
;
2708 if (bio_add_page(bio
, page
, len
, 0) == 0) {
2710 bio
->bi_io_vec
[bio
->bi_vcnt
].bv_page
= page
;
2713 bio
= r1_bio
->bios
[i
];
2714 if (bio
->bi_end_io
==NULL
)
2716 /* remove last page from this bio */
2718 bio
->bi_iter
.bi_size
-= len
;
2719 bio_clear_flag(bio
, BIO_SEG_VALID
);
2725 nr_sectors
+= len
>>9;
2726 sector_nr
+= len
>>9;
2727 sync_blocks
-= (len
>>9);
2728 } while (r1_bio
->bios
[disk
]->bi_vcnt
< RESYNC_PAGES
);
2730 r1_bio
->sectors
= nr_sectors
;
2732 if (mddev_is_clustered(mddev
) &&
2733 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2734 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2735 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2736 /* Send resync message */
2737 md_cluster_ops
->resync_info_update(mddev
,
2738 conf
->cluster_sync_low
,
2739 conf
->cluster_sync_high
);
2742 /* For a user-requested sync, we read all readable devices and do a
2745 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2746 atomic_set(&r1_bio
->remaining
, read_targets
);
2747 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2748 bio
= r1_bio
->bios
[i
];
2749 if (bio
->bi_end_io
== end_sync_read
) {
2751 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2752 generic_make_request(bio
);
2756 atomic_set(&r1_bio
->remaining
, 1);
2757 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2758 md_sync_acct(bio
->bi_bdev
, nr_sectors
);
2759 generic_make_request(bio
);
2765 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2770 return mddev
->dev_sectors
;
2773 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2775 struct r1conf
*conf
;
2777 struct raid1_info
*disk
;
2778 struct md_rdev
*rdev
;
2781 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2785 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2786 * mddev
->raid_disks
* 2,
2791 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2795 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2796 if (!conf
->poolinfo
)
2798 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2799 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2802 if (!conf
->r1bio_pool
)
2805 conf
->poolinfo
->mddev
= mddev
;
2808 spin_lock_init(&conf
->device_lock
);
2809 rdev_for_each(rdev
, mddev
) {
2810 struct request_queue
*q
;
2811 int disk_idx
= rdev
->raid_disk
;
2812 if (disk_idx
>= mddev
->raid_disks
2815 if (test_bit(Replacement
, &rdev
->flags
))
2816 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2818 disk
= conf
->mirrors
+ disk_idx
;
2823 q
= bdev_get_queue(rdev
->bdev
);
2825 disk
->head_position
= 0;
2826 disk
->seq_start
= MaxSector
;
2828 conf
->raid_disks
= mddev
->raid_disks
;
2829 conf
->mddev
= mddev
;
2830 INIT_LIST_HEAD(&conf
->retry_list
);
2831 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
2833 spin_lock_init(&conf
->resync_lock
);
2834 init_waitqueue_head(&conf
->wait_barrier
);
2836 bio_list_init(&conf
->pending_bio_list
);
2837 conf
->pending_count
= 0;
2838 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2840 conf
->start_next_window
= MaxSector
;
2841 conf
->current_window_requests
= conf
->next_window_requests
= 0;
2844 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2846 disk
= conf
->mirrors
+ i
;
2848 if (i
< conf
->raid_disks
&&
2849 disk
[conf
->raid_disks
].rdev
) {
2850 /* This slot has a replacement. */
2852 /* No original, just make the replacement
2853 * a recovering spare
2856 disk
[conf
->raid_disks
].rdev
;
2857 disk
[conf
->raid_disks
].rdev
= NULL
;
2858 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2859 /* Original is not in_sync - bad */
2864 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2865 disk
->head_position
= 0;
2867 (disk
->rdev
->saved_raid_disk
< 0))
2873 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
2874 if (!conf
->thread
) {
2876 "md/raid1:%s: couldn't allocate thread\n",
2885 mempool_destroy(conf
->r1bio_pool
);
2886 kfree(conf
->mirrors
);
2887 safe_put_page(conf
->tmppage
);
2888 kfree(conf
->poolinfo
);
2891 return ERR_PTR(err
);
2894 static void raid1_free(struct mddev
*mddev
, void *priv
);
2895 static int raid1_run(struct mddev
*mddev
)
2897 struct r1conf
*conf
;
2899 struct md_rdev
*rdev
;
2901 bool discard_supported
= false;
2903 if (mddev
->level
!= 1) {
2904 printk(KERN_ERR
"md/raid1:%s: raid level not set to mirroring (%d)\n",
2905 mdname(mddev
), mddev
->level
);
2908 if (mddev
->reshape_position
!= MaxSector
) {
2909 printk(KERN_ERR
"md/raid1:%s: reshape_position set but not supported\n",
2914 * copy the already verified devices into our private RAID1
2915 * bookkeeping area. [whatever we allocate in run(),
2916 * should be freed in raid1_free()]
2918 if (mddev
->private == NULL
)
2919 conf
= setup_conf(mddev
);
2921 conf
= mddev
->private;
2924 return PTR_ERR(conf
);
2927 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
2929 rdev_for_each(rdev
, mddev
) {
2930 if (!mddev
->gendisk
)
2932 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
2933 rdev
->data_offset
<< 9);
2934 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
2935 discard_supported
= true;
2938 mddev
->degraded
= 0;
2939 for (i
=0; i
< conf
->raid_disks
; i
++)
2940 if (conf
->mirrors
[i
].rdev
== NULL
||
2941 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
2942 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2945 if (conf
->raid_disks
- mddev
->degraded
== 1)
2946 mddev
->recovery_cp
= MaxSector
;
2948 if (mddev
->recovery_cp
!= MaxSector
)
2949 printk(KERN_NOTICE
"md/raid1:%s: not clean"
2950 " -- starting background reconstruction\n",
2953 "md/raid1:%s: active with %d out of %d mirrors\n",
2954 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
2958 * Ok, everything is just fine now
2960 mddev
->thread
= conf
->thread
;
2961 conf
->thread
= NULL
;
2962 mddev
->private = conf
;
2964 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
2967 if (discard_supported
)
2968 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
2971 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
2975 ret
= md_integrity_register(mddev
);
2977 md_unregister_thread(&mddev
->thread
);
2978 raid1_free(mddev
, conf
);
2983 static void raid1_free(struct mddev
*mddev
, void *priv
)
2985 struct r1conf
*conf
= priv
;
2987 mempool_destroy(conf
->r1bio_pool
);
2988 kfree(conf
->mirrors
);
2989 safe_put_page(conf
->tmppage
);
2990 kfree(conf
->poolinfo
);
2994 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
2996 /* no resync is happening, and there is enough space
2997 * on all devices, so we can resize.
2998 * We need to make sure resync covers any new space.
2999 * If the array is shrinking we should possibly wait until
3000 * any io in the removed space completes, but it hardly seems
3003 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3004 if (mddev
->external_size
&&
3005 mddev
->array_sectors
> newsize
)
3007 if (mddev
->bitmap
) {
3008 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3012 md_set_array_sectors(mddev
, newsize
);
3013 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
3014 revalidate_disk(mddev
->gendisk
);
3015 if (sectors
> mddev
->dev_sectors
&&
3016 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3017 mddev
->recovery_cp
= mddev
->dev_sectors
;
3018 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3020 mddev
->dev_sectors
= sectors
;
3021 mddev
->resync_max_sectors
= sectors
;
3025 static int raid1_reshape(struct mddev
*mddev
)
3028 * 1/ resize the r1bio_pool
3029 * 2/ resize conf->mirrors
3031 * We allocate a new r1bio_pool if we can.
3032 * Then raise a device barrier and wait until all IO stops.
3033 * Then resize conf->mirrors and swap in the new r1bio pool.
3035 * At the same time, we "pack" the devices so that all the missing
3036 * devices have the higher raid_disk numbers.
3038 mempool_t
*newpool
, *oldpool
;
3039 struct pool_info
*newpoolinfo
;
3040 struct raid1_info
*newmirrors
;
3041 struct r1conf
*conf
= mddev
->private;
3042 int cnt
, raid_disks
;
3043 unsigned long flags
;
3046 /* Cannot change chunk_size, layout, or level */
3047 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3048 mddev
->layout
!= mddev
->new_layout
||
3049 mddev
->level
!= mddev
->new_level
) {
3050 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3051 mddev
->new_layout
= mddev
->layout
;
3052 mddev
->new_level
= mddev
->level
;
3056 if (!mddev_is_clustered(mddev
)) {
3057 err
= md_allow_write(mddev
);
3062 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3064 if (raid_disks
< conf
->raid_disks
) {
3066 for (d
= 0; d
< conf
->raid_disks
; d
++)
3067 if (conf
->mirrors
[d
].rdev
)
3069 if (cnt
> raid_disks
)
3073 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3076 newpoolinfo
->mddev
= mddev
;
3077 newpoolinfo
->raid_disks
= raid_disks
* 2;
3079 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3080 r1bio_pool_free
, newpoolinfo
);
3085 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3089 mempool_destroy(newpool
);
3093 freeze_array(conf
, 0);
3095 /* ok, everything is stopped */
3096 oldpool
= conf
->r1bio_pool
;
3097 conf
->r1bio_pool
= newpool
;
3099 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3100 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3101 if (rdev
&& rdev
->raid_disk
!= d2
) {
3102 sysfs_unlink_rdev(mddev
, rdev
);
3103 rdev
->raid_disk
= d2
;
3104 sysfs_unlink_rdev(mddev
, rdev
);
3105 if (sysfs_link_rdev(mddev
, rdev
))
3107 "md/raid1:%s: cannot register rd%d\n",
3108 mdname(mddev
), rdev
->raid_disk
);
3111 newmirrors
[d2
++].rdev
= rdev
;
3113 kfree(conf
->mirrors
);
3114 conf
->mirrors
= newmirrors
;
3115 kfree(conf
->poolinfo
);
3116 conf
->poolinfo
= newpoolinfo
;
3118 spin_lock_irqsave(&conf
->device_lock
, flags
);
3119 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3120 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3121 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3122 mddev
->delta_disks
= 0;
3124 unfreeze_array(conf
);
3126 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3127 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3128 md_wakeup_thread(mddev
->thread
);
3130 mempool_destroy(oldpool
);
3134 static void raid1_quiesce(struct mddev
*mddev
, int state
)
3136 struct r1conf
*conf
= mddev
->private;
3139 case 2: /* wake for suspend */
3140 wake_up(&conf
->wait_barrier
);
3143 freeze_array(conf
, 0);
3146 unfreeze_array(conf
);
3151 static void *raid1_takeover(struct mddev
*mddev
)
3153 /* raid1 can take over:
3154 * raid5 with 2 devices, any layout or chunk size
3156 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3157 struct r1conf
*conf
;
3158 mddev
->new_level
= 1;
3159 mddev
->new_layout
= 0;
3160 mddev
->new_chunk_sectors
= 0;
3161 conf
= setup_conf(mddev
);
3163 /* Array must appear to be quiesced */
3164 conf
->array_frozen
= 1;
3167 return ERR_PTR(-EINVAL
);
3170 static struct md_personality raid1_personality
=
3174 .owner
= THIS_MODULE
,
3175 .make_request
= raid1_make_request
,
3178 .status
= raid1_status
,
3179 .error_handler
= raid1_error
,
3180 .hot_add_disk
= raid1_add_disk
,
3181 .hot_remove_disk
= raid1_remove_disk
,
3182 .spare_active
= raid1_spare_active
,
3183 .sync_request
= raid1_sync_request
,
3184 .resize
= raid1_resize
,
3186 .check_reshape
= raid1_reshape
,
3187 .quiesce
= raid1_quiesce
,
3188 .takeover
= raid1_takeover
,
3189 .congested
= raid1_congested
,
3192 static int __init
raid_init(void)
3194 return register_md_personality(&raid1_personality
);
3197 static void raid_exit(void)
3199 unregister_md_personality(&raid1_personality
);
3202 module_init(raid_init
);
3203 module_exit(raid_exit
);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3210 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);