hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / md / raid1.c
blob1961d827dbd19b5bbe2f4dbee356ac1f2a29fea7
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
45 * Number of guaranteed r1bios in case of extreme VM load:
47 #define NR_RAID1_BIOS 256
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
59 #define IO_MADE_GOOD ((struct bio *)2)
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
67 static int max_queued_requests = 1024;
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
82 static void r1bio_pool_free(void *r1_bio, void *data)
84 kfree(r1_bio);
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
99 struct pool_info *pi = data;
100 struct r1bio *r1_bio;
101 struct bio *bio;
102 int need_pages;
103 int i, j;
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 if (!r1_bio)
107 return NULL;
110 * Allocate bios : 1 for reading, n-1 for writing
112 for (j = pi->raid_disks ; j-- ; ) {
113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
119 * Allocate RESYNC_PAGES data pages and attach them to
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 need_pages = pi->raid_disks;
126 else
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
129 bio = r1_bio->bios[j];
130 bio->bi_vcnt = RESYNC_PAGES;
132 if (bio_alloc_pages(bio, gfp_flags))
133 goto out_free_pages;
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
143 r1_bio->master_bio = NULL;
145 return r1_bio;
147 out_free_pages:
148 while (--j >= 0)
149 bio_free_pages(r1_bio->bios[j]);
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
158 static void r1buf_pool_free(void *__r1_bio, void *data)
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
174 r1bio_pool_free(r1bio, data);
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
179 int i;
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
189 static void free_r1bio(struct r1bio *r1_bio)
191 struct r1conf *conf = r1_bio->mddev->private;
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
197 static void put_buf(struct r1bio *r1_bio)
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 mempool_free(r1_bio, conf->r1buf_pool);
210 lower_barrier(conf);
213 static void reschedule_retry(struct r1bio *r1_bio)
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
233 static void call_bio_endio(struct r1bio *r1_bio)
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
238 sector_t start_next_window = r1_bio->start_next_window;
239 sector_t bi_sector = bio->bi_iter.bi_sector;
241 if (bio->bi_phys_segments) {
242 unsigned long flags;
243 spin_lock_irqsave(&conf->device_lock, flags);
244 bio->bi_phys_segments--;
245 done = (bio->bi_phys_segments == 0);
246 spin_unlock_irqrestore(&conf->device_lock, flags);
248 * make_request() might be waiting for
249 * bi_phys_segments to decrease
251 wake_up(&conf->wait_barrier);
252 } else
253 done = 1;
255 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
256 bio->bi_error = -EIO;
258 if (done) {
259 bio_endio(bio);
261 * Wake up any possible resync thread that waits for the device
262 * to go idle.
264 allow_barrier(conf, start_next_window, bi_sector);
268 static void raid_end_bio_io(struct r1bio *r1_bio)
270 struct bio *bio = r1_bio->master_bio;
272 /* if nobody has done the final endio yet, do it now */
273 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
274 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
275 (bio_data_dir(bio) == WRITE) ? "write" : "read",
276 (unsigned long long) bio->bi_iter.bi_sector,
277 (unsigned long long) bio_end_sector(bio) - 1);
279 call_bio_endio(r1_bio);
281 free_r1bio(r1_bio);
285 * Update disk head position estimator based on IRQ completion info.
287 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 struct r1conf *conf = r1_bio->mddev->private;
291 conf->mirrors[disk].head_position =
292 r1_bio->sector + (r1_bio->sectors);
296 * Find the disk number which triggered given bio
298 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 int mirror;
301 struct r1conf *conf = r1_bio->mddev->private;
302 int raid_disks = conf->raid_disks;
304 for (mirror = 0; mirror < raid_disks * 2; mirror++)
305 if (r1_bio->bios[mirror] == bio)
306 break;
308 BUG_ON(mirror == raid_disks * 2);
309 update_head_pos(mirror, r1_bio);
311 return mirror;
314 static void raid1_end_read_request(struct bio *bio)
316 int uptodate = !bio->bi_error;
317 struct r1bio *r1_bio = bio->bi_private;
318 struct r1conf *conf = r1_bio->mddev->private;
319 struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
322 * this branch is our 'one mirror IO has finished' event handler:
324 update_head_pos(r1_bio->read_disk, r1_bio);
326 if (uptodate)
327 set_bit(R1BIO_Uptodate, &r1_bio->state);
328 else {
329 /* If all other devices have failed, we want to return
330 * the error upwards rather than fail the last device.
331 * Here we redefine "uptodate" to mean "Don't want to retry"
333 unsigned long flags;
334 spin_lock_irqsave(&conf->device_lock, flags);
335 if (r1_bio->mddev->degraded == conf->raid_disks ||
336 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
337 test_bit(In_sync, &rdev->flags)))
338 uptodate = 1;
339 spin_unlock_irqrestore(&conf->device_lock, flags);
342 if (uptodate) {
343 raid_end_bio_io(r1_bio);
344 rdev_dec_pending(rdev, conf->mddev);
345 } else {
347 * oops, read error:
349 char b[BDEVNAME_SIZE];
350 printk_ratelimited(
351 KERN_ERR "md/raid1:%s: %s: "
352 "rescheduling sector %llu\n",
353 mdname(conf->mddev),
354 bdevname(rdev->bdev,
356 (unsigned long long)r1_bio->sector);
357 set_bit(R1BIO_ReadError, &r1_bio->state);
358 reschedule_retry(r1_bio);
359 /* don't drop the reference on read_disk yet */
363 static void close_write(struct r1bio *r1_bio)
365 /* it really is the end of this request */
366 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
367 /* free extra copy of the data pages */
368 int i = r1_bio->behind_page_count;
369 while (i--)
370 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
371 kfree(r1_bio->behind_bvecs);
372 r1_bio->behind_bvecs = NULL;
374 /* clear the bitmap if all writes complete successfully */
375 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
376 r1_bio->sectors,
377 !test_bit(R1BIO_Degraded, &r1_bio->state),
378 test_bit(R1BIO_BehindIO, &r1_bio->state));
379 md_write_end(r1_bio->mddev);
382 static void r1_bio_write_done(struct r1bio *r1_bio)
384 if (!atomic_dec_and_test(&r1_bio->remaining))
385 return;
387 if (test_bit(R1BIO_WriteError, &r1_bio->state))
388 reschedule_retry(r1_bio);
389 else {
390 close_write(r1_bio);
391 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
392 reschedule_retry(r1_bio);
393 else
394 raid_end_bio_io(r1_bio);
398 static void raid1_end_write_request(struct bio *bio)
400 struct r1bio *r1_bio = bio->bi_private;
401 int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
402 struct r1conf *conf = r1_bio->mddev->private;
403 struct bio *to_put = NULL;
404 int mirror = find_bio_disk(r1_bio, bio);
405 struct md_rdev *rdev = conf->mirrors[mirror].rdev;
408 * 'one mirror IO has finished' event handler:
410 if (bio->bi_error) {
411 set_bit(WriteErrorSeen, &rdev->flags);
412 if (!test_and_set_bit(WantReplacement, &rdev->flags))
413 set_bit(MD_RECOVERY_NEEDED, &
414 conf->mddev->recovery);
416 set_bit(R1BIO_WriteError, &r1_bio->state);
417 } else {
419 * Set R1BIO_Uptodate in our master bio, so that we
420 * will return a good error code for to the higher
421 * levels even if IO on some other mirrored buffer
422 * fails.
424 * The 'master' represents the composite IO operation
425 * to user-side. So if something waits for IO, then it
426 * will wait for the 'master' bio.
428 sector_t first_bad;
429 int bad_sectors;
431 r1_bio->bios[mirror] = NULL;
432 to_put = bio;
434 * Do not set R1BIO_Uptodate if the current device is
435 * rebuilding or Faulty. This is because we cannot use
436 * such device for properly reading the data back (we could
437 * potentially use it, if the current write would have felt
438 * before rdev->recovery_offset, but for simplicity we don't
439 * check this here.
441 if (test_bit(In_sync, &rdev->flags) &&
442 !test_bit(Faulty, &rdev->flags))
443 set_bit(R1BIO_Uptodate, &r1_bio->state);
445 /* Maybe we can clear some bad blocks. */
446 if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
447 &first_bad, &bad_sectors)) {
448 r1_bio->bios[mirror] = IO_MADE_GOOD;
449 set_bit(R1BIO_MadeGood, &r1_bio->state);
453 if (behind) {
454 if (test_bit(WriteMostly, &rdev->flags))
455 atomic_dec(&r1_bio->behind_remaining);
458 * In behind mode, we ACK the master bio once the I/O
459 * has safely reached all non-writemostly
460 * disks. Setting the Returned bit ensures that this
461 * gets done only once -- we don't ever want to return
462 * -EIO here, instead we'll wait
464 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
465 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
466 /* Maybe we can return now */
467 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
468 struct bio *mbio = r1_bio->master_bio;
469 pr_debug("raid1: behind end write sectors"
470 " %llu-%llu\n",
471 (unsigned long long) mbio->bi_iter.bi_sector,
472 (unsigned long long) bio_end_sector(mbio) - 1);
473 call_bio_endio(r1_bio);
477 if (r1_bio->bios[mirror] == NULL)
478 rdev_dec_pending(rdev, conf->mddev);
481 * Let's see if all mirrored write operations have finished
482 * already.
484 r1_bio_write_done(r1_bio);
486 if (to_put)
487 bio_put(to_put);
491 * This routine returns the disk from which the requested read should
492 * be done. There is a per-array 'next expected sequential IO' sector
493 * number - if this matches on the next IO then we use the last disk.
494 * There is also a per-disk 'last know head position' sector that is
495 * maintained from IRQ contexts, both the normal and the resync IO
496 * completion handlers update this position correctly. If there is no
497 * perfect sequential match then we pick the disk whose head is closest.
499 * If there are 2 mirrors in the same 2 devices, performance degrades
500 * because position is mirror, not device based.
502 * The rdev for the device selected will have nr_pending incremented.
504 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
506 const sector_t this_sector = r1_bio->sector;
507 int sectors;
508 int best_good_sectors;
509 int best_disk, best_dist_disk, best_pending_disk;
510 int has_nonrot_disk;
511 int disk;
512 sector_t best_dist;
513 unsigned int min_pending;
514 struct md_rdev *rdev;
515 int choose_first;
516 int choose_next_idle;
518 rcu_read_lock();
520 * Check if we can balance. We can balance on the whole
521 * device if no resync is going on, or below the resync window.
522 * We take the first readable disk when above the resync window.
524 retry:
525 sectors = r1_bio->sectors;
526 best_disk = -1;
527 best_dist_disk = -1;
528 best_dist = MaxSector;
529 best_pending_disk = -1;
530 min_pending = UINT_MAX;
531 best_good_sectors = 0;
532 has_nonrot_disk = 0;
533 choose_next_idle = 0;
535 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
536 (mddev_is_clustered(conf->mddev) &&
537 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
538 this_sector + sectors)))
539 choose_first = 1;
540 else
541 choose_first = 0;
543 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
544 sector_t dist;
545 sector_t first_bad;
546 int bad_sectors;
547 unsigned int pending;
548 bool nonrot;
550 rdev = rcu_dereference(conf->mirrors[disk].rdev);
551 if (r1_bio->bios[disk] == IO_BLOCKED
552 || rdev == NULL
553 || test_bit(Faulty, &rdev->flags))
554 continue;
555 if (!test_bit(In_sync, &rdev->flags) &&
556 rdev->recovery_offset < this_sector + sectors)
557 continue;
558 if (test_bit(WriteMostly, &rdev->flags)) {
559 /* Don't balance among write-mostly, just
560 * use the first as a last resort */
561 if (best_dist_disk < 0) {
562 if (is_badblock(rdev, this_sector, sectors,
563 &first_bad, &bad_sectors)) {
564 if (first_bad <= this_sector)
565 /* Cannot use this */
566 continue;
567 best_good_sectors = first_bad - this_sector;
568 } else
569 best_good_sectors = sectors;
570 best_dist_disk = disk;
571 best_pending_disk = disk;
573 continue;
575 /* This is a reasonable device to use. It might
576 * even be best.
578 if (is_badblock(rdev, this_sector, sectors,
579 &first_bad, &bad_sectors)) {
580 if (best_dist < MaxSector)
581 /* already have a better device */
582 continue;
583 if (first_bad <= this_sector) {
584 /* cannot read here. If this is the 'primary'
585 * device, then we must not read beyond
586 * bad_sectors from another device..
588 bad_sectors -= (this_sector - first_bad);
589 if (choose_first && sectors > bad_sectors)
590 sectors = bad_sectors;
591 if (best_good_sectors > sectors)
592 best_good_sectors = sectors;
594 } else {
595 sector_t good_sectors = first_bad - this_sector;
596 if (good_sectors > best_good_sectors) {
597 best_good_sectors = good_sectors;
598 best_disk = disk;
600 if (choose_first)
601 break;
603 continue;
604 } else
605 best_good_sectors = sectors;
607 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
608 has_nonrot_disk |= nonrot;
609 pending = atomic_read(&rdev->nr_pending);
610 dist = abs(this_sector - conf->mirrors[disk].head_position);
611 if (choose_first) {
612 best_disk = disk;
613 break;
615 /* Don't change to another disk for sequential reads */
616 if (conf->mirrors[disk].next_seq_sect == this_sector
617 || dist == 0) {
618 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
619 struct raid1_info *mirror = &conf->mirrors[disk];
621 best_disk = disk;
623 * If buffered sequential IO size exceeds optimal
624 * iosize, check if there is idle disk. If yes, choose
625 * the idle disk. read_balance could already choose an
626 * idle disk before noticing it's a sequential IO in
627 * this disk. This doesn't matter because this disk
628 * will idle, next time it will be utilized after the
629 * first disk has IO size exceeds optimal iosize. In
630 * this way, iosize of the first disk will be optimal
631 * iosize at least. iosize of the second disk might be
632 * small, but not a big deal since when the second disk
633 * starts IO, the first disk is likely still busy.
635 if (nonrot && opt_iosize > 0 &&
636 mirror->seq_start != MaxSector &&
637 mirror->next_seq_sect > opt_iosize &&
638 mirror->next_seq_sect - opt_iosize >=
639 mirror->seq_start) {
640 choose_next_idle = 1;
641 continue;
643 break;
645 /* If device is idle, use it */
646 if (pending == 0) {
647 best_disk = disk;
648 break;
651 if (choose_next_idle)
652 continue;
654 if (min_pending > pending) {
655 min_pending = pending;
656 best_pending_disk = disk;
659 if (dist < best_dist) {
660 best_dist = dist;
661 best_dist_disk = disk;
666 * If all disks are rotational, choose the closest disk. If any disk is
667 * non-rotational, choose the disk with less pending request even the
668 * disk is rotational, which might/might not be optimal for raids with
669 * mixed ratation/non-rotational disks depending on workload.
671 if (best_disk == -1) {
672 if (has_nonrot_disk)
673 best_disk = best_pending_disk;
674 else
675 best_disk = best_dist_disk;
678 if (best_disk >= 0) {
679 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
680 if (!rdev)
681 goto retry;
682 atomic_inc(&rdev->nr_pending);
683 sectors = best_good_sectors;
685 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
686 conf->mirrors[best_disk].seq_start = this_sector;
688 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
690 rcu_read_unlock();
691 *max_sectors = sectors;
693 return best_disk;
696 static int raid1_congested(struct mddev *mddev, int bits)
698 struct r1conf *conf = mddev->private;
699 int i, ret = 0;
701 if ((bits & (1 << WB_async_congested)) &&
702 conf->pending_count >= max_queued_requests)
703 return 1;
705 rcu_read_lock();
706 for (i = 0; i < conf->raid_disks * 2; i++) {
707 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
708 if (rdev && !test_bit(Faulty, &rdev->flags)) {
709 struct request_queue *q = bdev_get_queue(rdev->bdev);
711 BUG_ON(!q);
713 /* Note the '|| 1' - when read_balance prefers
714 * non-congested targets, it can be removed
716 if ((bits & (1 << WB_async_congested)) || 1)
717 ret |= bdi_congested(&q->backing_dev_info, bits);
718 else
719 ret &= bdi_congested(&q->backing_dev_info, bits);
722 rcu_read_unlock();
723 return ret;
726 static void flush_pending_writes(struct r1conf *conf)
728 /* Any writes that have been queued but are awaiting
729 * bitmap updates get flushed here.
731 spin_lock_irq(&conf->device_lock);
733 if (conf->pending_bio_list.head) {
734 struct bio *bio;
735 bio = bio_list_get(&conf->pending_bio_list);
736 conf->pending_count = 0;
737 spin_unlock_irq(&conf->device_lock);
738 /* flush any pending bitmap writes to
739 * disk before proceeding w/ I/O */
740 bitmap_unplug(conf->mddev->bitmap);
741 wake_up(&conf->wait_barrier);
743 while (bio) { /* submit pending writes */
744 struct bio *next = bio->bi_next;
745 bio->bi_next = NULL;
746 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
747 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
748 /* Just ignore it */
749 bio_endio(bio);
750 else
751 generic_make_request(bio);
752 bio = next;
754 } else
755 spin_unlock_irq(&conf->device_lock);
758 /* Barriers....
759 * Sometimes we need to suspend IO while we do something else,
760 * either some resync/recovery, or reconfigure the array.
761 * To do this we raise a 'barrier'.
762 * The 'barrier' is a counter that can be raised multiple times
763 * to count how many activities are happening which preclude
764 * normal IO.
765 * We can only raise the barrier if there is no pending IO.
766 * i.e. if nr_pending == 0.
767 * We choose only to raise the barrier if no-one is waiting for the
768 * barrier to go down. This means that as soon as an IO request
769 * is ready, no other operations which require a barrier will start
770 * until the IO request has had a chance.
772 * So: regular IO calls 'wait_barrier'. When that returns there
773 * is no backgroup IO happening, It must arrange to call
774 * allow_barrier when it has finished its IO.
775 * backgroup IO calls must call raise_barrier. Once that returns
776 * there is no normal IO happeing. It must arrange to call
777 * lower_barrier when the particular background IO completes.
779 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
781 spin_lock_irq(&conf->resync_lock);
783 /* Wait until no block IO is waiting */
784 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
785 conf->resync_lock);
787 /* block any new IO from starting */
788 conf->barrier++;
789 conf->next_resync = sector_nr;
791 /* For these conditions we must wait:
792 * A: while the array is in frozen state
793 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
794 * the max count which allowed.
795 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
796 * next resync will reach to the window which normal bios are
797 * handling.
798 * D: while there are any active requests in the current window.
800 wait_event_lock_irq(conf->wait_barrier,
801 !conf->array_frozen &&
802 conf->barrier < RESYNC_DEPTH &&
803 conf->current_window_requests == 0 &&
804 (conf->start_next_window >=
805 conf->next_resync + RESYNC_SECTORS),
806 conf->resync_lock);
808 conf->nr_pending++;
809 spin_unlock_irq(&conf->resync_lock);
812 static void lower_barrier(struct r1conf *conf)
814 unsigned long flags;
815 BUG_ON(conf->barrier <= 0);
816 spin_lock_irqsave(&conf->resync_lock, flags);
817 conf->barrier--;
818 conf->nr_pending--;
819 spin_unlock_irqrestore(&conf->resync_lock, flags);
820 wake_up(&conf->wait_barrier);
823 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
825 bool wait = false;
827 if (conf->array_frozen || !bio)
828 wait = true;
829 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
830 if ((conf->mddev->curr_resync_completed
831 >= bio_end_sector(bio)) ||
832 (conf->next_resync + NEXT_NORMALIO_DISTANCE
833 <= bio->bi_iter.bi_sector))
834 wait = false;
835 else
836 wait = true;
839 return wait;
842 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
844 sector_t sector = 0;
846 spin_lock_irq(&conf->resync_lock);
847 if (need_to_wait_for_sync(conf, bio)) {
848 conf->nr_waiting++;
849 /* Wait for the barrier to drop.
850 * However if there are already pending
851 * requests (preventing the barrier from
852 * rising completely), and the
853 * per-process bio queue isn't empty,
854 * then don't wait, as we need to empty
855 * that queue to allow conf->start_next_window
856 * to increase.
858 wait_event_lock_irq(conf->wait_barrier,
859 !conf->array_frozen &&
860 (!conf->barrier ||
861 ((conf->start_next_window <
862 conf->next_resync + RESYNC_SECTORS) &&
863 current->bio_list &&
864 !bio_list_empty(current->bio_list))),
865 conf->resync_lock);
866 conf->nr_waiting--;
869 if (bio && bio_data_dir(bio) == WRITE) {
870 if (bio->bi_iter.bi_sector >= conf->next_resync) {
871 if (conf->start_next_window == MaxSector)
872 conf->start_next_window =
873 conf->next_resync +
874 NEXT_NORMALIO_DISTANCE;
876 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
877 <= bio->bi_iter.bi_sector)
878 conf->next_window_requests++;
879 else
880 conf->current_window_requests++;
881 sector = conf->start_next_window;
885 conf->nr_pending++;
886 spin_unlock_irq(&conf->resync_lock);
887 return sector;
890 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
891 sector_t bi_sector)
893 unsigned long flags;
895 spin_lock_irqsave(&conf->resync_lock, flags);
896 conf->nr_pending--;
897 if (start_next_window) {
898 if (start_next_window == conf->start_next_window) {
899 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
900 <= bi_sector)
901 conf->next_window_requests--;
902 else
903 conf->current_window_requests--;
904 } else
905 conf->current_window_requests--;
907 if (!conf->current_window_requests) {
908 if (conf->next_window_requests) {
909 conf->current_window_requests =
910 conf->next_window_requests;
911 conf->next_window_requests = 0;
912 conf->start_next_window +=
913 NEXT_NORMALIO_DISTANCE;
914 } else
915 conf->start_next_window = MaxSector;
918 spin_unlock_irqrestore(&conf->resync_lock, flags);
919 wake_up(&conf->wait_barrier);
922 static void freeze_array(struct r1conf *conf, int extra)
924 /* stop syncio and normal IO and wait for everything to
925 * go quite.
926 * We wait until nr_pending match nr_queued+extra
927 * This is called in the context of one normal IO request
928 * that has failed. Thus any sync request that might be pending
929 * will be blocked by nr_pending, and we need to wait for
930 * pending IO requests to complete or be queued for re-try.
931 * Thus the number queued (nr_queued) plus this request (extra)
932 * must match the number of pending IOs (nr_pending) before
933 * we continue.
935 spin_lock_irq(&conf->resync_lock);
936 conf->array_frozen = 1;
937 wait_event_lock_irq_cmd(conf->wait_barrier,
938 conf->nr_pending == conf->nr_queued+extra,
939 conf->resync_lock,
940 flush_pending_writes(conf));
941 spin_unlock_irq(&conf->resync_lock);
943 static void unfreeze_array(struct r1conf *conf)
945 /* reverse the effect of the freeze */
946 spin_lock_irq(&conf->resync_lock);
947 conf->array_frozen = 0;
948 wake_up(&conf->wait_barrier);
949 spin_unlock_irq(&conf->resync_lock);
952 /* duplicate the data pages for behind I/O
954 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
956 int i;
957 struct bio_vec *bvec;
958 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
959 GFP_NOIO);
960 if (unlikely(!bvecs))
961 return;
963 bio_for_each_segment_all(bvec, bio, i) {
964 bvecs[i] = *bvec;
965 bvecs[i].bv_page = alloc_page(GFP_NOIO);
966 if (unlikely(!bvecs[i].bv_page))
967 goto do_sync_io;
968 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
969 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
970 kunmap(bvecs[i].bv_page);
971 kunmap(bvec->bv_page);
973 r1_bio->behind_bvecs = bvecs;
974 r1_bio->behind_page_count = bio->bi_vcnt;
975 set_bit(R1BIO_BehindIO, &r1_bio->state);
976 return;
978 do_sync_io:
979 for (i = 0; i < bio->bi_vcnt; i++)
980 if (bvecs[i].bv_page)
981 put_page(bvecs[i].bv_page);
982 kfree(bvecs);
983 pr_debug("%dB behind alloc failed, doing sync I/O\n",
984 bio->bi_iter.bi_size);
987 struct raid1_plug_cb {
988 struct blk_plug_cb cb;
989 struct bio_list pending;
990 int pending_cnt;
993 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
995 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
996 cb);
997 struct mddev *mddev = plug->cb.data;
998 struct r1conf *conf = mddev->private;
999 struct bio *bio;
1001 if (from_schedule || current->bio_list) {
1002 spin_lock_irq(&conf->device_lock);
1003 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1004 conf->pending_count += plug->pending_cnt;
1005 spin_unlock_irq(&conf->device_lock);
1006 wake_up(&conf->wait_barrier);
1007 md_wakeup_thread(mddev->thread);
1008 kfree(plug);
1009 return;
1012 /* we aren't scheduling, so we can do the write-out directly. */
1013 bio = bio_list_get(&plug->pending);
1014 bitmap_unplug(mddev->bitmap);
1015 wake_up(&conf->wait_barrier);
1017 while (bio) { /* submit pending writes */
1018 struct bio *next = bio->bi_next;
1019 bio->bi_next = NULL;
1020 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1021 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1022 /* Just ignore it */
1023 bio_endio(bio);
1024 else
1025 generic_make_request(bio);
1026 bio = next;
1028 kfree(plug);
1031 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1033 struct r1conf *conf = mddev->private;
1034 struct raid1_info *mirror;
1035 struct r1bio *r1_bio;
1036 struct bio *read_bio;
1037 int i, disks;
1038 struct bitmap *bitmap;
1039 unsigned long flags;
1040 const int op = bio_op(bio);
1041 const int rw = bio_data_dir(bio);
1042 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1043 const unsigned long do_flush_fua = (bio->bi_opf &
1044 (REQ_PREFLUSH | REQ_FUA));
1045 struct md_rdev *blocked_rdev;
1046 struct blk_plug_cb *cb;
1047 struct raid1_plug_cb *plug = NULL;
1048 int first_clone;
1049 int sectors_handled;
1050 int max_sectors;
1051 sector_t start_next_window;
1054 * Register the new request and wait if the reconstruction
1055 * thread has put up a bar for new requests.
1056 * Continue immediately if no resync is active currently.
1059 md_write_start(mddev, bio); /* wait on superblock update early */
1061 if (bio_data_dir(bio) == WRITE &&
1062 ((bio_end_sector(bio) > mddev->suspend_lo &&
1063 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1064 (mddev_is_clustered(mddev) &&
1065 md_cluster_ops->area_resyncing(mddev, WRITE,
1066 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1067 /* As the suspend_* range is controlled by
1068 * userspace, we want an interruptible
1069 * wait.
1071 DEFINE_WAIT(w);
1072 for (;;) {
1073 flush_signals(current);
1074 prepare_to_wait(&conf->wait_barrier,
1075 &w, TASK_INTERRUPTIBLE);
1076 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1077 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1078 (mddev_is_clustered(mddev) &&
1079 !md_cluster_ops->area_resyncing(mddev, WRITE,
1080 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1081 break;
1082 schedule();
1084 finish_wait(&conf->wait_barrier, &w);
1087 start_next_window = wait_barrier(conf, bio);
1089 bitmap = mddev->bitmap;
1092 * make_request() can abort the operation when read-ahead is being
1093 * used and no empty request is available.
1096 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1098 r1_bio->master_bio = bio;
1099 r1_bio->sectors = bio_sectors(bio);
1100 r1_bio->state = 0;
1101 r1_bio->mddev = mddev;
1102 r1_bio->sector = bio->bi_iter.bi_sector;
1104 /* We might need to issue multiple reads to different
1105 * devices if there are bad blocks around, so we keep
1106 * track of the number of reads in bio->bi_phys_segments.
1107 * If this is 0, there is only one r1_bio and no locking
1108 * will be needed when requests complete. If it is
1109 * non-zero, then it is the number of not-completed requests.
1111 bio->bi_phys_segments = 0;
1112 bio_clear_flag(bio, BIO_SEG_VALID);
1114 if (rw == READ) {
1116 * read balancing logic:
1118 int rdisk;
1120 read_again:
1121 rdisk = read_balance(conf, r1_bio, &max_sectors);
1123 if (rdisk < 0) {
1124 /* couldn't find anywhere to read from */
1125 raid_end_bio_io(r1_bio);
1126 return;
1128 mirror = conf->mirrors + rdisk;
1130 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1131 bitmap) {
1132 /* Reading from a write-mostly device must
1133 * take care not to over-take any writes
1134 * that are 'behind'
1136 wait_event(bitmap->behind_wait,
1137 atomic_read(&bitmap->behind_writes) == 0);
1139 r1_bio->read_disk = rdisk;
1140 r1_bio->start_next_window = 0;
1142 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1143 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1144 max_sectors);
1146 r1_bio->bios[rdisk] = read_bio;
1148 read_bio->bi_iter.bi_sector = r1_bio->sector +
1149 mirror->rdev->data_offset;
1150 read_bio->bi_bdev = mirror->rdev->bdev;
1151 read_bio->bi_end_io = raid1_end_read_request;
1152 bio_set_op_attrs(read_bio, op, do_sync);
1153 read_bio->bi_private = r1_bio;
1155 if (max_sectors < r1_bio->sectors) {
1156 /* could not read all from this device, so we will
1157 * need another r1_bio.
1160 sectors_handled = (r1_bio->sector + max_sectors
1161 - bio->bi_iter.bi_sector);
1162 r1_bio->sectors = max_sectors;
1163 spin_lock_irq(&conf->device_lock);
1164 if (bio->bi_phys_segments == 0)
1165 bio->bi_phys_segments = 2;
1166 else
1167 bio->bi_phys_segments++;
1168 spin_unlock_irq(&conf->device_lock);
1169 /* Cannot call generic_make_request directly
1170 * as that will be queued in __make_request
1171 * and subsequent mempool_alloc might block waiting
1172 * for it. So hand bio over to raid1d.
1174 reschedule_retry(r1_bio);
1176 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1178 r1_bio->master_bio = bio;
1179 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1180 r1_bio->state = 0;
1181 r1_bio->mddev = mddev;
1182 r1_bio->sector = bio->bi_iter.bi_sector +
1183 sectors_handled;
1184 goto read_again;
1185 } else
1186 generic_make_request(read_bio);
1187 return;
1191 * WRITE:
1193 if (conf->pending_count >= max_queued_requests) {
1194 md_wakeup_thread(mddev->thread);
1195 wait_event(conf->wait_barrier,
1196 conf->pending_count < max_queued_requests);
1198 /* first select target devices under rcu_lock and
1199 * inc refcount on their rdev. Record them by setting
1200 * bios[x] to bio
1201 * If there are known/acknowledged bad blocks on any device on
1202 * which we have seen a write error, we want to avoid writing those
1203 * blocks.
1204 * This potentially requires several writes to write around
1205 * the bad blocks. Each set of writes gets it's own r1bio
1206 * with a set of bios attached.
1209 disks = conf->raid_disks * 2;
1210 retry_write:
1211 r1_bio->start_next_window = start_next_window;
1212 blocked_rdev = NULL;
1213 rcu_read_lock();
1214 max_sectors = r1_bio->sectors;
1215 for (i = 0; i < disks; i++) {
1216 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1217 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1218 atomic_inc(&rdev->nr_pending);
1219 blocked_rdev = rdev;
1220 break;
1222 r1_bio->bios[i] = NULL;
1223 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1224 if (i < conf->raid_disks)
1225 set_bit(R1BIO_Degraded, &r1_bio->state);
1226 continue;
1229 atomic_inc(&rdev->nr_pending);
1230 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1231 sector_t first_bad;
1232 int bad_sectors;
1233 int is_bad;
1235 is_bad = is_badblock(rdev, r1_bio->sector,
1236 max_sectors,
1237 &first_bad, &bad_sectors);
1238 if (is_bad < 0) {
1239 /* mustn't write here until the bad block is
1240 * acknowledged*/
1241 set_bit(BlockedBadBlocks, &rdev->flags);
1242 blocked_rdev = rdev;
1243 break;
1245 if (is_bad && first_bad <= r1_bio->sector) {
1246 /* Cannot write here at all */
1247 bad_sectors -= (r1_bio->sector - first_bad);
1248 if (bad_sectors < max_sectors)
1249 /* mustn't write more than bad_sectors
1250 * to other devices yet
1252 max_sectors = bad_sectors;
1253 rdev_dec_pending(rdev, mddev);
1254 /* We don't set R1BIO_Degraded as that
1255 * only applies if the disk is
1256 * missing, so it might be re-added,
1257 * and we want to know to recover this
1258 * chunk.
1259 * In this case the device is here,
1260 * and the fact that this chunk is not
1261 * in-sync is recorded in the bad
1262 * block log
1264 continue;
1266 if (is_bad) {
1267 int good_sectors = first_bad - r1_bio->sector;
1268 if (good_sectors < max_sectors)
1269 max_sectors = good_sectors;
1272 r1_bio->bios[i] = bio;
1274 rcu_read_unlock();
1276 if (unlikely(blocked_rdev)) {
1277 /* Wait for this device to become unblocked */
1278 int j;
1279 sector_t old = start_next_window;
1281 for (j = 0; j < i; j++)
1282 if (r1_bio->bios[j])
1283 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1284 r1_bio->state = 0;
1285 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1286 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1287 start_next_window = wait_barrier(conf, bio);
1289 * We must make sure the multi r1bios of bio have
1290 * the same value of bi_phys_segments
1292 if (bio->bi_phys_segments && old &&
1293 old != start_next_window)
1294 /* Wait for the former r1bio(s) to complete */
1295 wait_event(conf->wait_barrier,
1296 bio->bi_phys_segments == 1);
1297 goto retry_write;
1300 if (max_sectors < r1_bio->sectors) {
1301 /* We are splitting this write into multiple parts, so
1302 * we need to prepare for allocating another r1_bio.
1304 r1_bio->sectors = max_sectors;
1305 spin_lock_irq(&conf->device_lock);
1306 if (bio->bi_phys_segments == 0)
1307 bio->bi_phys_segments = 2;
1308 else
1309 bio->bi_phys_segments++;
1310 spin_unlock_irq(&conf->device_lock);
1312 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1314 atomic_set(&r1_bio->remaining, 1);
1315 atomic_set(&r1_bio->behind_remaining, 0);
1317 first_clone = 1;
1318 for (i = 0; i < disks; i++) {
1319 struct bio *mbio;
1320 if (!r1_bio->bios[i])
1321 continue;
1323 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1324 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1326 if (first_clone) {
1327 /* do behind I/O ?
1328 * Not if there are too many, or cannot
1329 * allocate memory, or a reader on WriteMostly
1330 * is waiting for behind writes to flush */
1331 if (bitmap &&
1332 (atomic_read(&bitmap->behind_writes)
1333 < mddev->bitmap_info.max_write_behind) &&
1334 !waitqueue_active(&bitmap->behind_wait))
1335 alloc_behind_pages(mbio, r1_bio);
1337 bitmap_startwrite(bitmap, r1_bio->sector,
1338 r1_bio->sectors,
1339 test_bit(R1BIO_BehindIO,
1340 &r1_bio->state));
1341 first_clone = 0;
1343 if (r1_bio->behind_bvecs) {
1344 struct bio_vec *bvec;
1345 int j;
1348 * We trimmed the bio, so _all is legit
1350 bio_for_each_segment_all(bvec, mbio, j)
1351 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1352 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1353 atomic_inc(&r1_bio->behind_remaining);
1356 r1_bio->bios[i] = mbio;
1358 mbio->bi_iter.bi_sector = (r1_bio->sector +
1359 conf->mirrors[i].rdev->data_offset);
1360 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1361 mbio->bi_end_io = raid1_end_write_request;
1362 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1363 mbio->bi_private = r1_bio;
1365 atomic_inc(&r1_bio->remaining);
1367 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1368 if (cb)
1369 plug = container_of(cb, struct raid1_plug_cb, cb);
1370 else
1371 plug = NULL;
1372 spin_lock_irqsave(&conf->device_lock, flags);
1373 if (plug) {
1374 bio_list_add(&plug->pending, mbio);
1375 plug->pending_cnt++;
1376 } else {
1377 bio_list_add(&conf->pending_bio_list, mbio);
1378 conf->pending_count++;
1380 spin_unlock_irqrestore(&conf->device_lock, flags);
1381 if (!plug)
1382 md_wakeup_thread(mddev->thread);
1384 /* Mustn't call r1_bio_write_done before this next test,
1385 * as it could result in the bio being freed.
1387 if (sectors_handled < bio_sectors(bio)) {
1388 r1_bio_write_done(r1_bio);
1389 /* We need another r1_bio. It has already been counted
1390 * in bio->bi_phys_segments
1392 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1393 r1_bio->master_bio = bio;
1394 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1395 r1_bio->state = 0;
1396 r1_bio->mddev = mddev;
1397 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1398 goto retry_write;
1401 r1_bio_write_done(r1_bio);
1403 /* In case raid1d snuck in to freeze_array */
1404 wake_up(&conf->wait_barrier);
1407 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1409 struct r1conf *conf = mddev->private;
1410 int i;
1412 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1413 conf->raid_disks - mddev->degraded);
1414 rcu_read_lock();
1415 for (i = 0; i < conf->raid_disks; i++) {
1416 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1417 seq_printf(seq, "%s",
1418 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1420 rcu_read_unlock();
1421 seq_printf(seq, "]");
1424 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1426 char b[BDEVNAME_SIZE];
1427 struct r1conf *conf = mddev->private;
1428 unsigned long flags;
1431 * If it is not operational, then we have already marked it as dead
1432 * else if it is the last working disks, ignore the error, let the
1433 * next level up know.
1434 * else mark the drive as failed
1436 if (test_bit(In_sync, &rdev->flags)
1437 && (conf->raid_disks - mddev->degraded) == 1) {
1439 * Don't fail the drive, act as though we were just a
1440 * normal single drive.
1441 * However don't try a recovery from this drive as
1442 * it is very likely to fail.
1444 conf->recovery_disabled = mddev->recovery_disabled;
1445 return;
1447 set_bit(Blocked, &rdev->flags);
1448 spin_lock_irqsave(&conf->device_lock, flags);
1449 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1450 mddev->degraded++;
1451 set_bit(Faulty, &rdev->flags);
1452 } else
1453 set_bit(Faulty, &rdev->flags);
1454 spin_unlock_irqrestore(&conf->device_lock, flags);
1456 * if recovery is running, make sure it aborts.
1458 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1459 set_mask_bits(&mddev->flags, 0,
1460 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1461 printk(KERN_ALERT
1462 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1463 "md/raid1:%s: Operation continuing on %d devices.\n",
1464 mdname(mddev), bdevname(rdev->bdev, b),
1465 mdname(mddev), conf->raid_disks - mddev->degraded);
1468 static void print_conf(struct r1conf *conf)
1470 int i;
1472 printk(KERN_DEBUG "RAID1 conf printout:\n");
1473 if (!conf) {
1474 printk(KERN_DEBUG "(!conf)\n");
1475 return;
1477 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1478 conf->raid_disks);
1480 rcu_read_lock();
1481 for (i = 0; i < conf->raid_disks; i++) {
1482 char b[BDEVNAME_SIZE];
1483 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1484 if (rdev)
1485 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1486 i, !test_bit(In_sync, &rdev->flags),
1487 !test_bit(Faulty, &rdev->flags),
1488 bdevname(rdev->bdev,b));
1490 rcu_read_unlock();
1493 static void close_sync(struct r1conf *conf)
1495 wait_barrier(conf, NULL);
1496 allow_barrier(conf, 0, 0);
1498 mempool_destroy(conf->r1buf_pool);
1499 conf->r1buf_pool = NULL;
1501 spin_lock_irq(&conf->resync_lock);
1502 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1503 conf->start_next_window = MaxSector;
1504 conf->current_window_requests +=
1505 conf->next_window_requests;
1506 conf->next_window_requests = 0;
1507 spin_unlock_irq(&conf->resync_lock);
1510 static int raid1_spare_active(struct mddev *mddev)
1512 int i;
1513 struct r1conf *conf = mddev->private;
1514 int count = 0;
1515 unsigned long flags;
1518 * Find all failed disks within the RAID1 configuration
1519 * and mark them readable.
1520 * Called under mddev lock, so rcu protection not needed.
1521 * device_lock used to avoid races with raid1_end_read_request
1522 * which expects 'In_sync' flags and ->degraded to be consistent.
1524 spin_lock_irqsave(&conf->device_lock, flags);
1525 for (i = 0; i < conf->raid_disks; i++) {
1526 struct md_rdev *rdev = conf->mirrors[i].rdev;
1527 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1528 if (repl
1529 && !test_bit(Candidate, &repl->flags)
1530 && repl->recovery_offset == MaxSector
1531 && !test_bit(Faulty, &repl->flags)
1532 && !test_and_set_bit(In_sync, &repl->flags)) {
1533 /* replacement has just become active */
1534 if (!rdev ||
1535 !test_and_clear_bit(In_sync, &rdev->flags))
1536 count++;
1537 if (rdev) {
1538 /* Replaced device not technically
1539 * faulty, but we need to be sure
1540 * it gets removed and never re-added
1542 set_bit(Faulty, &rdev->flags);
1543 sysfs_notify_dirent_safe(
1544 rdev->sysfs_state);
1547 if (rdev
1548 && rdev->recovery_offset == MaxSector
1549 && !test_bit(Faulty, &rdev->flags)
1550 && !test_and_set_bit(In_sync, &rdev->flags)) {
1551 count++;
1552 sysfs_notify_dirent_safe(rdev->sysfs_state);
1555 mddev->degraded -= count;
1556 spin_unlock_irqrestore(&conf->device_lock, flags);
1558 print_conf(conf);
1559 return count;
1562 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1564 struct r1conf *conf = mddev->private;
1565 int err = -EEXIST;
1566 int mirror = 0;
1567 struct raid1_info *p;
1568 int first = 0;
1569 int last = conf->raid_disks - 1;
1571 if (mddev->recovery_disabled == conf->recovery_disabled)
1572 return -EBUSY;
1574 if (md_integrity_add_rdev(rdev, mddev))
1575 return -ENXIO;
1577 if (rdev->raid_disk >= 0)
1578 first = last = rdev->raid_disk;
1581 * find the disk ... but prefer rdev->saved_raid_disk
1582 * if possible.
1584 if (rdev->saved_raid_disk >= 0 &&
1585 rdev->saved_raid_disk >= first &&
1586 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1587 first = last = rdev->saved_raid_disk;
1589 for (mirror = first; mirror <= last; mirror++) {
1590 p = conf->mirrors+mirror;
1591 if (!p->rdev) {
1593 if (mddev->gendisk)
1594 disk_stack_limits(mddev->gendisk, rdev->bdev,
1595 rdev->data_offset << 9);
1597 p->head_position = 0;
1598 rdev->raid_disk = mirror;
1599 err = 0;
1600 /* As all devices are equivalent, we don't need a full recovery
1601 * if this was recently any drive of the array
1603 if (rdev->saved_raid_disk < 0)
1604 conf->fullsync = 1;
1605 rcu_assign_pointer(p->rdev, rdev);
1606 break;
1608 if (test_bit(WantReplacement, &p->rdev->flags) &&
1609 p[conf->raid_disks].rdev == NULL) {
1610 /* Add this device as a replacement */
1611 clear_bit(In_sync, &rdev->flags);
1612 set_bit(Replacement, &rdev->flags);
1613 rdev->raid_disk = mirror;
1614 err = 0;
1615 conf->fullsync = 1;
1616 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1617 break;
1620 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1621 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1622 print_conf(conf);
1623 return err;
1626 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1628 struct r1conf *conf = mddev->private;
1629 int err = 0;
1630 int number = rdev->raid_disk;
1631 struct raid1_info *p = conf->mirrors + number;
1633 if (rdev != p->rdev)
1634 p = conf->mirrors + conf->raid_disks + number;
1636 print_conf(conf);
1637 if (rdev == p->rdev) {
1638 if (test_bit(In_sync, &rdev->flags) ||
1639 atomic_read(&rdev->nr_pending)) {
1640 err = -EBUSY;
1641 goto abort;
1643 /* Only remove non-faulty devices if recovery
1644 * is not possible.
1646 if (!test_bit(Faulty, &rdev->flags) &&
1647 mddev->recovery_disabled != conf->recovery_disabled &&
1648 mddev->degraded < conf->raid_disks) {
1649 err = -EBUSY;
1650 goto abort;
1652 p->rdev = NULL;
1653 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1654 synchronize_rcu();
1655 if (atomic_read(&rdev->nr_pending)) {
1656 /* lost the race, try later */
1657 err = -EBUSY;
1658 p->rdev = rdev;
1659 goto abort;
1662 if (conf->mirrors[conf->raid_disks + number].rdev) {
1663 /* We just removed a device that is being replaced.
1664 * Move down the replacement. We drain all IO before
1665 * doing this to avoid confusion.
1667 struct md_rdev *repl =
1668 conf->mirrors[conf->raid_disks + number].rdev;
1669 freeze_array(conf, 0);
1670 clear_bit(Replacement, &repl->flags);
1671 p->rdev = repl;
1672 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1673 unfreeze_array(conf);
1674 clear_bit(WantReplacement, &rdev->flags);
1675 } else
1676 clear_bit(WantReplacement, &rdev->flags);
1677 err = md_integrity_register(mddev);
1679 abort:
1681 print_conf(conf);
1682 return err;
1685 static void end_sync_read(struct bio *bio)
1687 struct r1bio *r1_bio = bio->bi_private;
1689 update_head_pos(r1_bio->read_disk, r1_bio);
1692 * we have read a block, now it needs to be re-written,
1693 * or re-read if the read failed.
1694 * We don't do much here, just schedule handling by raid1d
1696 if (!bio->bi_error)
1697 set_bit(R1BIO_Uptodate, &r1_bio->state);
1699 if (atomic_dec_and_test(&r1_bio->remaining))
1700 reschedule_retry(r1_bio);
1703 static void end_sync_write(struct bio *bio)
1705 int uptodate = !bio->bi_error;
1706 struct r1bio *r1_bio = bio->bi_private;
1707 struct mddev *mddev = r1_bio->mddev;
1708 struct r1conf *conf = mddev->private;
1709 sector_t first_bad;
1710 int bad_sectors;
1711 struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
1713 if (!uptodate) {
1714 sector_t sync_blocks = 0;
1715 sector_t s = r1_bio->sector;
1716 long sectors_to_go = r1_bio->sectors;
1717 /* make sure these bits doesn't get cleared. */
1718 do {
1719 bitmap_end_sync(mddev->bitmap, s,
1720 &sync_blocks, 1);
1721 s += sync_blocks;
1722 sectors_to_go -= sync_blocks;
1723 } while (sectors_to_go > 0);
1724 set_bit(WriteErrorSeen, &rdev->flags);
1725 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1726 set_bit(MD_RECOVERY_NEEDED, &
1727 mddev->recovery);
1728 set_bit(R1BIO_WriteError, &r1_bio->state);
1729 } else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
1730 &first_bad, &bad_sectors) &&
1731 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1732 r1_bio->sector,
1733 r1_bio->sectors,
1734 &first_bad, &bad_sectors)
1736 set_bit(R1BIO_MadeGood, &r1_bio->state);
1738 if (atomic_dec_and_test(&r1_bio->remaining)) {
1739 int s = r1_bio->sectors;
1740 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1741 test_bit(R1BIO_WriteError, &r1_bio->state))
1742 reschedule_retry(r1_bio);
1743 else {
1744 put_buf(r1_bio);
1745 md_done_sync(mddev, s, uptodate);
1750 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1751 int sectors, struct page *page, int rw)
1753 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1754 /* success */
1755 return 1;
1756 if (rw == WRITE) {
1757 set_bit(WriteErrorSeen, &rdev->flags);
1758 if (!test_and_set_bit(WantReplacement,
1759 &rdev->flags))
1760 set_bit(MD_RECOVERY_NEEDED, &
1761 rdev->mddev->recovery);
1763 /* need to record an error - either for the block or the device */
1764 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1765 md_error(rdev->mddev, rdev);
1766 return 0;
1769 static int fix_sync_read_error(struct r1bio *r1_bio)
1771 /* Try some synchronous reads of other devices to get
1772 * good data, much like with normal read errors. Only
1773 * read into the pages we already have so we don't
1774 * need to re-issue the read request.
1775 * We don't need to freeze the array, because being in an
1776 * active sync request, there is no normal IO, and
1777 * no overlapping syncs.
1778 * We don't need to check is_badblock() again as we
1779 * made sure that anything with a bad block in range
1780 * will have bi_end_io clear.
1782 struct mddev *mddev = r1_bio->mddev;
1783 struct r1conf *conf = mddev->private;
1784 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1785 sector_t sect = r1_bio->sector;
1786 int sectors = r1_bio->sectors;
1787 int idx = 0;
1789 while(sectors) {
1790 int s = sectors;
1791 int d = r1_bio->read_disk;
1792 int success = 0;
1793 struct md_rdev *rdev;
1794 int start;
1796 if (s > (PAGE_SIZE>>9))
1797 s = PAGE_SIZE >> 9;
1798 do {
1799 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1800 /* No rcu protection needed here devices
1801 * can only be removed when no resync is
1802 * active, and resync is currently active
1804 rdev = conf->mirrors[d].rdev;
1805 if (sync_page_io(rdev, sect, s<<9,
1806 bio->bi_io_vec[idx].bv_page,
1807 REQ_OP_READ, 0, false)) {
1808 success = 1;
1809 break;
1812 d++;
1813 if (d == conf->raid_disks * 2)
1814 d = 0;
1815 } while (!success && d != r1_bio->read_disk);
1817 if (!success) {
1818 char b[BDEVNAME_SIZE];
1819 int abort = 0;
1820 /* Cannot read from anywhere, this block is lost.
1821 * Record a bad block on each device. If that doesn't
1822 * work just disable and interrupt the recovery.
1823 * Don't fail devices as that won't really help.
1825 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1826 " for block %llu\n",
1827 mdname(mddev),
1828 bdevname(bio->bi_bdev, b),
1829 (unsigned long long)r1_bio->sector);
1830 for (d = 0; d < conf->raid_disks * 2; d++) {
1831 rdev = conf->mirrors[d].rdev;
1832 if (!rdev || test_bit(Faulty, &rdev->flags))
1833 continue;
1834 if (!rdev_set_badblocks(rdev, sect, s, 0))
1835 abort = 1;
1837 if (abort) {
1838 conf->recovery_disabled =
1839 mddev->recovery_disabled;
1840 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1841 md_done_sync(mddev, r1_bio->sectors, 0);
1842 put_buf(r1_bio);
1843 return 0;
1845 /* Try next page */
1846 sectors -= s;
1847 sect += s;
1848 idx++;
1849 continue;
1852 start = d;
1853 /* write it back and re-read */
1854 while (d != r1_bio->read_disk) {
1855 if (d == 0)
1856 d = conf->raid_disks * 2;
1857 d--;
1858 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1859 continue;
1860 rdev = conf->mirrors[d].rdev;
1861 if (r1_sync_page_io(rdev, sect, s,
1862 bio->bi_io_vec[idx].bv_page,
1863 WRITE) == 0) {
1864 r1_bio->bios[d]->bi_end_io = NULL;
1865 rdev_dec_pending(rdev, mddev);
1868 d = start;
1869 while (d != r1_bio->read_disk) {
1870 if (d == 0)
1871 d = conf->raid_disks * 2;
1872 d--;
1873 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1874 continue;
1875 rdev = conf->mirrors[d].rdev;
1876 if (r1_sync_page_io(rdev, sect, s,
1877 bio->bi_io_vec[idx].bv_page,
1878 READ) != 0)
1879 atomic_add(s, &rdev->corrected_errors);
1881 sectors -= s;
1882 sect += s;
1883 idx ++;
1885 set_bit(R1BIO_Uptodate, &r1_bio->state);
1886 bio->bi_error = 0;
1887 return 1;
1890 static void process_checks(struct r1bio *r1_bio)
1892 /* We have read all readable devices. If we haven't
1893 * got the block, then there is no hope left.
1894 * If we have, then we want to do a comparison
1895 * and skip the write if everything is the same.
1896 * If any blocks failed to read, then we need to
1897 * attempt an over-write
1899 struct mddev *mddev = r1_bio->mddev;
1900 struct r1conf *conf = mddev->private;
1901 int primary;
1902 int i;
1903 int vcnt;
1905 /* Fix variable parts of all bios */
1906 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1907 for (i = 0; i < conf->raid_disks * 2; i++) {
1908 int j;
1909 int size;
1910 int error;
1911 struct bio *b = r1_bio->bios[i];
1912 if (b->bi_end_io != end_sync_read)
1913 continue;
1914 /* fixup the bio for reuse, but preserve errno */
1915 error = b->bi_error;
1916 bio_reset(b);
1917 b->bi_error = error;
1918 b->bi_vcnt = vcnt;
1919 b->bi_iter.bi_size = r1_bio->sectors << 9;
1920 b->bi_iter.bi_sector = r1_bio->sector +
1921 conf->mirrors[i].rdev->data_offset;
1922 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1923 b->bi_end_io = end_sync_read;
1924 b->bi_private = r1_bio;
1926 size = b->bi_iter.bi_size;
1927 for (j = 0; j < vcnt ; j++) {
1928 struct bio_vec *bi;
1929 bi = &b->bi_io_vec[j];
1930 bi->bv_offset = 0;
1931 if (size > PAGE_SIZE)
1932 bi->bv_len = PAGE_SIZE;
1933 else
1934 bi->bv_len = size;
1935 size -= PAGE_SIZE;
1938 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1939 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1940 !r1_bio->bios[primary]->bi_error) {
1941 r1_bio->bios[primary]->bi_end_io = NULL;
1942 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1943 break;
1945 r1_bio->read_disk = primary;
1946 for (i = 0; i < conf->raid_disks * 2; i++) {
1947 int j;
1948 struct bio *pbio = r1_bio->bios[primary];
1949 struct bio *sbio = r1_bio->bios[i];
1950 int error = sbio->bi_error;
1952 if (sbio->bi_end_io != end_sync_read)
1953 continue;
1954 /* Now we can 'fixup' the error value */
1955 sbio->bi_error = 0;
1957 if (!error) {
1958 for (j = vcnt; j-- ; ) {
1959 struct page *p, *s;
1960 p = pbio->bi_io_vec[j].bv_page;
1961 s = sbio->bi_io_vec[j].bv_page;
1962 if (memcmp(page_address(p),
1963 page_address(s),
1964 sbio->bi_io_vec[j].bv_len))
1965 break;
1967 } else
1968 j = 0;
1969 if (j >= 0)
1970 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1971 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1972 && !error)) {
1973 /* No need to write to this device. */
1974 sbio->bi_end_io = NULL;
1975 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1976 continue;
1979 bio_copy_data(sbio, pbio);
1983 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1985 struct r1conf *conf = mddev->private;
1986 int i;
1987 int disks = conf->raid_disks * 2;
1988 struct bio *bio, *wbio;
1990 bio = r1_bio->bios[r1_bio->read_disk];
1992 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1993 /* ouch - failed to read all of that. */
1994 if (!fix_sync_read_error(r1_bio))
1995 return;
1997 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1998 process_checks(r1_bio);
2001 * schedule writes
2003 atomic_set(&r1_bio->remaining, 1);
2004 for (i = 0; i < disks ; i++) {
2005 wbio = r1_bio->bios[i];
2006 if (wbio->bi_end_io == NULL ||
2007 (wbio->bi_end_io == end_sync_read &&
2008 (i == r1_bio->read_disk ||
2009 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2010 continue;
2012 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2013 wbio->bi_end_io = end_sync_write;
2014 atomic_inc(&r1_bio->remaining);
2015 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2017 generic_make_request(wbio);
2020 if (atomic_dec_and_test(&r1_bio->remaining)) {
2021 /* if we're here, all write(s) have completed, so clean up */
2022 int s = r1_bio->sectors;
2023 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2024 test_bit(R1BIO_WriteError, &r1_bio->state))
2025 reschedule_retry(r1_bio);
2026 else {
2027 put_buf(r1_bio);
2028 md_done_sync(mddev, s, 1);
2034 * This is a kernel thread which:
2036 * 1. Retries failed read operations on working mirrors.
2037 * 2. Updates the raid superblock when problems encounter.
2038 * 3. Performs writes following reads for array synchronising.
2041 static void fix_read_error(struct r1conf *conf, int read_disk,
2042 sector_t sect, int sectors)
2044 struct mddev *mddev = conf->mddev;
2045 while(sectors) {
2046 int s = sectors;
2047 int d = read_disk;
2048 int success = 0;
2049 int start;
2050 struct md_rdev *rdev;
2052 if (s > (PAGE_SIZE>>9))
2053 s = PAGE_SIZE >> 9;
2055 do {
2056 sector_t first_bad;
2057 int bad_sectors;
2059 rcu_read_lock();
2060 rdev = rcu_dereference(conf->mirrors[d].rdev);
2061 if (rdev &&
2062 (test_bit(In_sync, &rdev->flags) ||
2063 (!test_bit(Faulty, &rdev->flags) &&
2064 rdev->recovery_offset >= sect + s)) &&
2065 is_badblock(rdev, sect, s,
2066 &first_bad, &bad_sectors) == 0) {
2067 atomic_inc(&rdev->nr_pending);
2068 rcu_read_unlock();
2069 if (sync_page_io(rdev, sect, s<<9,
2070 conf->tmppage, REQ_OP_READ, 0, false))
2071 success = 1;
2072 rdev_dec_pending(rdev, mddev);
2073 if (success)
2074 break;
2075 } else
2076 rcu_read_unlock();
2077 d++;
2078 if (d == conf->raid_disks * 2)
2079 d = 0;
2080 } while (!success && d != read_disk);
2082 if (!success) {
2083 /* Cannot read from anywhere - mark it bad */
2084 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2085 if (!rdev_set_badblocks(rdev, sect, s, 0))
2086 md_error(mddev, rdev);
2087 break;
2089 /* write it back and re-read */
2090 start = d;
2091 while (d != read_disk) {
2092 if (d==0)
2093 d = conf->raid_disks * 2;
2094 d--;
2095 rcu_read_lock();
2096 rdev = rcu_dereference(conf->mirrors[d].rdev);
2097 if (rdev &&
2098 !test_bit(Faulty, &rdev->flags)) {
2099 atomic_inc(&rdev->nr_pending);
2100 rcu_read_unlock();
2101 r1_sync_page_io(rdev, sect, s,
2102 conf->tmppage, WRITE);
2103 rdev_dec_pending(rdev, mddev);
2104 } else
2105 rcu_read_unlock();
2107 d = start;
2108 while (d != read_disk) {
2109 char b[BDEVNAME_SIZE];
2110 if (d==0)
2111 d = conf->raid_disks * 2;
2112 d--;
2113 rcu_read_lock();
2114 rdev = rcu_dereference(conf->mirrors[d].rdev);
2115 if (rdev &&
2116 !test_bit(Faulty, &rdev->flags)) {
2117 atomic_inc(&rdev->nr_pending);
2118 rcu_read_unlock();
2119 if (r1_sync_page_io(rdev, sect, s,
2120 conf->tmppage, READ)) {
2121 atomic_add(s, &rdev->corrected_errors);
2122 printk(KERN_INFO
2123 "md/raid1:%s: read error corrected "
2124 "(%d sectors at %llu on %s)\n",
2125 mdname(mddev), s,
2126 (unsigned long long)(sect +
2127 rdev->data_offset),
2128 bdevname(rdev->bdev, b));
2130 rdev_dec_pending(rdev, mddev);
2131 } else
2132 rcu_read_unlock();
2134 sectors -= s;
2135 sect += s;
2139 static int narrow_write_error(struct r1bio *r1_bio, int i)
2141 struct mddev *mddev = r1_bio->mddev;
2142 struct r1conf *conf = mddev->private;
2143 struct md_rdev *rdev = conf->mirrors[i].rdev;
2145 /* bio has the data to be written to device 'i' where
2146 * we just recently had a write error.
2147 * We repeatedly clone the bio and trim down to one block,
2148 * then try the write. Where the write fails we record
2149 * a bad block.
2150 * It is conceivable that the bio doesn't exactly align with
2151 * blocks. We must handle this somehow.
2153 * We currently own a reference on the rdev.
2156 int block_sectors;
2157 sector_t sector;
2158 int sectors;
2159 int sect_to_write = r1_bio->sectors;
2160 int ok = 1;
2162 if (rdev->badblocks.shift < 0)
2163 return 0;
2165 block_sectors = roundup(1 << rdev->badblocks.shift,
2166 bdev_logical_block_size(rdev->bdev) >> 9);
2167 sector = r1_bio->sector;
2168 sectors = ((sector + block_sectors)
2169 & ~(sector_t)(block_sectors - 1))
2170 - sector;
2172 while (sect_to_write) {
2173 struct bio *wbio;
2174 if (sectors > sect_to_write)
2175 sectors = sect_to_write;
2176 /* Write at 'sector' for 'sectors'*/
2178 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2179 unsigned vcnt = r1_bio->behind_page_count;
2180 struct bio_vec *vec = r1_bio->behind_bvecs;
2182 while (!vec->bv_page) {
2183 vec++;
2184 vcnt--;
2187 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2188 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2190 wbio->bi_vcnt = vcnt;
2191 } else {
2192 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2195 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2196 wbio->bi_iter.bi_sector = r1_bio->sector;
2197 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2199 bio_trim(wbio, sector - r1_bio->sector, sectors);
2200 wbio->bi_iter.bi_sector += rdev->data_offset;
2201 wbio->bi_bdev = rdev->bdev;
2203 if (submit_bio_wait(wbio) < 0)
2204 /* failure! */
2205 ok = rdev_set_badblocks(rdev, sector,
2206 sectors, 0)
2207 && ok;
2209 bio_put(wbio);
2210 sect_to_write -= sectors;
2211 sector += sectors;
2212 sectors = block_sectors;
2214 return ok;
2217 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2219 int m;
2220 int s = r1_bio->sectors;
2221 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2222 struct md_rdev *rdev = conf->mirrors[m].rdev;
2223 struct bio *bio = r1_bio->bios[m];
2224 if (bio->bi_end_io == NULL)
2225 continue;
2226 if (!bio->bi_error &&
2227 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2228 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2230 if (bio->bi_error &&
2231 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2232 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2233 md_error(conf->mddev, rdev);
2236 put_buf(r1_bio);
2237 md_done_sync(conf->mddev, s, 1);
2240 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2242 int m;
2243 bool fail = false;
2244 for (m = 0; m < conf->raid_disks * 2 ; m++)
2245 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2246 struct md_rdev *rdev = conf->mirrors[m].rdev;
2247 rdev_clear_badblocks(rdev,
2248 r1_bio->sector,
2249 r1_bio->sectors, 0);
2250 rdev_dec_pending(rdev, conf->mddev);
2251 } else if (r1_bio->bios[m] != NULL) {
2252 /* This drive got a write error. We need to
2253 * narrow down and record precise write
2254 * errors.
2256 fail = true;
2257 if (!narrow_write_error(r1_bio, m)) {
2258 md_error(conf->mddev,
2259 conf->mirrors[m].rdev);
2260 /* an I/O failed, we can't clear the bitmap */
2261 set_bit(R1BIO_Degraded, &r1_bio->state);
2263 rdev_dec_pending(conf->mirrors[m].rdev,
2264 conf->mddev);
2266 if (fail) {
2267 spin_lock_irq(&conf->device_lock);
2268 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2269 conf->nr_queued++;
2270 spin_unlock_irq(&conf->device_lock);
2271 md_wakeup_thread(conf->mddev->thread);
2272 } else {
2273 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2274 close_write(r1_bio);
2275 raid_end_bio_io(r1_bio);
2279 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2281 int disk;
2282 int max_sectors;
2283 struct mddev *mddev = conf->mddev;
2284 struct bio *bio;
2285 char b[BDEVNAME_SIZE];
2286 struct md_rdev *rdev;
2288 clear_bit(R1BIO_ReadError, &r1_bio->state);
2289 /* we got a read error. Maybe the drive is bad. Maybe just
2290 * the block and we can fix it.
2291 * We freeze all other IO, and try reading the block from
2292 * other devices. When we find one, we re-write
2293 * and check it that fixes the read error.
2294 * This is all done synchronously while the array is
2295 * frozen
2297 if (mddev->ro == 0) {
2298 freeze_array(conf, 1);
2299 fix_read_error(conf, r1_bio->read_disk,
2300 r1_bio->sector, r1_bio->sectors);
2301 unfreeze_array(conf);
2302 } else
2303 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2304 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2306 bio = r1_bio->bios[r1_bio->read_disk];
2307 bdevname(bio->bi_bdev, b);
2308 read_more:
2309 disk = read_balance(conf, r1_bio, &max_sectors);
2310 if (disk == -1) {
2311 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2312 " read error for block %llu\n",
2313 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2314 raid_end_bio_io(r1_bio);
2315 } else {
2316 const unsigned long do_sync
2317 = r1_bio->master_bio->bi_opf & REQ_SYNC;
2318 if (bio) {
2319 r1_bio->bios[r1_bio->read_disk] =
2320 mddev->ro ? IO_BLOCKED : NULL;
2321 bio_put(bio);
2323 r1_bio->read_disk = disk;
2324 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2325 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2326 max_sectors);
2327 r1_bio->bios[r1_bio->read_disk] = bio;
2328 rdev = conf->mirrors[disk].rdev;
2329 printk_ratelimited(KERN_ERR
2330 "md/raid1:%s: redirecting sector %llu"
2331 " to other mirror: %s\n",
2332 mdname(mddev),
2333 (unsigned long long)r1_bio->sector,
2334 bdevname(rdev->bdev, b));
2335 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2336 bio->bi_bdev = rdev->bdev;
2337 bio->bi_end_io = raid1_end_read_request;
2338 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2339 bio->bi_private = r1_bio;
2340 if (max_sectors < r1_bio->sectors) {
2341 /* Drat - have to split this up more */
2342 struct bio *mbio = r1_bio->master_bio;
2343 int sectors_handled = (r1_bio->sector + max_sectors
2344 - mbio->bi_iter.bi_sector);
2345 r1_bio->sectors = max_sectors;
2346 spin_lock_irq(&conf->device_lock);
2347 if (mbio->bi_phys_segments == 0)
2348 mbio->bi_phys_segments = 2;
2349 else
2350 mbio->bi_phys_segments++;
2351 spin_unlock_irq(&conf->device_lock);
2352 generic_make_request(bio);
2353 bio = NULL;
2355 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2357 r1_bio->master_bio = mbio;
2358 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2359 r1_bio->state = 0;
2360 set_bit(R1BIO_ReadError, &r1_bio->state);
2361 r1_bio->mddev = mddev;
2362 r1_bio->sector = mbio->bi_iter.bi_sector +
2363 sectors_handled;
2365 goto read_more;
2366 } else
2367 generic_make_request(bio);
2371 static void raid1d(struct md_thread *thread)
2373 struct mddev *mddev = thread->mddev;
2374 struct r1bio *r1_bio;
2375 unsigned long flags;
2376 struct r1conf *conf = mddev->private;
2377 struct list_head *head = &conf->retry_list;
2378 struct blk_plug plug;
2380 md_check_recovery(mddev);
2382 if (!list_empty_careful(&conf->bio_end_io_list) &&
2383 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2384 LIST_HEAD(tmp);
2385 spin_lock_irqsave(&conf->device_lock, flags);
2386 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2387 while (!list_empty(&conf->bio_end_io_list)) {
2388 list_move(conf->bio_end_io_list.prev, &tmp);
2389 conf->nr_queued--;
2392 spin_unlock_irqrestore(&conf->device_lock, flags);
2393 while (!list_empty(&tmp)) {
2394 r1_bio = list_first_entry(&tmp, struct r1bio,
2395 retry_list);
2396 list_del(&r1_bio->retry_list);
2397 if (mddev->degraded)
2398 set_bit(R1BIO_Degraded, &r1_bio->state);
2399 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2400 close_write(r1_bio);
2401 raid_end_bio_io(r1_bio);
2405 blk_start_plug(&plug);
2406 for (;;) {
2408 flush_pending_writes(conf);
2410 spin_lock_irqsave(&conf->device_lock, flags);
2411 if (list_empty(head)) {
2412 spin_unlock_irqrestore(&conf->device_lock, flags);
2413 break;
2415 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2416 list_del(head->prev);
2417 conf->nr_queued--;
2418 spin_unlock_irqrestore(&conf->device_lock, flags);
2420 mddev = r1_bio->mddev;
2421 conf = mddev->private;
2422 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2423 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2424 test_bit(R1BIO_WriteError, &r1_bio->state))
2425 handle_sync_write_finished(conf, r1_bio);
2426 else
2427 sync_request_write(mddev, r1_bio);
2428 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429 test_bit(R1BIO_WriteError, &r1_bio->state))
2430 handle_write_finished(conf, r1_bio);
2431 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2432 handle_read_error(conf, r1_bio);
2433 else
2434 /* just a partial read to be scheduled from separate
2435 * context
2437 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2439 cond_resched();
2440 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2441 md_check_recovery(mddev);
2443 blk_finish_plug(&plug);
2446 static int init_resync(struct r1conf *conf)
2448 int buffs;
2450 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2451 BUG_ON(conf->r1buf_pool);
2452 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2453 conf->poolinfo);
2454 if (!conf->r1buf_pool)
2455 return -ENOMEM;
2456 conf->next_resync = 0;
2457 return 0;
2461 * perform a "sync" on one "block"
2463 * We need to make sure that no normal I/O request - particularly write
2464 * requests - conflict with active sync requests.
2466 * This is achieved by tracking pending requests and a 'barrier' concept
2467 * that can be installed to exclude normal IO requests.
2470 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2471 int *skipped)
2473 struct r1conf *conf = mddev->private;
2474 struct r1bio *r1_bio;
2475 struct bio *bio;
2476 sector_t max_sector, nr_sectors;
2477 int disk = -1;
2478 int i;
2479 int wonly = -1;
2480 int write_targets = 0, read_targets = 0;
2481 sector_t sync_blocks;
2482 int still_degraded = 0;
2483 int good_sectors = RESYNC_SECTORS;
2484 int min_bad = 0; /* number of sectors that are bad in all devices */
2486 if (!conf->r1buf_pool)
2487 if (init_resync(conf))
2488 return 0;
2490 max_sector = mddev->dev_sectors;
2491 if (sector_nr >= max_sector) {
2492 /* If we aborted, we need to abort the
2493 * sync on the 'current' bitmap chunk (there will
2494 * only be one in raid1 resync.
2495 * We can find the current addess in mddev->curr_resync
2497 if (mddev->curr_resync < max_sector) /* aborted */
2498 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2499 &sync_blocks, 1);
2500 else /* completed sync */
2501 conf->fullsync = 0;
2503 bitmap_close_sync(mddev->bitmap);
2504 close_sync(conf);
2506 if (mddev_is_clustered(mddev)) {
2507 conf->cluster_sync_low = 0;
2508 conf->cluster_sync_high = 0;
2510 return 0;
2513 if (mddev->bitmap == NULL &&
2514 mddev->recovery_cp == MaxSector &&
2515 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2516 conf->fullsync == 0) {
2517 *skipped = 1;
2518 return max_sector - sector_nr;
2520 /* before building a request, check if we can skip these blocks..
2521 * This call the bitmap_start_sync doesn't actually record anything
2523 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2524 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2525 /* We can skip this block, and probably several more */
2526 *skipped = 1;
2527 return sync_blocks;
2531 * If there is non-resync activity waiting for a turn, then let it
2532 * though before starting on this new sync request.
2534 if (conf->nr_waiting)
2535 schedule_timeout_uninterruptible(1);
2537 /* we are incrementing sector_nr below. To be safe, we check against
2538 * sector_nr + two times RESYNC_SECTORS
2541 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2542 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2543 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2545 raise_barrier(conf, sector_nr);
2547 rcu_read_lock();
2549 * If we get a correctably read error during resync or recovery,
2550 * we might want to read from a different device. So we
2551 * flag all drives that could conceivably be read from for READ,
2552 * and any others (which will be non-In_sync devices) for WRITE.
2553 * If a read fails, we try reading from something else for which READ
2554 * is OK.
2557 r1_bio->mddev = mddev;
2558 r1_bio->sector = sector_nr;
2559 r1_bio->state = 0;
2560 set_bit(R1BIO_IsSync, &r1_bio->state);
2562 for (i = 0; i < conf->raid_disks * 2; i++) {
2563 struct md_rdev *rdev;
2564 bio = r1_bio->bios[i];
2565 bio_reset(bio);
2567 rdev = rcu_dereference(conf->mirrors[i].rdev);
2568 if (rdev == NULL ||
2569 test_bit(Faulty, &rdev->flags)) {
2570 if (i < conf->raid_disks)
2571 still_degraded = 1;
2572 } else if (!test_bit(In_sync, &rdev->flags)) {
2573 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2574 bio->bi_end_io = end_sync_write;
2575 write_targets ++;
2576 } else {
2577 /* may need to read from here */
2578 sector_t first_bad = MaxSector;
2579 int bad_sectors;
2581 if (is_badblock(rdev, sector_nr, good_sectors,
2582 &first_bad, &bad_sectors)) {
2583 if (first_bad > sector_nr)
2584 good_sectors = first_bad - sector_nr;
2585 else {
2586 bad_sectors -= (sector_nr - first_bad);
2587 if (min_bad == 0 ||
2588 min_bad > bad_sectors)
2589 min_bad = bad_sectors;
2592 if (sector_nr < first_bad) {
2593 if (test_bit(WriteMostly, &rdev->flags)) {
2594 if (wonly < 0)
2595 wonly = i;
2596 } else {
2597 if (disk < 0)
2598 disk = i;
2600 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2601 bio->bi_end_io = end_sync_read;
2602 read_targets++;
2603 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2604 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2605 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607 * The device is suitable for reading (InSync),
2608 * but has bad block(s) here. Let's try to correct them,
2609 * if we are doing resync or repair. Otherwise, leave
2610 * this device alone for this sync request.
2612 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2613 bio->bi_end_io = end_sync_write;
2614 write_targets++;
2617 if (bio->bi_end_io) {
2618 atomic_inc(&rdev->nr_pending);
2619 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2620 bio->bi_bdev = rdev->bdev;
2621 bio->bi_private = r1_bio;
2624 rcu_read_unlock();
2625 if (disk < 0)
2626 disk = wonly;
2627 r1_bio->read_disk = disk;
2629 if (read_targets == 0 && min_bad > 0) {
2630 /* These sectors are bad on all InSync devices, so we
2631 * need to mark them bad on all write targets
2633 int ok = 1;
2634 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2635 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2636 struct md_rdev *rdev = conf->mirrors[i].rdev;
2637 ok = rdev_set_badblocks(rdev, sector_nr,
2638 min_bad, 0
2639 ) && ok;
2641 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2642 *skipped = 1;
2643 put_buf(r1_bio);
2645 if (!ok) {
2646 /* Cannot record the badblocks, so need to
2647 * abort the resync.
2648 * If there are multiple read targets, could just
2649 * fail the really bad ones ???
2651 conf->recovery_disabled = mddev->recovery_disabled;
2652 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2653 return 0;
2654 } else
2655 return min_bad;
2658 if (min_bad > 0 && min_bad < good_sectors) {
2659 /* only resync enough to reach the next bad->good
2660 * transition */
2661 good_sectors = min_bad;
2664 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2665 /* extra read targets are also write targets */
2666 write_targets += read_targets-1;
2668 if (write_targets == 0 || read_targets == 0) {
2669 /* There is nowhere to write, so all non-sync
2670 * drives must be failed - so we are finished
2672 sector_t rv;
2673 if (min_bad > 0)
2674 max_sector = sector_nr + min_bad;
2675 rv = max_sector - sector_nr;
2676 *skipped = 1;
2677 put_buf(r1_bio);
2678 return rv;
2681 if (max_sector > mddev->resync_max)
2682 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2683 if (max_sector > sector_nr + good_sectors)
2684 max_sector = sector_nr + good_sectors;
2685 nr_sectors = 0;
2686 sync_blocks = 0;
2687 do {
2688 struct page *page;
2689 int len = PAGE_SIZE;
2690 if (sector_nr + (len>>9) > max_sector)
2691 len = (max_sector - sector_nr) << 9;
2692 if (len == 0)
2693 break;
2694 if (sync_blocks == 0) {
2695 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2696 &sync_blocks, still_degraded) &&
2697 !conf->fullsync &&
2698 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2699 break;
2700 if ((len >> 9) > sync_blocks)
2701 len = sync_blocks<<9;
2704 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2705 bio = r1_bio->bios[i];
2706 if (bio->bi_end_io) {
2707 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2708 if (bio_add_page(bio, page, len, 0) == 0) {
2709 /* stop here */
2710 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2711 while (i > 0) {
2712 i--;
2713 bio = r1_bio->bios[i];
2714 if (bio->bi_end_io==NULL)
2715 continue;
2716 /* remove last page from this bio */
2717 bio->bi_vcnt--;
2718 bio->bi_iter.bi_size -= len;
2719 bio_clear_flag(bio, BIO_SEG_VALID);
2721 goto bio_full;
2725 nr_sectors += len>>9;
2726 sector_nr += len>>9;
2727 sync_blocks -= (len>>9);
2728 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2729 bio_full:
2730 r1_bio->sectors = nr_sectors;
2732 if (mddev_is_clustered(mddev) &&
2733 conf->cluster_sync_high < sector_nr + nr_sectors) {
2734 conf->cluster_sync_low = mddev->curr_resync_completed;
2735 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2736 /* Send resync message */
2737 md_cluster_ops->resync_info_update(mddev,
2738 conf->cluster_sync_low,
2739 conf->cluster_sync_high);
2742 /* For a user-requested sync, we read all readable devices and do a
2743 * compare
2745 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2746 atomic_set(&r1_bio->remaining, read_targets);
2747 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2748 bio = r1_bio->bios[i];
2749 if (bio->bi_end_io == end_sync_read) {
2750 read_targets--;
2751 md_sync_acct(bio->bi_bdev, nr_sectors);
2752 generic_make_request(bio);
2755 } else {
2756 atomic_set(&r1_bio->remaining, 1);
2757 bio = r1_bio->bios[r1_bio->read_disk];
2758 md_sync_acct(bio->bi_bdev, nr_sectors);
2759 generic_make_request(bio);
2762 return nr_sectors;
2765 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2767 if (sectors)
2768 return sectors;
2770 return mddev->dev_sectors;
2773 static struct r1conf *setup_conf(struct mddev *mddev)
2775 struct r1conf *conf;
2776 int i;
2777 struct raid1_info *disk;
2778 struct md_rdev *rdev;
2779 int err = -ENOMEM;
2781 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2782 if (!conf)
2783 goto abort;
2785 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2786 * mddev->raid_disks * 2,
2787 GFP_KERNEL);
2788 if (!conf->mirrors)
2789 goto abort;
2791 conf->tmppage = alloc_page(GFP_KERNEL);
2792 if (!conf->tmppage)
2793 goto abort;
2795 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2796 if (!conf->poolinfo)
2797 goto abort;
2798 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2799 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2800 r1bio_pool_free,
2801 conf->poolinfo);
2802 if (!conf->r1bio_pool)
2803 goto abort;
2805 conf->poolinfo->mddev = mddev;
2807 err = -EINVAL;
2808 spin_lock_init(&conf->device_lock);
2809 rdev_for_each(rdev, mddev) {
2810 struct request_queue *q;
2811 int disk_idx = rdev->raid_disk;
2812 if (disk_idx >= mddev->raid_disks
2813 || disk_idx < 0)
2814 continue;
2815 if (test_bit(Replacement, &rdev->flags))
2816 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2817 else
2818 disk = conf->mirrors + disk_idx;
2820 if (disk->rdev)
2821 goto abort;
2822 disk->rdev = rdev;
2823 q = bdev_get_queue(rdev->bdev);
2825 disk->head_position = 0;
2826 disk->seq_start = MaxSector;
2828 conf->raid_disks = mddev->raid_disks;
2829 conf->mddev = mddev;
2830 INIT_LIST_HEAD(&conf->retry_list);
2831 INIT_LIST_HEAD(&conf->bio_end_io_list);
2833 spin_lock_init(&conf->resync_lock);
2834 init_waitqueue_head(&conf->wait_barrier);
2836 bio_list_init(&conf->pending_bio_list);
2837 conf->pending_count = 0;
2838 conf->recovery_disabled = mddev->recovery_disabled - 1;
2840 conf->start_next_window = MaxSector;
2841 conf->current_window_requests = conf->next_window_requests = 0;
2843 err = -EIO;
2844 for (i = 0; i < conf->raid_disks * 2; i++) {
2846 disk = conf->mirrors + i;
2848 if (i < conf->raid_disks &&
2849 disk[conf->raid_disks].rdev) {
2850 /* This slot has a replacement. */
2851 if (!disk->rdev) {
2852 /* No original, just make the replacement
2853 * a recovering spare
2855 disk->rdev =
2856 disk[conf->raid_disks].rdev;
2857 disk[conf->raid_disks].rdev = NULL;
2858 } else if (!test_bit(In_sync, &disk->rdev->flags))
2859 /* Original is not in_sync - bad */
2860 goto abort;
2863 if (!disk->rdev ||
2864 !test_bit(In_sync, &disk->rdev->flags)) {
2865 disk->head_position = 0;
2866 if (disk->rdev &&
2867 (disk->rdev->saved_raid_disk < 0))
2868 conf->fullsync = 1;
2872 err = -ENOMEM;
2873 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2874 if (!conf->thread) {
2875 printk(KERN_ERR
2876 "md/raid1:%s: couldn't allocate thread\n",
2877 mdname(mddev));
2878 goto abort;
2881 return conf;
2883 abort:
2884 if (conf) {
2885 mempool_destroy(conf->r1bio_pool);
2886 kfree(conf->mirrors);
2887 safe_put_page(conf->tmppage);
2888 kfree(conf->poolinfo);
2889 kfree(conf);
2891 return ERR_PTR(err);
2894 static void raid1_free(struct mddev *mddev, void *priv);
2895 static int raid1_run(struct mddev *mddev)
2897 struct r1conf *conf;
2898 int i;
2899 struct md_rdev *rdev;
2900 int ret;
2901 bool discard_supported = false;
2903 if (mddev->level != 1) {
2904 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2905 mdname(mddev), mddev->level);
2906 return -EIO;
2908 if (mddev->reshape_position != MaxSector) {
2909 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2910 mdname(mddev));
2911 return -EIO;
2914 * copy the already verified devices into our private RAID1
2915 * bookkeeping area. [whatever we allocate in run(),
2916 * should be freed in raid1_free()]
2918 if (mddev->private == NULL)
2919 conf = setup_conf(mddev);
2920 else
2921 conf = mddev->private;
2923 if (IS_ERR(conf))
2924 return PTR_ERR(conf);
2926 if (mddev->queue)
2927 blk_queue_max_write_same_sectors(mddev->queue, 0);
2929 rdev_for_each(rdev, mddev) {
2930 if (!mddev->gendisk)
2931 continue;
2932 disk_stack_limits(mddev->gendisk, rdev->bdev,
2933 rdev->data_offset << 9);
2934 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2935 discard_supported = true;
2938 mddev->degraded = 0;
2939 for (i=0; i < conf->raid_disks; i++)
2940 if (conf->mirrors[i].rdev == NULL ||
2941 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2942 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2943 mddev->degraded++;
2945 if (conf->raid_disks - mddev->degraded == 1)
2946 mddev->recovery_cp = MaxSector;
2948 if (mddev->recovery_cp != MaxSector)
2949 printk(KERN_NOTICE "md/raid1:%s: not clean"
2950 " -- starting background reconstruction\n",
2951 mdname(mddev));
2952 printk(KERN_INFO
2953 "md/raid1:%s: active with %d out of %d mirrors\n",
2954 mdname(mddev), mddev->raid_disks - mddev->degraded,
2955 mddev->raid_disks);
2958 * Ok, everything is just fine now
2960 mddev->thread = conf->thread;
2961 conf->thread = NULL;
2962 mddev->private = conf;
2964 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2966 if (mddev->queue) {
2967 if (discard_supported)
2968 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2969 mddev->queue);
2970 else
2971 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2972 mddev->queue);
2975 ret = md_integrity_register(mddev);
2976 if (ret) {
2977 md_unregister_thread(&mddev->thread);
2978 raid1_free(mddev, conf);
2980 return ret;
2983 static void raid1_free(struct mddev *mddev, void *priv)
2985 struct r1conf *conf = priv;
2987 mempool_destroy(conf->r1bio_pool);
2988 kfree(conf->mirrors);
2989 safe_put_page(conf->tmppage);
2990 kfree(conf->poolinfo);
2991 kfree(conf);
2994 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2996 /* no resync is happening, and there is enough space
2997 * on all devices, so we can resize.
2998 * We need to make sure resync covers any new space.
2999 * If the array is shrinking we should possibly wait until
3000 * any io in the removed space completes, but it hardly seems
3001 * worth it.
3003 sector_t newsize = raid1_size(mddev, sectors, 0);
3004 if (mddev->external_size &&
3005 mddev->array_sectors > newsize)
3006 return -EINVAL;
3007 if (mddev->bitmap) {
3008 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3009 if (ret)
3010 return ret;
3012 md_set_array_sectors(mddev, newsize);
3013 set_capacity(mddev->gendisk, mddev->array_sectors);
3014 revalidate_disk(mddev->gendisk);
3015 if (sectors > mddev->dev_sectors &&
3016 mddev->recovery_cp > mddev->dev_sectors) {
3017 mddev->recovery_cp = mddev->dev_sectors;
3018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3020 mddev->dev_sectors = sectors;
3021 mddev->resync_max_sectors = sectors;
3022 return 0;
3025 static int raid1_reshape(struct mddev *mddev)
3027 /* We need to:
3028 * 1/ resize the r1bio_pool
3029 * 2/ resize conf->mirrors
3031 * We allocate a new r1bio_pool if we can.
3032 * Then raise a device barrier and wait until all IO stops.
3033 * Then resize conf->mirrors and swap in the new r1bio pool.
3035 * At the same time, we "pack" the devices so that all the missing
3036 * devices have the higher raid_disk numbers.
3038 mempool_t *newpool, *oldpool;
3039 struct pool_info *newpoolinfo;
3040 struct raid1_info *newmirrors;
3041 struct r1conf *conf = mddev->private;
3042 int cnt, raid_disks;
3043 unsigned long flags;
3044 int d, d2, err;
3046 /* Cannot change chunk_size, layout, or level */
3047 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3048 mddev->layout != mddev->new_layout ||
3049 mddev->level != mddev->new_level) {
3050 mddev->new_chunk_sectors = mddev->chunk_sectors;
3051 mddev->new_layout = mddev->layout;
3052 mddev->new_level = mddev->level;
3053 return -EINVAL;
3056 if (!mddev_is_clustered(mddev)) {
3057 err = md_allow_write(mddev);
3058 if (err)
3059 return err;
3062 raid_disks = mddev->raid_disks + mddev->delta_disks;
3064 if (raid_disks < conf->raid_disks) {
3065 cnt=0;
3066 for (d= 0; d < conf->raid_disks; d++)
3067 if (conf->mirrors[d].rdev)
3068 cnt++;
3069 if (cnt > raid_disks)
3070 return -EBUSY;
3073 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3074 if (!newpoolinfo)
3075 return -ENOMEM;
3076 newpoolinfo->mddev = mddev;
3077 newpoolinfo->raid_disks = raid_disks * 2;
3079 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3080 r1bio_pool_free, newpoolinfo);
3081 if (!newpool) {
3082 kfree(newpoolinfo);
3083 return -ENOMEM;
3085 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3086 GFP_KERNEL);
3087 if (!newmirrors) {
3088 kfree(newpoolinfo);
3089 mempool_destroy(newpool);
3090 return -ENOMEM;
3093 freeze_array(conf, 0);
3095 /* ok, everything is stopped */
3096 oldpool = conf->r1bio_pool;
3097 conf->r1bio_pool = newpool;
3099 for (d = d2 = 0; d < conf->raid_disks; d++) {
3100 struct md_rdev *rdev = conf->mirrors[d].rdev;
3101 if (rdev && rdev->raid_disk != d2) {
3102 sysfs_unlink_rdev(mddev, rdev);
3103 rdev->raid_disk = d2;
3104 sysfs_unlink_rdev(mddev, rdev);
3105 if (sysfs_link_rdev(mddev, rdev))
3106 printk(KERN_WARNING
3107 "md/raid1:%s: cannot register rd%d\n",
3108 mdname(mddev), rdev->raid_disk);
3110 if (rdev)
3111 newmirrors[d2++].rdev = rdev;
3113 kfree(conf->mirrors);
3114 conf->mirrors = newmirrors;
3115 kfree(conf->poolinfo);
3116 conf->poolinfo = newpoolinfo;
3118 spin_lock_irqsave(&conf->device_lock, flags);
3119 mddev->degraded += (raid_disks - conf->raid_disks);
3120 spin_unlock_irqrestore(&conf->device_lock, flags);
3121 conf->raid_disks = mddev->raid_disks = raid_disks;
3122 mddev->delta_disks = 0;
3124 unfreeze_array(conf);
3126 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3127 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3128 md_wakeup_thread(mddev->thread);
3130 mempool_destroy(oldpool);
3131 return 0;
3134 static void raid1_quiesce(struct mddev *mddev, int state)
3136 struct r1conf *conf = mddev->private;
3138 switch(state) {
3139 case 2: /* wake for suspend */
3140 wake_up(&conf->wait_barrier);
3141 break;
3142 case 1:
3143 freeze_array(conf, 0);
3144 break;
3145 case 0:
3146 unfreeze_array(conf);
3147 break;
3151 static void *raid1_takeover(struct mddev *mddev)
3153 /* raid1 can take over:
3154 * raid5 with 2 devices, any layout or chunk size
3156 if (mddev->level == 5 && mddev->raid_disks == 2) {
3157 struct r1conf *conf;
3158 mddev->new_level = 1;
3159 mddev->new_layout = 0;
3160 mddev->new_chunk_sectors = 0;
3161 conf = setup_conf(mddev);
3162 if (!IS_ERR(conf))
3163 /* Array must appear to be quiesced */
3164 conf->array_frozen = 1;
3165 return conf;
3167 return ERR_PTR(-EINVAL);
3170 static struct md_personality raid1_personality =
3172 .name = "raid1",
3173 .level = 1,
3174 .owner = THIS_MODULE,
3175 .make_request = raid1_make_request,
3176 .run = raid1_run,
3177 .free = raid1_free,
3178 .status = raid1_status,
3179 .error_handler = raid1_error,
3180 .hot_add_disk = raid1_add_disk,
3181 .hot_remove_disk= raid1_remove_disk,
3182 .spare_active = raid1_spare_active,
3183 .sync_request = raid1_sync_request,
3184 .resize = raid1_resize,
3185 .size = raid1_size,
3186 .check_reshape = raid1_reshape,
3187 .quiesce = raid1_quiesce,
3188 .takeover = raid1_takeover,
3189 .congested = raid1_congested,
3192 static int __init raid_init(void)
3194 return register_md_personality(&raid1_personality);
3197 static void raid_exit(void)
3199 unregister_md_personality(&raid1_personality);
3202 module_init(raid_init);
3203 module_exit(raid_exit);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3210 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);