hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / md / raid1.h
blob61c39b390cd8f8e7595f34f0324521151874bb37
1 #ifndef _RAID1_H
2 #define _RAID1_H
4 struct raid1_info {
5 struct md_rdev *rdev;
6 sector_t head_position;
8 /* When choose the best device for a read (read_balance())
9 * we try to keep sequential reads one the same device
11 sector_t next_seq_sect;
12 sector_t seq_start;
16 * memory pools need a pointer to the mddev, so they can force an unplug
17 * when memory is tight, and a count of the number of drives that the
18 * pool was allocated for, so they know how much to allocate and free.
19 * mddev->raid_disks cannot be used, as it can change while a pool is active
20 * These two datums are stored in a kmalloced struct.
21 * The 'raid_disks' here is twice the raid_disks in r1conf.
22 * This allows space for each 'real' device can have a replacement in the
23 * second half of the array.
26 struct pool_info {
27 struct mddev *mddev;
28 int raid_disks;
31 struct r1conf {
32 struct mddev *mddev;
33 struct raid1_info *mirrors; /* twice 'raid_disks' to
34 * allow for replacements.
36 int raid_disks;
38 /* During resync, read_balancing is only allowed on the part
39 * of the array that has been resynced. 'next_resync' tells us
40 * where that is.
42 sector_t next_resync;
44 /* When raid1 starts resync, we divide array into four partitions
45 * |---------|--------------|---------------------|-------------|
46 * next_resync start_next_window end_window
47 * start_next_window = next_resync + NEXT_NORMALIO_DISTANCE
48 * end_window = start_next_window + NEXT_NORMALIO_DISTANCE
49 * current_window_requests means the count of normalIO between
50 * start_next_window and end_window.
51 * next_window_requests means the count of normalIO after end_window.
52 * */
53 sector_t start_next_window;
54 int current_window_requests;
55 int next_window_requests;
57 spinlock_t device_lock;
59 /* list of 'struct r1bio' that need to be processed by raid1d,
60 * whether to retry a read, writeout a resync or recovery
61 * block, or anything else.
63 struct list_head retry_list;
64 /* A separate list of r1bio which just need raid_end_bio_io called.
65 * This mustn't happen for writes which had any errors if the superblock
66 * needs to be written.
68 struct list_head bio_end_io_list;
70 /* queue pending writes to be submitted on unplug */
71 struct bio_list pending_bio_list;
72 int pending_count;
74 /* for use when syncing mirrors:
75 * We don't allow both normal IO and resync/recovery IO at
76 * the same time - resync/recovery can only happen when there
77 * is no other IO. So when either is active, the other has to wait.
78 * See more details description in raid1.c near raise_barrier().
80 wait_queue_head_t wait_barrier;
81 spinlock_t resync_lock;
82 int nr_pending;
83 int nr_waiting;
84 int nr_queued;
85 int barrier;
86 int array_frozen;
88 /* Set to 1 if a full sync is needed, (fresh device added).
89 * Cleared when a sync completes.
91 int fullsync;
93 /* When the same as mddev->recovery_disabled we don't allow
94 * recovery to be attempted as we expect a read error.
96 int recovery_disabled;
98 /* poolinfo contains information about the content of the
99 * mempools - it changes when the array grows or shrinks
101 struct pool_info *poolinfo;
102 mempool_t *r1bio_pool;
103 mempool_t *r1buf_pool;
105 /* temporary buffer to synchronous IO when attempting to repair
106 * a read error.
108 struct page *tmppage;
110 /* When taking over an array from a different personality, we store
111 * the new thread here until we fully activate the array.
113 struct md_thread *thread;
115 /* Keep track of cluster resync window to send to other
116 * nodes.
118 sector_t cluster_sync_low;
119 sector_t cluster_sync_high;
124 * this is our 'private' RAID1 bio.
126 * it contains information about what kind of IO operations were started
127 * for this RAID1 operation, and about their status:
130 struct r1bio {
131 atomic_t remaining; /* 'have we finished' count,
132 * used from IRQ handlers
134 atomic_t behind_remaining; /* number of write-behind ios remaining
135 * in this BehindIO request
137 sector_t sector;
138 sector_t start_next_window;
139 int sectors;
140 unsigned long state;
141 struct mddev *mddev;
143 * original bio going to /dev/mdx
145 struct bio *master_bio;
147 * if the IO is in READ direction, then this is where we read
149 int read_disk;
151 struct list_head retry_list;
152 /* Next two are only valid when R1BIO_BehindIO is set */
153 struct bio_vec *behind_bvecs;
154 int behind_page_count;
156 * if the IO is in WRITE direction, then multiple bios are used.
157 * We choose the number when they are allocated.
159 struct bio *bios[0];
160 /* DO NOT PUT ANY NEW FIELDS HERE - bios array is contiguously alloced*/
163 /* bits for r1bio.state */
164 #define R1BIO_Uptodate 0
165 #define R1BIO_IsSync 1
166 #define R1BIO_Degraded 2
167 #define R1BIO_BehindIO 3
168 /* Set ReadError on bios that experience a readerror so that
169 * raid1d knows what to do with them.
171 #define R1BIO_ReadError 4
172 /* For write-behind requests, we call bi_end_io when
173 * the last non-write-behind device completes, providing
174 * any write was successful. Otherwise we call when
175 * any write-behind write succeeds, otherwise we call
176 * with failure when last write completes (and all failed).
177 * Record that bi_end_io was called with this flag...
179 #define R1BIO_Returned 6
180 /* If a write for this request means we can clear some
181 * known-bad-block records, we set this flag
183 #define R1BIO_MadeGood 7
184 #define R1BIO_WriteError 8
185 #endif