hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / md / raid5-cache.c
blob1b1ab4a1d132b39f0145b8bc3305484fad5a7091
1 /*
2 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
14 #include <linux/kernel.h>
15 #include <linux/wait.h>
16 #include <linux/blkdev.h>
17 #include <linux/slab.h>
18 #include <linux/raid/md_p.h>
19 #include <linux/crc32c.h>
20 #include <linux/random.h>
21 #include "md.h"
22 #include "raid5.h"
25 * metadata/data stored in disk with 4k size unit (a block) regardless
26 * underneath hardware sector size. only works with PAGE_SIZE == 4096
28 #define BLOCK_SECTORS (8)
31 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
32 * recovery scans a very long log
34 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
35 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
38 * We only need 2 bios per I/O unit to make progress, but ensure we
39 * have a few more available to not get too tight.
41 #define R5L_POOL_SIZE 4
43 struct r5l_log {
44 struct md_rdev *rdev;
46 u32 uuid_checksum;
48 sector_t device_size; /* log device size, round to
49 * BLOCK_SECTORS */
50 sector_t max_free_space; /* reclaim run if free space is at
51 * this size */
53 sector_t last_checkpoint; /* log tail. where recovery scan
54 * starts from */
55 u64 last_cp_seq; /* log tail sequence */
57 sector_t log_start; /* log head. where new data appends */
58 u64 seq; /* log head sequence */
60 sector_t next_checkpoint;
61 u64 next_cp_seq;
63 struct mutex io_mutex;
64 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
66 spinlock_t io_list_lock;
67 struct list_head running_ios; /* io_units which are still running,
68 * and have not yet been completely
69 * written to the log */
70 struct list_head io_end_ios; /* io_units which have been completely
71 * written to the log but not yet written
72 * to the RAID */
73 struct list_head flushing_ios; /* io_units which are waiting for log
74 * cache flush */
75 struct list_head finished_ios; /* io_units which settle down in log disk */
76 struct bio flush_bio;
78 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
80 struct kmem_cache *io_kc;
81 mempool_t *io_pool;
82 struct bio_set *bs;
83 mempool_t *meta_pool;
85 struct md_thread *reclaim_thread;
86 unsigned long reclaim_target; /* number of space that need to be
87 * reclaimed. if it's 0, reclaim spaces
88 * used by io_units which are in
89 * IO_UNIT_STRIPE_END state (eg, reclaim
90 * dones't wait for specific io_unit
91 * switching to IO_UNIT_STRIPE_END
92 * state) */
93 wait_queue_head_t iounit_wait;
95 struct list_head no_space_stripes; /* pending stripes, log has no space */
96 spinlock_t no_space_stripes_lock;
98 bool need_cache_flush;
102 * an IO range starts from a meta data block and end at the next meta data
103 * block. The io unit's the meta data block tracks data/parity followed it. io
104 * unit is written to log disk with normal write, as we always flush log disk
105 * first and then start move data to raid disks, there is no requirement to
106 * write io unit with FLUSH/FUA
108 struct r5l_io_unit {
109 struct r5l_log *log;
111 struct page *meta_page; /* store meta block */
112 int meta_offset; /* current offset in meta_page */
114 struct bio *current_bio;/* current_bio accepting new data */
116 atomic_t pending_stripe;/* how many stripes not flushed to raid */
117 u64 seq; /* seq number of the metablock */
118 sector_t log_start; /* where the io_unit starts */
119 sector_t log_end; /* where the io_unit ends */
120 struct list_head log_sibling; /* log->running_ios */
121 struct list_head stripe_list; /* stripes added to the io_unit */
123 int state;
124 bool need_split_bio;
127 /* r5l_io_unit state */
128 enum r5l_io_unit_state {
129 IO_UNIT_RUNNING = 0, /* accepting new IO */
130 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
131 * don't accepting new bio */
132 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
133 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
136 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
138 start += inc;
139 if (start >= log->device_size)
140 start = start - log->device_size;
141 return start;
144 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
145 sector_t end)
147 if (end >= start)
148 return end - start;
149 else
150 return end + log->device_size - start;
153 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
155 sector_t used_size;
157 used_size = r5l_ring_distance(log, log->last_checkpoint,
158 log->log_start);
160 return log->device_size > used_size + size;
163 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
164 enum r5l_io_unit_state state)
166 if (WARN_ON(io->state >= state))
167 return;
168 io->state = state;
171 static void r5l_io_run_stripes(struct r5l_io_unit *io)
173 struct stripe_head *sh, *next;
175 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
176 list_del_init(&sh->log_list);
177 set_bit(STRIPE_HANDLE, &sh->state);
178 raid5_release_stripe(sh);
182 static void r5l_log_run_stripes(struct r5l_log *log)
184 struct r5l_io_unit *io, *next;
186 assert_spin_locked(&log->io_list_lock);
188 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
189 /* don't change list order */
190 if (io->state < IO_UNIT_IO_END)
191 break;
193 list_move_tail(&io->log_sibling, &log->finished_ios);
194 r5l_io_run_stripes(io);
198 static void r5l_move_to_end_ios(struct r5l_log *log)
200 struct r5l_io_unit *io, *next;
202 assert_spin_locked(&log->io_list_lock);
204 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
205 /* don't change list order */
206 if (io->state < IO_UNIT_IO_END)
207 break;
208 list_move_tail(&io->log_sibling, &log->io_end_ios);
212 static void r5l_log_endio(struct bio *bio)
214 struct r5l_io_unit *io = bio->bi_private;
215 struct r5l_log *log = io->log;
216 unsigned long flags;
218 if (bio->bi_error)
219 md_error(log->rdev->mddev, log->rdev);
221 bio_put(bio);
222 mempool_free(io->meta_page, log->meta_pool);
224 spin_lock_irqsave(&log->io_list_lock, flags);
225 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
226 if (log->need_cache_flush)
227 r5l_move_to_end_ios(log);
228 else
229 r5l_log_run_stripes(log);
230 spin_unlock_irqrestore(&log->io_list_lock, flags);
232 if (log->need_cache_flush)
233 md_wakeup_thread(log->rdev->mddev->thread);
236 static void r5l_submit_current_io(struct r5l_log *log)
238 struct r5l_io_unit *io = log->current_io;
239 struct r5l_meta_block *block;
240 unsigned long flags;
241 u32 crc;
243 if (!io)
244 return;
246 block = page_address(io->meta_page);
247 block->meta_size = cpu_to_le32(io->meta_offset);
248 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
249 block->checksum = cpu_to_le32(crc);
251 log->current_io = NULL;
252 spin_lock_irqsave(&log->io_list_lock, flags);
253 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
254 spin_unlock_irqrestore(&log->io_list_lock, flags);
256 submit_bio(io->current_bio);
259 static struct bio *r5l_bio_alloc(struct r5l_log *log)
261 struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
263 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
264 bio->bi_bdev = log->rdev->bdev;
265 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
267 return bio;
270 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
272 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
275 * If we filled up the log device start from the beginning again,
276 * which will require a new bio.
278 * Note: for this to work properly the log size needs to me a multiple
279 * of BLOCK_SECTORS.
281 if (log->log_start == 0)
282 io->need_split_bio = true;
284 io->log_end = log->log_start;
287 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
289 struct r5l_io_unit *io;
290 struct r5l_meta_block *block;
292 io = mempool_alloc(log->io_pool, GFP_ATOMIC);
293 if (!io)
294 return NULL;
295 memset(io, 0, sizeof(*io));
297 io->log = log;
298 INIT_LIST_HEAD(&io->log_sibling);
299 INIT_LIST_HEAD(&io->stripe_list);
300 io->state = IO_UNIT_RUNNING;
302 io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
303 block = page_address(io->meta_page);
304 clear_page(block);
305 block->magic = cpu_to_le32(R5LOG_MAGIC);
306 block->version = R5LOG_VERSION;
307 block->seq = cpu_to_le64(log->seq);
308 block->position = cpu_to_le64(log->log_start);
310 io->log_start = log->log_start;
311 io->meta_offset = sizeof(struct r5l_meta_block);
312 io->seq = log->seq++;
314 io->current_bio = r5l_bio_alloc(log);
315 io->current_bio->bi_end_io = r5l_log_endio;
316 io->current_bio->bi_private = io;
317 bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
319 r5_reserve_log_entry(log, io);
321 spin_lock_irq(&log->io_list_lock);
322 list_add_tail(&io->log_sibling, &log->running_ios);
323 spin_unlock_irq(&log->io_list_lock);
325 return io;
328 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
330 if (log->current_io &&
331 log->current_io->meta_offset + payload_size > PAGE_SIZE)
332 r5l_submit_current_io(log);
334 if (!log->current_io) {
335 log->current_io = r5l_new_meta(log);
336 if (!log->current_io)
337 return -ENOMEM;
340 return 0;
343 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
344 sector_t location,
345 u32 checksum1, u32 checksum2,
346 bool checksum2_valid)
348 struct r5l_io_unit *io = log->current_io;
349 struct r5l_payload_data_parity *payload;
351 payload = page_address(io->meta_page) + io->meta_offset;
352 payload->header.type = cpu_to_le16(type);
353 payload->header.flags = cpu_to_le16(0);
354 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
355 (PAGE_SHIFT - 9));
356 payload->location = cpu_to_le64(location);
357 payload->checksum[0] = cpu_to_le32(checksum1);
358 if (checksum2_valid)
359 payload->checksum[1] = cpu_to_le32(checksum2);
361 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
362 sizeof(__le32) * (1 + !!checksum2_valid);
365 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
367 struct r5l_io_unit *io = log->current_io;
369 if (io->need_split_bio) {
370 struct bio *prev = io->current_bio;
372 io->current_bio = r5l_bio_alloc(log);
373 bio_chain(io->current_bio, prev);
375 submit_bio(prev);
378 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
379 BUG();
381 r5_reserve_log_entry(log, io);
384 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
385 int data_pages, int parity_pages)
387 int i;
388 int meta_size;
389 int ret;
390 struct r5l_io_unit *io;
392 meta_size =
393 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
394 * data_pages) +
395 sizeof(struct r5l_payload_data_parity) +
396 sizeof(__le32) * parity_pages;
398 ret = r5l_get_meta(log, meta_size);
399 if (ret)
400 return ret;
402 io = log->current_io;
404 for (i = 0; i < sh->disks; i++) {
405 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
406 continue;
407 if (i == sh->pd_idx || i == sh->qd_idx)
408 continue;
409 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
410 raid5_compute_blocknr(sh, i, 0),
411 sh->dev[i].log_checksum, 0, false);
412 r5l_append_payload_page(log, sh->dev[i].page);
415 if (sh->qd_idx >= 0) {
416 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
417 sh->sector, sh->dev[sh->pd_idx].log_checksum,
418 sh->dev[sh->qd_idx].log_checksum, true);
419 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
420 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
421 } else {
422 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
423 sh->sector, sh->dev[sh->pd_idx].log_checksum,
424 0, false);
425 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
428 list_add_tail(&sh->log_list, &io->stripe_list);
429 atomic_inc(&io->pending_stripe);
430 sh->log_io = io;
432 return 0;
435 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
437 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
438 * data from log to raid disks), so we shouldn't wait for reclaim here
440 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
442 int write_disks = 0;
443 int data_pages, parity_pages;
444 int meta_size;
445 int reserve;
446 int i;
447 int ret = 0;
449 if (!log)
450 return -EAGAIN;
451 /* Don't support stripe batch */
452 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
453 test_bit(STRIPE_SYNCING, &sh->state)) {
454 /* the stripe is written to log, we start writing it to raid */
455 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
456 return -EAGAIN;
459 for (i = 0; i < sh->disks; i++) {
460 void *addr;
462 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
463 continue;
464 write_disks++;
465 /* checksum is already calculated in last run */
466 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
467 continue;
468 addr = kmap_atomic(sh->dev[i].page);
469 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
470 addr, PAGE_SIZE);
471 kunmap_atomic(addr);
473 parity_pages = 1 + !!(sh->qd_idx >= 0);
474 data_pages = write_disks - parity_pages;
476 meta_size =
477 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
478 * data_pages) +
479 sizeof(struct r5l_payload_data_parity) +
480 sizeof(__le32) * parity_pages;
481 /* Doesn't work with very big raid array */
482 if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
483 return -EINVAL;
485 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
487 * The stripe must enter state machine again to finish the write, so
488 * don't delay.
490 clear_bit(STRIPE_DELAYED, &sh->state);
491 atomic_inc(&sh->count);
493 mutex_lock(&log->io_mutex);
494 /* meta + data */
495 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
496 if (!r5l_has_free_space(log, reserve)) {
497 spin_lock(&log->no_space_stripes_lock);
498 list_add_tail(&sh->log_list, &log->no_space_stripes);
499 spin_unlock(&log->no_space_stripes_lock);
501 r5l_wake_reclaim(log, reserve);
502 } else {
503 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
504 if (ret) {
505 spin_lock_irq(&log->io_list_lock);
506 list_add_tail(&sh->log_list, &log->no_mem_stripes);
507 spin_unlock_irq(&log->io_list_lock);
511 mutex_unlock(&log->io_mutex);
512 return 0;
515 void r5l_write_stripe_run(struct r5l_log *log)
517 if (!log)
518 return;
519 mutex_lock(&log->io_mutex);
520 r5l_submit_current_io(log);
521 mutex_unlock(&log->io_mutex);
524 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
526 if (!log)
527 return -ENODEV;
529 * we flush log disk cache first, then write stripe data to raid disks.
530 * So if bio is finished, the log disk cache is flushed already. The
531 * recovery guarantees we can recovery the bio from log disk, so we
532 * don't need to flush again
534 if (bio->bi_iter.bi_size == 0) {
535 bio_endio(bio);
536 return 0;
538 bio->bi_opf &= ~REQ_PREFLUSH;
539 return -EAGAIN;
542 /* This will run after log space is reclaimed */
543 static void r5l_run_no_space_stripes(struct r5l_log *log)
545 struct stripe_head *sh;
547 spin_lock(&log->no_space_stripes_lock);
548 while (!list_empty(&log->no_space_stripes)) {
549 sh = list_first_entry(&log->no_space_stripes,
550 struct stripe_head, log_list);
551 list_del_init(&sh->log_list);
552 set_bit(STRIPE_HANDLE, &sh->state);
553 raid5_release_stripe(sh);
555 spin_unlock(&log->no_space_stripes_lock);
558 static sector_t r5l_reclaimable_space(struct r5l_log *log)
560 return r5l_ring_distance(log, log->last_checkpoint,
561 log->next_checkpoint);
564 static void r5l_run_no_mem_stripe(struct r5l_log *log)
566 struct stripe_head *sh;
568 assert_spin_locked(&log->io_list_lock);
570 if (!list_empty(&log->no_mem_stripes)) {
571 sh = list_first_entry(&log->no_mem_stripes,
572 struct stripe_head, log_list);
573 list_del_init(&sh->log_list);
574 set_bit(STRIPE_HANDLE, &sh->state);
575 raid5_release_stripe(sh);
579 static bool r5l_complete_finished_ios(struct r5l_log *log)
581 struct r5l_io_unit *io, *next;
582 bool found = false;
584 assert_spin_locked(&log->io_list_lock);
586 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
587 /* don't change list order */
588 if (io->state < IO_UNIT_STRIPE_END)
589 break;
591 log->next_checkpoint = io->log_start;
592 log->next_cp_seq = io->seq;
594 list_del(&io->log_sibling);
595 mempool_free(io, log->io_pool);
596 r5l_run_no_mem_stripe(log);
598 found = true;
601 return found;
604 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
606 struct r5l_log *log = io->log;
607 unsigned long flags;
609 spin_lock_irqsave(&log->io_list_lock, flags);
610 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
612 if (!r5l_complete_finished_ios(log)) {
613 spin_unlock_irqrestore(&log->io_list_lock, flags);
614 return;
617 if (r5l_reclaimable_space(log) > log->max_free_space)
618 r5l_wake_reclaim(log, 0);
620 spin_unlock_irqrestore(&log->io_list_lock, flags);
621 wake_up(&log->iounit_wait);
624 void r5l_stripe_write_finished(struct stripe_head *sh)
626 struct r5l_io_unit *io;
628 io = sh->log_io;
629 sh->log_io = NULL;
631 if (io && atomic_dec_and_test(&io->pending_stripe))
632 __r5l_stripe_write_finished(io);
635 static void r5l_log_flush_endio(struct bio *bio)
637 struct r5l_log *log = container_of(bio, struct r5l_log,
638 flush_bio);
639 unsigned long flags;
640 struct r5l_io_unit *io;
642 if (bio->bi_error)
643 md_error(log->rdev->mddev, log->rdev);
645 spin_lock_irqsave(&log->io_list_lock, flags);
646 list_for_each_entry(io, &log->flushing_ios, log_sibling)
647 r5l_io_run_stripes(io);
648 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
649 spin_unlock_irqrestore(&log->io_list_lock, flags);
653 * Starting dispatch IO to raid.
654 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
655 * broken meta in the middle of a log causes recovery can't find meta at the
656 * head of log. If operations require meta at the head persistent in log, we
657 * must make sure meta before it persistent in log too. A case is:
659 * stripe data/parity is in log, we start write stripe to raid disks. stripe
660 * data/parity must be persistent in log before we do the write to raid disks.
662 * The solution is we restrictly maintain io_unit list order. In this case, we
663 * only write stripes of an io_unit to raid disks till the io_unit is the first
664 * one whose data/parity is in log.
666 void r5l_flush_stripe_to_raid(struct r5l_log *log)
668 bool do_flush;
670 if (!log || !log->need_cache_flush)
671 return;
673 spin_lock_irq(&log->io_list_lock);
674 /* flush bio is running */
675 if (!list_empty(&log->flushing_ios)) {
676 spin_unlock_irq(&log->io_list_lock);
677 return;
679 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
680 do_flush = !list_empty(&log->flushing_ios);
681 spin_unlock_irq(&log->io_list_lock);
683 if (!do_flush)
684 return;
685 bio_reset(&log->flush_bio);
686 log->flush_bio.bi_bdev = log->rdev->bdev;
687 log->flush_bio.bi_end_io = r5l_log_flush_endio;
688 bio_set_op_attrs(&log->flush_bio, REQ_OP_WRITE, WRITE_FLUSH);
689 submit_bio(&log->flush_bio);
692 static void r5l_write_super(struct r5l_log *log, sector_t cp);
693 static void r5l_write_super_and_discard_space(struct r5l_log *log,
694 sector_t end)
696 struct block_device *bdev = log->rdev->bdev;
697 struct mddev *mddev;
699 r5l_write_super(log, end);
701 if (!blk_queue_discard(bdev_get_queue(bdev)))
702 return;
704 mddev = log->rdev->mddev;
706 * Discard could zero data, so before discard we must make sure
707 * superblock is updated to new log tail. Updating superblock (either
708 * directly call md_update_sb() or depend on md thread) must hold
709 * reconfig mutex. On the other hand, raid5_quiesce is called with
710 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
711 * for all IO finish, hence waitting for reclaim thread, while reclaim
712 * thread is calling this function and waitting for reconfig mutex. So
713 * there is a deadlock. We workaround this issue with a trylock.
714 * FIXME: we could miss discard if we can't take reconfig mutex
716 set_mask_bits(&mddev->flags, 0,
717 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
718 if (!mddev_trylock(mddev))
719 return;
720 md_update_sb(mddev, 1);
721 mddev_unlock(mddev);
723 /* discard IO error really doesn't matter, ignore it */
724 if (log->last_checkpoint < end) {
725 blkdev_issue_discard(bdev,
726 log->last_checkpoint + log->rdev->data_offset,
727 end - log->last_checkpoint, GFP_NOIO, 0);
728 } else {
729 blkdev_issue_discard(bdev,
730 log->last_checkpoint + log->rdev->data_offset,
731 log->device_size - log->last_checkpoint,
732 GFP_NOIO, 0);
733 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
734 GFP_NOIO, 0);
739 static void r5l_do_reclaim(struct r5l_log *log)
741 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
742 sector_t reclaimable;
743 sector_t next_checkpoint;
744 u64 next_cp_seq;
746 spin_lock_irq(&log->io_list_lock);
748 * move proper io_unit to reclaim list. We should not change the order.
749 * reclaimable/unreclaimable io_unit can be mixed in the list, we
750 * shouldn't reuse space of an unreclaimable io_unit
752 while (1) {
753 reclaimable = r5l_reclaimable_space(log);
754 if (reclaimable >= reclaim_target ||
755 (list_empty(&log->running_ios) &&
756 list_empty(&log->io_end_ios) &&
757 list_empty(&log->flushing_ios) &&
758 list_empty(&log->finished_ios)))
759 break;
761 md_wakeup_thread(log->rdev->mddev->thread);
762 wait_event_lock_irq(log->iounit_wait,
763 r5l_reclaimable_space(log) > reclaimable,
764 log->io_list_lock);
767 next_checkpoint = log->next_checkpoint;
768 next_cp_seq = log->next_cp_seq;
769 spin_unlock_irq(&log->io_list_lock);
771 BUG_ON(reclaimable < 0);
772 if (reclaimable == 0)
773 return;
776 * write_super will flush cache of each raid disk. We must write super
777 * here, because the log area might be reused soon and we don't want to
778 * confuse recovery
780 r5l_write_super_and_discard_space(log, next_checkpoint);
782 mutex_lock(&log->io_mutex);
783 log->last_checkpoint = next_checkpoint;
784 log->last_cp_seq = next_cp_seq;
785 mutex_unlock(&log->io_mutex);
787 r5l_run_no_space_stripes(log);
790 static void r5l_reclaim_thread(struct md_thread *thread)
792 struct mddev *mddev = thread->mddev;
793 struct r5conf *conf = mddev->private;
794 struct r5l_log *log = conf->log;
796 if (!log)
797 return;
798 r5l_do_reclaim(log);
801 static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
803 unsigned long target;
804 unsigned long new = (unsigned long)space; /* overflow in theory */
806 do {
807 target = log->reclaim_target;
808 if (new < target)
809 return;
810 } while (cmpxchg(&log->reclaim_target, target, new) != target);
811 md_wakeup_thread(log->reclaim_thread);
814 void r5l_quiesce(struct r5l_log *log, int state)
816 struct mddev *mddev;
817 if (!log || state == 2)
818 return;
819 if (state == 0) {
821 * This is a special case for hotadd. In suspend, the array has
822 * no journal. In resume, journal is initialized as well as the
823 * reclaim thread.
825 if (log->reclaim_thread)
826 return;
827 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
828 log->rdev->mddev, "reclaim");
829 } else if (state == 1) {
830 /* make sure r5l_write_super_and_discard_space exits */
831 mddev = log->rdev->mddev;
832 wake_up(&mddev->sb_wait);
833 r5l_wake_reclaim(log, -1L);
834 md_unregister_thread(&log->reclaim_thread);
835 r5l_do_reclaim(log);
839 bool r5l_log_disk_error(struct r5conf *conf)
841 struct r5l_log *log;
842 bool ret;
843 /* don't allow write if journal disk is missing */
844 rcu_read_lock();
845 log = rcu_dereference(conf->log);
847 if (!log)
848 ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
849 else
850 ret = test_bit(Faulty, &log->rdev->flags);
851 rcu_read_unlock();
852 return ret;
855 struct r5l_recovery_ctx {
856 struct page *meta_page; /* current meta */
857 sector_t meta_total_blocks; /* total size of current meta and data */
858 sector_t pos; /* recovery position */
859 u64 seq; /* recovery position seq */
862 static int r5l_read_meta_block(struct r5l_log *log,
863 struct r5l_recovery_ctx *ctx)
865 struct page *page = ctx->meta_page;
866 struct r5l_meta_block *mb;
867 u32 crc, stored_crc;
869 if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, REQ_OP_READ, 0,
870 false))
871 return -EIO;
873 mb = page_address(page);
874 stored_crc = le32_to_cpu(mb->checksum);
875 mb->checksum = 0;
877 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
878 le64_to_cpu(mb->seq) != ctx->seq ||
879 mb->version != R5LOG_VERSION ||
880 le64_to_cpu(mb->position) != ctx->pos)
881 return -EINVAL;
883 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
884 if (stored_crc != crc)
885 return -EINVAL;
887 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
888 return -EINVAL;
890 ctx->meta_total_blocks = BLOCK_SECTORS;
892 return 0;
895 static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
896 struct r5l_recovery_ctx *ctx,
897 sector_t stripe_sect,
898 int *offset, sector_t *log_offset)
900 struct r5conf *conf = log->rdev->mddev->private;
901 struct stripe_head *sh;
902 struct r5l_payload_data_parity *payload;
903 int disk_index;
905 sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
906 while (1) {
907 payload = page_address(ctx->meta_page) + *offset;
909 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
910 raid5_compute_sector(conf,
911 le64_to_cpu(payload->location), 0,
912 &disk_index, sh);
914 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
915 sh->dev[disk_index].page, REQ_OP_READ, 0,
916 false);
917 sh->dev[disk_index].log_checksum =
918 le32_to_cpu(payload->checksum[0]);
919 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
920 ctx->meta_total_blocks += BLOCK_SECTORS;
921 } else {
922 disk_index = sh->pd_idx;
923 sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
924 sh->dev[disk_index].page, REQ_OP_READ, 0,
925 false);
926 sh->dev[disk_index].log_checksum =
927 le32_to_cpu(payload->checksum[0]);
928 set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
930 if (sh->qd_idx >= 0) {
931 disk_index = sh->qd_idx;
932 sync_page_io(log->rdev,
933 r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
934 PAGE_SIZE, sh->dev[disk_index].page,
935 REQ_OP_READ, 0, false);
936 sh->dev[disk_index].log_checksum =
937 le32_to_cpu(payload->checksum[1]);
938 set_bit(R5_Wantwrite,
939 &sh->dev[disk_index].flags);
941 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
944 *log_offset = r5l_ring_add(log, *log_offset,
945 le32_to_cpu(payload->size));
946 *offset += sizeof(struct r5l_payload_data_parity) +
947 sizeof(__le32) *
948 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
949 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
950 break;
953 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
954 void *addr;
955 u32 checksum;
957 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
958 continue;
959 addr = kmap_atomic(sh->dev[disk_index].page);
960 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
961 kunmap_atomic(addr);
962 if (checksum != sh->dev[disk_index].log_checksum)
963 goto error;
966 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
967 struct md_rdev *rdev, *rrdev;
969 if (!test_and_clear_bit(R5_Wantwrite,
970 &sh->dev[disk_index].flags))
971 continue;
973 /* in case device is broken */
974 rdev = rcu_dereference(conf->disks[disk_index].rdev);
975 if (rdev)
976 sync_page_io(rdev, stripe_sect, PAGE_SIZE,
977 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
978 false);
979 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
980 if (rrdev)
981 sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
982 sh->dev[disk_index].page, REQ_OP_WRITE, 0,
983 false);
985 raid5_release_stripe(sh);
986 return 0;
988 error:
989 for (disk_index = 0; disk_index < sh->disks; disk_index++)
990 sh->dev[disk_index].flags = 0;
991 raid5_release_stripe(sh);
992 return -EINVAL;
995 static int r5l_recovery_flush_one_meta(struct r5l_log *log,
996 struct r5l_recovery_ctx *ctx)
998 struct r5conf *conf = log->rdev->mddev->private;
999 struct r5l_payload_data_parity *payload;
1000 struct r5l_meta_block *mb;
1001 int offset;
1002 sector_t log_offset;
1003 sector_t stripe_sector;
1005 mb = page_address(ctx->meta_page);
1006 offset = sizeof(struct r5l_meta_block);
1007 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1009 while (offset < le32_to_cpu(mb->meta_size)) {
1010 int dd;
1012 payload = (void *)mb + offset;
1013 stripe_sector = raid5_compute_sector(conf,
1014 le64_to_cpu(payload->location), 0, &dd, NULL);
1015 if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
1016 &offset, &log_offset))
1017 return -EINVAL;
1019 return 0;
1022 /* copy data/parity from log to raid disks */
1023 static void r5l_recovery_flush_log(struct r5l_log *log,
1024 struct r5l_recovery_ctx *ctx)
1026 while (1) {
1027 if (r5l_read_meta_block(log, ctx))
1028 return;
1029 if (r5l_recovery_flush_one_meta(log, ctx))
1030 return;
1031 ctx->seq++;
1032 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
1036 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1037 u64 seq)
1039 struct page *page;
1040 struct r5l_meta_block *mb;
1041 u32 crc;
1043 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1044 if (!page)
1045 return -ENOMEM;
1046 mb = page_address(page);
1047 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1048 mb->version = R5LOG_VERSION;
1049 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1050 mb->seq = cpu_to_le64(seq);
1051 mb->position = cpu_to_le64(pos);
1052 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1053 mb->checksum = cpu_to_le32(crc);
1055 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1056 WRITE_FUA, false)) {
1057 __free_page(page);
1058 return -EIO;
1060 __free_page(page);
1061 return 0;
1064 static int r5l_recovery_log(struct r5l_log *log)
1066 struct r5l_recovery_ctx ctx;
1068 ctx.pos = log->last_checkpoint;
1069 ctx.seq = log->last_cp_seq;
1070 ctx.meta_page = alloc_page(GFP_KERNEL);
1071 if (!ctx.meta_page)
1072 return -ENOMEM;
1074 r5l_recovery_flush_log(log, &ctx);
1075 __free_page(ctx.meta_page);
1078 * we did a recovery. Now ctx.pos points to an invalid meta block. New
1079 * log will start here. but we can't let superblock point to last valid
1080 * meta block. The log might looks like:
1081 * | meta 1| meta 2| meta 3|
1082 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
1083 * superblock points to meta 1, we write a new valid meta 2n. if crash
1084 * happens again, new recovery will start from meta 1. Since meta 2n is
1085 * valid now, recovery will think meta 3 is valid, which is wrong.
1086 * The solution is we create a new meta in meta2 with its seq == meta
1087 * 1's seq + 10 and let superblock points to meta2. The same recovery will
1088 * not think meta 3 is a valid meta, because its seq doesn't match
1090 if (ctx.seq > log->last_cp_seq + 1) {
1091 int ret;
1093 ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
1094 if (ret)
1095 return ret;
1096 log->seq = ctx.seq + 11;
1097 log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
1098 r5l_write_super(log, ctx.pos);
1099 } else {
1100 log->log_start = ctx.pos;
1101 log->seq = ctx.seq;
1103 return 0;
1106 static void r5l_write_super(struct r5l_log *log, sector_t cp)
1108 struct mddev *mddev = log->rdev->mddev;
1110 log->rdev->journal_tail = cp;
1111 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1114 static int r5l_load_log(struct r5l_log *log)
1116 struct md_rdev *rdev = log->rdev;
1117 struct page *page;
1118 struct r5l_meta_block *mb;
1119 sector_t cp = log->rdev->journal_tail;
1120 u32 stored_crc, expected_crc;
1121 bool create_super = false;
1122 int ret;
1124 /* Make sure it's valid */
1125 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
1126 cp = 0;
1127 page = alloc_page(GFP_KERNEL);
1128 if (!page)
1129 return -ENOMEM;
1131 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
1132 ret = -EIO;
1133 goto ioerr;
1135 mb = page_address(page);
1137 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1138 mb->version != R5LOG_VERSION) {
1139 create_super = true;
1140 goto create;
1142 stored_crc = le32_to_cpu(mb->checksum);
1143 mb->checksum = 0;
1144 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1145 if (stored_crc != expected_crc) {
1146 create_super = true;
1147 goto create;
1149 if (le64_to_cpu(mb->position) != cp) {
1150 create_super = true;
1151 goto create;
1153 create:
1154 if (create_super) {
1155 log->last_cp_seq = prandom_u32();
1156 cp = 0;
1158 * Make sure super points to correct address. Log might have
1159 * data very soon. If super hasn't correct log tail address,
1160 * recovery can't find the log
1162 r5l_write_super(log, cp);
1163 } else
1164 log->last_cp_seq = le64_to_cpu(mb->seq);
1166 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
1167 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
1168 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
1169 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
1170 log->last_checkpoint = cp;
1172 __free_page(page);
1174 return r5l_recovery_log(log);
1175 ioerr:
1176 __free_page(page);
1177 return ret;
1180 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
1182 struct request_queue *q = bdev_get_queue(rdev->bdev);
1183 struct r5l_log *log;
1185 if (PAGE_SIZE != 4096)
1186 return -EINVAL;
1187 log = kzalloc(sizeof(*log), GFP_KERNEL);
1188 if (!log)
1189 return -ENOMEM;
1190 log->rdev = rdev;
1192 log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
1194 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
1195 sizeof(rdev->mddev->uuid));
1197 mutex_init(&log->io_mutex);
1199 spin_lock_init(&log->io_list_lock);
1200 INIT_LIST_HEAD(&log->running_ios);
1201 INIT_LIST_HEAD(&log->io_end_ios);
1202 INIT_LIST_HEAD(&log->flushing_ios);
1203 INIT_LIST_HEAD(&log->finished_ios);
1204 bio_init(&log->flush_bio);
1206 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
1207 if (!log->io_kc)
1208 goto io_kc;
1210 log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
1211 if (!log->io_pool)
1212 goto io_pool;
1214 log->bs = bioset_create(R5L_POOL_SIZE, 0);
1215 if (!log->bs)
1216 goto io_bs;
1218 log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
1219 if (!log->meta_pool)
1220 goto out_mempool;
1222 log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
1223 log->rdev->mddev, "reclaim");
1224 if (!log->reclaim_thread)
1225 goto reclaim_thread;
1226 init_waitqueue_head(&log->iounit_wait);
1228 INIT_LIST_HEAD(&log->no_mem_stripes);
1230 INIT_LIST_HEAD(&log->no_space_stripes);
1231 spin_lock_init(&log->no_space_stripes_lock);
1233 if (r5l_load_log(log))
1234 goto error;
1236 rcu_assign_pointer(conf->log, log);
1237 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1238 return 0;
1240 error:
1241 md_unregister_thread(&log->reclaim_thread);
1242 reclaim_thread:
1243 mempool_destroy(log->meta_pool);
1244 out_mempool:
1245 bioset_free(log->bs);
1246 io_bs:
1247 mempool_destroy(log->io_pool);
1248 io_pool:
1249 kmem_cache_destroy(log->io_kc);
1250 io_kc:
1251 kfree(log);
1252 return -EINVAL;
1255 void r5l_exit_log(struct r5l_log *log)
1257 md_unregister_thread(&log->reclaim_thread);
1258 mempool_destroy(log->meta_pool);
1259 bioset_free(log->bs);
1260 mempool_destroy(log->io_pool);
1261 kmem_cache_destroy(log->io_kc);
1262 kfree(log);