hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / misc / mei / hw-me.c
blob56c2101e80adb2033ed90ab54dbac2a2a36ee886
1 /*
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
17 #include <linux/pci.h>
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21 #include <linux/pm_runtime.h>
23 #include "mei_dev.h"
24 #include "hbm.h"
26 #include "hw-me.h"
27 #include "hw-me-regs.h"
29 #include "mei-trace.h"
31 /**
32 * mei_me_reg_read - Reads 32bit data from the mei device
34 * @hw: the me hardware structure
35 * @offset: offset from which to read the data
37 * Return: register value (u32)
39 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
40 unsigned long offset)
42 return ioread32(hw->mem_addr + offset);
46 /**
47 * mei_me_reg_write - Writes 32bit data to the mei device
49 * @hw: the me hardware structure
50 * @offset: offset from which to write the data
51 * @value: register value to write (u32)
53 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
54 unsigned long offset, u32 value)
56 iowrite32(value, hw->mem_addr + offset);
59 /**
60 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
61 * read window register
63 * @dev: the device structure
65 * Return: ME_CB_RW register value (u32)
67 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
69 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
72 /**
73 * mei_me_hcbww_write - write 32bit data to the host circular buffer
75 * @dev: the device structure
76 * @data: 32bit data to be written to the host circular buffer
78 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
80 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
83 /**
84 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
86 * @dev: the device structure
88 * Return: ME_CSR_HA register value (u32)
90 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
92 u32 reg;
94 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
95 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
97 return reg;
101 * mei_hcsr_read - Reads 32bit data from the host CSR
103 * @dev: the device structure
105 * Return: H_CSR register value (u32)
107 static inline u32 mei_hcsr_read(const struct mei_device *dev)
109 u32 reg;
111 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
112 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
114 return reg;
118 * mei_hcsr_write - writes H_CSR register to the mei device
120 * @dev: the device structure
121 * @reg: new register value
123 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
125 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
126 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
130 * mei_hcsr_set - writes H_CSR register to the mei device,
131 * and ignores the H_IS bit for it is write-one-to-zero.
133 * @dev: the device structure
134 * @reg: new register value
136 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
138 reg &= ~H_CSR_IS_MASK;
139 mei_hcsr_write(dev, reg);
143 * mei_me_d0i3c_read - Reads 32bit data from the D0I3C register
145 * @dev: the device structure
147 * Return: H_D0I3C register value (u32)
149 static inline u32 mei_me_d0i3c_read(const struct mei_device *dev)
151 u32 reg;
153 reg = mei_me_reg_read(to_me_hw(dev), H_D0I3C);
154 trace_mei_reg_read(dev->dev, "H_D0I3C", H_D0I3C, reg);
156 return reg;
160 * mei_me_d0i3c_write - writes H_D0I3C register to device
162 * @dev: the device structure
163 * @reg: new register value
165 static inline void mei_me_d0i3c_write(struct mei_device *dev, u32 reg)
167 trace_mei_reg_write(dev->dev, "H_D0I3C", H_D0I3C, reg);
168 mei_me_reg_write(to_me_hw(dev), H_D0I3C, reg);
172 * mei_me_fw_status - read fw status register from pci config space
174 * @dev: mei device
175 * @fw_status: fw status register values
177 * Return: 0 on success, error otherwise
179 static int mei_me_fw_status(struct mei_device *dev,
180 struct mei_fw_status *fw_status)
182 struct pci_dev *pdev = to_pci_dev(dev->dev);
183 struct mei_me_hw *hw = to_me_hw(dev);
184 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
185 int ret;
186 int i;
188 if (!fw_status)
189 return -EINVAL;
191 fw_status->count = fw_src->count;
192 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
193 ret = pci_read_config_dword(pdev, fw_src->status[i],
194 &fw_status->status[i]);
195 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
196 fw_src->status[i],
197 fw_status->status[i]);
198 if (ret)
199 return ret;
202 return 0;
206 * mei_me_hw_config - configure hw dependent settings
208 * @dev: mei device
210 static void mei_me_hw_config(struct mei_device *dev)
212 struct pci_dev *pdev = to_pci_dev(dev->dev);
213 struct mei_me_hw *hw = to_me_hw(dev);
214 u32 hcsr, reg;
216 /* Doesn't change in runtime */
217 hcsr = mei_hcsr_read(dev);
218 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
220 reg = 0;
221 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
222 trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
223 hw->d0i3_supported =
224 ((reg & PCI_CFG_HFS_1_D0I3_MSK) == PCI_CFG_HFS_1_D0I3_MSK);
226 hw->pg_state = MEI_PG_OFF;
227 if (hw->d0i3_supported) {
228 reg = mei_me_d0i3c_read(dev);
229 if (reg & H_D0I3C_I3)
230 hw->pg_state = MEI_PG_ON;
235 * mei_me_pg_state - translate internal pg state
236 * to the mei power gating state
238 * @dev: mei device
240 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
242 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
244 struct mei_me_hw *hw = to_me_hw(dev);
246 return hw->pg_state;
250 * mei_me_intr_clear - clear and stop interrupts
252 * @dev: the device structure
254 static void mei_me_intr_clear(struct mei_device *dev)
256 u32 hcsr = mei_hcsr_read(dev);
258 if (hcsr & H_CSR_IS_MASK)
259 mei_hcsr_write(dev, hcsr);
262 * mei_me_intr_enable - enables mei device interrupts
264 * @dev: the device structure
266 static void mei_me_intr_enable(struct mei_device *dev)
268 u32 hcsr = mei_hcsr_read(dev);
270 hcsr |= H_CSR_IE_MASK;
271 mei_hcsr_set(dev, hcsr);
275 * mei_me_intr_disable - disables mei device interrupts
277 * @dev: the device structure
279 static void mei_me_intr_disable(struct mei_device *dev)
281 u32 hcsr = mei_hcsr_read(dev);
283 hcsr &= ~H_CSR_IE_MASK;
284 mei_hcsr_set(dev, hcsr);
288 * mei_me_hw_reset_release - release device from the reset
290 * @dev: the device structure
292 static void mei_me_hw_reset_release(struct mei_device *dev)
294 u32 hcsr = mei_hcsr_read(dev);
296 hcsr |= H_IG;
297 hcsr &= ~H_RST;
298 mei_hcsr_set(dev, hcsr);
300 /* complete this write before we set host ready on another CPU */
301 mmiowb();
305 * mei_me_host_set_ready - enable device
307 * @dev: mei device
309 static void mei_me_host_set_ready(struct mei_device *dev)
311 u32 hcsr = mei_hcsr_read(dev);
313 hcsr |= H_CSR_IE_MASK | H_IG | H_RDY;
314 mei_hcsr_set(dev, hcsr);
318 * mei_me_host_is_ready - check whether the host has turned ready
320 * @dev: mei device
321 * Return: bool
323 static bool mei_me_host_is_ready(struct mei_device *dev)
325 u32 hcsr = mei_hcsr_read(dev);
327 return (hcsr & H_RDY) == H_RDY;
331 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
333 * @dev: mei device
334 * Return: bool
336 static bool mei_me_hw_is_ready(struct mei_device *dev)
338 u32 mecsr = mei_me_mecsr_read(dev);
340 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
344 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
345 * or timeout is reached
347 * @dev: mei device
348 * Return: 0 on success, error otherwise
350 static int mei_me_hw_ready_wait(struct mei_device *dev)
352 mutex_unlock(&dev->device_lock);
353 wait_event_timeout(dev->wait_hw_ready,
354 dev->recvd_hw_ready,
355 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
356 mutex_lock(&dev->device_lock);
357 if (!dev->recvd_hw_ready) {
358 dev_err(dev->dev, "wait hw ready failed\n");
359 return -ETIME;
362 mei_me_hw_reset_release(dev);
363 dev->recvd_hw_ready = false;
364 return 0;
368 * mei_me_hw_start - hw start routine
370 * @dev: mei device
371 * Return: 0 on success, error otherwise
373 static int mei_me_hw_start(struct mei_device *dev)
375 int ret = mei_me_hw_ready_wait(dev);
377 if (ret)
378 return ret;
379 dev_dbg(dev->dev, "hw is ready\n");
381 mei_me_host_set_ready(dev);
382 return ret;
387 * mei_hbuf_filled_slots - gets number of device filled buffer slots
389 * @dev: the device structure
391 * Return: number of filled slots
393 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
395 u32 hcsr;
396 char read_ptr, write_ptr;
398 hcsr = mei_hcsr_read(dev);
400 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
401 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
403 return (unsigned char) (write_ptr - read_ptr);
407 * mei_me_hbuf_is_empty - checks if host buffer is empty.
409 * @dev: the device structure
411 * Return: true if empty, false - otherwise.
413 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
415 return mei_hbuf_filled_slots(dev) == 0;
419 * mei_me_hbuf_empty_slots - counts write empty slots.
421 * @dev: the device structure
423 * Return: -EOVERFLOW if overflow, otherwise empty slots count
425 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
427 unsigned char filled_slots, empty_slots;
429 filled_slots = mei_hbuf_filled_slots(dev);
430 empty_slots = dev->hbuf_depth - filled_slots;
432 /* check for overflow */
433 if (filled_slots > dev->hbuf_depth)
434 return -EOVERFLOW;
436 return empty_slots;
440 * mei_me_hbuf_max_len - returns size of hw buffer.
442 * @dev: the device structure
444 * Return: size of hw buffer in bytes
446 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
448 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
453 * mei_me_write_message - writes a message to mei device.
455 * @dev: the device structure
456 * @header: mei HECI header of message
457 * @buf: message payload will be written
459 * Return: -EIO if write has failed
461 static int mei_me_write_message(struct mei_device *dev,
462 struct mei_msg_hdr *header,
463 unsigned char *buf)
465 unsigned long rem;
466 unsigned long length = header->length;
467 u32 *reg_buf = (u32 *)buf;
468 u32 hcsr;
469 u32 dw_cnt;
470 int i;
471 int empty_slots;
473 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
475 empty_slots = mei_hbuf_empty_slots(dev);
476 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
478 dw_cnt = mei_data2slots(length);
479 if (empty_slots < 0 || dw_cnt > empty_slots)
480 return -EMSGSIZE;
482 mei_me_hcbww_write(dev, *((u32 *) header));
484 for (i = 0; i < length / 4; i++)
485 mei_me_hcbww_write(dev, reg_buf[i]);
487 rem = length & 0x3;
488 if (rem > 0) {
489 u32 reg = 0;
491 memcpy(&reg, &buf[length - rem], rem);
492 mei_me_hcbww_write(dev, reg);
495 hcsr = mei_hcsr_read(dev) | H_IG;
496 mei_hcsr_set(dev, hcsr);
497 if (!mei_me_hw_is_ready(dev))
498 return -EIO;
500 return 0;
504 * mei_me_count_full_read_slots - counts read full slots.
506 * @dev: the device structure
508 * Return: -EOVERFLOW if overflow, otherwise filled slots count
510 static int mei_me_count_full_read_slots(struct mei_device *dev)
512 u32 me_csr;
513 char read_ptr, write_ptr;
514 unsigned char buffer_depth, filled_slots;
516 me_csr = mei_me_mecsr_read(dev);
517 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
518 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
519 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
520 filled_slots = (unsigned char) (write_ptr - read_ptr);
522 /* check for overflow */
523 if (filled_slots > buffer_depth)
524 return -EOVERFLOW;
526 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
527 return (int)filled_slots;
531 * mei_me_read_slots - reads a message from mei device.
533 * @dev: the device structure
534 * @buffer: message buffer will be written
535 * @buffer_length: message size will be read
537 * Return: always 0
539 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
540 unsigned long buffer_length)
542 u32 *reg_buf = (u32 *)buffer;
543 u32 hcsr;
545 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
546 *reg_buf++ = mei_me_mecbrw_read(dev);
548 if (buffer_length > 0) {
549 u32 reg = mei_me_mecbrw_read(dev);
551 memcpy(reg_buf, &reg, buffer_length);
554 hcsr = mei_hcsr_read(dev) | H_IG;
555 mei_hcsr_set(dev, hcsr);
556 return 0;
560 * mei_me_pg_set - write pg enter register
562 * @dev: the device structure
564 static void mei_me_pg_set(struct mei_device *dev)
566 struct mei_me_hw *hw = to_me_hw(dev);
567 u32 reg;
569 reg = mei_me_reg_read(hw, H_HPG_CSR);
570 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
572 reg |= H_HPG_CSR_PGI;
574 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
575 mei_me_reg_write(hw, H_HPG_CSR, reg);
579 * mei_me_pg_unset - write pg exit register
581 * @dev: the device structure
583 static void mei_me_pg_unset(struct mei_device *dev)
585 struct mei_me_hw *hw = to_me_hw(dev);
586 u32 reg;
588 reg = mei_me_reg_read(hw, H_HPG_CSR);
589 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
591 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
593 reg |= H_HPG_CSR_PGIHEXR;
595 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
596 mei_me_reg_write(hw, H_HPG_CSR, reg);
600 * mei_me_pg_legacy_enter_sync - perform legacy pg entry procedure
602 * @dev: the device structure
604 * Return: 0 on success an error code otherwise
606 static int mei_me_pg_legacy_enter_sync(struct mei_device *dev)
608 struct mei_me_hw *hw = to_me_hw(dev);
609 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
610 int ret;
612 dev->pg_event = MEI_PG_EVENT_WAIT;
614 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
615 if (ret)
616 return ret;
618 mutex_unlock(&dev->device_lock);
619 wait_event_timeout(dev->wait_pg,
620 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
621 mutex_lock(&dev->device_lock);
623 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
624 mei_me_pg_set(dev);
625 ret = 0;
626 } else {
627 ret = -ETIME;
630 dev->pg_event = MEI_PG_EVENT_IDLE;
631 hw->pg_state = MEI_PG_ON;
633 return ret;
637 * mei_me_pg_legacy_exit_sync - perform legacy pg exit procedure
639 * @dev: the device structure
641 * Return: 0 on success an error code otherwise
643 static int mei_me_pg_legacy_exit_sync(struct mei_device *dev)
645 struct mei_me_hw *hw = to_me_hw(dev);
646 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
647 int ret;
649 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
650 goto reply;
652 dev->pg_event = MEI_PG_EVENT_WAIT;
654 mei_me_pg_unset(dev);
656 mutex_unlock(&dev->device_lock);
657 wait_event_timeout(dev->wait_pg,
658 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
659 mutex_lock(&dev->device_lock);
661 reply:
662 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
663 ret = -ETIME;
664 goto out;
667 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
668 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
669 if (ret)
670 return ret;
672 mutex_unlock(&dev->device_lock);
673 wait_event_timeout(dev->wait_pg,
674 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
675 mutex_lock(&dev->device_lock);
677 if (dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED)
678 ret = 0;
679 else
680 ret = -ETIME;
682 out:
683 dev->pg_event = MEI_PG_EVENT_IDLE;
684 hw->pg_state = MEI_PG_OFF;
686 return ret;
690 * mei_me_pg_in_transition - is device now in pg transition
692 * @dev: the device structure
694 * Return: true if in pg transition, false otherwise
696 static bool mei_me_pg_in_transition(struct mei_device *dev)
698 return dev->pg_event >= MEI_PG_EVENT_WAIT &&
699 dev->pg_event <= MEI_PG_EVENT_INTR_WAIT;
703 * mei_me_pg_is_enabled - detect if PG is supported by HW
705 * @dev: the device structure
707 * Return: true is pg supported, false otherwise
709 static bool mei_me_pg_is_enabled(struct mei_device *dev)
711 struct mei_me_hw *hw = to_me_hw(dev);
712 u32 reg = mei_me_mecsr_read(dev);
714 if (hw->d0i3_supported)
715 return true;
717 if ((reg & ME_PGIC_HRA) == 0)
718 goto notsupported;
720 if (!dev->hbm_f_pg_supported)
721 goto notsupported;
723 return true;
725 notsupported:
726 dev_dbg(dev->dev, "pg: not supported: d0i3 = %d HGP = %d hbm version %d.%d ?= %d.%d\n",
727 hw->d0i3_supported,
728 !!(reg & ME_PGIC_HRA),
729 dev->version.major_version,
730 dev->version.minor_version,
731 HBM_MAJOR_VERSION_PGI,
732 HBM_MINOR_VERSION_PGI);
734 return false;
738 * mei_me_d0i3_set - write d0i3 register bit on mei device.
740 * @dev: the device structure
741 * @intr: ask for interrupt
743 * Return: D0I3C register value
745 static u32 mei_me_d0i3_set(struct mei_device *dev, bool intr)
747 u32 reg = mei_me_d0i3c_read(dev);
749 reg |= H_D0I3C_I3;
750 if (intr)
751 reg |= H_D0I3C_IR;
752 else
753 reg &= ~H_D0I3C_IR;
754 mei_me_d0i3c_write(dev, reg);
755 /* read it to ensure HW consistency */
756 reg = mei_me_d0i3c_read(dev);
757 return reg;
761 * mei_me_d0i3_unset - clean d0i3 register bit on mei device.
763 * @dev: the device structure
765 * Return: D0I3C register value
767 static u32 mei_me_d0i3_unset(struct mei_device *dev)
769 u32 reg = mei_me_d0i3c_read(dev);
771 reg &= ~H_D0I3C_I3;
772 reg |= H_D0I3C_IR;
773 mei_me_d0i3c_write(dev, reg);
774 /* read it to ensure HW consistency */
775 reg = mei_me_d0i3c_read(dev);
776 return reg;
780 * mei_me_d0i3_enter_sync - perform d0i3 entry procedure
782 * @dev: the device structure
784 * Return: 0 on success an error code otherwise
786 static int mei_me_d0i3_enter_sync(struct mei_device *dev)
788 struct mei_me_hw *hw = to_me_hw(dev);
789 unsigned long d0i3_timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
790 unsigned long pgi_timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
791 int ret;
792 u32 reg;
794 reg = mei_me_d0i3c_read(dev);
795 if (reg & H_D0I3C_I3) {
796 /* we are in d0i3, nothing to do */
797 dev_dbg(dev->dev, "d0i3 set not needed\n");
798 ret = 0;
799 goto on;
802 /* PGI entry procedure */
803 dev->pg_event = MEI_PG_EVENT_WAIT;
805 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
806 if (ret)
807 /* FIXME: should we reset here? */
808 goto out;
810 mutex_unlock(&dev->device_lock);
811 wait_event_timeout(dev->wait_pg,
812 dev->pg_event == MEI_PG_EVENT_RECEIVED, pgi_timeout);
813 mutex_lock(&dev->device_lock);
815 if (dev->pg_event != MEI_PG_EVENT_RECEIVED) {
816 ret = -ETIME;
817 goto out;
819 /* end PGI entry procedure */
821 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
823 reg = mei_me_d0i3_set(dev, true);
824 if (!(reg & H_D0I3C_CIP)) {
825 dev_dbg(dev->dev, "d0i3 enter wait not needed\n");
826 ret = 0;
827 goto on;
830 mutex_unlock(&dev->device_lock);
831 wait_event_timeout(dev->wait_pg,
832 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, d0i3_timeout);
833 mutex_lock(&dev->device_lock);
835 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
836 reg = mei_me_d0i3c_read(dev);
837 if (!(reg & H_D0I3C_I3)) {
838 ret = -ETIME;
839 goto out;
843 ret = 0;
845 hw->pg_state = MEI_PG_ON;
846 out:
847 dev->pg_event = MEI_PG_EVENT_IDLE;
848 dev_dbg(dev->dev, "d0i3 enter ret = %d\n", ret);
849 return ret;
853 * mei_me_d0i3_enter - perform d0i3 entry procedure
854 * no hbm PG handshake
855 * no waiting for confirmation; runs with interrupts
856 * disabled
858 * @dev: the device structure
860 * Return: 0 on success an error code otherwise
862 static int mei_me_d0i3_enter(struct mei_device *dev)
864 struct mei_me_hw *hw = to_me_hw(dev);
865 u32 reg;
867 reg = mei_me_d0i3c_read(dev);
868 if (reg & H_D0I3C_I3) {
869 /* we are in d0i3, nothing to do */
870 dev_dbg(dev->dev, "already d0i3 : set not needed\n");
871 goto on;
874 mei_me_d0i3_set(dev, false);
876 hw->pg_state = MEI_PG_ON;
877 dev->pg_event = MEI_PG_EVENT_IDLE;
878 dev_dbg(dev->dev, "d0i3 enter\n");
879 return 0;
883 * mei_me_d0i3_exit_sync - perform d0i3 exit procedure
885 * @dev: the device structure
887 * Return: 0 on success an error code otherwise
889 static int mei_me_d0i3_exit_sync(struct mei_device *dev)
891 struct mei_me_hw *hw = to_me_hw(dev);
892 unsigned long timeout = mei_secs_to_jiffies(MEI_D0I3_TIMEOUT);
893 int ret;
894 u32 reg;
896 dev->pg_event = MEI_PG_EVENT_INTR_WAIT;
898 reg = mei_me_d0i3c_read(dev);
899 if (!(reg & H_D0I3C_I3)) {
900 /* we are not in d0i3, nothing to do */
901 dev_dbg(dev->dev, "d0i3 exit not needed\n");
902 ret = 0;
903 goto off;
906 reg = mei_me_d0i3_unset(dev);
907 if (!(reg & H_D0I3C_CIP)) {
908 dev_dbg(dev->dev, "d0i3 exit wait not needed\n");
909 ret = 0;
910 goto off;
913 mutex_unlock(&dev->device_lock);
914 wait_event_timeout(dev->wait_pg,
915 dev->pg_event == MEI_PG_EVENT_INTR_RECEIVED, timeout);
916 mutex_lock(&dev->device_lock);
918 if (dev->pg_event != MEI_PG_EVENT_INTR_RECEIVED) {
919 reg = mei_me_d0i3c_read(dev);
920 if (reg & H_D0I3C_I3) {
921 ret = -ETIME;
922 goto out;
926 ret = 0;
927 off:
928 hw->pg_state = MEI_PG_OFF;
929 out:
930 dev->pg_event = MEI_PG_EVENT_IDLE;
932 dev_dbg(dev->dev, "d0i3 exit ret = %d\n", ret);
933 return ret;
937 * mei_me_pg_legacy_intr - perform legacy pg processing
938 * in interrupt thread handler
940 * @dev: the device structure
942 static void mei_me_pg_legacy_intr(struct mei_device *dev)
944 struct mei_me_hw *hw = to_me_hw(dev);
946 if (dev->pg_event != MEI_PG_EVENT_INTR_WAIT)
947 return;
949 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
950 hw->pg_state = MEI_PG_OFF;
951 if (waitqueue_active(&dev->wait_pg))
952 wake_up(&dev->wait_pg);
956 * mei_me_d0i3_intr - perform d0i3 processing in interrupt thread handler
958 * @dev: the device structure
960 static void mei_me_d0i3_intr(struct mei_device *dev)
962 struct mei_me_hw *hw = to_me_hw(dev);
964 if (dev->pg_event == MEI_PG_EVENT_INTR_WAIT &&
965 (hw->intr_source & H_D0I3C_IS)) {
966 dev->pg_event = MEI_PG_EVENT_INTR_RECEIVED;
967 if (hw->pg_state == MEI_PG_ON) {
968 hw->pg_state = MEI_PG_OFF;
969 if (dev->hbm_state != MEI_HBM_IDLE) {
971 * force H_RDY because it could be
972 * wiped off during PG
974 dev_dbg(dev->dev, "d0i3 set host ready\n");
975 mei_me_host_set_ready(dev);
977 } else {
978 hw->pg_state = MEI_PG_ON;
981 wake_up(&dev->wait_pg);
984 if (hw->pg_state == MEI_PG_ON && (hw->intr_source & H_IS)) {
986 * HW sent some data and we are in D0i3, so
987 * we got here because of HW initiated exit from D0i3.
988 * Start runtime pm resume sequence to exit low power state.
990 dev_dbg(dev->dev, "d0i3 want resume\n");
991 mei_hbm_pg_resume(dev);
996 * mei_me_pg_intr - perform pg processing in interrupt thread handler
998 * @dev: the device structure
1000 static void mei_me_pg_intr(struct mei_device *dev)
1002 struct mei_me_hw *hw = to_me_hw(dev);
1004 if (hw->d0i3_supported)
1005 mei_me_d0i3_intr(dev);
1006 else
1007 mei_me_pg_legacy_intr(dev);
1011 * mei_me_pg_enter_sync - perform runtime pm entry procedure
1013 * @dev: the device structure
1015 * Return: 0 on success an error code otherwise
1017 int mei_me_pg_enter_sync(struct mei_device *dev)
1019 struct mei_me_hw *hw = to_me_hw(dev);
1021 if (hw->d0i3_supported)
1022 return mei_me_d0i3_enter_sync(dev);
1023 else
1024 return mei_me_pg_legacy_enter_sync(dev);
1028 * mei_me_pg_exit_sync - perform runtime pm exit procedure
1030 * @dev: the device structure
1032 * Return: 0 on success an error code otherwise
1034 int mei_me_pg_exit_sync(struct mei_device *dev)
1036 struct mei_me_hw *hw = to_me_hw(dev);
1038 if (hw->d0i3_supported)
1039 return mei_me_d0i3_exit_sync(dev);
1040 else
1041 return mei_me_pg_legacy_exit_sync(dev);
1045 * mei_me_hw_reset - resets fw via mei csr register.
1047 * @dev: the device structure
1048 * @intr_enable: if interrupt should be enabled after reset.
1050 * Return: 0 on success an error code otherwise
1052 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
1054 struct mei_me_hw *hw = to_me_hw(dev);
1055 int ret;
1056 u32 hcsr;
1058 if (intr_enable) {
1059 mei_me_intr_enable(dev);
1060 if (hw->d0i3_supported) {
1061 ret = mei_me_d0i3_exit_sync(dev);
1062 if (ret)
1063 return ret;
1067 pm_runtime_set_active(dev->dev);
1069 hcsr = mei_hcsr_read(dev);
1070 /* H_RST may be found lit before reset is started,
1071 * for example if preceding reset flow hasn't completed.
1072 * In that case asserting H_RST will be ignored, therefore
1073 * we need to clean H_RST bit to start a successful reset sequence.
1075 if ((hcsr & H_RST) == H_RST) {
1076 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
1077 hcsr &= ~H_RST;
1078 mei_hcsr_set(dev, hcsr);
1079 hcsr = mei_hcsr_read(dev);
1082 hcsr |= H_RST | H_IG | H_CSR_IS_MASK;
1084 if (!intr_enable)
1085 hcsr &= ~H_CSR_IE_MASK;
1087 dev->recvd_hw_ready = false;
1088 mei_hcsr_write(dev, hcsr);
1091 * Host reads the H_CSR once to ensure that the
1092 * posted write to H_CSR completes.
1094 hcsr = mei_hcsr_read(dev);
1096 if ((hcsr & H_RST) == 0)
1097 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
1099 if ((hcsr & H_RDY) == H_RDY)
1100 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
1102 if (!intr_enable) {
1103 mei_me_hw_reset_release(dev);
1104 if (hw->d0i3_supported) {
1105 ret = mei_me_d0i3_enter(dev);
1106 if (ret)
1107 return ret;
1110 return 0;
1114 * mei_me_irq_quick_handler - The ISR of the MEI device
1116 * @irq: The irq number
1117 * @dev_id: pointer to the device structure
1119 * Return: irqreturn_t
1121 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
1123 struct mei_device *dev = (struct mei_device *)dev_id;
1124 struct mei_me_hw *hw = to_me_hw(dev);
1125 u32 hcsr;
1127 hcsr = mei_hcsr_read(dev);
1128 if (!(hcsr & H_CSR_IS_MASK))
1129 return IRQ_NONE;
1131 hw->intr_source = hcsr & H_CSR_IS_MASK;
1132 dev_dbg(dev->dev, "interrupt source 0x%08X.\n", hw->intr_source);
1134 /* clear H_IS and H_D0I3C_IS bits in H_CSR to clear the interrupts */
1135 mei_hcsr_write(dev, hcsr);
1137 return IRQ_WAKE_THREAD;
1141 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
1142 * processing.
1144 * @irq: The irq number
1145 * @dev_id: pointer to the device structure
1147 * Return: irqreturn_t
1150 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
1152 struct mei_device *dev = (struct mei_device *) dev_id;
1153 struct mei_cl_cb complete_list;
1154 s32 slots;
1155 int rets = 0;
1157 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
1158 /* initialize our complete list */
1159 mutex_lock(&dev->device_lock);
1160 mei_io_list_init(&complete_list);
1162 /* check if ME wants a reset */
1163 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
1164 dev_warn(dev->dev, "FW not ready: resetting.\n");
1165 schedule_work(&dev->reset_work);
1166 goto end;
1169 mei_me_pg_intr(dev);
1171 /* check if we need to start the dev */
1172 if (!mei_host_is_ready(dev)) {
1173 if (mei_hw_is_ready(dev)) {
1174 dev_dbg(dev->dev, "we need to start the dev.\n");
1175 dev->recvd_hw_ready = true;
1176 wake_up(&dev->wait_hw_ready);
1177 } else {
1178 dev_dbg(dev->dev, "Spurious Interrupt\n");
1180 goto end;
1182 /* check slots available for reading */
1183 slots = mei_count_full_read_slots(dev);
1184 while (slots > 0) {
1185 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
1186 rets = mei_irq_read_handler(dev, &complete_list, &slots);
1187 /* There is a race between ME write and interrupt delivery:
1188 * Not all data is always available immediately after the
1189 * interrupt, so try to read again on the next interrupt.
1191 if (rets == -ENODATA)
1192 break;
1194 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1195 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
1196 rets);
1197 schedule_work(&dev->reset_work);
1198 goto end;
1202 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1205 * During PG handshake only allowed write is the replay to the
1206 * PG exit message, so block calling write function
1207 * if the pg event is in PG handshake
1209 if (dev->pg_event != MEI_PG_EVENT_WAIT &&
1210 dev->pg_event != MEI_PG_EVENT_RECEIVED) {
1211 rets = mei_irq_write_handler(dev, &complete_list);
1212 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1215 mei_irq_compl_handler(dev, &complete_list);
1217 end:
1218 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1219 mutex_unlock(&dev->device_lock);
1220 return IRQ_HANDLED;
1223 static const struct mei_hw_ops mei_me_hw_ops = {
1225 .fw_status = mei_me_fw_status,
1226 .pg_state = mei_me_pg_state,
1228 .host_is_ready = mei_me_host_is_ready,
1230 .hw_is_ready = mei_me_hw_is_ready,
1231 .hw_reset = mei_me_hw_reset,
1232 .hw_config = mei_me_hw_config,
1233 .hw_start = mei_me_hw_start,
1235 .pg_in_transition = mei_me_pg_in_transition,
1236 .pg_is_enabled = mei_me_pg_is_enabled,
1238 .intr_clear = mei_me_intr_clear,
1239 .intr_enable = mei_me_intr_enable,
1240 .intr_disable = mei_me_intr_disable,
1242 .hbuf_free_slots = mei_me_hbuf_empty_slots,
1243 .hbuf_is_ready = mei_me_hbuf_is_empty,
1244 .hbuf_max_len = mei_me_hbuf_max_len,
1246 .write = mei_me_write_message,
1248 .rdbuf_full_slots = mei_me_count_full_read_slots,
1249 .read_hdr = mei_me_mecbrw_read,
1250 .read = mei_me_read_slots
1253 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
1255 u32 reg;
1257 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
1258 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_2", PCI_CFG_HFS_2, reg);
1259 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
1260 return (reg & 0x600) == 0x200;
1263 #define MEI_CFG_FW_NM \
1264 .quirk_probe = mei_me_fw_type_nm
1266 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
1268 u32 reg;
1269 unsigned int devfn;
1272 * Read ME FW Status register to check for SPS Firmware
1273 * The SPS FW is only signaled in pci function 0
1275 devfn = PCI_DEVFN(PCI_SLOT(pdev->devfn), 0);
1276 pci_bus_read_config_dword(pdev->bus, devfn, PCI_CFG_HFS_1, &reg);
1277 trace_mei_pci_cfg_read(&pdev->dev, "PCI_CFG_HFS_1", PCI_CFG_HFS_1, reg);
1278 /* if bits [19:16] = 15, running SPS Firmware */
1279 return (reg & 0xf0000) == 0xf0000;
1282 #define MEI_CFG_FW_SPS \
1283 .quirk_probe = mei_me_fw_type_sps
1286 #define MEI_CFG_LEGACY_HFS \
1287 .fw_status.count = 0
1289 #define MEI_CFG_ICH_HFS \
1290 .fw_status.count = 1, \
1291 .fw_status.status[0] = PCI_CFG_HFS_1
1293 #define MEI_CFG_PCH_HFS \
1294 .fw_status.count = 2, \
1295 .fw_status.status[0] = PCI_CFG_HFS_1, \
1296 .fw_status.status[1] = PCI_CFG_HFS_2
1298 #define MEI_CFG_PCH8_HFS \
1299 .fw_status.count = 6, \
1300 .fw_status.status[0] = PCI_CFG_HFS_1, \
1301 .fw_status.status[1] = PCI_CFG_HFS_2, \
1302 .fw_status.status[2] = PCI_CFG_HFS_3, \
1303 .fw_status.status[3] = PCI_CFG_HFS_4, \
1304 .fw_status.status[4] = PCI_CFG_HFS_5, \
1305 .fw_status.status[5] = PCI_CFG_HFS_6
1307 /* ICH Legacy devices */
1308 const struct mei_cfg mei_me_legacy_cfg = {
1309 MEI_CFG_LEGACY_HFS,
1312 /* ICH devices */
1313 const struct mei_cfg mei_me_ich_cfg = {
1314 MEI_CFG_ICH_HFS,
1317 /* PCH devices */
1318 const struct mei_cfg mei_me_pch_cfg = {
1319 MEI_CFG_PCH_HFS,
1323 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
1324 const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
1325 MEI_CFG_PCH_HFS,
1326 MEI_CFG_FW_NM,
1329 /* PCH8 Lynx Point and newer devices */
1330 const struct mei_cfg mei_me_pch8_cfg = {
1331 MEI_CFG_PCH8_HFS,
1334 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
1335 const struct mei_cfg mei_me_pch8_sps_cfg = {
1336 MEI_CFG_PCH8_HFS,
1337 MEI_CFG_FW_SPS,
1341 * mei_me_dev_init - allocates and initializes the mei device structure
1343 * @pdev: The pci device structure
1344 * @cfg: per device generation config
1346 * Return: The mei_device_device pointer on success, NULL on failure.
1348 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
1349 const struct mei_cfg *cfg)
1351 struct mei_device *dev;
1352 struct mei_me_hw *hw;
1354 dev = kzalloc(sizeof(struct mei_device) +
1355 sizeof(struct mei_me_hw), GFP_KERNEL);
1356 if (!dev)
1357 return NULL;
1358 hw = to_me_hw(dev);
1360 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
1361 hw->cfg = cfg;
1362 return dev;