3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
17 #include <linux/pci.h>
18 #include <linux/jiffies.h>
19 #include <linux/ktime.h>
20 #include <linux/delay.h>
21 #include <linux/kthread.h>
22 #include <linux/irqreturn.h>
23 #include <linux/pm_runtime.h>
25 #include <linux/mei.h>
32 #include "mei-trace.h"
36 * mei_txe_reg_read - Reads 32bit data from the txe device
38 * @base_addr: registers base address
39 * @offset: register offset
41 * Return: register value
43 static inline u32
mei_txe_reg_read(void __iomem
*base_addr
,
46 return ioread32(base_addr
+ offset
);
50 * mei_txe_reg_write - Writes 32bit data to the txe device
52 * @base_addr: registers base address
53 * @offset: register offset
54 * @value: the value to write
56 static inline void mei_txe_reg_write(void __iomem
*base_addr
,
57 unsigned long offset
, u32 value
)
59 iowrite32(value
, base_addr
+ offset
);
63 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
65 * @hw: the txe hardware structure
66 * @offset: register offset
68 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
70 * Return: register value
72 static inline u32
mei_txe_sec_reg_read_silent(struct mei_txe_hw
*hw
,
75 return mei_txe_reg_read(hw
->mem_addr
[SEC_BAR
], offset
);
79 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
81 * @hw: the txe hardware structure
82 * @offset: register offset
84 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
86 * Return: register value
88 static inline u32
mei_txe_sec_reg_read(struct mei_txe_hw
*hw
,
91 WARN(!hw
->aliveness
, "sec read: aliveness not asserted\n");
92 return mei_txe_sec_reg_read_silent(hw
, offset
);
95 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
96 * doesn't check for aliveness
98 * @hw: the txe hardware structure
99 * @offset: register offset
100 * @value: value to write
102 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
104 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw
*hw
,
105 unsigned long offset
, u32 value
)
107 mei_txe_reg_write(hw
->mem_addr
[SEC_BAR
], offset
, value
);
111 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
113 * @hw: the txe hardware structure
114 * @offset: register offset
115 * @value: value to write
117 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
119 static inline void mei_txe_sec_reg_write(struct mei_txe_hw
*hw
,
120 unsigned long offset
, u32 value
)
122 WARN(!hw
->aliveness
, "sec write: aliveness not asserted\n");
123 mei_txe_sec_reg_write_silent(hw
, offset
, value
);
126 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
128 * @hw: the txe hardware structure
129 * @offset: offset from which to read the data
131 * Return: the byte read.
133 static inline u32
mei_txe_br_reg_read(struct mei_txe_hw
*hw
,
134 unsigned long offset
)
136 return mei_txe_reg_read(hw
->mem_addr
[BRIDGE_BAR
], offset
);
140 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
142 * @hw: the txe hardware structure
143 * @offset: offset from which to write the data
144 * @value: the byte to write
146 static inline void mei_txe_br_reg_write(struct mei_txe_hw
*hw
,
147 unsigned long offset
, u32 value
)
149 mei_txe_reg_write(hw
->mem_addr
[BRIDGE_BAR
], offset
, value
);
153 * mei_txe_aliveness_set - request for aliveness change
155 * @dev: the device structure
156 * @req: requested aliveness value
158 * Request for aliveness change and returns true if the change is
159 * really needed and false if aliveness is already
160 * in the requested state
162 * Locking: called under "dev->device_lock" lock
164 * Return: true if request was send
166 static bool mei_txe_aliveness_set(struct mei_device
*dev
, u32 req
)
169 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
170 bool do_req
= hw
->aliveness
!= req
;
172 dev_dbg(dev
->dev
, "Aliveness current=%d request=%d\n",
175 dev
->pg_event
= MEI_PG_EVENT_WAIT
;
176 mei_txe_br_reg_write(hw
, SICR_HOST_ALIVENESS_REQ_REG
, req
);
183 * mei_txe_aliveness_req_get - get aliveness requested register value
185 * @dev: the device structure
187 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
188 * from HICR_HOST_ALIVENESS_REQ register value
190 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
192 static u32
mei_txe_aliveness_req_get(struct mei_device
*dev
)
194 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
197 reg
= mei_txe_br_reg_read(hw
, SICR_HOST_ALIVENESS_REQ_REG
);
198 return reg
& SICR_HOST_ALIVENESS_REQ_REQUESTED
;
202 * mei_txe_aliveness_get - get aliveness response register value
204 * @dev: the device structure
206 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
209 static u32
mei_txe_aliveness_get(struct mei_device
*dev
)
211 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
214 reg
= mei_txe_br_reg_read(hw
, HICR_HOST_ALIVENESS_RESP_REG
);
215 return reg
& HICR_HOST_ALIVENESS_RESP_ACK
;
219 * mei_txe_aliveness_poll - waits for aliveness to settle
221 * @dev: the device structure
222 * @expected: expected aliveness value
224 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
226 * Return: 0 if the expected value was received, -ETIME otherwise
228 static int mei_txe_aliveness_poll(struct mei_device
*dev
, u32 expected
)
230 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
234 stop
= ktime_add(start
, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT
));
236 hw
->aliveness
= mei_txe_aliveness_get(dev
);
237 if (hw
->aliveness
== expected
) {
238 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
239 dev_dbg(dev
->dev
, "aliveness settled after %lld usecs\n",
240 ktime_to_us(ktime_sub(ktime_get(), start
)));
243 usleep_range(20, 50);
244 } while (ktime_before(ktime_get(), stop
));
246 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
247 dev_err(dev
->dev
, "aliveness timed out\n");
252 * mei_txe_aliveness_wait - waits for aliveness to settle
254 * @dev: the device structure
255 * @expected: expected aliveness value
257 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
259 * Return: 0 on success and < 0 otherwise
261 static int mei_txe_aliveness_wait(struct mei_device
*dev
, u32 expected
)
263 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
264 const unsigned long timeout
=
265 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT
);
269 hw
->aliveness
= mei_txe_aliveness_get(dev
);
270 if (hw
->aliveness
== expected
)
273 mutex_unlock(&dev
->device_lock
);
274 err
= wait_event_timeout(hw
->wait_aliveness_resp
,
275 dev
->pg_event
== MEI_PG_EVENT_RECEIVED
, timeout
);
276 mutex_lock(&dev
->device_lock
);
278 hw
->aliveness
= mei_txe_aliveness_get(dev
);
279 ret
= hw
->aliveness
== expected
? 0 : -ETIME
;
282 dev_warn(dev
->dev
, "aliveness timed out = %ld aliveness = %d event = %d\n",
283 err
, hw
->aliveness
, dev
->pg_event
);
285 dev_dbg(dev
->dev
, "aliveness settled after = %d msec aliveness = %d event = %d\n",
286 jiffies_to_msecs(timeout
- err
),
287 hw
->aliveness
, dev
->pg_event
);
289 dev
->pg_event
= MEI_PG_EVENT_IDLE
;
294 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
296 * @dev: the device structure
297 * @req: requested aliveness value
299 * Return: 0 on success and < 0 otherwise
301 int mei_txe_aliveness_set_sync(struct mei_device
*dev
, u32 req
)
303 if (mei_txe_aliveness_set(dev
, req
))
304 return mei_txe_aliveness_wait(dev
, req
);
309 * mei_txe_pg_in_transition - is device now in pg transition
311 * @dev: the device structure
313 * Return: true if in pg transition, false otherwise
315 static bool mei_txe_pg_in_transition(struct mei_device
*dev
)
317 return dev
->pg_event
== MEI_PG_EVENT_WAIT
;
321 * mei_txe_pg_is_enabled - detect if PG is supported by HW
323 * @dev: the device structure
325 * Return: true is pg supported, false otherwise
327 static bool mei_txe_pg_is_enabled(struct mei_device
*dev
)
333 * mei_txe_pg_state - translate aliveness register value
334 * to the mei power gating state
336 * @dev: the device structure
338 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
340 static inline enum mei_pg_state
mei_txe_pg_state(struct mei_device
*dev
)
342 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
344 return hw
->aliveness
? MEI_PG_OFF
: MEI_PG_ON
;
348 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
350 * @dev: the device structure
352 static void mei_txe_input_ready_interrupt_enable(struct mei_device
*dev
)
354 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
356 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
357 hintmsk
= mei_txe_sec_reg_read(hw
, SEC_IPC_HOST_INT_MASK_REG
);
358 hintmsk
|= SEC_IPC_HOST_INT_MASK_IN_RDY
;
359 mei_txe_sec_reg_write(hw
, SEC_IPC_HOST_INT_MASK_REG
, hintmsk
);
363 * mei_txe_input_doorbell_set - sets bit 0 in
364 * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
366 * @hw: the txe hardware structure
368 static void mei_txe_input_doorbell_set(struct mei_txe_hw
*hw
)
370 /* Clear the interrupt cause */
371 clear_bit(TXE_INTR_IN_READY_BIT
, &hw
->intr_cause
);
372 mei_txe_sec_reg_write(hw
, SEC_IPC_INPUT_DOORBELL_REG
, 1);
376 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
378 * @hw: the txe hardware structure
380 static void mei_txe_output_ready_set(struct mei_txe_hw
*hw
)
382 mei_txe_br_reg_write(hw
,
383 SICR_SEC_IPC_OUTPUT_STATUS_REG
,
384 SEC_IPC_OUTPUT_STATUS_RDY
);
388 * mei_txe_is_input_ready - check if TXE is ready for receiving data
390 * @dev: the device structure
392 * Return: true if INPUT STATUS READY bit is set
394 static bool mei_txe_is_input_ready(struct mei_device
*dev
)
396 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
399 status
= mei_txe_sec_reg_read(hw
, SEC_IPC_INPUT_STATUS_REG
);
400 return !!(SEC_IPC_INPUT_STATUS_RDY
& status
);
404 * mei_txe_intr_clear - clear all interrupts
406 * @dev: the device structure
408 static inline void mei_txe_intr_clear(struct mei_device
*dev
)
410 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
412 mei_txe_sec_reg_write_silent(hw
, SEC_IPC_HOST_INT_STATUS_REG
,
413 SEC_IPC_HOST_INT_STATUS_PENDING
);
414 mei_txe_br_reg_write(hw
, HISR_REG
, HISR_INT_STS_MSK
);
415 mei_txe_br_reg_write(hw
, HHISR_REG
, IPC_HHIER_MSK
);
419 * mei_txe_intr_disable - disable all interrupts
421 * @dev: the device structure
423 static void mei_txe_intr_disable(struct mei_device
*dev
)
425 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
427 mei_txe_br_reg_write(hw
, HHIER_REG
, 0);
428 mei_txe_br_reg_write(hw
, HIER_REG
, 0);
431 * mei_txe_intr_enable - enable all interrupts
433 * @dev: the device structure
435 static void mei_txe_intr_enable(struct mei_device
*dev
)
437 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
439 mei_txe_br_reg_write(hw
, HHIER_REG
, IPC_HHIER_MSK
);
440 mei_txe_br_reg_write(hw
, HIER_REG
, HIER_INT_EN_MSK
);
444 * mei_txe_pending_interrupts - check if there are pending interrupts
445 * only Aliveness, Input ready, and output doorbell are of relevance
447 * @dev: the device structure
449 * Checks if there are pending interrupts
450 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
452 * Return: true if there are pending interrupts
454 static bool mei_txe_pending_interrupts(struct mei_device
*dev
)
457 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
458 bool ret
= (hw
->intr_cause
& (TXE_INTR_READINESS
|
465 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
466 !!(hw
->intr_cause
& TXE_INTR_IN_READY
),
467 !!(hw
->intr_cause
& TXE_INTR_READINESS
),
468 !!(hw
->intr_cause
& TXE_INTR_ALIVENESS
),
469 !!(hw
->intr_cause
& TXE_INTR_OUT_DB
));
475 * mei_txe_input_payload_write - write a dword to the host buffer
478 * @dev: the device structure
479 * @idx: index in the host buffer
482 static void mei_txe_input_payload_write(struct mei_device
*dev
,
483 unsigned long idx
, u32 value
)
485 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
487 mei_txe_sec_reg_write(hw
, SEC_IPC_INPUT_PAYLOAD_REG
+
488 (idx
* sizeof(u32
)), value
);
492 * mei_txe_out_data_read - read dword from the device buffer
495 * @dev: the device structure
496 * @idx: index in the device buffer
498 * Return: register value at index
500 static u32
mei_txe_out_data_read(const struct mei_device
*dev
,
503 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
505 return mei_txe_br_reg_read(hw
,
506 BRIDGE_IPC_OUTPUT_PAYLOAD_REG
+ (idx
* sizeof(u32
)));
512 * mei_txe_readiness_set_host_rdy - set host readiness bit
514 * @dev: the device structure
516 static void mei_txe_readiness_set_host_rdy(struct mei_device
*dev
)
518 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
520 mei_txe_br_reg_write(hw
,
521 SICR_HOST_IPC_READINESS_REQ_REG
,
522 SICR_HOST_IPC_READINESS_HOST_RDY
);
526 * mei_txe_readiness_clear - clear host readiness bit
528 * @dev: the device structure
530 static void mei_txe_readiness_clear(struct mei_device
*dev
)
532 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
534 mei_txe_br_reg_write(hw
, SICR_HOST_IPC_READINESS_REQ_REG
,
535 SICR_HOST_IPC_READINESS_RDY_CLR
);
538 * mei_txe_readiness_get - Reads and returns
539 * the HICR_SEC_IPC_READINESS register value
541 * @dev: the device structure
543 * Return: the HICR_SEC_IPC_READINESS register value
545 static u32
mei_txe_readiness_get(struct mei_device
*dev
)
547 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
549 return mei_txe_br_reg_read(hw
, HICR_SEC_IPC_READINESS_REG
);
554 * mei_txe_readiness_is_sec_rdy - check readiness
555 * for HICR_SEC_IPC_READINESS_SEC_RDY
557 * @readiness: cached readiness state
559 * Return: true if readiness bit is set
561 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness
)
563 return !!(readiness
& HICR_SEC_IPC_READINESS_SEC_RDY
);
567 * mei_txe_hw_is_ready - check if the hw is ready
569 * @dev: the device structure
571 * Return: true if sec is ready
573 static bool mei_txe_hw_is_ready(struct mei_device
*dev
)
575 u32 readiness
= mei_txe_readiness_get(dev
);
577 return mei_txe_readiness_is_sec_rdy(readiness
);
581 * mei_txe_host_is_ready - check if the host is ready
583 * @dev: the device structure
585 * Return: true if host is ready
587 static inline bool mei_txe_host_is_ready(struct mei_device
*dev
)
589 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
590 u32 reg
= mei_txe_br_reg_read(hw
, HICR_SEC_IPC_READINESS_REG
);
592 return !!(reg
& HICR_SEC_IPC_READINESS_HOST_RDY
);
596 * mei_txe_readiness_wait - wait till readiness settles
598 * @dev: the device structure
600 * Return: 0 on success and -ETIME on timeout
602 static int mei_txe_readiness_wait(struct mei_device
*dev
)
604 if (mei_txe_hw_is_ready(dev
))
607 mutex_unlock(&dev
->device_lock
);
608 wait_event_timeout(dev
->wait_hw_ready
, dev
->recvd_hw_ready
,
609 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT
));
610 mutex_lock(&dev
->device_lock
);
611 if (!dev
->recvd_hw_ready
) {
612 dev_err(dev
->dev
, "wait for readiness failed\n");
616 dev
->recvd_hw_ready
= false;
620 static const struct mei_fw_status mei_txe_fw_sts
= {
622 .status
[0] = PCI_CFG_TXE_FW_STS0
,
623 .status
[1] = PCI_CFG_TXE_FW_STS1
627 * mei_txe_fw_status - read fw status register from pci config space
630 * @fw_status: fw status register values
632 * Return: 0 on success, error otherwise
634 static int mei_txe_fw_status(struct mei_device
*dev
,
635 struct mei_fw_status
*fw_status
)
637 const struct mei_fw_status
*fw_src
= &mei_txe_fw_sts
;
638 struct pci_dev
*pdev
= to_pci_dev(dev
->dev
);
645 fw_status
->count
= fw_src
->count
;
646 for (i
= 0; i
< fw_src
->count
&& i
< MEI_FW_STATUS_MAX
; i
++) {
647 ret
= pci_read_config_dword(pdev
, fw_src
->status
[i
],
648 &fw_status
->status
[i
]);
649 trace_mei_pci_cfg_read(dev
->dev
, "PCI_CFG_HSF_X",
651 fw_status
->status
[i
]);
660 * mei_txe_hw_config - configure hardware at the start of the devices
662 * @dev: the device structure
664 * Configure hardware at the start of the device should be done only
665 * once at the device probe time
667 static void mei_txe_hw_config(struct mei_device
*dev
)
670 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
672 /* Doesn't change in runtime */
673 dev
->hbuf_depth
= PAYLOAD_SIZE
/ 4;
675 hw
->aliveness
= mei_txe_aliveness_get(dev
);
676 hw
->readiness
= mei_txe_readiness_get(dev
);
678 dev_dbg(dev
->dev
, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
679 hw
->aliveness
, hw
->readiness
);
684 * mei_txe_write - writes a message to device.
686 * @dev: the device structure
687 * @header: header of message
688 * @buf: message buffer will be written
690 * Return: 0 if success, <0 - otherwise.
693 static int mei_txe_write(struct mei_device
*dev
,
694 struct mei_msg_hdr
*header
, unsigned char *buf
)
696 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
698 unsigned long length
;
699 int slots
= dev
->hbuf_depth
;
700 u32
*reg_buf
= (u32
*)buf
;
704 if (WARN_ON(!header
|| !buf
))
707 length
= header
->length
;
709 dev_dbg(dev
->dev
, MEI_HDR_FMT
, MEI_HDR_PRM(header
));
711 dw_cnt
= mei_data2slots(length
);
715 if (WARN(!hw
->aliveness
, "txe write: aliveness not asserted\n"))
718 /* Enable Input Ready Interrupt. */
719 mei_txe_input_ready_interrupt_enable(dev
);
721 if (!mei_txe_is_input_ready(dev
)) {
722 char fw_sts_str
[MEI_FW_STATUS_STR_SZ
];
724 mei_fw_status_str(dev
, fw_sts_str
, MEI_FW_STATUS_STR_SZ
);
725 dev_err(dev
->dev
, "Input is not ready %s\n", fw_sts_str
);
729 mei_txe_input_payload_write(dev
, 0, *((u32
*)header
));
731 for (i
= 0; i
< length
/ 4; i
++)
732 mei_txe_input_payload_write(dev
, i
+ 1, reg_buf
[i
]);
738 memcpy(®
, &buf
[length
- rem
], rem
);
739 mei_txe_input_payload_write(dev
, i
+ 1, reg
);
742 /* after each write the whole buffer is consumed */
745 /* Set Input-Doorbell */
746 mei_txe_input_doorbell_set(hw
);
752 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
754 * @dev: the device structure
756 * Return: the PAYLOAD_SIZE - 4
758 static size_t mei_txe_hbuf_max_len(const struct mei_device
*dev
)
760 return PAYLOAD_SIZE
- sizeof(struct mei_msg_hdr
);
764 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
766 * @dev: the device structure
768 * Return: always hbuf_depth
770 static int mei_txe_hbuf_empty_slots(struct mei_device
*dev
)
772 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
778 * mei_txe_count_full_read_slots - mimics the me device circular buffer
780 * @dev: the device structure
782 * Return: always buffer size in dwords count
784 static int mei_txe_count_full_read_slots(struct mei_device
*dev
)
786 /* read buffers has static size */
787 return PAYLOAD_SIZE
/ 4;
791 * mei_txe_read_hdr - read message header which is always in 4 first bytes
793 * @dev: the device structure
795 * Return: mei message header
798 static u32
mei_txe_read_hdr(const struct mei_device
*dev
)
800 return mei_txe_out_data_read(dev
, 0);
803 * mei_txe_read - reads a message from the txe device.
805 * @dev: the device structure
806 * @buf: message buffer will be written
807 * @len: message size will be read
809 * Return: -EINVAL on error wrong argument and 0 on success
811 static int mei_txe_read(struct mei_device
*dev
,
812 unsigned char *buf
, unsigned long len
)
815 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
820 if (WARN_ON(!buf
|| !len
))
823 reg_buf
= (u32
*)buf
;
826 dev_dbg(dev
->dev
, "buffer-length = %lu buf[0]0x%08X\n",
827 len
, mei_txe_out_data_read(dev
, 0));
829 for (i
= 0; i
< len
/ 4; i
++) {
830 /* skip header: index starts from 1 */
831 reg
= mei_txe_out_data_read(dev
, i
+ 1);
832 dev_dbg(dev
->dev
, "buf[%d] = 0x%08X\n", i
, reg
);
837 reg
= mei_txe_out_data_read(dev
, i
+ 1);
838 memcpy(reg_buf
, ®
, rem
);
841 mei_txe_output_ready_set(hw
);
846 * mei_txe_hw_reset - resets host and fw.
848 * @dev: the device structure
849 * @intr_enable: if interrupt should be enabled after reset.
851 * Return: 0 on success and < 0 in case of error
853 static int mei_txe_hw_reset(struct mei_device
*dev
, bool intr_enable
)
855 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
859 * read input doorbell to ensure consistency between Bridge and SeC
860 * return value might be garbage return
862 (void)mei_txe_sec_reg_read_silent(hw
, SEC_IPC_INPUT_DOORBELL_REG
);
864 aliveness_req
= mei_txe_aliveness_req_get(dev
);
865 hw
->aliveness
= mei_txe_aliveness_get(dev
);
867 /* Disable interrupts in this stage we will poll */
868 mei_txe_intr_disable(dev
);
871 * If Aliveness Request and Aliveness Response are not equal then
872 * wait for them to be equal
873 * Since we might have interrupts disabled - poll for it
875 if (aliveness_req
!= hw
->aliveness
)
876 if (mei_txe_aliveness_poll(dev
, aliveness_req
) < 0) {
877 dev_err(dev
->dev
, "wait for aliveness settle failed ... bailing out\n");
882 * If Aliveness Request and Aliveness Response are set then clear them
885 mei_txe_aliveness_set(dev
, 0);
886 if (mei_txe_aliveness_poll(dev
, 0) < 0) {
887 dev_err(dev
->dev
, "wait for aliveness failed ... bailing out\n");
893 * Set readiness RDY_CLR bit
895 mei_txe_readiness_clear(dev
);
901 * mei_txe_hw_start - start the hardware after reset
903 * @dev: the device structure
905 * Return: 0 on success an error code otherwise
907 static int mei_txe_hw_start(struct mei_device
*dev
)
909 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
914 /* bring back interrupts */
915 mei_txe_intr_enable(dev
);
917 ret
= mei_txe_readiness_wait(dev
);
919 dev_err(dev
->dev
, "waiting for readiness failed\n");
924 * If HISR.INT2_STS interrupt status bit is set then clear it.
926 hisr
= mei_txe_br_reg_read(hw
, HISR_REG
);
927 if (hisr
& HISR_INT_2_STS
)
928 mei_txe_br_reg_write(hw
, HISR_REG
, HISR_INT_2_STS
);
930 /* Clear the interrupt cause of OutputDoorbell */
931 clear_bit(TXE_INTR_OUT_DB_BIT
, &hw
->intr_cause
);
933 ret
= mei_txe_aliveness_set_sync(dev
, 1);
935 dev_err(dev
->dev
, "wait for aliveness failed ... bailing out\n");
939 pm_runtime_set_active(dev
->dev
);
941 /* enable input ready interrupts:
942 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
944 mei_txe_input_ready_interrupt_enable(dev
);
947 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
948 mei_txe_output_ready_set(hw
);
950 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
952 mei_txe_readiness_set_host_rdy(dev
);
958 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
959 * single bit mask and acknowledge the interrupts
961 * @dev: the device structure
962 * @do_ack: acknowledge interrupts
964 * Return: true if found interrupts to process.
966 static bool mei_txe_check_and_ack_intrs(struct mei_device
*dev
, bool do_ack
)
968 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
975 /* read interrupt registers */
976 hhisr
= mei_txe_br_reg_read(hw
, HHISR_REG
);
977 generated
= (hhisr
& IPC_HHIER_MSK
);
981 hisr
= mei_txe_br_reg_read(hw
, HISR_REG
);
983 aliveness
= mei_txe_aliveness_get(dev
);
984 if (hhisr
& IPC_HHIER_SEC
&& aliveness
)
985 ipc_isr
= mei_txe_sec_reg_read_silent(hw
,
986 SEC_IPC_HOST_INT_STATUS_REG
);
990 generated
= generated
||
991 (hisr
& HISR_INT_STS_MSK
) ||
992 (ipc_isr
& SEC_IPC_HOST_INT_STATUS_PENDING
);
994 if (generated
&& do_ack
) {
995 /* Save the interrupt causes */
996 hw
->intr_cause
|= hisr
& HISR_INT_STS_MSK
;
997 if (ipc_isr
& SEC_IPC_HOST_INT_STATUS_IN_RDY
)
998 hw
->intr_cause
|= TXE_INTR_IN_READY
;
1001 mei_txe_intr_disable(dev
);
1002 /* Clear the interrupts in hierarchy:
1003 * IPC and Bridge, than the High Level */
1004 mei_txe_sec_reg_write_silent(hw
,
1005 SEC_IPC_HOST_INT_STATUS_REG
, ipc_isr
);
1006 mei_txe_br_reg_write(hw
, HISR_REG
, hisr
);
1007 mei_txe_br_reg_write(hw
, HHISR_REG
, hhisr
);
1015 * mei_txe_irq_quick_handler - The ISR of the MEI device
1017 * @irq: The irq number
1018 * @dev_id: pointer to the device structure
1020 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1021 * IRQ_NONE otherwise
1023 irqreturn_t
mei_txe_irq_quick_handler(int irq
, void *dev_id
)
1025 struct mei_device
*dev
= dev_id
;
1027 if (mei_txe_check_and_ack_intrs(dev
, true))
1028 return IRQ_WAKE_THREAD
;
1034 * mei_txe_irq_thread_handler - txe interrupt thread
1036 * @irq: The irq number
1037 * @dev_id: pointer to the device structure
1039 * Return: IRQ_HANDLED
1041 irqreturn_t
mei_txe_irq_thread_handler(int irq
, void *dev_id
)
1043 struct mei_device
*dev
= (struct mei_device
*) dev_id
;
1044 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
1045 struct mei_cl_cb complete_list
;
1049 dev_dbg(dev
->dev
, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1050 mei_txe_br_reg_read(hw
, HHISR_REG
),
1051 mei_txe_br_reg_read(hw
, HISR_REG
),
1052 mei_txe_sec_reg_read_silent(hw
, SEC_IPC_HOST_INT_STATUS_REG
));
1055 /* initialize our complete list */
1056 mutex_lock(&dev
->device_lock
);
1057 mei_io_list_init(&complete_list
);
1059 if (pci_dev_msi_enabled(to_pci_dev(dev
->dev
)))
1060 mei_txe_check_and_ack_intrs(dev
, true);
1062 /* show irq events */
1063 mei_txe_pending_interrupts(dev
);
1065 hw
->aliveness
= mei_txe_aliveness_get(dev
);
1066 hw
->readiness
= mei_txe_readiness_get(dev
);
1069 * Detection of TXE driver going through reset
1070 * or TXE driver resetting the HECI interface.
1072 if (test_and_clear_bit(TXE_INTR_READINESS_BIT
, &hw
->intr_cause
)) {
1073 dev_dbg(dev
->dev
, "Readiness Interrupt was received...\n");
1075 /* Check if SeC is going through reset */
1076 if (mei_txe_readiness_is_sec_rdy(hw
->readiness
)) {
1077 dev_dbg(dev
->dev
, "we need to start the dev.\n");
1078 dev
->recvd_hw_ready
= true;
1080 dev
->recvd_hw_ready
= false;
1081 if (dev
->dev_state
!= MEI_DEV_RESETTING
) {
1083 dev_warn(dev
->dev
, "FW not ready: resetting.\n");
1084 schedule_work(&dev
->reset_work
);
1089 wake_up(&dev
->wait_hw_ready
);
1092 /************************************************************/
1093 /* Check interrupt cause:
1094 * Aliveness: Detection of SeC acknowledge of host request that
1095 * it remain alive or host cancellation of that request.
1098 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT
, &hw
->intr_cause
)) {
1099 /* Clear the interrupt cause */
1101 "Aliveness Interrupt: Status: %d\n", hw
->aliveness
);
1102 dev
->pg_event
= MEI_PG_EVENT_RECEIVED
;
1103 if (waitqueue_active(&hw
->wait_aliveness_resp
))
1104 wake_up(&hw
->wait_aliveness_resp
);
1109 * Detection of SeC having sent output to host
1111 slots
= mei_count_full_read_slots(dev
);
1112 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT
, &hw
->intr_cause
)) {
1114 rets
= mei_irq_read_handler(dev
, &complete_list
, &slots
);
1115 if (rets
&& dev
->dev_state
!= MEI_DEV_RESETTING
) {
1117 "mei_irq_read_handler ret = %d.\n", rets
);
1119 schedule_work(&dev
->reset_work
);
1123 /* Input Ready: Detection if host can write to SeC */
1124 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT
, &hw
->intr_cause
)) {
1125 dev
->hbuf_is_ready
= true;
1126 hw
->slots
= dev
->hbuf_depth
;
1129 if (hw
->aliveness
&& dev
->hbuf_is_ready
) {
1130 /* get the real register value */
1131 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1132 rets
= mei_irq_write_handler(dev
, &complete_list
);
1133 if (rets
&& rets
!= -EMSGSIZE
)
1134 dev_err(dev
->dev
, "mei_irq_write_handler ret = %d.\n",
1136 dev
->hbuf_is_ready
= mei_hbuf_is_ready(dev
);
1139 mei_irq_compl_handler(dev
, &complete_list
);
1142 dev_dbg(dev
->dev
, "interrupt thread end ret = %d\n", rets
);
1144 mutex_unlock(&dev
->device_lock
);
1146 mei_enable_interrupts(dev
);
1150 static const struct mei_hw_ops mei_txe_hw_ops
= {
1152 .host_is_ready
= mei_txe_host_is_ready
,
1154 .fw_status
= mei_txe_fw_status
,
1155 .pg_state
= mei_txe_pg_state
,
1157 .hw_is_ready
= mei_txe_hw_is_ready
,
1158 .hw_reset
= mei_txe_hw_reset
,
1159 .hw_config
= mei_txe_hw_config
,
1160 .hw_start
= mei_txe_hw_start
,
1162 .pg_in_transition
= mei_txe_pg_in_transition
,
1163 .pg_is_enabled
= mei_txe_pg_is_enabled
,
1165 .intr_clear
= mei_txe_intr_clear
,
1166 .intr_enable
= mei_txe_intr_enable
,
1167 .intr_disable
= mei_txe_intr_disable
,
1169 .hbuf_free_slots
= mei_txe_hbuf_empty_slots
,
1170 .hbuf_is_ready
= mei_txe_is_input_ready
,
1171 .hbuf_max_len
= mei_txe_hbuf_max_len
,
1173 .write
= mei_txe_write
,
1175 .rdbuf_full_slots
= mei_txe_count_full_read_slots
,
1176 .read_hdr
= mei_txe_read_hdr
,
1178 .read
= mei_txe_read
,
1183 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1187 * Return: struct mei_device * on success or NULL
1189 struct mei_device
*mei_txe_dev_init(struct pci_dev
*pdev
)
1191 struct mei_device
*dev
;
1192 struct mei_txe_hw
*hw
;
1194 dev
= kzalloc(sizeof(struct mei_device
) +
1195 sizeof(struct mei_txe_hw
), GFP_KERNEL
);
1199 mei_device_init(dev
, &pdev
->dev
, &mei_txe_hw_ops
);
1201 hw
= to_txe_hw(dev
);
1203 init_waitqueue_head(&hw
->wait_aliveness_resp
);
1209 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1211 * @dev: the device structure
1212 * @addr: physical address start of the range
1213 * @range: physical range size
1215 * Return: 0 on success an error code otherwise
1217 int mei_txe_setup_satt2(struct mei_device
*dev
, phys_addr_t addr
, u32 range
)
1219 struct mei_txe_hw
*hw
= to_txe_hw(dev
);
1221 u32 lo32
= lower_32_bits(addr
);
1222 u32 hi32
= upper_32_bits(addr
);
1225 /* SATT is limited to 36 Bits */
1229 /* SATT has to be 16Byte aligned */
1233 /* SATT range has to be 4Bytes aligned */
1237 /* SATT is limited to 32 MB range*/
1238 if (range
> SATT_RANGE_MAX
)
1241 ctrl
= SATT2_CTRL_VALID_MSK
;
1242 ctrl
|= hi32
<< SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT
;
1244 mei_txe_br_reg_write(hw
, SATT2_SAP_SIZE_REG
, range
);
1245 mei_txe_br_reg_write(hw
, SATT2_BRG_BA_LSB_REG
, lo32
);
1246 mei_txe_br_reg_write(hw
, SATT2_CTRL_REG
, ctrl
);
1247 dev_dbg(dev
->dev
, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",