2 * e100net.c: A network driver for the ETRAX 100LX network controller.
4 * Copyright (c) 1998-2002 Axis Communications AB.
6 * The outline of this driver comes from skeleton.c.
11 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/delay.h>
15 #include <linux/types.h>
16 #include <linux/fcntl.h>
17 #include <linux/interrupt.h>
18 #include <linux/ptrace.h>
19 #include <linux/ioport.h>
21 #include <linux/string.h>
22 #include <linux/spinlock.h>
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/bitops.h>
28 #include <linux/mii.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/ethtool.h>
34 #include <arch/svinto.h>/* DMA and register descriptions */
35 #include <asm/io.h> /* CRIS_LED_* I/O functions */
38 #include <asm/ethernet.h>
39 #include <asm/cache.h>
40 #include <arch/io_interface_mux.h>
46 * The name of the card. Is used for messages and in the requests for
47 * io regions, irqs and dma channels
50 static const char* cardname
= "ETRAX 100LX built-in ethernet controller";
52 /* A default ethernet address. Highlevel SW will set the real one later */
54 static struct sockaddr default_mac
= {
56 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
59 /* Information that need to be kept for each board. */
61 struct mii_if_info mii_if
;
63 /* Tx control lock. This protects the transmit buffer ring
64 * state along with the "tx full" state of the driver. This
65 * means all netif_queue flow control actions are protected
66 * by this lock as well.
70 spinlock_t led_lock
; /* Protect LED state */
71 spinlock_t transceiver_lock
; /* Protect transceiver state. */
74 typedef struct etrax_eth_descr
76 etrax_dma_descr descr
;
80 /* Some transceivers requires special handling */
81 struct transceiver_ops
84 void (*check_speed
)(struct net_device
* dev
);
85 void (*check_duplex
)(struct net_device
* dev
);
96 /* Dma descriptors etc. */
98 #define MAX_MEDIA_DATA_SIZE 1522
100 #define MIN_PACKET_LEN 46
101 #define ETHER_HEAD_LEN 14
106 #define MDIO_START 0x1
107 #define MDIO_READ 0x2
108 #define MDIO_WRITE 0x1
109 #define MDIO_PREAMBLE 0xfffffffful
111 /* Broadcom specific */
112 #define MDIO_AUX_CTRL_STATUS_REG 0x18
113 #define MDIO_BC_FULL_DUPLEX_IND 0x1
114 #define MDIO_BC_SPEED 0x2
117 #define MDIO_TDK_DIAGNOSTIC_REG 18
118 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
119 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
121 /*Intel LXT972A specific*/
122 #define MDIO_INT_STATUS_REG_2 0x0011
123 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
124 #define MDIO_INT_SPEED (1 << 14)
126 /* Network flash constants */
127 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
128 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
129 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
130 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
132 #define NO_NETWORK_ACTIVITY 0
133 #define NETWORK_ACTIVITY 1
135 #define NBR_OF_RX_DESC 32
136 #define NBR_OF_TX_DESC 16
138 /* Large packets are sent directly to upper layers while small packets are */
139 /* copied (to reduce memory waste). The following constant decides the breakpoint */
140 #define RX_COPYBREAK 256
142 /* Due to a chip bug we need to flush the cache when descriptors are returned */
143 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
144 /* The following constant determines the number of descriptors to return. */
145 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
147 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
149 /* Define some macros to access ETRAX 100 registers */
150 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
151 IO_FIELD_(reg##_, field##_, val)
152 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
153 IO_STATE_(reg##_, field##_, _##val)
155 static etrax_eth_descr
*myNextRxDesc
; /* Points to the next descriptor to
157 static etrax_eth_descr
*myLastRxDesc
; /* The last processed descriptor */
159 static etrax_eth_descr RxDescList
[NBR_OF_RX_DESC
] __attribute__ ((aligned(32)));
161 static etrax_eth_descr
* myFirstTxDesc
; /* First packet not yet sent */
162 static etrax_eth_descr
* myLastTxDesc
; /* End of send queue */
163 static etrax_eth_descr
* myNextTxDesc
; /* Next descriptor to use */
164 static etrax_eth_descr TxDescList
[NBR_OF_TX_DESC
] __attribute__ ((aligned(32)));
166 static unsigned int network_rec_config_shadow
= 0;
168 static unsigned int network_tr_ctrl_shadow
= 0;
170 /* Network speed indication. */
171 static DEFINE_TIMER(speed_timer
, NULL
, 0, 0);
172 static DEFINE_TIMER(clear_led_timer
, NULL
, 0, 0);
173 static int current_speed
; /* Speed read from transceiver */
174 static int current_speed_selection
; /* Speed selected by user */
175 static unsigned long led_next_time
;
176 static int led_active
;
177 static int rx_queue_len
;
180 static DEFINE_TIMER(duplex_timer
, NULL
, 0, 0);
181 static int full_duplex
;
182 static enum duplex current_duplex
;
184 /* Index to functions, as function prototypes. */
186 static int etrax_ethernet_init(void);
188 static int e100_open(struct net_device
*dev
);
189 static int e100_set_mac_address(struct net_device
*dev
, void *addr
);
190 static int e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
);
191 static irqreturn_t
e100rxtx_interrupt(int irq
, void *dev_id
);
192 static irqreturn_t
e100nw_interrupt(int irq
, void *dev_id
);
193 static void e100_rx(struct net_device
*dev
);
194 static int e100_close(struct net_device
*dev
);
195 static int e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
);
196 static int e100_set_config(struct net_device
* dev
, struct ifmap
* map
);
197 static void e100_tx_timeout(struct net_device
*dev
);
198 static struct net_device_stats
*e100_get_stats(struct net_device
*dev
);
199 static void set_multicast_list(struct net_device
*dev
);
200 static void e100_hardware_send_packet(struct net_local
* np
, char *buf
, int length
);
201 static void update_rx_stats(struct net_device_stats
*);
202 static void update_tx_stats(struct net_device_stats
*);
203 static int e100_probe_transceiver(struct net_device
* dev
);
205 static void e100_check_speed(unsigned long priv
);
206 static void e100_set_speed(struct net_device
* dev
, unsigned long speed
);
207 static void e100_check_duplex(unsigned long priv
);
208 static void e100_set_duplex(struct net_device
* dev
, enum duplex
);
209 static void e100_negotiate(struct net_device
* dev
);
211 static int e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
);
212 static void e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
);
214 static void e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
);
215 static void e100_send_mdio_bit(unsigned char bit
);
216 static unsigned char e100_receive_mdio_bit(void);
217 static void e100_reset_transceiver(struct net_device
* net
);
219 static void e100_clear_network_leds(unsigned long dummy
);
220 static void e100_set_network_leds(int active
);
222 static const struct ethtool_ops e100_ethtool_ops
;
223 #if defined(CONFIG_ETRAX_NO_PHY)
224 static void dummy_check_speed(struct net_device
* dev
);
225 static void dummy_check_duplex(struct net_device
* dev
);
227 static void broadcom_check_speed(struct net_device
* dev
);
228 static void broadcom_check_duplex(struct net_device
* dev
);
229 static void tdk_check_speed(struct net_device
* dev
);
230 static void tdk_check_duplex(struct net_device
* dev
);
231 static void intel_check_speed(struct net_device
* dev
);
232 static void intel_check_duplex(struct net_device
* dev
);
233 static void generic_check_speed(struct net_device
* dev
);
234 static void generic_check_duplex(struct net_device
* dev
);
236 #ifdef CONFIG_NET_POLL_CONTROLLER
237 static void e100_netpoll(struct net_device
* dev
);
240 static int autoneg_normal
= 1;
242 struct transceiver_ops transceivers
[] =
244 #if defined(CONFIG_ETRAX_NO_PHY)
245 {0x0000, dummy_check_speed
, dummy_check_duplex
} /* Dummy */
247 {0x1018, broadcom_check_speed
, broadcom_check_duplex
}, /* Broadcom */
248 {0xC039, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120 */
249 {0x039C, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120C */
250 {0x04de, intel_check_speed
, intel_check_duplex
}, /* Intel LXT972A*/
251 {0x0000, generic_check_speed
, generic_check_duplex
} /* Generic, must be last */
255 struct transceiver_ops
* transceiver
= &transceivers
[0];
257 static const struct net_device_ops e100_netdev_ops
= {
258 .ndo_open
= e100_open
,
259 .ndo_stop
= e100_close
,
260 .ndo_start_xmit
= e100_send_packet
,
261 .ndo_tx_timeout
= e100_tx_timeout
,
262 .ndo_get_stats
= e100_get_stats
,
263 .ndo_set_rx_mode
= set_multicast_list
,
264 .ndo_do_ioctl
= e100_ioctl
,
265 .ndo_set_mac_address
= e100_set_mac_address
,
266 .ndo_validate_addr
= eth_validate_addr
,
267 .ndo_change_mtu
= eth_change_mtu
,
268 .ndo_set_config
= e100_set_config
,
269 #ifdef CONFIG_NET_POLL_CONTROLLER
270 .ndo_poll_controller
= e100_netpoll
,
274 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
277 * Check for a network adaptor of this type, and return '0' if one exists.
278 * If dev->base_addr == 0, probe all likely locations.
279 * If dev->base_addr == 1, always return failure.
280 * If dev->base_addr == 2, allocate space for the device and return success
281 * (detachable devices only).
285 etrax_ethernet_init(void)
287 struct net_device
*dev
;
288 struct net_local
* np
;
292 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
294 if (cris_request_io_interface(if_eth
, cardname
)) {
295 printk(KERN_CRIT
"etrax_ethernet_init failed to get IO interface\n");
299 dev
= alloc_etherdev(sizeof(struct net_local
));
303 np
= netdev_priv(dev
);
305 /* we do our own locking */
306 dev
->features
|= NETIF_F_LLTX
;
308 dev
->base_addr
= (unsigned int)R_NETWORK_SA_0
; /* just to have something to show */
310 /* now setup our etrax specific stuff */
312 dev
->irq
= NETWORK_DMA_RX_IRQ_NBR
; /* we really use DMATX as well... */
313 dev
->dma
= NETWORK_RX_DMA_NBR
;
315 /* fill in our handlers so the network layer can talk to us in the future */
317 dev
->ethtool_ops
= &e100_ethtool_ops
;
318 dev
->netdev_ops
= &e100_netdev_ops
;
320 spin_lock_init(&np
->lock
);
321 spin_lock_init(&np
->led_lock
);
322 spin_lock_init(&np
->transceiver_lock
);
324 /* Initialise the list of Etrax DMA-descriptors */
326 /* Initialise receive descriptors */
328 for (i
= 0; i
< NBR_OF_RX_DESC
; i
++) {
329 /* Allocate two extra cachelines to make sure that buffer used
330 * by DMA does not share cacheline with any other data (to
333 RxDescList
[i
].skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
334 if (!RxDescList
[i
].skb
)
336 RxDescList
[i
].descr
.ctrl
= 0;
337 RxDescList
[i
].descr
.sw_len
= MAX_MEDIA_DATA_SIZE
;
338 RxDescList
[i
].descr
.next
= virt_to_phys(&RxDescList
[i
+ 1]);
339 RxDescList
[i
].descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(RxDescList
[i
].skb
->data
));
340 RxDescList
[i
].descr
.status
= 0;
341 RxDescList
[i
].descr
.hw_len
= 0;
342 prepare_rx_descriptor(&RxDescList
[i
].descr
);
345 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.ctrl
= d_eol
;
346 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.next
= virt_to_phys(&RxDescList
[0]);
349 /* Initialize transmit descriptors */
350 for (i
= 0; i
< NBR_OF_TX_DESC
; i
++) {
351 TxDescList
[i
].descr
.ctrl
= 0;
352 TxDescList
[i
].descr
.sw_len
= 0;
353 TxDescList
[i
].descr
.next
= virt_to_phys(&TxDescList
[i
+ 1].descr
);
354 TxDescList
[i
].descr
.buf
= 0;
355 TxDescList
[i
].descr
.status
= 0;
356 TxDescList
[i
].descr
.hw_len
= 0;
357 TxDescList
[i
].skb
= 0;
360 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.ctrl
= d_eol
;
361 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.next
= virt_to_phys(&TxDescList
[0].descr
);
363 /* Initialise initial pointers */
365 myNextRxDesc
= &RxDescList
[0];
366 myLastRxDesc
= &RxDescList
[NBR_OF_RX_DESC
- 1];
367 myFirstTxDesc
= &TxDescList
[0];
368 myNextTxDesc
= &TxDescList
[0];
369 myLastTxDesc
= &TxDescList
[NBR_OF_TX_DESC
- 1];
371 /* Register device */
372 err
= register_netdev(dev
);
378 /* set the default MAC address */
380 e100_set_mac_address(dev
, &default_mac
);
382 /* Initialize speed indicator stuff. */
385 current_speed_selection
= 0; /* Auto */
386 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
387 speed_timer
.data
= (unsigned long)dev
;
388 speed_timer
.function
= e100_check_speed
;
390 clear_led_timer
.function
= e100_clear_network_leds
;
391 clear_led_timer
.data
= (unsigned long)dev
;
394 current_duplex
= autoneg
;
395 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
396 duplex_timer
.data
= (unsigned long)dev
;
397 duplex_timer
.function
= e100_check_duplex
;
399 /* Initialize mii interface */
400 np
->mii_if
.phy_id_mask
= 0x1f;
401 np
->mii_if
.reg_num_mask
= 0x1f;
402 np
->mii_if
.dev
= dev
;
403 np
->mii_if
.mdio_read
= e100_get_mdio_reg
;
404 np
->mii_if
.mdio_write
= e100_set_mdio_reg
;
406 /* Initialize group address registers to make sure that no */
407 /* unwanted addresses are matched */
408 *R_NETWORK_GA_0
= 0x00000000;
409 *R_NETWORK_GA_1
= 0x00000000;
411 /* Initialize next time the led can flash */
412 led_next_time
= jiffies
;
416 /* set MAC address of the interface. called from the core after a
417 * SIOCSIFADDR ioctl, and from the bootup above.
421 e100_set_mac_address(struct net_device
*dev
, void *p
)
423 struct net_local
*np
= netdev_priv(dev
);
424 struct sockaddr
*addr
= p
;
426 spin_lock(&np
->lock
); /* preemption protection */
430 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
432 /* Write it to the hardware.
433 * Note the way the address is wrapped:
434 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
435 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
438 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
439 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
440 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
443 /* show it in the log as well */
445 printk(KERN_INFO
"%s: changed MAC to %pM\n", dev
->name
, dev
->dev_addr
);
447 spin_unlock(&np
->lock
);
453 * Open/initialize the board. This is called (in the current kernel)
454 * sometime after booting when the 'ifconfig' program is run.
456 * This routine should set everything up anew at each open, even
457 * registers that "should" only need to be set once at boot, so that
458 * there is non-reboot way to recover if something goes wrong.
462 e100_open(struct net_device
*dev
)
466 /* enable the MDIO output pin */
468 *R_NETWORK_MGM_CTRL
= IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
);
471 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
472 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
473 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
475 /* clear dma0 and 1 eop and descr irq masks */
477 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
478 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
479 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
480 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
482 /* Reset and wait for the DMA channels */
484 RESET_DMA(NETWORK_TX_DMA_NBR
);
485 RESET_DMA(NETWORK_RX_DMA_NBR
);
486 WAIT_DMA(NETWORK_TX_DMA_NBR
);
487 WAIT_DMA(NETWORK_RX_DMA_NBR
);
489 /* Initialise the etrax network controller */
491 /* allocate the irq corresponding to the receiving DMA */
493 if (request_irq(NETWORK_DMA_RX_IRQ_NBR
, e100rxtx_interrupt
, 0, cardname
,
498 /* allocate the irq corresponding to the transmitting DMA */
500 if (request_irq(NETWORK_DMA_TX_IRQ_NBR
, e100rxtx_interrupt
, 0,
501 cardname
, (void *)dev
)) {
505 /* allocate the irq corresponding to the network errors etc */
507 if (request_irq(NETWORK_STATUS_IRQ_NBR
, e100nw_interrupt
, 0,
508 cardname
, (void *)dev
)) {
513 * Always allocate the DMA channels after the IRQ,
514 * and clean up on failure.
517 if (cris_request_dma(NETWORK_TX_DMA_NBR
,
519 DMA_VERBOSE_ON_ERROR
,
524 if (cris_request_dma(NETWORK_RX_DMA_NBR
,
526 DMA_VERBOSE_ON_ERROR
,
531 /* give the HW an idea of what MAC address we want */
533 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
534 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
535 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
539 /* use promiscuous mode for testing */
540 *R_NETWORK_GA_0
= 0xffffffff;
541 *R_NETWORK_GA_1
= 0xffffffff;
543 *R_NETWORK_REC_CONFIG
= 0xd; /* broadcast rec, individ. rec, ma0 enabled */
545 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, max_size
, size1522
);
546 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, broadcast
, receive
);
547 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, ma0
, enable
);
548 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
549 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
552 *R_NETWORK_GEN_CONFIG
=
553 IO_STATE(R_NETWORK_GEN_CONFIG
, phy
, mii_clk
) |
554 IO_STATE(R_NETWORK_GEN_CONFIG
, enable
, on
);
556 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
557 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, delay
, none
);
558 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cancel
, dont
);
559 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cd
, enable
);
560 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, retry
, enable
);
561 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, pad
, enable
);
562 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, crc
, enable
);
563 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
565 local_irq_save(flags
);
567 /* enable the irq's for ethernet DMA */
570 IO_STATE(R_IRQ_MASK2_SET
, dma0_eop
, set
) |
571 IO_STATE(R_IRQ_MASK2_SET
, dma1_eop
, set
);
574 IO_STATE(R_IRQ_MASK0_SET
, overrun
, set
) |
575 IO_STATE(R_IRQ_MASK0_SET
, underrun
, set
) |
576 IO_STATE(R_IRQ_MASK0_SET
, excessive_col
, set
);
578 /* make sure the irqs are cleared */
580 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
581 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
583 /* make sure the rec and transmit error counters are cleared */
585 (void)*R_REC_COUNTERS
; /* dummy read */
586 (void)*R_TR_COUNTERS
; /* dummy read */
588 /* start the receiving DMA channel so we can receive packets from now on */
590 *R_DMA_CH1_FIRST
= virt_to_phys(myNextRxDesc
);
591 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, start
);
593 /* Set up transmit DMA channel so it can be restarted later */
595 *R_DMA_CH0_FIRST
= 0;
596 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
597 netif_start_queue(dev
);
599 local_irq_restore(flags
);
601 /* Probe for transceiver */
602 if (e100_probe_transceiver(dev
))
605 /* Start duplex/speed timers */
606 add_timer(&speed_timer
);
607 add_timer(&duplex_timer
);
609 /* We are now ready to accept transmit requeusts from
610 * the queueing layer of the networking.
612 netif_carrier_on(dev
);
617 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
619 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
621 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
623 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
625 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
630 #if defined(CONFIG_ETRAX_NO_PHY)
632 dummy_check_speed(struct net_device
* dev
)
638 generic_check_speed(struct net_device
* dev
)
641 struct net_local
*np
= netdev_priv(dev
);
643 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
644 if ((data
& ADVERTISE_100FULL
) ||
645 (data
& ADVERTISE_100HALF
))
652 tdk_check_speed(struct net_device
* dev
)
655 struct net_local
*np
= netdev_priv(dev
);
657 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
658 MDIO_TDK_DIAGNOSTIC_REG
);
659 current_speed
= (data
& MDIO_TDK_DIAGNOSTIC_RATE
? 100 : 10);
663 broadcom_check_speed(struct net_device
* dev
)
666 struct net_local
*np
= netdev_priv(dev
);
668 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
669 MDIO_AUX_CTRL_STATUS_REG
);
670 current_speed
= (data
& MDIO_BC_SPEED
? 100 : 10);
674 intel_check_speed(struct net_device
* dev
)
677 struct net_local
*np
= netdev_priv(dev
);
679 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
680 MDIO_INT_STATUS_REG_2
);
681 current_speed
= (data
& MDIO_INT_SPEED
? 100 : 10);
685 e100_check_speed(unsigned long priv
)
687 struct net_device
* dev
= (struct net_device
*)priv
;
688 struct net_local
*np
= netdev_priv(dev
);
689 static int led_initiated
= 0;
691 int old_speed
= current_speed
;
693 spin_lock(&np
->transceiver_lock
);
695 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMSR
);
696 if (!(data
& BMSR_LSTATUS
)) {
699 transceiver
->check_speed(dev
);
702 spin_lock(&np
->led_lock
);
703 if ((old_speed
!= current_speed
) || !led_initiated
) {
705 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
707 netif_carrier_on(dev
);
709 netif_carrier_off(dev
);
711 spin_unlock(&np
->led_lock
);
713 /* Reinitialize the timer. */
714 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
715 add_timer(&speed_timer
);
717 spin_unlock(&np
->transceiver_lock
);
721 e100_negotiate(struct net_device
* dev
)
723 struct net_local
*np
= netdev_priv(dev
);
724 unsigned short data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
727 /* Discard old speed and duplex settings */
728 data
&= ~(ADVERTISE_100HALF
| ADVERTISE_100FULL
|
729 ADVERTISE_10HALF
| ADVERTISE_10FULL
);
731 switch (current_speed_selection
) {
733 if (current_duplex
== full
)
734 data
|= ADVERTISE_10FULL
;
735 else if (current_duplex
== half
)
736 data
|= ADVERTISE_10HALF
;
738 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
;
742 if (current_duplex
== full
)
743 data
|= ADVERTISE_100FULL
;
744 else if (current_duplex
== half
)
745 data
|= ADVERTISE_100HALF
;
747 data
|= ADVERTISE_100HALF
| ADVERTISE_100FULL
;
751 if (current_duplex
== full
)
752 data
|= ADVERTISE_100FULL
| ADVERTISE_10FULL
;
753 else if (current_duplex
== half
)
754 data
|= ADVERTISE_100HALF
| ADVERTISE_10HALF
;
756 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
757 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
760 default: /* assume autoneg speed and duplex */
761 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
762 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
766 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
, data
);
768 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
769 if (autoneg_normal
) {
770 /* Renegotiate with link partner */
771 data
|= BMCR_ANENABLE
| BMCR_ANRESTART
;
773 /* Don't negotiate speed or duplex */
774 data
&= ~(BMCR_ANENABLE
| BMCR_ANRESTART
);
776 /* Set speed and duplex static */
777 if (current_speed_selection
== 10)
778 data
&= ~BMCR_SPEED100
;
780 data
|= BMCR_SPEED100
;
782 if (current_duplex
!= full
)
783 data
&= ~BMCR_FULLDPLX
;
785 data
|= BMCR_FULLDPLX
;
787 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
, data
);
791 e100_set_speed(struct net_device
* dev
, unsigned long speed
)
793 struct net_local
*np
= netdev_priv(dev
);
795 spin_lock(&np
->transceiver_lock
);
796 if (speed
!= current_speed_selection
) {
797 current_speed_selection
= speed
;
800 spin_unlock(&np
->transceiver_lock
);
804 e100_check_duplex(unsigned long priv
)
806 struct net_device
*dev
= (struct net_device
*)priv
;
807 struct net_local
*np
= netdev_priv(dev
);
810 spin_lock(&np
->transceiver_lock
);
811 old_duplex
= full_duplex
;
812 transceiver
->check_duplex(dev
);
813 if (old_duplex
!= full_duplex
) {
815 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
816 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
819 /* Reinitialize the timer. */
820 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
821 add_timer(&duplex_timer
);
822 np
->mii_if
.full_duplex
= full_duplex
;
823 spin_unlock(&np
->transceiver_lock
);
825 #if defined(CONFIG_ETRAX_NO_PHY)
827 dummy_check_duplex(struct net_device
* dev
)
833 generic_check_duplex(struct net_device
* dev
)
836 struct net_local
*np
= netdev_priv(dev
);
838 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
839 if ((data
& ADVERTISE_10FULL
) ||
840 (data
& ADVERTISE_100FULL
))
847 tdk_check_duplex(struct net_device
* dev
)
850 struct net_local
*np
= netdev_priv(dev
);
852 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
853 MDIO_TDK_DIAGNOSTIC_REG
);
854 full_duplex
= (data
& MDIO_TDK_DIAGNOSTIC_DPLX
) ? 1 : 0;
858 broadcom_check_duplex(struct net_device
* dev
)
861 struct net_local
*np
= netdev_priv(dev
);
863 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
864 MDIO_AUX_CTRL_STATUS_REG
);
865 full_duplex
= (data
& MDIO_BC_FULL_DUPLEX_IND
) ? 1 : 0;
869 intel_check_duplex(struct net_device
* dev
)
872 struct net_local
*np
= netdev_priv(dev
);
874 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
875 MDIO_INT_STATUS_REG_2
);
876 full_duplex
= (data
& MDIO_INT_FULL_DUPLEX_IND
) ? 1 : 0;
880 e100_set_duplex(struct net_device
* dev
, enum duplex new_duplex
)
882 struct net_local
*np
= netdev_priv(dev
);
884 spin_lock(&np
->transceiver_lock
);
885 if (new_duplex
!= current_duplex
) {
886 current_duplex
= new_duplex
;
889 spin_unlock(&np
->transceiver_lock
);
893 e100_probe_transceiver(struct net_device
* dev
)
897 #if !defined(CONFIG_ETRAX_NO_PHY)
898 unsigned int phyid_high
;
899 unsigned int phyid_low
;
901 struct transceiver_ops
* ops
= NULL
;
902 struct net_local
*np
= netdev_priv(dev
);
904 spin_lock(&np
->transceiver_lock
);
906 /* Probe MDIO physical address */
907 for (np
->mii_if
.phy_id
= 0; np
->mii_if
.phy_id
<= 31;
908 np
->mii_if
.phy_id
++) {
909 if (e100_get_mdio_reg(dev
,
910 np
->mii_if
.phy_id
, MII_BMSR
) != 0xffff)
913 if (np
->mii_if
.phy_id
== 32) {
918 /* Get manufacturer */
919 phyid_high
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID1
);
920 phyid_low
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID2
);
921 oui
= (phyid_high
<< 6) | (phyid_low
>> 10);
923 for (ops
= &transceivers
[0]; ops
->oui
; ops
++) {
929 spin_unlock(&np
->transceiver_lock
);
935 e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
)
937 unsigned short cmd
; /* Data to be sent on MDIO port */
938 int data
; /* Data read from MDIO */
941 /* Start of frame, OP Code, Physical Address, Register Address */
942 cmd
= (MDIO_START
<< 14) | (MDIO_READ
<< 12) | (phy_id
<< 7) |
945 e100_send_mdio_cmd(cmd
, 0);
950 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
951 data
|= (e100_receive_mdio_bit() << bitCounter
);
958 e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
)
963 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (phy_id
<< 7) |
966 e100_send_mdio_cmd(cmd
, 1);
969 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
970 e100_send_mdio_bit(GET_BIT(bitCounter
, value
));
976 e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
)
979 unsigned char data
= 0x2;
982 for (bitCounter
= 31; bitCounter
>= 0; bitCounter
--)
983 e100_send_mdio_bit(GET_BIT(bitCounter
, MDIO_PREAMBLE
));
985 for (bitCounter
= 15; bitCounter
>= 2; bitCounter
--)
986 e100_send_mdio_bit(GET_BIT(bitCounter
, cmd
));
989 for (bitCounter
= 1; bitCounter
>= 0 ; bitCounter
--)
991 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
993 e100_receive_mdio_bit();
997 e100_send_mdio_bit(unsigned char bit
)
999 *R_NETWORK_MGM_CTRL
=
1000 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
1001 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
1003 *R_NETWORK_MGM_CTRL
=
1004 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
1005 IO_MASK(R_NETWORK_MGM_CTRL
, mdck
) |
1006 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
1010 static unsigned char
1011 e100_receive_mdio_bit(void)
1014 *R_NETWORK_MGM_CTRL
= 0;
1015 bit
= IO_EXTRACT(R_NETWORK_STAT
, mdio
, *R_NETWORK_STAT
);
1017 *R_NETWORK_MGM_CTRL
= IO_MASK(R_NETWORK_MGM_CTRL
, mdck
);
1023 e100_reset_transceiver(struct net_device
* dev
)
1025 struct net_local
*np
= netdev_priv(dev
);
1027 unsigned short data
;
1030 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
1032 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (np
->mii_if
.phy_id
<< 7) | (MII_BMCR
<< 2);
1034 e100_send_mdio_cmd(cmd
, 1);
1038 for (bitCounter
= 15; bitCounter
>= 0 ; bitCounter
--) {
1039 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
1043 /* Called by upper layers if they decide it took too long to complete
1044 * sending a packet - we need to reset and stuff.
1048 e100_tx_timeout(struct net_device
*dev
)
1050 struct net_local
*np
= netdev_priv(dev
);
1051 unsigned long flags
;
1053 spin_lock_irqsave(&np
->lock
, flags
);
1055 printk(KERN_WARNING
"%s: transmit timed out, %s?\n", dev
->name
,
1056 tx_done(dev
) ? "IRQ problem" : "network cable problem");
1058 /* remember we got an error */
1060 dev
->stats
.tx_errors
++;
1062 /* reset the TX DMA in case it has hung on something */
1064 RESET_DMA(NETWORK_TX_DMA_NBR
);
1065 WAIT_DMA(NETWORK_TX_DMA_NBR
);
1067 /* Reset the transceiver. */
1069 e100_reset_transceiver(dev
);
1071 /* and get rid of the packets that never got an interrupt */
1072 while (myFirstTxDesc
!= myNextTxDesc
) {
1073 dev_kfree_skb(myFirstTxDesc
->skb
);
1074 myFirstTxDesc
->skb
= 0;
1075 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1078 /* Set up transmit DMA channel so it can be restarted later */
1079 *R_DMA_CH0_FIRST
= 0;
1080 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
1082 /* tell the upper layers we're ok again */
1084 netif_wake_queue(dev
);
1085 spin_unlock_irqrestore(&np
->lock
, flags
);
1089 /* This will only be invoked if the driver is _not_ in XOFF state.
1090 * What this means is that we need not check it, and that this
1091 * invariant will hold if we make sure that the netif_*_queue()
1092 * calls are done at the proper times.
1096 e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
)
1098 struct net_local
*np
= netdev_priv(dev
);
1099 unsigned char *buf
= skb
->data
;
1100 unsigned long flags
;
1103 printk("send packet len %d\n", length
);
1105 spin_lock_irqsave(&np
->lock
, flags
); /* protect from tx_interrupt and ourself */
1107 myNextTxDesc
->skb
= skb
;
1109 netif_trans_update(dev
); /* NETIF_F_LLTX driver :( */
1111 e100_hardware_send_packet(np
, buf
, skb
->len
);
1113 myNextTxDesc
= phys_to_virt(myNextTxDesc
->descr
.next
);
1115 /* Stop queue if full */
1116 if (myNextTxDesc
== myFirstTxDesc
) {
1117 netif_stop_queue(dev
);
1120 spin_unlock_irqrestore(&np
->lock
, flags
);
1122 return NETDEV_TX_OK
;
1126 * The typical workload of the driver:
1127 * Handle the network interface interrupts.
1131 e100rxtx_interrupt(int irq
, void *dev_id
)
1133 struct net_device
*dev
= (struct net_device
*)dev_id
;
1134 unsigned long irqbits
;
1137 * Note that both rx and tx interrupts are blocked at this point,
1138 * regardless of which got us here.
1141 irqbits
= *R_IRQ_MASK2_RD
;
1143 /* Handle received packets */
1144 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma1_eop
, active
)) {
1145 /* acknowledge the eop interrupt */
1147 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
1149 /* check if one or more complete packets were indeed received */
1151 while ((*R_DMA_CH1_FIRST
!= virt_to_phys(myNextRxDesc
)) &&
1152 (myNextRxDesc
!= myLastRxDesc
)) {
1153 /* Take out the buffer and give it to the OS, then
1154 * allocate a new buffer to put a packet in.
1157 dev
->stats
.rx_packets
++;
1158 /* restart/continue on the channel, for safety */
1159 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, restart
);
1160 /* clear dma channel 1 eop/descr irq bits */
1161 *R_DMA_CH1_CLR_INTR
=
1162 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do) |
1163 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_descr
, do);
1165 /* now, we might have gotten another packet
1166 so we have to loop back and check if so */
1170 /* Report any packets that have been sent */
1171 while (virt_to_phys(myFirstTxDesc
) != *R_DMA_CH0_FIRST
&&
1172 (netif_queue_stopped(dev
) || myFirstTxDesc
!= myNextTxDesc
)) {
1173 dev
->stats
.tx_bytes
+= myFirstTxDesc
->skb
->len
;
1174 dev
->stats
.tx_packets
++;
1176 /* dma is ready with the transmission of the data in tx_skb, so now
1177 we can release the skb memory */
1178 dev_kfree_skb_irq(myFirstTxDesc
->skb
);
1179 myFirstTxDesc
->skb
= 0;
1180 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1181 /* Wake up queue. */
1182 netif_wake_queue(dev
);
1185 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma0_eop
, active
)) {
1186 /* acknowledge the eop interrupt. */
1187 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
1194 e100nw_interrupt(int irq
, void *dev_id
)
1196 struct net_device
*dev
= (struct net_device
*)dev_id
;
1197 unsigned long irqbits
= *R_IRQ_MASK0_RD
;
1199 /* check for underrun irq */
1200 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, underrun
, active
)) {
1201 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1202 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1203 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1204 dev
->stats
.tx_errors
++;
1205 D(printk("ethernet receiver underrun!\n"));
1208 /* check for overrun irq */
1209 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, overrun
, active
)) {
1210 update_rx_stats(&dev
->stats
); /* this will ack the irq */
1211 D(printk("ethernet receiver overrun!\n"));
1213 /* check for excessive collision irq */
1214 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, excessive_col
, active
)) {
1215 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1216 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1217 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1218 dev
->stats
.tx_errors
++;
1219 D(printk("ethernet excessive collisions!\n"));
1224 /* We have a good packet(s), get it/them out of the buffers. */
1226 e100_rx(struct net_device
*dev
)
1228 struct sk_buff
*skb
;
1230 struct net_local
*np
= netdev_priv(dev
);
1231 unsigned char *skb_data_ptr
;
1235 etrax_eth_descr
*prevRxDesc
; /* The descriptor right before myNextRxDesc */
1236 spin_lock(&np
->led_lock
);
1237 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1238 /* light the network leds depending on the current speed. */
1239 e100_set_network_leds(NETWORK_ACTIVITY
);
1241 /* Set the earliest time we may clear the LED */
1242 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1244 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1246 spin_unlock(&np
->led_lock
);
1248 length
= myNextRxDesc
->descr
.hw_len
- 4;
1249 dev
->stats
.rx_bytes
+= length
;
1252 printk("Got a packet of length %d:\n", length
);
1253 /* dump the first bytes in the packet */
1254 skb_data_ptr
= (unsigned char *)phys_to_virt(myNextRxDesc
->descr
.buf
);
1255 for (i
= 0; i
< 8; i
++) {
1256 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i
* 8,
1257 skb_data_ptr
[0],skb_data_ptr
[1],skb_data_ptr
[2],skb_data_ptr
[3],
1258 skb_data_ptr
[4],skb_data_ptr
[5],skb_data_ptr
[6],skb_data_ptr
[7]);
1263 if (length
< RX_COPYBREAK
) {
1264 /* Small packet, copy data */
1265 skb
= dev_alloc_skb(length
- ETHER_HEAD_LEN
);
1267 dev
->stats
.rx_errors
++;
1268 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1269 goto update_nextrxdesc
;
1272 skb_put(skb
, length
- ETHER_HEAD_LEN
); /* allocate room for the packet body */
1273 skb_data_ptr
= skb_push(skb
, ETHER_HEAD_LEN
); /* allocate room for the header */
1276 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1277 skb
->head
, skb
->data
, skb_tail_pointer(skb
),
1278 skb_end_pointer(skb
));
1279 printk("copying packet to 0x%x.\n", skb_data_ptr
);
1282 memcpy(skb_data_ptr
, phys_to_virt(myNextRxDesc
->descr
.buf
), length
);
1285 /* Large packet, send directly to upper layers and allocate new
1286 * memory (aligned to cache line boundary to avoid bug).
1287 * Before sending the skb to upper layers we must make sure
1288 * that skb->data points to the aligned start of the packet.
1291 struct sk_buff
*new_skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
1293 dev
->stats
.rx_errors
++;
1294 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1295 goto update_nextrxdesc
;
1297 skb
= myNextRxDesc
->skb
;
1298 align
= (int)phys_to_virt(myNextRxDesc
->descr
.buf
) - (int)skb
->data
;
1299 skb_put(skb
, length
+ align
);
1300 skb_pull(skb
, align
); /* Remove alignment bytes */
1301 myNextRxDesc
->skb
= new_skb
;
1302 myNextRxDesc
->descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc
->skb
->data
));
1305 skb
->protocol
= eth_type_trans(skb
, dev
);
1307 /* Send the packet to the upper layers */
1311 /* Prepare for next packet */
1312 myNextRxDesc
->descr
.status
= 0;
1313 prevRxDesc
= myNextRxDesc
;
1314 myNextRxDesc
= phys_to_virt(myNextRxDesc
->descr
.next
);
1318 /* Check if descriptors should be returned */
1319 if (rx_queue_len
== RX_QUEUE_THRESHOLD
) {
1320 flush_etrax_cache();
1321 prevRxDesc
->descr
.ctrl
|= d_eol
;
1322 myLastRxDesc
->descr
.ctrl
&= ~d_eol
;
1323 myLastRxDesc
= prevRxDesc
;
1328 /* The inverse routine to net_open(). */
1330 e100_close(struct net_device
*dev
)
1332 printk(KERN_INFO
"Closing %s.\n", dev
->name
);
1334 netif_stop_queue(dev
);
1337 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
1338 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
1339 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
1342 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
1343 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
1344 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
1345 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
1347 /* Stop the receiver and the transmitter */
1349 RESET_DMA(NETWORK_TX_DMA_NBR
);
1350 RESET_DMA(NETWORK_RX_DMA_NBR
);
1352 /* Flush the Tx and disable Rx here. */
1354 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
1355 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
1356 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
1358 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
1359 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
1361 /* Update the statistics here. */
1363 update_rx_stats(&dev
->stats
);
1364 update_tx_stats(&dev
->stats
);
1366 /* Stop speed/duplex timers */
1367 del_timer(&speed_timer
);
1368 del_timer(&duplex_timer
);
1374 e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1376 struct mii_ioctl_data
*data
= if_mii(ifr
);
1377 struct net_local
*np
= netdev_priv(dev
);
1381 spin_lock(&np
->lock
); /* Preempt protection */
1383 /* The ioctls below should be considered obsolete but are */
1384 /* still present for compatibility with old scripts/apps */
1385 case SET_ETH_SPEED_10
: /* 10 Mbps */
1386 e100_set_speed(dev
, 10);
1388 case SET_ETH_SPEED_100
: /* 100 Mbps */
1389 e100_set_speed(dev
, 100);
1391 case SET_ETH_SPEED_AUTO
: /* Auto-negotiate speed */
1392 e100_set_speed(dev
, 0);
1394 case SET_ETH_DUPLEX_HALF
: /* Half duplex */
1395 e100_set_duplex(dev
, half
);
1397 case SET_ETH_DUPLEX_FULL
: /* Full duplex */
1398 e100_set_duplex(dev
, full
);
1400 case SET_ETH_DUPLEX_AUTO
: /* Auto-negotiate duplex */
1401 e100_set_duplex(dev
, autoneg
);
1403 case SET_ETH_AUTONEG
:
1404 old_autoneg
= autoneg_normal
;
1405 autoneg_normal
= *(int*)data
;
1406 if (autoneg_normal
!= old_autoneg
)
1407 e100_negotiate(dev
);
1410 rc
= generic_mii_ioctl(&np
->mii_if
, if_mii(ifr
),
1414 spin_unlock(&np
->lock
);
1418 static int e100_get_settings(struct net_device
*dev
,
1419 struct ethtool_cmd
*cmd
)
1421 struct net_local
*np
= netdev_priv(dev
);
1424 spin_lock_irq(&np
->lock
);
1425 err
= mii_ethtool_gset(&np
->mii_if
, cmd
);
1426 spin_unlock_irq(&np
->lock
);
1428 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1429 cmd
->supported
&= ~(SUPPORTED_1000baseT_Half
1430 | SUPPORTED_1000baseT_Full
);
1434 static int e100_set_settings(struct net_device
*dev
,
1435 struct ethtool_cmd
*ecmd
)
1437 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
1438 e100_set_duplex(dev
, autoneg
);
1439 e100_set_speed(dev
, 0);
1441 e100_set_duplex(dev
, ecmd
->duplex
== DUPLEX_HALF
? half
: full
);
1442 e100_set_speed(dev
, ecmd
->speed
== SPEED_10
? 10: 100);
1448 static void e100_get_drvinfo(struct net_device
*dev
,
1449 struct ethtool_drvinfo
*info
)
1451 strlcpy(info
->driver
, "ETRAX 100LX", sizeof(info
->driver
));
1452 strlcpy(info
->version
, "$Revision: 1.31 $", sizeof(info
->version
));
1453 strlcpy(info
->fw_version
, "N/A", sizeof(info
->fw_version
));
1454 strlcpy(info
->bus_info
, "N/A", sizeof(info
->bus_info
));
1457 static int e100_nway_reset(struct net_device
*dev
)
1459 if (current_duplex
== autoneg
&& current_speed_selection
== 0)
1460 e100_negotiate(dev
);
1464 static const struct ethtool_ops e100_ethtool_ops
= {
1465 .get_settings
= e100_get_settings
,
1466 .set_settings
= e100_set_settings
,
1467 .get_drvinfo
= e100_get_drvinfo
,
1468 .nway_reset
= e100_nway_reset
,
1469 .get_link
= ethtool_op_get_link
,
1473 e100_set_config(struct net_device
*dev
, struct ifmap
*map
)
1475 struct net_local
*np
= netdev_priv(dev
);
1477 spin_lock(&np
->lock
); /* Preempt protection */
1480 case IF_PORT_UNKNOWN
:
1482 e100_set_speed(dev
, 0);
1483 e100_set_duplex(dev
, autoneg
);
1485 case IF_PORT_10BASET
:
1486 e100_set_speed(dev
, 10);
1487 e100_set_duplex(dev
, autoneg
);
1489 case IF_PORT_100BASET
:
1490 case IF_PORT_100BASETX
:
1491 e100_set_speed(dev
, 100);
1492 e100_set_duplex(dev
, autoneg
);
1494 case IF_PORT_100BASEFX
:
1495 case IF_PORT_10BASE2
:
1497 spin_unlock(&np
->lock
);
1500 printk(KERN_ERR
"%s: Invalid media selected", dev
->name
);
1501 spin_unlock(&np
->lock
);
1504 spin_unlock(&np
->lock
);
1509 update_rx_stats(struct net_device_stats
*es
)
1511 unsigned long r
= *R_REC_COUNTERS
;
1512 /* update stats relevant to reception errors */
1513 es
->rx_fifo_errors
+= IO_EXTRACT(R_REC_COUNTERS
, congestion
, r
);
1514 es
->rx_crc_errors
+= IO_EXTRACT(R_REC_COUNTERS
, crc_error
, r
);
1515 es
->rx_frame_errors
+= IO_EXTRACT(R_REC_COUNTERS
, alignment_error
, r
);
1516 es
->rx_length_errors
+= IO_EXTRACT(R_REC_COUNTERS
, oversize
, r
);
1520 update_tx_stats(struct net_device_stats
*es
)
1522 unsigned long r
= *R_TR_COUNTERS
;
1523 /* update stats relevant to transmission errors */
1525 IO_EXTRACT(R_TR_COUNTERS
, single_col
, r
) +
1526 IO_EXTRACT(R_TR_COUNTERS
, multiple_col
, r
);
1530 * Get the current statistics.
1531 * This may be called with the card open or closed.
1533 static struct net_device_stats
*
1534 e100_get_stats(struct net_device
*dev
)
1536 struct net_local
*lp
= netdev_priv(dev
);
1537 unsigned long flags
;
1539 spin_lock_irqsave(&lp
->lock
, flags
);
1541 update_rx_stats(&dev
->stats
);
1542 update_tx_stats(&dev
->stats
);
1544 spin_unlock_irqrestore(&lp
->lock
, flags
);
1549 * Set or clear the multicast filter for this adaptor.
1550 * num_addrs == -1 Promiscuous mode, receive all packets
1551 * num_addrs == 0 Normal mode, clear multicast list
1552 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1553 * and do best-effort filtering.
1556 set_multicast_list(struct net_device
*dev
)
1558 struct net_local
*lp
= netdev_priv(dev
);
1559 int num_addr
= netdev_mc_count(dev
);
1560 unsigned long int lo_bits
;
1561 unsigned long int hi_bits
;
1563 spin_lock(&lp
->lock
);
1564 if (dev
->flags
& IFF_PROMISC
) {
1565 /* promiscuous mode */
1566 lo_bits
= 0xfffffffful
;
1567 hi_bits
= 0xfffffffful
;
1569 /* Enable individual receive */
1570 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, receive
);
1571 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1572 } else if (dev
->flags
& IFF_ALLMULTI
) {
1573 /* enable all multicasts */
1574 lo_bits
= 0xfffffffful
;
1575 hi_bits
= 0xfffffffful
;
1577 /* Disable individual receive */
1578 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1579 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1580 } else if (num_addr
== 0) {
1581 /* Normal, clear the mc list */
1582 lo_bits
= 0x00000000ul
;
1583 hi_bits
= 0x00000000ul
;
1585 /* Disable individual receive */
1586 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1587 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1589 /* MC mode, receive normal and MC packets */
1591 struct netdev_hw_addr
*ha
;
1594 lo_bits
= 0x00000000ul
;
1595 hi_bits
= 0x00000000ul
;
1596 netdev_for_each_mc_addr(ha
, dev
) {
1597 /* Calculate the hash index for the GA registers */
1601 hash_ix
^= (*baddr
) & 0x3f;
1602 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1604 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1605 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1607 hash_ix
^= ((*baddr
) << 4) & 0x30;
1608 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1610 hash_ix
^= (*baddr
) & 0x3f;
1611 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1613 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1614 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1616 hash_ix
^= ((*baddr
) << 4) & 0x30;
1617 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1621 if (hash_ix
>= 32) {
1622 hi_bits
|= (1 << (hash_ix
-32));
1624 lo_bits
|= (1 << hash_ix
);
1627 /* Disable individual receive */
1628 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1629 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1631 *R_NETWORK_GA_0
= lo_bits
;
1632 *R_NETWORK_GA_1
= hi_bits
;
1633 spin_unlock(&lp
->lock
);
1637 e100_hardware_send_packet(struct net_local
*np
, char *buf
, int length
)
1639 D(printk("e100 send pack, buf 0x%x len %d\n", buf
, length
));
1641 spin_lock(&np
->led_lock
);
1642 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1643 /* light the network leds depending on the current speed. */
1644 e100_set_network_leds(NETWORK_ACTIVITY
);
1646 /* Set the earliest time we may clear the LED */
1647 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1649 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1651 spin_unlock(&np
->led_lock
);
1653 /* configure the tx dma descriptor */
1654 myNextTxDesc
->descr
.sw_len
= length
;
1655 myNextTxDesc
->descr
.ctrl
= d_eop
| d_eol
| d_wait
;
1656 myNextTxDesc
->descr
.buf
= virt_to_phys(buf
);
1658 /* Move end of list */
1659 myLastTxDesc
->descr
.ctrl
&= ~d_eol
;
1660 myLastTxDesc
= myNextTxDesc
;
1662 /* Restart DMA channel */
1663 *R_DMA_CH0_CMD
= IO_STATE(R_DMA_CH0_CMD
, cmd
, restart
);
1667 e100_clear_network_leds(unsigned long dummy
)
1669 struct net_device
*dev
= (struct net_device
*)dummy
;
1670 struct net_local
*np
= netdev_priv(dev
);
1672 spin_lock(&np
->led_lock
);
1674 if (led_active
&& time_after(jiffies
, led_next_time
)) {
1675 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
1677 /* Set the earliest time we may set the LED */
1678 led_next_time
= jiffies
+ NET_FLASH_PAUSE
;
1682 spin_unlock(&np
->led_lock
);
1686 e100_set_network_leds(int active
)
1688 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1689 int light_leds
= (active
== NO_NETWORK_ACTIVITY
);
1690 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1691 int light_leds
= (active
== NETWORK_ACTIVITY
);
1693 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1696 if (!current_speed
) {
1697 /* Make LED red, link is down */
1698 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1699 } else if (light_leds
) {
1700 if (current_speed
== 10) {
1701 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE
);
1703 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN
);
1706 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1710 #ifdef CONFIG_NET_POLL_CONTROLLER
1712 e100_netpoll(struct net_device
* netdev
)
1714 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR
, netdev
);
1719 etrax_init_module(void)
1721 return etrax_ethernet_init();
1725 e100_boot_setup(char* str
)
1727 struct sockaddr sa
= {0};
1730 /* Parse the colon separated Ethernet station address */
1731 for (i
= 0; i
< ETH_ALEN
; i
++) {
1733 if (sscanf(str
+ 3*i
, "%2x", &tmp
) != 1) {
1734 printk(KERN_WARNING
"Malformed station address");
1737 sa
.sa_data
[i
] = (char)tmp
;
1744 __setup("etrax100_eth=", e100_boot_setup
);
1746 module_init(etrax_init_module
);