1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2008-2013 Solarflare Communications Inc.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
10 #include <linux/delay.h>
11 #include <linux/moduleparam.h>
12 #include <linux/atomic.h>
13 #include "net_driver.h"
16 #include "farch_regs.h"
17 #include "mcdi_pcol.h"
20 /**************************************************************************
22 * Management-Controller-to-Driver Interface
24 **************************************************************************
27 #define MCDI_RPC_TIMEOUT (10 * HZ)
29 /* A reboot/assertion causes the MCDI status word to be set after the
30 * command word is set or a REBOOT event is sent. If we notice a reboot
31 * via these mechanisms then wait 250ms for the status word to be set.
33 #define MCDI_STATUS_DELAY_US 100
34 #define MCDI_STATUS_DELAY_COUNT 2500
35 #define MCDI_STATUS_SLEEP_MS \
36 (MCDI_STATUS_DELAY_US * MCDI_STATUS_DELAY_COUNT / 1000)
39 EFX_MASK32(EFX_WIDTH(MCDI_HEADER_SEQ))
41 struct efx_mcdi_async_param
{
42 struct list_head list
;
47 efx_mcdi_async_completer
*complete
;
49 /* followed by request/response buffer */
52 static void efx_mcdi_timeout_async(unsigned long context
);
53 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
54 bool *was_attached_out
);
55 static bool efx_mcdi_poll_once(struct efx_nic
*efx
);
56 static void efx_mcdi_abandon(struct efx_nic
*efx
);
58 #ifdef CONFIG_SFC_MCDI_LOGGING
59 static bool mcdi_logging_default
;
60 module_param(mcdi_logging_default
, bool, 0644);
61 MODULE_PARM_DESC(mcdi_logging_default
,
62 "Enable MCDI logging on newly-probed functions");
65 int efx_mcdi_init(struct efx_nic
*efx
)
67 struct efx_mcdi_iface
*mcdi
;
68 bool already_attached
;
71 efx
->mcdi
= kzalloc(sizeof(*efx
->mcdi
), GFP_KERNEL
);
77 #ifdef CONFIG_SFC_MCDI_LOGGING
78 /* consuming code assumes buffer is page-sized */
79 mcdi
->logging_buffer
= (char *)__get_free_page(GFP_KERNEL
);
80 if (!mcdi
->logging_buffer
)
82 mcdi
->logging_enabled
= mcdi_logging_default
;
84 init_waitqueue_head(&mcdi
->wq
);
85 init_waitqueue_head(&mcdi
->proxy_rx_wq
);
86 spin_lock_init(&mcdi
->iface_lock
);
87 mcdi
->state
= MCDI_STATE_QUIESCENT
;
88 mcdi
->mode
= MCDI_MODE_POLL
;
89 spin_lock_init(&mcdi
->async_lock
);
90 INIT_LIST_HEAD(&mcdi
->async_list
);
91 setup_timer(&mcdi
->async_timer
, efx_mcdi_timeout_async
,
94 (void) efx_mcdi_poll_reboot(efx
);
95 mcdi
->new_epoch
= true;
97 /* Recover from a failed assertion before probing */
98 rc
= efx_mcdi_handle_assertion(efx
);
102 /* Let the MC (and BMC, if this is a LOM) know that the driver
103 * is loaded. We should do this before we reset the NIC.
105 rc
= efx_mcdi_drv_attach(efx
, true, &already_attached
);
107 netif_err(efx
, probe
, efx
->net_dev
,
108 "Unable to register driver with MCPU\n");
111 if (already_attached
)
112 /* Not a fatal error */
113 netif_err(efx
, probe
, efx
->net_dev
,
114 "Host already registered with MCPU\n");
116 if (efx
->mcdi
->fn_flags
&
117 (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
))
122 #ifdef CONFIG_SFC_MCDI_LOGGING
123 free_page((unsigned long)mcdi
->logging_buffer
);
132 void efx_mcdi_fini(struct efx_nic
*efx
)
137 BUG_ON(efx
->mcdi
->iface
.state
!= MCDI_STATE_QUIESCENT
);
139 /* Relinquish the device (back to the BMC, if this is a LOM) */
140 efx_mcdi_drv_attach(efx
, false, NULL
);
142 #ifdef CONFIG_SFC_MCDI_LOGGING
143 free_page((unsigned long)efx
->mcdi
->iface
.logging_buffer
);
149 static void efx_mcdi_send_request(struct efx_nic
*efx
, unsigned cmd
,
150 const efx_dword_t
*inbuf
, size_t inlen
)
152 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
153 #ifdef CONFIG_SFC_MCDI_LOGGING
154 char *buf
= mcdi
->logging_buffer
; /* page-sized */
160 BUG_ON(mcdi
->state
== MCDI_STATE_QUIESCENT
);
162 /* Serialise with efx_mcdi_ev_cpl() and efx_mcdi_ev_death() */
163 spin_lock_bh(&mcdi
->iface_lock
);
165 spin_unlock_bh(&mcdi
->iface_lock
);
167 seqno
= mcdi
->seqno
& SEQ_MASK
;
169 if (mcdi
->mode
== MCDI_MODE_EVENTS
)
170 xflags
|= MCDI_HEADER_XFLAGS_EVREQ
;
172 if (efx
->type
->mcdi_max_ver
== 1) {
174 EFX_POPULATE_DWORD_7(hdr
[0],
175 MCDI_HEADER_RESPONSE
, 0,
176 MCDI_HEADER_RESYNC
, 1,
177 MCDI_HEADER_CODE
, cmd
,
178 MCDI_HEADER_DATALEN
, inlen
,
179 MCDI_HEADER_SEQ
, seqno
,
180 MCDI_HEADER_XFLAGS
, xflags
,
181 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
185 BUG_ON(inlen
> MCDI_CTL_SDU_LEN_MAX_V2
);
186 EFX_POPULATE_DWORD_7(hdr
[0],
187 MCDI_HEADER_RESPONSE
, 0,
188 MCDI_HEADER_RESYNC
, 1,
189 MCDI_HEADER_CODE
, MC_CMD_V2_EXTN
,
190 MCDI_HEADER_DATALEN
, 0,
191 MCDI_HEADER_SEQ
, seqno
,
192 MCDI_HEADER_XFLAGS
, xflags
,
193 MCDI_HEADER_NOT_EPOCH
, !mcdi
->new_epoch
);
194 EFX_POPULATE_DWORD_2(hdr
[1],
195 MC_CMD_V2_EXTN_IN_EXTENDED_CMD
, cmd
,
196 MC_CMD_V2_EXTN_IN_ACTUAL_LEN
, inlen
);
200 #ifdef CONFIG_SFC_MCDI_LOGGING
201 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
204 /* Lengths should always be a whole number of dwords, so scream
207 WARN_ON_ONCE(hdr_len
% 4);
208 WARN_ON_ONCE(inlen
% 4);
210 /* We own the logging buffer, as only one MCDI can be in
211 * progress on a NIC at any one time. So no need for locking.
213 for (i
= 0; i
< hdr_len
/ 4 && bytes
< PAGE_SIZE
; i
++)
214 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
215 " %08x", le32_to_cpu(hdr
[i
].u32
[0]));
217 for (i
= 0; i
< inlen
/ 4 && bytes
< PAGE_SIZE
; i
++)
218 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
219 " %08x", le32_to_cpu(inbuf
[i
].u32
[0]));
221 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC REQ:%s\n", buf
);
225 efx
->type
->mcdi_request(efx
, hdr
, hdr_len
, inbuf
, inlen
);
227 mcdi
->new_epoch
= false;
230 static int efx_mcdi_errno(unsigned int mcdi_err
)
235 #define TRANSLATE_ERROR(name) \
236 case MC_CMD_ERR_ ## name: \
238 TRANSLATE_ERROR(EPERM
);
239 TRANSLATE_ERROR(ENOENT
);
240 TRANSLATE_ERROR(EINTR
);
241 TRANSLATE_ERROR(EAGAIN
);
242 TRANSLATE_ERROR(EACCES
);
243 TRANSLATE_ERROR(EBUSY
);
244 TRANSLATE_ERROR(EINVAL
);
245 TRANSLATE_ERROR(EDEADLK
);
246 TRANSLATE_ERROR(ENOSYS
);
247 TRANSLATE_ERROR(ETIME
);
248 TRANSLATE_ERROR(EALREADY
);
249 TRANSLATE_ERROR(ENOSPC
);
250 #undef TRANSLATE_ERROR
251 case MC_CMD_ERR_ENOTSUP
:
253 case MC_CMD_ERR_ALLOC_FAIL
:
255 case MC_CMD_ERR_MAC_EXIST
:
262 static void efx_mcdi_read_response_header(struct efx_nic
*efx
)
264 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
265 unsigned int respseq
, respcmd
, error
;
266 #ifdef CONFIG_SFC_MCDI_LOGGING
267 char *buf
= mcdi
->logging_buffer
; /* page-sized */
271 efx
->type
->mcdi_read_response(efx
, &hdr
, 0, 4);
272 respseq
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_SEQ
);
273 respcmd
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_CODE
);
274 error
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_ERROR
);
276 if (respcmd
!= MC_CMD_V2_EXTN
) {
277 mcdi
->resp_hdr_len
= 4;
278 mcdi
->resp_data_len
= EFX_DWORD_FIELD(hdr
, MCDI_HEADER_DATALEN
);
280 efx
->type
->mcdi_read_response(efx
, &hdr
, 4, 4);
281 mcdi
->resp_hdr_len
= 8;
282 mcdi
->resp_data_len
=
283 EFX_DWORD_FIELD(hdr
, MC_CMD_V2_EXTN_IN_ACTUAL_LEN
);
286 #ifdef CONFIG_SFC_MCDI_LOGGING
287 if (mcdi
->logging_enabled
&& !WARN_ON_ONCE(!buf
)) {
288 size_t hdr_len
, data_len
;
292 WARN_ON_ONCE(mcdi
->resp_hdr_len
% 4);
293 hdr_len
= mcdi
->resp_hdr_len
/ 4;
294 /* MCDI_DECLARE_BUF ensures that underlying buffer is padded
295 * to dword size, and the MCDI buffer is always dword size
297 data_len
= DIV_ROUND_UP(mcdi
->resp_data_len
, 4);
299 /* We own the logging buffer, as only one MCDI can be in
300 * progress on a NIC at any one time. So no need for locking.
302 for (i
= 0; i
< hdr_len
&& bytes
< PAGE_SIZE
; i
++) {
303 efx
->type
->mcdi_read_response(efx
, &hdr
, (i
* 4), 4);
304 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
305 " %08x", le32_to_cpu(hdr
.u32
[0]));
308 for (i
= 0; i
< data_len
&& bytes
< PAGE_SIZE
; i
++) {
309 efx
->type
->mcdi_read_response(efx
, &hdr
,
310 mcdi
->resp_hdr_len
+ (i
* 4), 4);
311 bytes
+= snprintf(buf
+ bytes
, PAGE_SIZE
- bytes
,
312 " %08x", le32_to_cpu(hdr
.u32
[0]));
315 netif_info(efx
, hw
, efx
->net_dev
, "MCDI RPC RESP:%s\n", buf
);
319 mcdi
->resprc_raw
= 0;
320 if (error
&& mcdi
->resp_data_len
== 0) {
321 netif_err(efx
, hw
, efx
->net_dev
, "MC rebooted\n");
323 } else if ((respseq
^ mcdi
->seqno
) & SEQ_MASK
) {
324 netif_err(efx
, hw
, efx
->net_dev
,
325 "MC response mismatch tx seq 0x%x rx seq 0x%x\n",
326 respseq
, mcdi
->seqno
);
329 efx
->type
->mcdi_read_response(efx
, &hdr
, mcdi
->resp_hdr_len
, 4);
330 mcdi
->resprc_raw
= EFX_DWORD_FIELD(hdr
, EFX_DWORD_0
);
331 mcdi
->resprc
= efx_mcdi_errno(mcdi
->resprc_raw
);
337 static bool efx_mcdi_poll_once(struct efx_nic
*efx
)
339 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
342 if (!efx
->type
->mcdi_poll_response(efx
))
345 spin_lock_bh(&mcdi
->iface_lock
);
346 efx_mcdi_read_response_header(efx
);
347 spin_unlock_bh(&mcdi
->iface_lock
);
352 static int efx_mcdi_poll(struct efx_nic
*efx
)
354 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
355 unsigned long time
, finish
;
359 /* Check for a reboot atomically with respect to efx_mcdi_copyout() */
360 rc
= efx_mcdi_poll_reboot(efx
);
362 spin_lock_bh(&mcdi
->iface_lock
);
364 mcdi
->resp_hdr_len
= 0;
365 mcdi
->resp_data_len
= 0;
366 spin_unlock_bh(&mcdi
->iface_lock
);
370 /* Poll for completion. Poll quickly (once a us) for the 1st jiffy,
371 * because generally mcdi responses are fast. After that, back off
372 * and poll once a jiffy (approximately)
375 finish
= jiffies
+ MCDI_RPC_TIMEOUT
;
382 schedule_timeout_uninterruptible(1);
387 if (efx_mcdi_poll_once(efx
))
390 if (time_after(time
, finish
))
394 /* Return rc=0 like wait_event_timeout() */
398 /* Test and clear MC-rebooted flag for this port/function; reset
399 * software state as necessary.
401 int efx_mcdi_poll_reboot(struct efx_nic
*efx
)
406 return efx
->type
->mcdi_poll_reboot(efx
);
409 static bool efx_mcdi_acquire_async(struct efx_mcdi_iface
*mcdi
)
411 return cmpxchg(&mcdi
->state
,
412 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_ASYNC
) ==
413 MCDI_STATE_QUIESCENT
;
416 static void efx_mcdi_acquire_sync(struct efx_mcdi_iface
*mcdi
)
418 /* Wait until the interface becomes QUIESCENT and we win the race
419 * to mark it RUNNING_SYNC.
422 cmpxchg(&mcdi
->state
,
423 MCDI_STATE_QUIESCENT
, MCDI_STATE_RUNNING_SYNC
) ==
424 MCDI_STATE_QUIESCENT
);
427 static int efx_mcdi_await_completion(struct efx_nic
*efx
)
429 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
431 if (wait_event_timeout(mcdi
->wq
, mcdi
->state
== MCDI_STATE_COMPLETED
,
432 MCDI_RPC_TIMEOUT
) == 0)
435 /* Check if efx_mcdi_set_mode() switched us back to polled completions.
436 * In which case, poll for completions directly. If efx_mcdi_ev_cpl()
437 * completed the request first, then we'll just end up completing the
438 * request again, which is safe.
440 * We need an smp_rmb() to synchronise with efx_mcdi_mode_poll(), which
441 * wait_event_timeout() implicitly provides.
443 if (mcdi
->mode
== MCDI_MODE_POLL
)
444 return efx_mcdi_poll(efx
);
449 /* If the interface is RUNNING_SYNC, switch to COMPLETED and wake the
450 * requester. Return whether this was done. Does not take any locks.
452 static bool efx_mcdi_complete_sync(struct efx_mcdi_iface
*mcdi
)
454 if (cmpxchg(&mcdi
->state
,
455 MCDI_STATE_RUNNING_SYNC
, MCDI_STATE_COMPLETED
) ==
456 MCDI_STATE_RUNNING_SYNC
) {
464 static void efx_mcdi_release(struct efx_mcdi_iface
*mcdi
)
466 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
467 struct efx_mcdi_async_param
*async
;
468 struct efx_nic
*efx
= mcdi
->efx
;
470 /* Process the asynchronous request queue */
471 spin_lock_bh(&mcdi
->async_lock
);
472 async
= list_first_entry_or_null(
473 &mcdi
->async_list
, struct efx_mcdi_async_param
, list
);
475 mcdi
->state
= MCDI_STATE_RUNNING_ASYNC
;
476 efx_mcdi_send_request(efx
, async
->cmd
,
477 (const efx_dword_t
*)(async
+ 1),
479 mod_timer(&mcdi
->async_timer
,
480 jiffies
+ MCDI_RPC_TIMEOUT
);
482 spin_unlock_bh(&mcdi
->async_lock
);
488 mcdi
->state
= MCDI_STATE_QUIESCENT
;
492 /* If the interface is RUNNING_ASYNC, switch to COMPLETED, call the
493 * asynchronous completion function, and release the interface.
494 * Return whether this was done. Must be called in bh-disabled
495 * context. Will take iface_lock and async_lock.
497 static bool efx_mcdi_complete_async(struct efx_mcdi_iface
*mcdi
, bool timeout
)
499 struct efx_nic
*efx
= mcdi
->efx
;
500 struct efx_mcdi_async_param
*async
;
501 size_t hdr_len
, data_len
, err_len
;
503 MCDI_DECLARE_BUF_ERR(errbuf
);
506 if (cmpxchg(&mcdi
->state
,
507 MCDI_STATE_RUNNING_ASYNC
, MCDI_STATE_COMPLETED
) !=
508 MCDI_STATE_RUNNING_ASYNC
)
511 spin_lock(&mcdi
->iface_lock
);
513 /* Ensure that if the completion event arrives later,
514 * the seqno check in efx_mcdi_ev_cpl() will fail
523 hdr_len
= mcdi
->resp_hdr_len
;
524 data_len
= mcdi
->resp_data_len
;
526 spin_unlock(&mcdi
->iface_lock
);
528 /* Stop the timer. In case the timer function is running, we
529 * must wait for it to return so that there is no possibility
530 * of it aborting the next request.
533 del_timer_sync(&mcdi
->async_timer
);
535 spin_lock(&mcdi
->async_lock
);
536 async
= list_first_entry(&mcdi
->async_list
,
537 struct efx_mcdi_async_param
, list
);
538 list_del(&async
->list
);
539 spin_unlock(&mcdi
->async_lock
);
541 outbuf
= (efx_dword_t
*)(async
+ 1);
542 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
543 min(async
->outlen
, data_len
));
544 if (!timeout
&& rc
&& !async
->quiet
) {
545 err_len
= min(sizeof(errbuf
), data_len
);
546 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
,
548 efx_mcdi_display_error(efx
, async
->cmd
, async
->inlen
, errbuf
,
553 async
->complete(efx
, async
->cookie
, rc
, outbuf
,
554 min(async
->outlen
, data_len
));
557 efx_mcdi_release(mcdi
);
562 static void efx_mcdi_ev_cpl(struct efx_nic
*efx
, unsigned int seqno
,
563 unsigned int datalen
, unsigned int mcdi_err
)
565 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
568 spin_lock(&mcdi
->iface_lock
);
570 if ((seqno
^ mcdi
->seqno
) & SEQ_MASK
) {
572 /* The request has been cancelled */
575 netif_err(efx
, hw
, efx
->net_dev
,
576 "MC response mismatch tx seq 0x%x rx "
577 "seq 0x%x\n", seqno
, mcdi
->seqno
);
579 if (efx
->type
->mcdi_max_ver
>= 2) {
580 /* MCDI v2 responses don't fit in an event */
581 efx_mcdi_read_response_header(efx
);
583 mcdi
->resprc
= efx_mcdi_errno(mcdi_err
);
584 mcdi
->resp_hdr_len
= 4;
585 mcdi
->resp_data_len
= datalen
;
591 spin_unlock(&mcdi
->iface_lock
);
594 if (!efx_mcdi_complete_async(mcdi
, false))
595 (void) efx_mcdi_complete_sync(mcdi
);
597 /* If the interface isn't RUNNING_ASYNC or
598 * RUNNING_SYNC then we've received a duplicate
599 * completion after we've already transitioned back to
600 * QUIESCENT. [A subsequent invocation would increment
601 * seqno, so would have failed the seqno check].
606 static void efx_mcdi_timeout_async(unsigned long context
)
608 struct efx_mcdi_iface
*mcdi
= (struct efx_mcdi_iface
*)context
;
610 efx_mcdi_complete_async(mcdi
, true);
614 efx_mcdi_check_supported(struct efx_nic
*efx
, unsigned int cmd
, size_t inlen
)
616 if (efx
->type
->mcdi_max_ver
< 0 ||
617 (efx
->type
->mcdi_max_ver
< 2 &&
618 cmd
> MC_CMD_CMD_SPACE_ESCAPE_7
))
621 if (inlen
> MCDI_CTL_SDU_LEN_MAX_V2
||
622 (efx
->type
->mcdi_max_ver
< 2 &&
623 inlen
> MCDI_CTL_SDU_LEN_MAX_V1
))
629 static bool efx_mcdi_get_proxy_handle(struct efx_nic
*efx
,
630 size_t hdr_len
, size_t data_len
,
633 MCDI_DECLARE_BUF_ERR(testbuf
);
634 const size_t buflen
= sizeof(testbuf
);
636 if (!proxy_handle
|| data_len
< buflen
)
639 efx
->type
->mcdi_read_response(efx
, testbuf
, hdr_len
, buflen
);
640 if (MCDI_DWORD(testbuf
, ERR_CODE
) == MC_CMD_ERR_PROXY_PENDING
) {
641 *proxy_handle
= MCDI_DWORD(testbuf
, ERR_PROXY_PENDING_HANDLE
);
648 static int _efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned int cmd
,
650 efx_dword_t
*outbuf
, size_t outlen
,
651 size_t *outlen_actual
, bool quiet
,
652 u32
*proxy_handle
, int *raw_rc
)
654 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
655 MCDI_DECLARE_BUF_ERR(errbuf
);
658 if (mcdi
->mode
== MCDI_MODE_POLL
)
659 rc
= efx_mcdi_poll(efx
);
661 rc
= efx_mcdi_await_completion(efx
);
664 netif_err(efx
, hw
, efx
->net_dev
,
665 "MC command 0x%x inlen %d mode %d timed out\n",
666 cmd
, (int)inlen
, mcdi
->mode
);
668 if (mcdi
->mode
== MCDI_MODE_EVENTS
&& efx_mcdi_poll_once(efx
)) {
669 netif_err(efx
, hw
, efx
->net_dev
,
670 "MCDI request was completed without an event\n");
674 efx_mcdi_abandon(efx
);
676 /* Close the race with efx_mcdi_ev_cpl() executing just too late
677 * and completing a request we've just cancelled, by ensuring
678 * that the seqno check therein fails.
680 spin_lock_bh(&mcdi
->iface_lock
);
683 spin_unlock_bh(&mcdi
->iface_lock
);
693 size_t hdr_len
, data_len
, err_len
;
695 /* At the very least we need a memory barrier here to ensure
696 * we pick up changes from efx_mcdi_ev_cpl(). Protect against
697 * a spurious efx_mcdi_ev_cpl() running concurrently by
698 * acquiring the iface_lock. */
699 spin_lock_bh(&mcdi
->iface_lock
);
702 *raw_rc
= mcdi
->resprc_raw
;
703 hdr_len
= mcdi
->resp_hdr_len
;
704 data_len
= mcdi
->resp_data_len
;
705 err_len
= min(sizeof(errbuf
), data_len
);
706 spin_unlock_bh(&mcdi
->iface_lock
);
710 efx
->type
->mcdi_read_response(efx
, outbuf
, hdr_len
,
711 min(outlen
, data_len
));
713 *outlen_actual
= data_len
;
715 efx
->type
->mcdi_read_response(efx
, errbuf
, hdr_len
, err_len
);
717 if (cmd
== MC_CMD_REBOOT
&& rc
== -EIO
) {
718 /* Don't reset if MC_CMD_REBOOT returns EIO */
719 } else if (rc
== -EIO
|| rc
== -EINTR
) {
720 netif_err(efx
, hw
, efx
->net_dev
, "MC fatal error %d\n",
722 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
723 } else if (proxy_handle
&& (rc
== -EPROTO
) &&
724 efx_mcdi_get_proxy_handle(efx
, hdr_len
, data_len
,
726 mcdi
->proxy_rx_status
= 0;
727 mcdi
->proxy_rx_handle
= 0;
728 mcdi
->state
= MCDI_STATE_PROXY_WAIT
;
729 } else if (rc
&& !quiet
) {
730 efx_mcdi_display_error(efx
, cmd
, inlen
, errbuf
, err_len
,
734 if (rc
== -EIO
|| rc
== -EINTR
) {
735 msleep(MCDI_STATUS_SLEEP_MS
);
736 efx_mcdi_poll_reboot(efx
);
737 mcdi
->new_epoch
= true;
741 if (!proxy_handle
|| !*proxy_handle
)
742 efx_mcdi_release(mcdi
);
746 static void efx_mcdi_proxy_abort(struct efx_mcdi_iface
*mcdi
)
748 if (mcdi
->state
== MCDI_STATE_PROXY_WAIT
) {
749 /* Interrupt the proxy wait. */
750 mcdi
->proxy_rx_status
= -EINTR
;
751 wake_up(&mcdi
->proxy_rx_wq
);
755 static void efx_mcdi_ev_proxy_response(struct efx_nic
*efx
,
756 u32 handle
, int status
)
758 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
760 WARN_ON(mcdi
->state
!= MCDI_STATE_PROXY_WAIT
);
762 mcdi
->proxy_rx_status
= efx_mcdi_errno(status
);
763 /* Ensure the status is written before we update the handle, since the
764 * latter is used to check if we've finished.
767 mcdi
->proxy_rx_handle
= handle
;
768 wake_up(&mcdi
->proxy_rx_wq
);
771 static int efx_mcdi_proxy_wait(struct efx_nic
*efx
, u32 handle
, bool quiet
)
773 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
776 /* Wait for a proxy event, or timeout. */
777 rc
= wait_event_timeout(mcdi
->proxy_rx_wq
,
778 mcdi
->proxy_rx_handle
!= 0 ||
779 mcdi
->proxy_rx_status
== -EINTR
,
783 netif_dbg(efx
, hw
, efx
->net_dev
,
784 "MCDI proxy timeout %d\n", handle
);
786 } else if (mcdi
->proxy_rx_handle
!= handle
) {
787 netif_warn(efx
, hw
, efx
->net_dev
,
788 "MCDI proxy unexpected handle %d (expected %d)\n",
789 mcdi
->proxy_rx_handle
, handle
);
793 return mcdi
->proxy_rx_status
;
796 static int _efx_mcdi_rpc(struct efx_nic
*efx
, unsigned int cmd
,
797 const efx_dword_t
*inbuf
, size_t inlen
,
798 efx_dword_t
*outbuf
, size_t outlen
,
799 size_t *outlen_actual
, bool quiet
, int *raw_rc
)
801 u32 proxy_handle
= 0; /* Zero is an invalid proxy handle. */
804 if (inbuf
&& inlen
&& (inbuf
== outbuf
)) {
805 /* The input buffer can't be aliased with the output. */
810 rc
= efx_mcdi_rpc_start(efx
, cmd
, inbuf
, inlen
);
814 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
815 outlen_actual
, quiet
, &proxy_handle
, raw_rc
);
818 /* Handle proxy authorisation. This allows approval of MCDI
819 * operations to be delegated to the admin function, allowing
820 * fine control over (eg) multicast subscriptions.
822 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
824 netif_dbg(efx
, hw
, efx
->net_dev
,
825 "MCDI waiting for proxy auth %d\n",
827 rc
= efx_mcdi_proxy_wait(efx
, proxy_handle
, quiet
);
830 netif_dbg(efx
, hw
, efx
->net_dev
,
831 "MCDI proxy retry %d\n", proxy_handle
);
833 /* We now retry the original request. */
834 mcdi
->state
= MCDI_STATE_RUNNING_SYNC
;
835 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
837 rc
= _efx_mcdi_rpc_finish(efx
, cmd
, inlen
,
838 outbuf
, outlen
, outlen_actual
,
839 quiet
, NULL
, raw_rc
);
841 netif_printk(efx
, hw
,
842 rc
== -EPERM
? KERN_DEBUG
: KERN_ERR
,
844 "MC command 0x%x failed after proxy auth rc=%d\n",
847 if (rc
== -EINTR
|| rc
== -EIO
)
848 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
849 efx_mcdi_release(mcdi
);
856 static int _efx_mcdi_rpc_evb_retry(struct efx_nic
*efx
, unsigned cmd
,
857 const efx_dword_t
*inbuf
, size_t inlen
,
858 efx_dword_t
*outbuf
, size_t outlen
,
859 size_t *outlen_actual
, bool quiet
)
864 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
865 outbuf
, outlen
, outlen_actual
, true, &raw_rc
);
867 if ((rc
== -EPROTO
) && (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
869 /* If the EVB port isn't available within a VF this may
870 * mean the PF is still bringing the switch up. We should
871 * retry our request shortly.
873 unsigned long abort_time
= jiffies
+ MCDI_RPC_TIMEOUT
;
874 unsigned int delay_us
= 10000;
876 netif_dbg(efx
, hw
, efx
->net_dev
,
877 "%s: NO_EVB_PORT; will retry request\n",
881 usleep_range(delay_us
, delay_us
+ 10000);
882 rc
= _efx_mcdi_rpc(efx
, cmd
, inbuf
, inlen
,
883 outbuf
, outlen
, outlen_actual
,
885 if (delay_us
< 100000)
887 } while ((rc
== -EPROTO
) &&
888 (raw_rc
== MC_CMD_ERR_NO_EVB_PORT
) &&
889 time_before(jiffies
, abort_time
));
892 if (rc
&& !quiet
&& !(cmd
== MC_CMD_REBOOT
&& rc
== -EIO
))
893 efx_mcdi_display_error(efx
, cmd
, inlen
,
900 * efx_mcdi_rpc - Issue an MCDI command and wait for completion
901 * @efx: NIC through which to issue the command
902 * @cmd: Command type number
903 * @inbuf: Command parameters
904 * @inlen: Length of command parameters, in bytes. Must be a multiple
905 * of 4 and no greater than %MCDI_CTL_SDU_LEN_MAX_V1.
906 * @outbuf: Response buffer. May be %NULL if @outlen is 0.
907 * @outlen: Length of response buffer, in bytes. If the actual
908 * response is longer than @outlen & ~3, it will be truncated
910 * @outlen_actual: Pointer through which to return the actual response
911 * length. May be %NULL if this is not needed.
913 * This function may sleep and therefore must be called in an appropriate
916 * Return: A negative error code, or zero if successful. The error
917 * code may come from the MCDI response or may indicate a failure
918 * to communicate with the MC. In the former case, the response
919 * will still be copied to @outbuf and *@outlen_actual will be
920 * set accordingly. In the latter case, *@outlen_actual will be
923 int efx_mcdi_rpc(struct efx_nic
*efx
, unsigned cmd
,
924 const efx_dword_t
*inbuf
, size_t inlen
,
925 efx_dword_t
*outbuf
, size_t outlen
,
926 size_t *outlen_actual
)
928 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
929 outlen_actual
, false);
932 /* Normally, on receiving an error code in the MCDI response,
933 * efx_mcdi_rpc will log an error message containing (among other
934 * things) the raw error code, by means of efx_mcdi_display_error.
935 * This _quiet version suppresses that; if the caller wishes to log
936 * the error conditionally on the return code, it should call this
937 * function and is then responsible for calling efx_mcdi_display_error
940 int efx_mcdi_rpc_quiet(struct efx_nic
*efx
, unsigned cmd
,
941 const efx_dword_t
*inbuf
, size_t inlen
,
942 efx_dword_t
*outbuf
, size_t outlen
,
943 size_t *outlen_actual
)
945 return _efx_mcdi_rpc_evb_retry(efx
, cmd
, inbuf
, inlen
, outbuf
, outlen
,
946 outlen_actual
, true);
949 int efx_mcdi_rpc_start(struct efx_nic
*efx
, unsigned cmd
,
950 const efx_dword_t
*inbuf
, size_t inlen
)
952 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
955 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
959 if (efx
->mc_bist_for_other_fn
)
962 if (mcdi
->mode
== MCDI_MODE_FAIL
)
965 efx_mcdi_acquire_sync(mcdi
);
966 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
970 static int _efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
971 const efx_dword_t
*inbuf
, size_t inlen
,
973 efx_mcdi_async_completer
*complete
,
974 unsigned long cookie
, bool quiet
)
976 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
977 struct efx_mcdi_async_param
*async
;
980 rc
= efx_mcdi_check_supported(efx
, cmd
, inlen
);
984 if (efx
->mc_bist_for_other_fn
)
987 async
= kmalloc(sizeof(*async
) + ALIGN(max(inlen
, outlen
), 4),
993 async
->inlen
= inlen
;
994 async
->outlen
= outlen
;
995 async
->quiet
= quiet
;
996 async
->complete
= complete
;
997 async
->cookie
= cookie
;
998 memcpy(async
+ 1, inbuf
, inlen
);
1000 spin_lock_bh(&mcdi
->async_lock
);
1002 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1003 list_add_tail(&async
->list
, &mcdi
->async_list
);
1005 /* If this is at the front of the queue, try to start it
1008 if (mcdi
->async_list
.next
== &async
->list
&&
1009 efx_mcdi_acquire_async(mcdi
)) {
1010 efx_mcdi_send_request(efx
, cmd
, inbuf
, inlen
);
1011 mod_timer(&mcdi
->async_timer
,
1012 jiffies
+ MCDI_RPC_TIMEOUT
);
1019 spin_unlock_bh(&mcdi
->async_lock
);
1025 * efx_mcdi_rpc_async - Schedule an MCDI command to run asynchronously
1026 * @efx: NIC through which to issue the command
1027 * @cmd: Command type number
1028 * @inbuf: Command parameters
1029 * @inlen: Length of command parameters, in bytes
1030 * @outlen: Length to allocate for response buffer, in bytes
1031 * @complete: Function to be called on completion or cancellation.
1032 * @cookie: Arbitrary value to be passed to @complete.
1034 * This function does not sleep and therefore may be called in atomic
1035 * context. It will fail if event queues are disabled or if MCDI
1036 * event completions have been disabled due to an error.
1038 * If it succeeds, the @complete function will be called exactly once
1039 * in atomic context, when one of the following occurs:
1040 * (a) the completion event is received (in NAPI context)
1041 * (b) event queues are disabled (in the process that disables them)
1042 * (c) the request times-out (in timer context)
1045 efx_mcdi_rpc_async(struct efx_nic
*efx
, unsigned int cmd
,
1046 const efx_dword_t
*inbuf
, size_t inlen
, size_t outlen
,
1047 efx_mcdi_async_completer
*complete
, unsigned long cookie
)
1049 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1053 int efx_mcdi_rpc_async_quiet(struct efx_nic
*efx
, unsigned int cmd
,
1054 const efx_dword_t
*inbuf
, size_t inlen
,
1055 size_t outlen
, efx_mcdi_async_completer
*complete
,
1056 unsigned long cookie
)
1058 return _efx_mcdi_rpc_async(efx
, cmd
, inbuf
, inlen
, outlen
, complete
,
1062 int efx_mcdi_rpc_finish(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1063 efx_dword_t
*outbuf
, size_t outlen
,
1064 size_t *outlen_actual
)
1066 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1067 outlen_actual
, false, NULL
, NULL
);
1070 int efx_mcdi_rpc_finish_quiet(struct efx_nic
*efx
, unsigned cmd
, size_t inlen
,
1071 efx_dword_t
*outbuf
, size_t outlen
,
1072 size_t *outlen_actual
)
1074 return _efx_mcdi_rpc_finish(efx
, cmd
, inlen
, outbuf
, outlen
,
1075 outlen_actual
, true, NULL
, NULL
);
1078 void efx_mcdi_display_error(struct efx_nic
*efx
, unsigned cmd
,
1079 size_t inlen
, efx_dword_t
*outbuf
,
1080 size_t outlen
, int rc
)
1082 int code
= 0, err_arg
= 0;
1084 if (outlen
>= MC_CMD_ERR_CODE_OFST
+ 4)
1085 code
= MCDI_DWORD(outbuf
, ERR_CODE
);
1086 if (outlen
>= MC_CMD_ERR_ARG_OFST
+ 4)
1087 err_arg
= MCDI_DWORD(outbuf
, ERR_ARG
);
1088 netif_printk(efx
, hw
, rc
== -EPERM
? KERN_DEBUG
: KERN_ERR
,
1090 "MC command 0x%x inlen %zu failed rc=%d (raw=%d) arg=%d\n",
1091 cmd
, inlen
, rc
, code
, err_arg
);
1094 /* Switch to polled MCDI completions. This can be called in various
1095 * error conditions with various locks held, so it must be lockless.
1096 * Caller is responsible for flushing asynchronous requests later.
1098 void efx_mcdi_mode_poll(struct efx_nic
*efx
)
1100 struct efx_mcdi_iface
*mcdi
;
1105 mcdi
= efx_mcdi(efx
);
1106 /* If already in polling mode, nothing to do.
1107 * If in fail-fast state, don't switch to polled completion.
1108 * FLR recovery will do that later.
1110 if (mcdi
->mode
== MCDI_MODE_POLL
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1113 /* We can switch from event completion to polled completion, because
1114 * mcdi requests are always completed in shared memory. We do this by
1115 * switching the mode to POLL'd then completing the request.
1116 * efx_mcdi_await_completion() will then call efx_mcdi_poll().
1118 * We need an smp_wmb() to synchronise with efx_mcdi_await_completion(),
1119 * which efx_mcdi_complete_sync() provides for us.
1121 mcdi
->mode
= MCDI_MODE_POLL
;
1123 efx_mcdi_complete_sync(mcdi
);
1126 /* Flush any running or queued asynchronous requests, after event processing
1129 void efx_mcdi_flush_async(struct efx_nic
*efx
)
1131 struct efx_mcdi_async_param
*async
, *next
;
1132 struct efx_mcdi_iface
*mcdi
;
1137 mcdi
= efx_mcdi(efx
);
1139 /* We must be in poll or fail mode so no more requests can be queued */
1140 BUG_ON(mcdi
->mode
== MCDI_MODE_EVENTS
);
1142 del_timer_sync(&mcdi
->async_timer
);
1144 /* If a request is still running, make sure we give the MC
1145 * time to complete it so that the response won't overwrite our
1148 if (mcdi
->state
== MCDI_STATE_RUNNING_ASYNC
) {
1150 mcdi
->state
= MCDI_STATE_QUIESCENT
;
1153 /* Nothing else will access the async list now, so it is safe
1154 * to walk it without holding async_lock. If we hold it while
1155 * calling a completer then lockdep may warn that we have
1156 * acquired locks in the wrong order.
1158 list_for_each_entry_safe(async
, next
, &mcdi
->async_list
, list
) {
1159 if (async
->complete
)
1160 async
->complete(efx
, async
->cookie
, -ENETDOWN
, NULL
, 0);
1161 list_del(&async
->list
);
1166 void efx_mcdi_mode_event(struct efx_nic
*efx
)
1168 struct efx_mcdi_iface
*mcdi
;
1173 mcdi
= efx_mcdi(efx
);
1174 /* If already in event completion mode, nothing to do.
1175 * If in fail-fast state, don't switch to event completion. FLR
1176 * recovery will do that later.
1178 if (mcdi
->mode
== MCDI_MODE_EVENTS
|| mcdi
->mode
== MCDI_MODE_FAIL
)
1181 /* We can't switch from polled to event completion in the middle of a
1182 * request, because the completion method is specified in the request.
1183 * So acquire the interface to serialise the requestors. We don't need
1184 * to acquire the iface_lock to change the mode here, but we do need a
1185 * write memory barrier ensure that efx_mcdi_rpc() sees it, which
1186 * efx_mcdi_acquire() provides.
1188 efx_mcdi_acquire_sync(mcdi
);
1189 mcdi
->mode
= MCDI_MODE_EVENTS
;
1190 efx_mcdi_release(mcdi
);
1193 static void efx_mcdi_ev_death(struct efx_nic
*efx
, int rc
)
1195 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1197 /* If there is an outstanding MCDI request, it has been terminated
1198 * either by a BADASSERT or REBOOT event. If the mcdi interface is
1199 * in polled mode, then do nothing because the MC reboot handler will
1200 * set the header correctly. However, if the mcdi interface is waiting
1201 * for a CMDDONE event it won't receive it [and since all MCDI events
1202 * are sent to the same queue, we can't be racing with
1203 * efx_mcdi_ev_cpl()]
1205 * If there is an outstanding asynchronous request, we can't
1206 * complete it now (efx_mcdi_complete() would deadlock). The
1207 * reset process will take care of this.
1209 * There's a race here with efx_mcdi_send_request(), because
1210 * we might receive a REBOOT event *before* the request has
1211 * been copied out. In polled mode (during startup) this is
1212 * irrelevant, because efx_mcdi_complete_sync() is ignored. In
1213 * event mode, this condition is just an edge-case of
1214 * receiving a REBOOT event after posting the MCDI
1215 * request. Did the mc reboot before or after the copyout? The
1216 * best we can do always is just return failure.
1218 * If there is an outstanding proxy response expected it is not going
1219 * to arrive. We should thus abort it.
1221 spin_lock(&mcdi
->iface_lock
);
1222 efx_mcdi_proxy_abort(mcdi
);
1224 if (efx_mcdi_complete_sync(mcdi
)) {
1225 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1227 mcdi
->resp_hdr_len
= 0;
1228 mcdi
->resp_data_len
= 0;
1234 /* Consume the status word since efx_mcdi_rpc_finish() won't */
1235 for (count
= 0; count
< MCDI_STATUS_DELAY_COUNT
; ++count
) {
1236 rc
= efx_mcdi_poll_reboot(efx
);
1239 udelay(MCDI_STATUS_DELAY_US
);
1242 /* On EF10, a CODE_MC_REBOOT event can be received without the
1243 * reboot detection in efx_mcdi_poll_reboot() being triggered.
1244 * If zero was returned from the final call to
1245 * efx_mcdi_poll_reboot(), the MC reboot wasn't noticed but the
1246 * MC has definitely rebooted so prepare for the reset.
1248 if (!rc
&& efx
->type
->mcdi_reboot_detected
)
1249 efx
->type
->mcdi_reboot_detected(efx
);
1251 mcdi
->new_epoch
= true;
1253 /* Nobody was waiting for an MCDI request, so trigger a reset */
1254 efx_schedule_reset(efx
, RESET_TYPE_MC_FAILURE
);
1257 spin_unlock(&mcdi
->iface_lock
);
1260 /* The MC is going down in to BIST mode. set the BIST flag to block
1261 * new MCDI, cancel any outstanding MCDI and and schedule a BIST-type reset
1262 * (which doesn't actually execute a reset, it waits for the controlling
1263 * function to reset it).
1265 static void efx_mcdi_ev_bist(struct efx_nic
*efx
)
1267 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1269 spin_lock(&mcdi
->iface_lock
);
1270 efx
->mc_bist_for_other_fn
= true;
1271 efx_mcdi_proxy_abort(mcdi
);
1273 if (efx_mcdi_complete_sync(mcdi
)) {
1274 if (mcdi
->mode
== MCDI_MODE_EVENTS
) {
1275 mcdi
->resprc
= -EIO
;
1276 mcdi
->resp_hdr_len
= 0;
1277 mcdi
->resp_data_len
= 0;
1281 mcdi
->new_epoch
= true;
1282 efx_schedule_reset(efx
, RESET_TYPE_MC_BIST
);
1283 spin_unlock(&mcdi
->iface_lock
);
1286 /* MCDI timeouts seen, so make all MCDI calls fail-fast and issue an FLR to try
1289 static void efx_mcdi_abandon(struct efx_nic
*efx
)
1291 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1293 if (xchg(&mcdi
->mode
, MCDI_MODE_FAIL
) == MCDI_MODE_FAIL
)
1294 return; /* it had already been done */
1295 netif_dbg(efx
, hw
, efx
->net_dev
, "MCDI is timing out; trying to recover\n");
1296 efx_schedule_reset(efx
, RESET_TYPE_MCDI_TIMEOUT
);
1299 /* Called from falcon_process_eventq for MCDI events */
1300 void efx_mcdi_process_event(struct efx_channel
*channel
,
1303 struct efx_nic
*efx
= channel
->efx
;
1304 int code
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_CODE
);
1305 u32 data
= EFX_QWORD_FIELD(*event
, MCDI_EVENT_DATA
);
1308 case MCDI_EVENT_CODE_BADSSERT
:
1309 netif_err(efx
, hw
, efx
->net_dev
,
1310 "MC watchdog or assertion failure at 0x%x\n", data
);
1311 efx_mcdi_ev_death(efx
, -EINTR
);
1314 case MCDI_EVENT_CODE_PMNOTICE
:
1315 netif_info(efx
, wol
, efx
->net_dev
, "MCDI PM event.\n");
1318 case MCDI_EVENT_CODE_CMDDONE
:
1319 efx_mcdi_ev_cpl(efx
,
1320 MCDI_EVENT_FIELD(*event
, CMDDONE_SEQ
),
1321 MCDI_EVENT_FIELD(*event
, CMDDONE_DATALEN
),
1322 MCDI_EVENT_FIELD(*event
, CMDDONE_ERRNO
));
1325 case MCDI_EVENT_CODE_LINKCHANGE
:
1326 efx_mcdi_process_link_change(efx
, event
);
1328 case MCDI_EVENT_CODE_SENSOREVT
:
1329 efx_mcdi_sensor_event(efx
, event
);
1331 case MCDI_EVENT_CODE_SCHEDERR
:
1332 netif_dbg(efx
, hw
, efx
->net_dev
,
1333 "MC Scheduler alert (0x%x)\n", data
);
1335 case MCDI_EVENT_CODE_REBOOT
:
1336 case MCDI_EVENT_CODE_MC_REBOOT
:
1337 netif_info(efx
, hw
, efx
->net_dev
, "MC Reboot\n");
1338 efx_mcdi_ev_death(efx
, -EIO
);
1340 case MCDI_EVENT_CODE_MC_BIST
:
1341 netif_info(efx
, hw
, efx
->net_dev
, "MC entered BIST mode\n");
1342 efx_mcdi_ev_bist(efx
);
1344 case MCDI_EVENT_CODE_MAC_STATS_DMA
:
1345 /* MAC stats are gather lazily. We can ignore this. */
1347 case MCDI_EVENT_CODE_FLR
:
1348 if (efx
->type
->sriov_flr
)
1349 efx
->type
->sriov_flr(efx
,
1350 MCDI_EVENT_FIELD(*event
, FLR_VF
));
1352 case MCDI_EVENT_CODE_PTP_RX
:
1353 case MCDI_EVENT_CODE_PTP_FAULT
:
1354 case MCDI_EVENT_CODE_PTP_PPS
:
1355 efx_ptp_event(efx
, event
);
1357 case MCDI_EVENT_CODE_PTP_TIME
:
1358 efx_time_sync_event(channel
, event
);
1360 case MCDI_EVENT_CODE_TX_FLUSH
:
1361 case MCDI_EVENT_CODE_RX_FLUSH
:
1362 /* Two flush events will be sent: one to the same event
1363 * queue as completions, and one to event queue 0.
1364 * In the latter case the {RX,TX}_FLUSH_TO_DRIVER
1365 * flag will be set, and we should ignore the event
1366 * because we want to wait for all completions.
1368 BUILD_BUG_ON(MCDI_EVENT_TX_FLUSH_TO_DRIVER_LBN
!=
1369 MCDI_EVENT_RX_FLUSH_TO_DRIVER_LBN
);
1370 if (!MCDI_EVENT_FIELD(*event
, TX_FLUSH_TO_DRIVER
))
1371 efx_ef10_handle_drain_event(efx
);
1373 case MCDI_EVENT_CODE_TX_ERR
:
1374 case MCDI_EVENT_CODE_RX_ERR
:
1375 netif_err(efx
, hw
, efx
->net_dev
,
1376 "%s DMA error (event: "EFX_QWORD_FMT
")\n",
1377 code
== MCDI_EVENT_CODE_TX_ERR
? "TX" : "RX",
1378 EFX_QWORD_VAL(*event
));
1379 efx_schedule_reset(efx
, RESET_TYPE_DMA_ERROR
);
1381 case MCDI_EVENT_CODE_PROXY_RESPONSE
:
1382 efx_mcdi_ev_proxy_response(efx
,
1383 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_HANDLE
),
1384 MCDI_EVENT_FIELD(*event
, PROXY_RESPONSE_RC
));
1387 netif_err(efx
, hw
, efx
->net_dev
, "Unknown MCDI event 0x%x\n",
1392 /**************************************************************************
1394 * Specific request functions
1396 **************************************************************************
1399 void efx_mcdi_print_fwver(struct efx_nic
*efx
, char *buf
, size_t len
)
1401 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_VERSION_OUT_LEN
);
1403 const __le16
*ver_words
;
1407 BUILD_BUG_ON(MC_CMD_GET_VERSION_IN_LEN
!= 0);
1408 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_VERSION
, NULL
, 0,
1409 outbuf
, sizeof(outbuf
), &outlength
);
1412 if (outlength
< MC_CMD_GET_VERSION_OUT_LEN
) {
1417 ver_words
= (__le16
*)MCDI_PTR(outbuf
, GET_VERSION_OUT_VERSION
);
1418 offset
= snprintf(buf
, len
, "%u.%u.%u.%u",
1419 le16_to_cpu(ver_words
[0]), le16_to_cpu(ver_words
[1]),
1420 le16_to_cpu(ver_words
[2]), le16_to_cpu(ver_words
[3]));
1422 /* EF10 may have multiple datapath firmware variants within a
1423 * single version. Report which variants are running.
1425 if (efx_nic_rev(efx
) >= EFX_REV_HUNT_A0
) {
1426 struct efx_ef10_nic_data
*nic_data
= efx
->nic_data
;
1428 offset
+= snprintf(buf
+ offset
, len
- offset
, " rx%x tx%x",
1429 nic_data
->rx_dpcpu_fw_id
,
1430 nic_data
->tx_dpcpu_fw_id
);
1432 /* It's theoretically possible for the string to exceed 31
1433 * characters, though in practice the first three version
1434 * components are short enough that this doesn't happen.
1436 if (WARN_ON(offset
>= len
))
1443 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1447 static int efx_mcdi_drv_attach(struct efx_nic
*efx
, bool driver_operating
,
1450 MCDI_DECLARE_BUF(inbuf
, MC_CMD_DRV_ATTACH_IN_LEN
);
1451 MCDI_DECLARE_BUF(outbuf
, MC_CMD_DRV_ATTACH_EXT_OUT_LEN
);
1455 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_NEW_STATE
,
1456 driver_operating
? 1 : 0);
1457 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_UPDATE
, 1);
1458 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
, MC_CMD_FW_LOW_LATENCY
);
1460 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
, sizeof(inbuf
),
1461 outbuf
, sizeof(outbuf
), &outlen
);
1462 /* If we're not the primary PF, trying to ATTACH with a FIRMWARE_ID
1463 * specified will fail with EPERM, and we have to tell the MC we don't
1464 * care what firmware we get.
1467 netif_dbg(efx
, probe
, efx
->net_dev
,
1468 "efx_mcdi_drv_attach with fw-variant setting failed EPERM, trying without it\n");
1469 MCDI_SET_DWORD(inbuf
, DRV_ATTACH_IN_FIRMWARE_ID
,
1470 MC_CMD_FW_DONT_CARE
);
1471 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_DRV_ATTACH
, inbuf
,
1472 sizeof(inbuf
), outbuf
, sizeof(outbuf
),
1476 efx_mcdi_display_error(efx
, MC_CMD_DRV_ATTACH
, sizeof(inbuf
),
1477 outbuf
, outlen
, rc
);
1480 if (outlen
< MC_CMD_DRV_ATTACH_OUT_LEN
) {
1485 if (driver_operating
) {
1486 if (outlen
>= MC_CMD_DRV_ATTACH_EXT_OUT_LEN
) {
1487 efx
->mcdi
->fn_flags
=
1489 DRV_ATTACH_EXT_OUT_FUNC_FLAGS
);
1491 /* Synthesise flags for Siena */
1492 efx
->mcdi
->fn_flags
=
1493 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL
|
1494 1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_TRUSTED
|
1495 (efx_port_num(efx
) == 0) <<
1496 MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY
;
1500 /* We currently assume we have control of the external link
1501 * and are completely trusted by firmware. Abort probing
1502 * if that's not true for this function.
1505 if (was_attached
!= NULL
)
1506 *was_attached
= MCDI_DWORD(outbuf
, DRV_ATTACH_OUT_OLD_STATE
);
1510 netif_err(efx
, probe
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1514 int efx_mcdi_get_board_cfg(struct efx_nic
*efx
, u8
*mac_address
,
1515 u16
*fw_subtype_list
, u32
*capabilities
)
1517 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_BOARD_CFG_OUT_LENMAX
);
1519 int port_num
= efx_port_num(efx
);
1522 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_IN_LEN
!= 0);
1523 /* we need __aligned(2) for ether_addr_copy */
1524 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0_OFST
& 1);
1525 BUILD_BUG_ON(MC_CMD_GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1_OFST
& 1);
1527 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_BOARD_CFG
, NULL
, 0,
1528 outbuf
, sizeof(outbuf
), &outlen
);
1532 if (outlen
< MC_CMD_GET_BOARD_CFG_OUT_LENMIN
) {
1538 ether_addr_copy(mac_address
,
1540 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT1
) :
1541 MCDI_PTR(outbuf
, GET_BOARD_CFG_OUT_MAC_ADDR_BASE_PORT0
));
1542 if (fw_subtype_list
) {
1544 i
< MCDI_VAR_ARRAY_LEN(outlen
,
1545 GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
);
1547 fw_subtype_list
[i
] = MCDI_ARRAY_WORD(
1548 outbuf
, GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST
, i
);
1549 for (; i
< MC_CMD_GET_BOARD_CFG_OUT_FW_SUBTYPE_LIST_MAXNUM
; i
++)
1550 fw_subtype_list
[i
] = 0;
1554 *capabilities
= MCDI_DWORD(outbuf
,
1555 GET_BOARD_CFG_OUT_CAPABILITIES_PORT1
);
1557 *capabilities
= MCDI_DWORD(outbuf
,
1558 GET_BOARD_CFG_OUT_CAPABILITIES_PORT0
);
1564 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d len=%d\n",
1565 __func__
, rc
, (int)outlen
);
1570 int efx_mcdi_log_ctrl(struct efx_nic
*efx
, bool evq
, bool uart
, u32 dest_evq
)
1572 MCDI_DECLARE_BUF(inbuf
, MC_CMD_LOG_CTRL_IN_LEN
);
1577 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_UART
;
1579 dest
|= MC_CMD_LOG_CTRL_IN_LOG_DEST_EVQ
;
1581 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST
, dest
);
1582 MCDI_SET_DWORD(inbuf
, LOG_CTRL_IN_LOG_DEST_EVQ
, dest_evq
);
1584 BUILD_BUG_ON(MC_CMD_LOG_CTRL_OUT_LEN
!= 0);
1586 rc
= efx_mcdi_rpc(efx
, MC_CMD_LOG_CTRL
, inbuf
, sizeof(inbuf
),
1591 int efx_mcdi_nvram_types(struct efx_nic
*efx
, u32
*nvram_types_out
)
1593 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TYPES_OUT_LEN
);
1597 BUILD_BUG_ON(MC_CMD_NVRAM_TYPES_IN_LEN
!= 0);
1599 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TYPES
, NULL
, 0,
1600 outbuf
, sizeof(outbuf
), &outlen
);
1603 if (outlen
< MC_CMD_NVRAM_TYPES_OUT_LEN
) {
1608 *nvram_types_out
= MCDI_DWORD(outbuf
, NVRAM_TYPES_OUT_TYPES
);
1612 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n",
1617 int efx_mcdi_nvram_info(struct efx_nic
*efx
, unsigned int type
,
1618 size_t *size_out
, size_t *erase_size_out
,
1619 bool *protected_out
)
1621 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_INFO_IN_LEN
);
1622 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_INFO_OUT_LEN
);
1626 MCDI_SET_DWORD(inbuf
, NVRAM_INFO_IN_TYPE
, type
);
1628 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_INFO
, inbuf
, sizeof(inbuf
),
1629 outbuf
, sizeof(outbuf
), &outlen
);
1632 if (outlen
< MC_CMD_NVRAM_INFO_OUT_LEN
) {
1637 *size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_SIZE
);
1638 *erase_size_out
= MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_ERASESIZE
);
1639 *protected_out
= !!(MCDI_DWORD(outbuf
, NVRAM_INFO_OUT_FLAGS
) &
1640 (1 << MC_CMD_NVRAM_INFO_OUT_PROTECTED_LBN
));
1644 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1648 static int efx_mcdi_nvram_test(struct efx_nic
*efx
, unsigned int type
)
1650 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_TEST_IN_LEN
);
1651 MCDI_DECLARE_BUF(outbuf
, MC_CMD_NVRAM_TEST_OUT_LEN
);
1654 MCDI_SET_DWORD(inbuf
, NVRAM_TEST_IN_TYPE
, type
);
1656 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_TEST
, inbuf
, sizeof(inbuf
),
1657 outbuf
, sizeof(outbuf
), NULL
);
1661 switch (MCDI_DWORD(outbuf
, NVRAM_TEST_OUT_RESULT
)) {
1662 case MC_CMD_NVRAM_TEST_PASS
:
1663 case MC_CMD_NVRAM_TEST_NOTSUPP
:
1670 int efx_mcdi_nvram_test_all(struct efx_nic
*efx
)
1676 rc
= efx_mcdi_nvram_types(efx
, &nvram_types
);
1681 while (nvram_types
!= 0) {
1682 if (nvram_types
& 1) {
1683 rc
= efx_mcdi_nvram_test(efx
, type
);
1694 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed type=%u\n",
1697 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1701 /* Returns 1 if an assertion was read, 0 if no assertion had fired,
1702 * negative on error.
1704 static int efx_mcdi_read_assertion(struct efx_nic
*efx
)
1706 MCDI_DECLARE_BUF(inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
);
1707 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_ASSERTS_OUT_LEN
);
1708 unsigned int flags
, index
;
1714 /* Attempt to read any stored assertion state before we reboot
1715 * the mcfw out of the assertion handler. Retry twice, once
1716 * because a boot-time assertion might cause this command to fail
1717 * with EINTR. And once again because GET_ASSERTS can race with
1718 * MC_CMD_REBOOT running on the other port. */
1721 MCDI_SET_DWORD(inbuf
, GET_ASSERTS_IN_CLEAR
, 1);
1722 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_GET_ASSERTS
,
1723 inbuf
, MC_CMD_GET_ASSERTS_IN_LEN
,
1724 outbuf
, sizeof(outbuf
), &outlen
);
1727 } while ((rc
== -EINTR
|| rc
== -EIO
) && retry
-- > 0);
1730 efx_mcdi_display_error(efx
, MC_CMD_GET_ASSERTS
,
1731 MC_CMD_GET_ASSERTS_IN_LEN
, outbuf
,
1735 if (outlen
< MC_CMD_GET_ASSERTS_OUT_LEN
)
1738 /* Print out any recorded assertion state */
1739 flags
= MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_GLOBAL_FLAGS
);
1740 if (flags
== MC_CMD_GET_ASSERTS_FLAGS_NO_FAILS
)
1743 reason
= (flags
== MC_CMD_GET_ASSERTS_FLAGS_SYS_FAIL
)
1744 ? "system-level assertion"
1745 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_THR_FAIL
)
1746 ? "thread-level assertion"
1747 : (flags
== MC_CMD_GET_ASSERTS_FLAGS_WDOG_FIRED
)
1749 : "unknown assertion";
1750 netif_err(efx
, hw
, efx
->net_dev
,
1751 "MCPU %s at PC = 0x%.8x in thread 0x%.8x\n", reason
,
1752 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_SAVED_PC_OFFS
),
1753 MCDI_DWORD(outbuf
, GET_ASSERTS_OUT_THREAD_OFFS
));
1755 /* Print out the registers */
1757 index
< MC_CMD_GET_ASSERTS_OUT_GP_REGS_OFFS_NUM
;
1759 netif_err(efx
, hw
, efx
->net_dev
, "R%.2d (?): 0x%.8x\n",
1761 MCDI_ARRAY_DWORD(outbuf
, GET_ASSERTS_OUT_GP_REGS_OFFS
,
1767 static int efx_mcdi_exit_assertion(struct efx_nic
*efx
)
1769 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1772 /* If the MC is running debug firmware, it might now be
1773 * waiting for a debugger to attach, but we just want it to
1774 * reboot. We set a flag that makes the command a no-op if it
1775 * has already done so.
1776 * The MCDI will thus return either 0 or -EIO.
1778 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1779 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
,
1780 MC_CMD_REBOOT_FLAGS_AFTER_ASSERTION
);
1781 rc
= efx_mcdi_rpc_quiet(efx
, MC_CMD_REBOOT
, inbuf
, MC_CMD_REBOOT_IN_LEN
,
1786 efx_mcdi_display_error(efx
, MC_CMD_REBOOT
, MC_CMD_REBOOT_IN_LEN
,
1791 int efx_mcdi_handle_assertion(struct efx_nic
*efx
)
1795 rc
= efx_mcdi_read_assertion(efx
);
1799 return efx_mcdi_exit_assertion(efx
);
1802 void efx_mcdi_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1804 MCDI_DECLARE_BUF(inbuf
, MC_CMD_SET_ID_LED_IN_LEN
);
1807 BUILD_BUG_ON(EFX_LED_OFF
!= MC_CMD_LED_OFF
);
1808 BUILD_BUG_ON(EFX_LED_ON
!= MC_CMD_LED_ON
);
1809 BUILD_BUG_ON(EFX_LED_DEFAULT
!= MC_CMD_LED_DEFAULT
);
1811 BUILD_BUG_ON(MC_CMD_SET_ID_LED_OUT_LEN
!= 0);
1813 MCDI_SET_DWORD(inbuf
, SET_ID_LED_IN_STATE
, mode
);
1815 rc
= efx_mcdi_rpc(efx
, MC_CMD_SET_ID_LED
, inbuf
, sizeof(inbuf
),
1819 static int efx_mcdi_reset_func(struct efx_nic
*efx
)
1821 MCDI_DECLARE_BUF(inbuf
, MC_CMD_ENTITY_RESET_IN_LEN
);
1824 BUILD_BUG_ON(MC_CMD_ENTITY_RESET_OUT_LEN
!= 0);
1825 MCDI_POPULATE_DWORD_1(inbuf
, ENTITY_RESET_IN_FLAG
,
1826 ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET
, 1);
1827 rc
= efx_mcdi_rpc(efx
, MC_CMD_ENTITY_RESET
, inbuf
, sizeof(inbuf
),
1832 static int efx_mcdi_reset_mc(struct efx_nic
*efx
)
1834 MCDI_DECLARE_BUF(inbuf
, MC_CMD_REBOOT_IN_LEN
);
1837 BUILD_BUG_ON(MC_CMD_REBOOT_OUT_LEN
!= 0);
1838 MCDI_SET_DWORD(inbuf
, REBOOT_IN_FLAGS
, 0);
1839 rc
= efx_mcdi_rpc(efx
, MC_CMD_REBOOT
, inbuf
, sizeof(inbuf
),
1841 /* White is black, and up is down */
1849 enum reset_type
efx_mcdi_map_reset_reason(enum reset_type reason
)
1851 return RESET_TYPE_RECOVER_OR_ALL
;
1854 int efx_mcdi_reset(struct efx_nic
*efx
, enum reset_type method
)
1858 /* If MCDI is down, we can't handle_assertion */
1859 if (method
== RESET_TYPE_MCDI_TIMEOUT
) {
1860 rc
= pci_reset_function(efx
->pci_dev
);
1863 /* Re-enable polled MCDI completion */
1865 struct efx_mcdi_iface
*mcdi
= efx_mcdi(efx
);
1866 mcdi
->mode
= MCDI_MODE_POLL
;
1871 /* Recover from a failed assertion pre-reset */
1872 rc
= efx_mcdi_handle_assertion(efx
);
1876 if (method
== RESET_TYPE_DATAPATH
)
1878 else if (method
== RESET_TYPE_WORLD
)
1879 return efx_mcdi_reset_mc(efx
);
1881 return efx_mcdi_reset_func(efx
);
1884 static int efx_mcdi_wol_filter_set(struct efx_nic
*efx
, u32 type
,
1885 const u8
*mac
, int *id_out
)
1887 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_SET_IN_LEN
);
1888 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_SET_OUT_LEN
);
1892 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_WOL_TYPE
, type
);
1893 MCDI_SET_DWORD(inbuf
, WOL_FILTER_SET_IN_FILTER_MODE
,
1894 MC_CMD_FILTER_MODE_SIMPLE
);
1895 ether_addr_copy(MCDI_PTR(inbuf
, WOL_FILTER_SET_IN_MAGIC_MAC
), mac
);
1897 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_SET
, inbuf
, sizeof(inbuf
),
1898 outbuf
, sizeof(outbuf
), &outlen
);
1902 if (outlen
< MC_CMD_WOL_FILTER_SET_OUT_LEN
) {
1907 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_SET_OUT_FILTER_ID
);
1913 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1920 efx_mcdi_wol_filter_set_magic(struct efx_nic
*efx
, const u8
*mac
, int *id_out
)
1922 return efx_mcdi_wol_filter_set(efx
, MC_CMD_WOL_TYPE_MAGIC
, mac
, id_out
);
1926 int efx_mcdi_wol_filter_get_magic(struct efx_nic
*efx
, int *id_out
)
1928 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WOL_FILTER_GET_OUT_LEN
);
1932 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_GET
, NULL
, 0,
1933 outbuf
, sizeof(outbuf
), &outlen
);
1937 if (outlen
< MC_CMD_WOL_FILTER_GET_OUT_LEN
) {
1942 *id_out
= (int)MCDI_DWORD(outbuf
, WOL_FILTER_GET_OUT_FILTER_ID
);
1948 netif_err(efx
, hw
, efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
1953 int efx_mcdi_wol_filter_remove(struct efx_nic
*efx
, int id
)
1955 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WOL_FILTER_REMOVE_IN_LEN
);
1958 MCDI_SET_DWORD(inbuf
, WOL_FILTER_REMOVE_IN_FILTER_ID
, (u32
)id
);
1960 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_REMOVE
, inbuf
, sizeof(inbuf
),
1965 int efx_mcdi_flush_rxqs(struct efx_nic
*efx
)
1967 struct efx_channel
*channel
;
1968 struct efx_rx_queue
*rx_queue
;
1969 MCDI_DECLARE_BUF(inbuf
,
1970 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(EFX_MAX_CHANNELS
));
1973 BUILD_BUG_ON(EFX_MAX_CHANNELS
>
1974 MC_CMD_FLUSH_RX_QUEUES_IN_QID_OFST_MAXNUM
);
1977 efx_for_each_channel(channel
, efx
) {
1978 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
1979 if (rx_queue
->flush_pending
) {
1980 rx_queue
->flush_pending
= false;
1981 atomic_dec(&efx
->rxq_flush_pending
);
1982 MCDI_SET_ARRAY_DWORD(
1983 inbuf
, FLUSH_RX_QUEUES_IN_QID_OFST
,
1984 count
, efx_rx_queue_index(rx_queue
));
1990 rc
= efx_mcdi_rpc(efx
, MC_CMD_FLUSH_RX_QUEUES
, inbuf
,
1991 MC_CMD_FLUSH_RX_QUEUES_IN_LEN(count
), NULL
, 0, NULL
);
1997 int efx_mcdi_wol_filter_reset(struct efx_nic
*efx
)
2001 rc
= efx_mcdi_rpc(efx
, MC_CMD_WOL_FILTER_RESET
, NULL
, 0, NULL
, 0, NULL
);
2005 int efx_mcdi_set_workaround(struct efx_nic
*efx
, u32 type
, bool enabled
,
2006 unsigned int *flags
)
2008 MCDI_DECLARE_BUF(inbuf
, MC_CMD_WORKAROUND_IN_LEN
);
2009 MCDI_DECLARE_BUF(outbuf
, MC_CMD_WORKAROUND_EXT_OUT_LEN
);
2013 BUILD_BUG_ON(MC_CMD_WORKAROUND_OUT_LEN
!= 0);
2014 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_TYPE
, type
);
2015 MCDI_SET_DWORD(inbuf
, WORKAROUND_IN_ENABLED
, enabled
);
2016 rc
= efx_mcdi_rpc(efx
, MC_CMD_WORKAROUND
, inbuf
, sizeof(inbuf
),
2017 outbuf
, sizeof(outbuf
), &outlen
);
2024 if (outlen
>= MC_CMD_WORKAROUND_EXT_OUT_LEN
)
2025 *flags
= MCDI_DWORD(outbuf
, WORKAROUND_EXT_OUT_FLAGS
);
2032 int efx_mcdi_get_workarounds(struct efx_nic
*efx
, unsigned int *impl_out
,
2033 unsigned int *enabled_out
)
2035 MCDI_DECLARE_BUF(outbuf
, MC_CMD_GET_WORKAROUNDS_OUT_LEN
);
2039 rc
= efx_mcdi_rpc(efx
, MC_CMD_GET_WORKAROUNDS
, NULL
, 0,
2040 outbuf
, sizeof(outbuf
), &outlen
);
2044 if (outlen
< MC_CMD_GET_WORKAROUNDS_OUT_LEN
) {
2050 *impl_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_IMPLEMENTED
);
2053 *enabled_out
= MCDI_DWORD(outbuf
, GET_WORKAROUNDS_OUT_ENABLED
);
2058 /* Older firmware lacks GET_WORKAROUNDS and this isn't especially
2059 * terrifying. The call site will have to deal with it though.
2061 netif_printk(efx
, hw
, rc
== -ENOSYS
? KERN_DEBUG
: KERN_ERR
,
2062 efx
->net_dev
, "%s: failed rc=%d\n", __func__
, rc
);
2066 #ifdef CONFIG_SFC_MTD
2068 #define EFX_MCDI_NVRAM_LEN_MAX 128
2070 static int efx_mcdi_nvram_update_start(struct efx_nic
*efx
, unsigned int type
)
2072 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_START_IN_LEN
);
2075 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_START_IN_TYPE
, type
);
2077 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_START_OUT_LEN
!= 0);
2079 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_START
, inbuf
, sizeof(inbuf
),
2084 static int efx_mcdi_nvram_read(struct efx_nic
*efx
, unsigned int type
,
2085 loff_t offset
, u8
*buffer
, size_t length
)
2087 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_READ_IN_LEN
);
2088 MCDI_DECLARE_BUF(outbuf
,
2089 MC_CMD_NVRAM_READ_OUT_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2093 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_TYPE
, type
);
2094 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_OFFSET
, offset
);
2095 MCDI_SET_DWORD(inbuf
, NVRAM_READ_IN_LENGTH
, length
);
2097 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_READ
, inbuf
, sizeof(inbuf
),
2098 outbuf
, sizeof(outbuf
), &outlen
);
2102 memcpy(buffer
, MCDI_PTR(outbuf
, NVRAM_READ_OUT_READ_BUFFER
), length
);
2106 static int efx_mcdi_nvram_write(struct efx_nic
*efx
, unsigned int type
,
2107 loff_t offset
, const u8
*buffer
, size_t length
)
2109 MCDI_DECLARE_BUF(inbuf
,
2110 MC_CMD_NVRAM_WRITE_IN_LEN(EFX_MCDI_NVRAM_LEN_MAX
));
2113 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_TYPE
, type
);
2114 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_OFFSET
, offset
);
2115 MCDI_SET_DWORD(inbuf
, NVRAM_WRITE_IN_LENGTH
, length
);
2116 memcpy(MCDI_PTR(inbuf
, NVRAM_WRITE_IN_WRITE_BUFFER
), buffer
, length
);
2118 BUILD_BUG_ON(MC_CMD_NVRAM_WRITE_OUT_LEN
!= 0);
2120 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_WRITE
, inbuf
,
2121 ALIGN(MC_CMD_NVRAM_WRITE_IN_LEN(length
), 4),
2126 static int efx_mcdi_nvram_erase(struct efx_nic
*efx
, unsigned int type
,
2127 loff_t offset
, size_t length
)
2129 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_ERASE_IN_LEN
);
2132 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_TYPE
, type
);
2133 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_OFFSET
, offset
);
2134 MCDI_SET_DWORD(inbuf
, NVRAM_ERASE_IN_LENGTH
, length
);
2136 BUILD_BUG_ON(MC_CMD_NVRAM_ERASE_OUT_LEN
!= 0);
2138 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_ERASE
, inbuf
, sizeof(inbuf
),
2143 static int efx_mcdi_nvram_update_finish(struct efx_nic
*efx
, unsigned int type
)
2145 MCDI_DECLARE_BUF(inbuf
, MC_CMD_NVRAM_UPDATE_FINISH_IN_LEN
);
2148 MCDI_SET_DWORD(inbuf
, NVRAM_UPDATE_FINISH_IN_TYPE
, type
);
2150 BUILD_BUG_ON(MC_CMD_NVRAM_UPDATE_FINISH_OUT_LEN
!= 0);
2152 rc
= efx_mcdi_rpc(efx
, MC_CMD_NVRAM_UPDATE_FINISH
, inbuf
, sizeof(inbuf
),
2157 int efx_mcdi_mtd_read(struct mtd_info
*mtd
, loff_t start
,
2158 size_t len
, size_t *retlen
, u8
*buffer
)
2160 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2161 struct efx_nic
*efx
= mtd
->priv
;
2162 loff_t offset
= start
;
2163 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2167 while (offset
< end
) {
2168 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2169 rc
= efx_mcdi_nvram_read(efx
, part
->nvram_type
, offset
,
2177 *retlen
= offset
- start
;
2181 int efx_mcdi_mtd_erase(struct mtd_info
*mtd
, loff_t start
, size_t len
)
2183 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2184 struct efx_nic
*efx
= mtd
->priv
;
2185 loff_t offset
= start
& ~((loff_t
)(mtd
->erasesize
- 1));
2186 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2187 size_t chunk
= part
->common
.mtd
.erasesize
;
2190 if (!part
->updating
) {
2191 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2194 part
->updating
= true;
2197 /* The MCDI interface can in fact do multiple erase blocks at once;
2198 * but erasing may be slow, so we make multiple calls here to avoid
2199 * tripping the MCDI RPC timeout. */
2200 while (offset
< end
) {
2201 rc
= efx_mcdi_nvram_erase(efx
, part
->nvram_type
, offset
,
2211 int efx_mcdi_mtd_write(struct mtd_info
*mtd
, loff_t start
,
2212 size_t len
, size_t *retlen
, const u8
*buffer
)
2214 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2215 struct efx_nic
*efx
= mtd
->priv
;
2216 loff_t offset
= start
;
2217 loff_t end
= min_t(loff_t
, start
+ len
, mtd
->size
);
2221 if (!part
->updating
) {
2222 rc
= efx_mcdi_nvram_update_start(efx
, part
->nvram_type
);
2225 part
->updating
= true;
2228 while (offset
< end
) {
2229 chunk
= min_t(size_t, end
- offset
, EFX_MCDI_NVRAM_LEN_MAX
);
2230 rc
= efx_mcdi_nvram_write(efx
, part
->nvram_type
, offset
,
2238 *retlen
= offset
- start
;
2242 int efx_mcdi_mtd_sync(struct mtd_info
*mtd
)
2244 struct efx_mcdi_mtd_partition
*part
= to_efx_mcdi_mtd_partition(mtd
);
2245 struct efx_nic
*efx
= mtd
->priv
;
2248 if (part
->updating
) {
2249 part
->updating
= false;
2250 rc
= efx_mcdi_nvram_update_finish(efx
, part
->nvram_type
);
2256 void efx_mcdi_mtd_rename(struct efx_mtd_partition
*part
)
2258 struct efx_mcdi_mtd_partition
*mcdi_part
=
2259 container_of(part
, struct efx_mcdi_mtd_partition
, common
);
2260 struct efx_nic
*efx
= part
->mtd
.priv
;
2262 snprintf(part
->name
, sizeof(part
->name
), "%s %s:%02x",
2263 efx
->name
, part
->type_name
, mcdi_part
->fw_subtype
);
2266 #endif /* CONFIG_SFC_MTD */