hwrng: core - Don't use a stack buffer in add_early_randomness()
[linux/fpc-iii.git] / drivers / staging / octeon-usb / octeon-hcd.c
blob9a7858a300fd76dbb4c6b73d6143d6018b46d8d8
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2008 Cavium Networks
8 * Some parts of the code were originally released under BSD license:
10 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
11 * reserved.
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
15 * met:
17 * * Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
20 * * Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials provided
23 * with the distribution.
25 * * Neither the name of Cavium Networks nor the names of
26 * its contributors may be used to endorse or promote products
27 * derived from this software without specific prior written
28 * permission.
30 * This Software, including technical data, may be subject to U.S. export
31 * control laws, including the U.S. Export Administration Act and its associated
32 * regulations, and may be subject to export or import regulations in other
33 * countries.
35 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
47 #include <linux/usb.h>
48 #include <linux/slab.h>
49 #include <linux/module.h>
50 #include <linux/usb/hcd.h>
51 #include <linux/prefetch.h>
52 #include <linux/platform_device.h>
54 #include <asm/octeon/octeon.h>
56 #include "octeon-hcd.h"
58 /**
59 * enum cvmx_usb_speed - the possible USB device speeds
61 * @CVMX_USB_SPEED_HIGH: Device is operation at 480Mbps
62 * @CVMX_USB_SPEED_FULL: Device is operation at 12Mbps
63 * @CVMX_USB_SPEED_LOW: Device is operation at 1.5Mbps
65 enum cvmx_usb_speed {
66 CVMX_USB_SPEED_HIGH = 0,
67 CVMX_USB_SPEED_FULL = 1,
68 CVMX_USB_SPEED_LOW = 2,
71 /**
72 * enum cvmx_usb_transfer - the possible USB transfer types
74 * @CVMX_USB_TRANSFER_CONTROL: USB transfer type control for hub and status
75 * transfers
76 * @CVMX_USB_TRANSFER_ISOCHRONOUS: USB transfer type isochronous for low
77 * priority periodic transfers
78 * @CVMX_USB_TRANSFER_BULK: USB transfer type bulk for large low priority
79 * transfers
80 * @CVMX_USB_TRANSFER_INTERRUPT: USB transfer type interrupt for high priority
81 * periodic transfers
83 enum cvmx_usb_transfer {
84 CVMX_USB_TRANSFER_CONTROL = 0,
85 CVMX_USB_TRANSFER_ISOCHRONOUS = 1,
86 CVMX_USB_TRANSFER_BULK = 2,
87 CVMX_USB_TRANSFER_INTERRUPT = 3,
90 /**
91 * enum cvmx_usb_direction - the transfer directions
93 * @CVMX_USB_DIRECTION_OUT: Data is transferring from Octeon to the device/host
94 * @CVMX_USB_DIRECTION_IN: Data is transferring from the device/host to Octeon
96 enum cvmx_usb_direction {
97 CVMX_USB_DIRECTION_OUT,
98 CVMX_USB_DIRECTION_IN,
102 * enum cvmx_usb_status - possible callback function status codes
104 * @CVMX_USB_STATUS_OK: The transaction / operation finished without
105 * any errors
106 * @CVMX_USB_STATUS_SHORT: FIXME: This is currently not implemented
107 * @CVMX_USB_STATUS_CANCEL: The transaction was canceled while in flight
108 * by a user call to cvmx_usb_cancel
109 * @CVMX_USB_STATUS_ERROR: The transaction aborted with an unexpected
110 * error status
111 * @CVMX_USB_STATUS_STALL: The transaction received a USB STALL response
112 * from the device
113 * @CVMX_USB_STATUS_XACTERR: The transaction failed with an error from the
114 * device even after a number of retries
115 * @CVMX_USB_STATUS_DATATGLERR: The transaction failed with a data toggle
116 * error even after a number of retries
117 * @CVMX_USB_STATUS_BABBLEERR: The transaction failed with a babble error
118 * @CVMX_USB_STATUS_FRAMEERR: The transaction failed with a frame error
119 * even after a number of retries
121 enum cvmx_usb_status {
122 CVMX_USB_STATUS_OK,
123 CVMX_USB_STATUS_SHORT,
124 CVMX_USB_STATUS_CANCEL,
125 CVMX_USB_STATUS_ERROR,
126 CVMX_USB_STATUS_STALL,
127 CVMX_USB_STATUS_XACTERR,
128 CVMX_USB_STATUS_DATATGLERR,
129 CVMX_USB_STATUS_BABBLEERR,
130 CVMX_USB_STATUS_FRAMEERR,
134 * struct cvmx_usb_port_status - the USB port status information
136 * @port_enabled: 1 = Usb port is enabled, 0 = disabled
137 * @port_over_current: 1 = Over current detected, 0 = Over current not
138 * detected. Octeon doesn't support over current detection.
139 * @port_powered: 1 = Port power is being supplied to the device, 0 =
140 * power is off. Octeon doesn't support turning port power
141 * off.
142 * @port_speed: Current port speed.
143 * @connected: 1 = A device is connected to the port, 0 = No device is
144 * connected.
145 * @connect_change: 1 = Device connected state changed since the last set
146 * status call.
148 struct cvmx_usb_port_status {
149 u32 reserved : 25;
150 u32 port_enabled : 1;
151 u32 port_over_current : 1;
152 u32 port_powered : 1;
153 enum cvmx_usb_speed port_speed : 2;
154 u32 connected : 1;
155 u32 connect_change : 1;
159 * struct cvmx_usb_iso_packet - descriptor for Isochronous packets
161 * @offset: This is the offset in bytes into the main buffer where this data
162 * is stored.
163 * @length: This is the length in bytes of the data.
164 * @status: This is the status of this individual packet transfer.
166 struct cvmx_usb_iso_packet {
167 int offset;
168 int length;
169 enum cvmx_usb_status status;
173 * enum cvmx_usb_initialize_flags - flags used by the initialization function
175 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI: The USB port uses a 12MHz crystal
176 * as clock source at USB_XO and
177 * USB_XI.
178 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND: The USB port uses 12/24/48MHz 2.5V
179 * board clock source at USB_XO.
180 * USB_XI should be tied to GND.
181 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK: Mask for clock speed field
182 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ: Speed of reference clock or
183 * crystal
184 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ: Speed of reference clock
185 * @CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ: Speed of reference clock
186 * @CVMX_USB_INITIALIZE_FLAGS_NO_DMA: Disable DMA and used polled IO for
187 * data transfer use for the USB
189 enum cvmx_usb_initialize_flags {
190 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI = 1 << 0,
191 CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND = 1 << 1,
192 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK = 3 << 3,
193 CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ = 1 << 3,
194 CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ = 2 << 3,
195 CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ = 3 << 3,
196 /* Bits 3-4 used to encode the clock frequency */
197 CVMX_USB_INITIALIZE_FLAGS_NO_DMA = 1 << 5,
201 * enum cvmx_usb_pipe_flags - internal flags for a pipe.
203 * @CVMX_USB_PIPE_FLAGS_SCHEDULED: Used internally to determine if a pipe is
204 * actively using hardware.
205 * @CVMX_USB_PIPE_FLAGS_NEED_PING: Used internally to determine if a high speed
206 * pipe is in the ping state.
208 enum cvmx_usb_pipe_flags {
209 CVMX_USB_PIPE_FLAGS_SCHEDULED = 1 << 17,
210 CVMX_USB_PIPE_FLAGS_NEED_PING = 1 << 18,
213 /* Maximum number of times to retry failed transactions */
214 #define MAX_RETRIES 3
216 /* Maximum number of hardware channels supported by the USB block */
217 #define MAX_CHANNELS 8
220 * The low level hardware can transfer a maximum of this number of bytes in each
221 * transfer. The field is 19 bits wide
223 #define MAX_TRANSFER_BYTES ((1 << 19) - 1)
226 * The low level hardware can transfer a maximum of this number of packets in
227 * each transfer. The field is 10 bits wide
229 #define MAX_TRANSFER_PACKETS ((1 << 10) - 1)
232 * Logical transactions may take numerous low level
233 * transactions, especially when splits are concerned. This
234 * enum represents all of the possible stages a transaction can
235 * be in. Note that split completes are always even. This is so
236 * the NAK handler can backup to the previous low level
237 * transaction with a simple clearing of bit 0.
239 enum cvmx_usb_stage {
240 CVMX_USB_STAGE_NON_CONTROL,
241 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE,
242 CVMX_USB_STAGE_SETUP,
243 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE,
244 CVMX_USB_STAGE_DATA,
245 CVMX_USB_STAGE_DATA_SPLIT_COMPLETE,
246 CVMX_USB_STAGE_STATUS,
247 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE,
251 * struct cvmx_usb_transaction - describes each pending USB transaction
252 * regardless of type. These are linked together
253 * to form a list of pending requests for a pipe.
255 * @node: List node for transactions in the pipe.
256 * @type: Type of transaction, duplicated of the pipe.
257 * @flags: State flags for this transaction.
258 * @buffer: User's physical buffer address to read/write.
259 * @buffer_length: Size of the user's buffer in bytes.
260 * @control_header: For control transactions, physical address of the 8
261 * byte standard header.
262 * @iso_start_frame: For ISO transactions, the starting frame number.
263 * @iso_number_packets: For ISO transactions, the number of packets in the
264 * request.
265 * @iso_packets: For ISO transactions, the sub packets in the request.
266 * @actual_bytes: Actual bytes transfer for this transaction.
267 * @stage: For control transactions, the current stage.
268 * @urb: URB.
270 struct cvmx_usb_transaction {
271 struct list_head node;
272 enum cvmx_usb_transfer type;
273 u64 buffer;
274 int buffer_length;
275 u64 control_header;
276 int iso_start_frame;
277 int iso_number_packets;
278 struct cvmx_usb_iso_packet *iso_packets;
279 int xfersize;
280 int pktcnt;
281 int retries;
282 int actual_bytes;
283 enum cvmx_usb_stage stage;
284 struct urb *urb;
288 * struct cvmx_usb_pipe - a pipe represents a virtual connection between Octeon
289 * and some USB device. It contains a list of pending
290 * request to the device.
292 * @node: List node for pipe list
293 * @next: Pipe after this one in the list
294 * @transactions: List of pending transactions
295 * @interval: For periodic pipes, the interval between packets in
296 * frames
297 * @next_tx_frame: The next frame this pipe is allowed to transmit on
298 * @flags: State flags for this pipe
299 * @device_speed: Speed of device connected to this pipe
300 * @transfer_type: Type of transaction supported by this pipe
301 * @transfer_dir: IN or OUT. Ignored for Control
302 * @multi_count: Max packet in a row for the device
303 * @max_packet: The device's maximum packet size in bytes
304 * @device_addr: USB device address at other end of pipe
305 * @endpoint_num: USB endpoint number at other end of pipe
306 * @hub_device_addr: Hub address this device is connected to
307 * @hub_port: Hub port this device is connected to
308 * @pid_toggle: This toggles between 0/1 on every packet send to track
309 * the data pid needed
310 * @channel: Hardware DMA channel for this pipe
311 * @split_sc_frame: The low order bits of the frame number the split
312 * complete should be sent on
314 struct cvmx_usb_pipe {
315 struct list_head node;
316 struct list_head transactions;
317 u64 interval;
318 u64 next_tx_frame;
319 enum cvmx_usb_pipe_flags flags;
320 enum cvmx_usb_speed device_speed;
321 enum cvmx_usb_transfer transfer_type;
322 enum cvmx_usb_direction transfer_dir;
323 int multi_count;
324 u16 max_packet;
325 u8 device_addr;
326 u8 endpoint_num;
327 u8 hub_device_addr;
328 u8 hub_port;
329 u8 pid_toggle;
330 u8 channel;
331 s8 split_sc_frame;
334 struct cvmx_usb_tx_fifo {
335 struct {
336 int channel;
337 int size;
338 u64 address;
339 } entry[MAX_CHANNELS + 1];
340 int head;
341 int tail;
345 * struct octeon_hcd - the state of the USB block
347 * lock: Serialization lock.
348 * init_flags: Flags passed to initialize.
349 * index: Which USB block this is for.
350 * idle_hardware_channels: Bit set for every idle hardware channel.
351 * usbcx_hprt: Stored port status so we don't need to read a CSR to
352 * determine splits.
353 * pipe_for_channel: Map channels to pipes.
354 * pipe: Storage for pipes.
355 * indent: Used by debug output to indent functions.
356 * port_status: Last port status used for change notification.
357 * idle_pipes: List of open pipes that have no transactions.
358 * active_pipes: Active pipes indexed by transfer type.
359 * frame_number: Increments every SOF interrupt for time keeping.
360 * active_split: Points to the current active split, or NULL.
362 struct octeon_hcd {
363 spinlock_t lock; /* serialization lock */
364 int init_flags;
365 int index;
366 int idle_hardware_channels;
367 union cvmx_usbcx_hprt usbcx_hprt;
368 struct cvmx_usb_pipe *pipe_for_channel[MAX_CHANNELS];
369 int indent;
370 struct cvmx_usb_port_status port_status;
371 struct list_head idle_pipes;
372 struct list_head active_pipes[4];
373 u64 frame_number;
374 struct cvmx_usb_transaction *active_split;
375 struct cvmx_usb_tx_fifo periodic;
376 struct cvmx_usb_tx_fifo nonperiodic;
379 /* This macro spins on a register waiting for it to reach a condition. */
380 #define CVMX_WAIT_FOR_FIELD32(address, _union, cond, timeout_usec) \
381 ({int result; \
382 do { \
383 u64 done = cvmx_get_cycle() + (u64)timeout_usec * \
384 octeon_get_clock_rate() / 1000000; \
385 union _union c; \
387 while (1) { \
388 c.u32 = cvmx_usb_read_csr32(usb, address); \
390 if (cond) { \
391 result = 0; \
392 break; \
393 } else if (cvmx_get_cycle() > done) { \
394 result = -1; \
395 break; \
396 } else \
397 cvmx_wait(100); \
399 } while (0); \
400 result; })
403 * This macro logically sets a single field in a CSR. It does the sequence
404 * read, modify, and write
406 #define USB_SET_FIELD32(address, _union, field, value) \
407 do { \
408 union _union c; \
410 c.u32 = cvmx_usb_read_csr32(usb, address); \
411 c.s.field = value; \
412 cvmx_usb_write_csr32(usb, address, c.u32); \
413 } while (0)
415 /* Returns the IO address to push/pop stuff data from the FIFOs */
416 #define USB_FIFO_ADDRESS(channel, usb_index) \
417 (CVMX_USBCX_GOTGCTL(usb_index) + ((channel) + 1) * 0x1000)
420 * struct octeon_temp_buffer - a bounce buffer for USB transfers
421 * @orig_buffer: the original buffer passed by the USB stack
422 * @data: the newly allocated temporary buffer (excluding meta-data)
424 * Both the DMA engine and FIFO mode will always transfer full 32-bit words. If
425 * the buffer is too short, we need to allocate a temporary one, and this struct
426 * represents it.
428 struct octeon_temp_buffer {
429 void *orig_buffer;
430 u8 data[0];
433 static inline struct usb_hcd *octeon_to_hcd(struct octeon_hcd *p)
435 return container_of((void *)p, struct usb_hcd, hcd_priv);
439 * octeon_alloc_temp_buffer - allocate a temporary buffer for USB transfer
440 * (if needed)
441 * @urb: URB.
442 * @mem_flags: Memory allocation flags.
444 * This function allocates a temporary bounce buffer whenever it's needed
445 * due to HW limitations.
447 static int octeon_alloc_temp_buffer(struct urb *urb, gfp_t mem_flags)
449 struct octeon_temp_buffer *temp;
451 if (urb->num_sgs || urb->sg ||
452 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP) ||
453 !(urb->transfer_buffer_length % sizeof(u32)))
454 return 0;
456 temp = kmalloc(ALIGN(urb->transfer_buffer_length, sizeof(u32)) +
457 sizeof(*temp), mem_flags);
458 if (!temp)
459 return -ENOMEM;
461 temp->orig_buffer = urb->transfer_buffer;
462 if (usb_urb_dir_out(urb))
463 memcpy(temp->data, urb->transfer_buffer,
464 urb->transfer_buffer_length);
465 urb->transfer_buffer = temp->data;
466 urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
468 return 0;
472 * octeon_free_temp_buffer - free a temporary buffer used by USB transfers.
473 * @urb: URB.
475 * Frees a buffer allocated by octeon_alloc_temp_buffer().
477 static void octeon_free_temp_buffer(struct urb *urb)
479 struct octeon_temp_buffer *temp;
480 size_t length;
482 if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
483 return;
485 temp = container_of(urb->transfer_buffer, struct octeon_temp_buffer,
486 data);
487 if (usb_urb_dir_in(urb)) {
488 if (usb_pipeisoc(urb->pipe))
489 length = urb->transfer_buffer_length;
490 else
491 length = urb->actual_length;
493 memcpy(temp->orig_buffer, urb->transfer_buffer, length);
495 urb->transfer_buffer = temp->orig_buffer;
496 urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
497 kfree(temp);
501 * octeon_map_urb_for_dma - Octeon-specific map_urb_for_dma().
502 * @hcd: USB HCD structure.
503 * @urb: URB.
504 * @mem_flags: Memory allocation flags.
506 static int octeon_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
507 gfp_t mem_flags)
509 int ret;
511 ret = octeon_alloc_temp_buffer(urb, mem_flags);
512 if (ret)
513 return ret;
515 ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
516 if (ret)
517 octeon_free_temp_buffer(urb);
519 return ret;
523 * octeon_unmap_urb_for_dma - Octeon-specific unmap_urb_for_dma()
524 * @hcd: USB HCD structure.
525 * @urb: URB.
527 static void octeon_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
529 usb_hcd_unmap_urb_for_dma(hcd, urb);
530 octeon_free_temp_buffer(urb);
534 * Read a USB 32bit CSR. It performs the necessary address swizzle
535 * for 32bit CSRs and logs the value in a readable format if
536 * debugging is on.
538 * @usb: USB block this access is for
539 * @address: 64bit address to read
541 * Returns: Result of the read
543 static inline u32 cvmx_usb_read_csr32(struct octeon_hcd *usb, u64 address)
545 u32 result = cvmx_read64_uint32(address ^ 4);
546 return result;
550 * Write a USB 32bit CSR. It performs the necessary address
551 * swizzle for 32bit CSRs and logs the value in a readable format
552 * if debugging is on.
554 * @usb: USB block this access is for
555 * @address: 64bit address to write
556 * @value: Value to write
558 static inline void cvmx_usb_write_csr32(struct octeon_hcd *usb,
559 u64 address, u32 value)
561 cvmx_write64_uint32(address ^ 4, value);
562 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
566 * Return non zero if this pipe connects to a non HIGH speed
567 * device through a high speed hub.
569 * @usb: USB block this access is for
570 * @pipe: Pipe to check
572 * Returns: Non zero if we need to do split transactions
574 static inline int cvmx_usb_pipe_needs_split(struct octeon_hcd *usb,
575 struct cvmx_usb_pipe *pipe)
577 return pipe->device_speed != CVMX_USB_SPEED_HIGH &&
578 usb->usbcx_hprt.s.prtspd == CVMX_USB_SPEED_HIGH;
582 * Trivial utility function to return the correct PID for a pipe
584 * @pipe: pipe to check
586 * Returns: PID for pipe
588 static inline int cvmx_usb_get_data_pid(struct cvmx_usb_pipe *pipe)
590 if (pipe->pid_toggle)
591 return 2; /* Data1 */
592 return 0; /* Data0 */
595 static void cvmx_fifo_setup(struct octeon_hcd *usb)
597 union cvmx_usbcx_ghwcfg3 usbcx_ghwcfg3;
598 union cvmx_usbcx_gnptxfsiz npsiz;
599 union cvmx_usbcx_hptxfsiz psiz;
601 usbcx_ghwcfg3.u32 = cvmx_usb_read_csr32(usb,
602 CVMX_USBCX_GHWCFG3(usb->index));
605 * Program the USBC_GRXFSIZ register to select the size of the receive
606 * FIFO (25%).
608 USB_SET_FIELD32(CVMX_USBCX_GRXFSIZ(usb->index), cvmx_usbcx_grxfsiz,
609 rxfdep, usbcx_ghwcfg3.s.dfifodepth / 4);
612 * Program the USBC_GNPTXFSIZ register to select the size and the start
613 * address of the non-periodic transmit FIFO for nonperiodic
614 * transactions (50%).
616 npsiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index));
617 npsiz.s.nptxfdep = usbcx_ghwcfg3.s.dfifodepth / 2;
618 npsiz.s.nptxfstaddr = usbcx_ghwcfg3.s.dfifodepth / 4;
619 cvmx_usb_write_csr32(usb, CVMX_USBCX_GNPTXFSIZ(usb->index), npsiz.u32);
622 * Program the USBC_HPTXFSIZ register to select the size and start
623 * address of the periodic transmit FIFO for periodic transactions
624 * (25%).
626 psiz.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index));
627 psiz.s.ptxfsize = usbcx_ghwcfg3.s.dfifodepth / 4;
628 psiz.s.ptxfstaddr = 3 * usbcx_ghwcfg3.s.dfifodepth / 4;
629 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPTXFSIZ(usb->index), psiz.u32);
631 /* Flush all FIFOs */
632 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
633 cvmx_usbcx_grstctl, txfnum, 0x10);
634 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
635 cvmx_usbcx_grstctl, txfflsh, 1);
636 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
637 cvmx_usbcx_grstctl, c.s.txfflsh == 0, 100);
638 USB_SET_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
639 cvmx_usbcx_grstctl, rxfflsh, 1);
640 CVMX_WAIT_FOR_FIELD32(CVMX_USBCX_GRSTCTL(usb->index),
641 cvmx_usbcx_grstctl, c.s.rxfflsh == 0, 100);
645 * Shutdown a USB port after a call to cvmx_usb_initialize().
646 * The port should be disabled with all pipes closed when this
647 * function is called.
649 * @usb: USB device state populated by cvmx_usb_initialize().
651 * Returns: 0 or a negative error code.
653 static int cvmx_usb_shutdown(struct octeon_hcd *usb)
655 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
657 /* Make sure all pipes are closed */
658 if (!list_empty(&usb->idle_pipes) ||
659 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_ISOCHRONOUS]) ||
660 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_INTERRUPT]) ||
661 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_CONTROL]) ||
662 !list_empty(&usb->active_pipes[CVMX_USB_TRANSFER_BULK]))
663 return -EBUSY;
665 /* Disable the clocks and put them in power on reset */
666 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
667 usbn_clk_ctl.s.enable = 1;
668 usbn_clk_ctl.s.por = 1;
669 usbn_clk_ctl.s.hclk_rst = 1;
670 usbn_clk_ctl.s.prst = 0;
671 usbn_clk_ctl.s.hrst = 0;
672 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
673 return 0;
677 * Initialize a USB port for use. This must be called before any
678 * other access to the Octeon USB port is made. The port starts
679 * off in the disabled state.
681 * @dev: Pointer to struct device for logging purposes.
682 * @usb: Pointer to struct octeon_hcd.
684 * Returns: 0 or a negative error code.
686 static int cvmx_usb_initialize(struct device *dev,
687 struct octeon_hcd *usb)
689 int channel;
690 int divisor;
691 int retries = 0;
692 union cvmx_usbcx_hcfg usbcx_hcfg;
693 union cvmx_usbnx_clk_ctl usbn_clk_ctl;
694 union cvmx_usbcx_gintsts usbc_gintsts;
695 union cvmx_usbcx_gahbcfg usbcx_gahbcfg;
696 union cvmx_usbcx_gintmsk usbcx_gintmsk;
697 union cvmx_usbcx_gusbcfg usbcx_gusbcfg;
698 union cvmx_usbnx_usbp_ctl_status usbn_usbp_ctl_status;
700 retry:
702 * Power On Reset and PHY Initialization
704 * 1. Wait for DCOK to assert (nothing to do)
706 * 2a. Write USBN0/1_CLK_CTL[POR] = 1 and
707 * USBN0/1_CLK_CTL[HRST,PRST,HCLK_RST] = 0
709 usbn_clk_ctl.u64 = cvmx_read64_uint64(CVMX_USBNX_CLK_CTL(usb->index));
710 usbn_clk_ctl.s.por = 1;
711 usbn_clk_ctl.s.hrst = 0;
712 usbn_clk_ctl.s.prst = 0;
713 usbn_clk_ctl.s.hclk_rst = 0;
714 usbn_clk_ctl.s.enable = 0;
716 * 2b. Select the USB reference clock/crystal parameters by writing
717 * appropriate values to USBN0/1_CLK_CTL[P_C_SEL, P_RTYPE, P_COM_ON]
719 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND) {
721 * The USB port uses 12/24/48MHz 2.5V board clock
722 * source at USB_XO. USB_XI should be tied to GND.
723 * Most Octeon evaluation boards require this setting
725 if (OCTEON_IS_MODEL(OCTEON_CN3XXX) ||
726 OCTEON_IS_MODEL(OCTEON_CN56XX) ||
727 OCTEON_IS_MODEL(OCTEON_CN50XX))
728 /* From CN56XX,CN50XX,CN31XX,CN30XX manuals */
729 usbn_clk_ctl.s.p_rtype = 2; /* p_rclk=1 & p_xenbn=0 */
730 else
731 /* From CN52XX manual */
732 usbn_clk_ctl.s.p_rtype = 1;
734 switch (usb->init_flags &
735 CVMX_USB_INITIALIZE_FLAGS_CLOCK_MHZ_MASK) {
736 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ:
737 usbn_clk_ctl.s.p_c_sel = 0;
738 break;
739 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ:
740 usbn_clk_ctl.s.p_c_sel = 1;
741 break;
742 case CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ:
743 usbn_clk_ctl.s.p_c_sel = 2;
744 break;
746 } else {
748 * The USB port uses a 12MHz crystal as clock source
749 * at USB_XO and USB_XI
751 if (OCTEON_IS_MODEL(OCTEON_CN3XXX))
752 /* From CN31XX,CN30XX manual */
753 usbn_clk_ctl.s.p_rtype = 3; /* p_rclk=1 & p_xenbn=1 */
754 else
755 /* From CN56XX,CN52XX,CN50XX manuals. */
756 usbn_clk_ctl.s.p_rtype = 0;
758 usbn_clk_ctl.s.p_c_sel = 0;
761 * 2c. Select the HCLK via writing USBN0/1_CLK_CTL[DIVIDE, DIVIDE2] and
762 * setting USBN0/1_CLK_CTL[ENABLE] = 1. Divide the core clock down
763 * such that USB is as close as possible to 125Mhz
765 divisor = DIV_ROUND_UP(octeon_get_clock_rate(), 125000000);
766 /* Lower than 4 doesn't seem to work properly */
767 if (divisor < 4)
768 divisor = 4;
769 usbn_clk_ctl.s.divide = divisor;
770 usbn_clk_ctl.s.divide2 = 0;
771 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
773 /* 2d. Write USBN0/1_CLK_CTL[HCLK_RST] = 1 */
774 usbn_clk_ctl.s.hclk_rst = 1;
775 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
776 /* 2e. Wait 64 core-clock cycles for HCLK to stabilize */
777 cvmx_wait(64);
779 * 3. Program the power-on reset field in the USBN clock-control
780 * register:
781 * USBN_CLK_CTL[POR] = 0
783 usbn_clk_ctl.s.por = 0;
784 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
785 /* 4. Wait 1 ms for PHY clock to start */
786 mdelay(1);
788 * 5. Program the Reset input from automatic test equipment field in the
789 * USBP control and status register:
790 * USBN_USBP_CTL_STATUS[ATE_RESET] = 1
792 usbn_usbp_ctl_status.u64 =
793 cvmx_read64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index));
794 usbn_usbp_ctl_status.s.ate_reset = 1;
795 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
796 usbn_usbp_ctl_status.u64);
797 /* 6. Wait 10 cycles */
798 cvmx_wait(10);
800 * 7. Clear ATE_RESET field in the USBN clock-control register:
801 * USBN_USBP_CTL_STATUS[ATE_RESET] = 0
803 usbn_usbp_ctl_status.s.ate_reset = 0;
804 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
805 usbn_usbp_ctl_status.u64);
807 * 8. Program the PHY reset field in the USBN clock-control register:
808 * USBN_CLK_CTL[PRST] = 1
810 usbn_clk_ctl.s.prst = 1;
811 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
813 * 9. Program the USBP control and status register to select host or
814 * device mode. USBN_USBP_CTL_STATUS[HST_MODE] = 0 for host, = 1 for
815 * device
817 usbn_usbp_ctl_status.s.hst_mode = 0;
818 cvmx_write64_uint64(CVMX_USBNX_USBP_CTL_STATUS(usb->index),
819 usbn_usbp_ctl_status.u64);
820 /* 10. Wait 1 us */
821 udelay(1);
823 * 11. Program the hreset_n field in the USBN clock-control register:
824 * USBN_CLK_CTL[HRST] = 1
826 usbn_clk_ctl.s.hrst = 1;
827 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
828 /* 12. Proceed to USB core initialization */
829 usbn_clk_ctl.s.enable = 1;
830 cvmx_write64_uint64(CVMX_USBNX_CLK_CTL(usb->index), usbn_clk_ctl.u64);
831 udelay(1);
834 * USB Core Initialization
836 * 1. Read USBC_GHWCFG1, USBC_GHWCFG2, USBC_GHWCFG3, USBC_GHWCFG4 to
837 * determine USB core configuration parameters.
839 * Nothing needed
841 * 2. Program the following fields in the global AHB configuration
842 * register (USBC_GAHBCFG)
843 * DMA mode, USBC_GAHBCFG[DMAEn]: 1 = DMA mode, 0 = slave mode
844 * Burst length, USBC_GAHBCFG[HBSTLEN] = 0
845 * Nonperiodic TxFIFO empty level (slave mode only),
846 * USBC_GAHBCFG[NPTXFEMPLVL]
847 * Periodic TxFIFO empty level (slave mode only),
848 * USBC_GAHBCFG[PTXFEMPLVL]
849 * Global interrupt mask, USBC_GAHBCFG[GLBLINTRMSK] = 1
851 usbcx_gahbcfg.u32 = 0;
852 usbcx_gahbcfg.s.dmaen = !(usb->init_flags &
853 CVMX_USB_INITIALIZE_FLAGS_NO_DMA);
854 usbcx_gahbcfg.s.hbstlen = 0;
855 usbcx_gahbcfg.s.nptxfemplvl = 1;
856 usbcx_gahbcfg.s.ptxfemplvl = 1;
857 usbcx_gahbcfg.s.glblintrmsk = 1;
858 cvmx_usb_write_csr32(usb, CVMX_USBCX_GAHBCFG(usb->index),
859 usbcx_gahbcfg.u32);
862 * 3. Program the following fields in USBC_GUSBCFG register.
863 * HS/FS timeout calibration, USBC_GUSBCFG[TOUTCAL] = 0
864 * ULPI DDR select, USBC_GUSBCFG[DDRSEL] = 0
865 * USB turnaround time, USBC_GUSBCFG[USBTRDTIM] = 0x5
866 * PHY low-power clock select, USBC_GUSBCFG[PHYLPWRCLKSEL] = 0
868 usbcx_gusbcfg.u32 = cvmx_usb_read_csr32(usb,
869 CVMX_USBCX_GUSBCFG(usb->index));
870 usbcx_gusbcfg.s.toutcal = 0;
871 usbcx_gusbcfg.s.ddrsel = 0;
872 usbcx_gusbcfg.s.usbtrdtim = 0x5;
873 usbcx_gusbcfg.s.phylpwrclksel = 0;
874 cvmx_usb_write_csr32(usb, CVMX_USBCX_GUSBCFG(usb->index),
875 usbcx_gusbcfg.u32);
878 * 4. The software must unmask the following bits in the USBC_GINTMSK
879 * register.
880 * OTG interrupt mask, USBC_GINTMSK[OTGINTMSK] = 1
881 * Mode mismatch interrupt mask, USBC_GINTMSK[MODEMISMSK] = 1
883 usbcx_gintmsk.u32 = cvmx_usb_read_csr32(usb,
884 CVMX_USBCX_GINTMSK(usb->index));
885 usbcx_gintmsk.s.otgintmsk = 1;
886 usbcx_gintmsk.s.modemismsk = 1;
887 usbcx_gintmsk.s.hchintmsk = 1;
888 usbcx_gintmsk.s.sofmsk = 0;
889 /* We need RX FIFO interrupts if we don't have DMA */
890 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
891 usbcx_gintmsk.s.rxflvlmsk = 1;
892 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTMSK(usb->index),
893 usbcx_gintmsk.u32);
896 * Disable all channel interrupts. We'll enable them per channel later.
898 for (channel = 0; channel < 8; channel++)
899 cvmx_usb_write_csr32(usb,
900 CVMX_USBCX_HCINTMSKX(channel, usb->index),
904 * Host Port Initialization
906 * 1. Program the host-port interrupt-mask field to unmask,
907 * USBC_GINTMSK[PRTINT] = 1
909 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
910 cvmx_usbcx_gintmsk, prtintmsk, 1);
911 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
912 cvmx_usbcx_gintmsk, disconnintmsk, 1);
915 * 2. Program the USBC_HCFG register to select full-speed host
916 * or high-speed host.
918 usbcx_hcfg.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HCFG(usb->index));
919 usbcx_hcfg.s.fslssupp = 0;
920 usbcx_hcfg.s.fslspclksel = 0;
921 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCFG(usb->index), usbcx_hcfg.u32);
923 cvmx_fifo_setup(usb);
926 * If the controller is getting port events right after the reset, it
927 * means the initialization failed. Try resetting the controller again
928 * in such case. This is seen to happen after cold boot on DSR-1000N.
930 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
931 CVMX_USBCX_GINTSTS(usb->index));
932 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
933 usbc_gintsts.u32);
934 dev_dbg(dev, "gintsts after reset: 0x%x\n", (int)usbc_gintsts.u32);
935 if (!usbc_gintsts.s.disconnint && !usbc_gintsts.s.prtint)
936 return 0;
937 if (retries++ >= 5)
938 return -EAGAIN;
939 dev_info(dev, "controller reset failed (gintsts=0x%x) - retrying\n",
940 (int)usbc_gintsts.u32);
941 msleep(50);
942 cvmx_usb_shutdown(usb);
943 msleep(50);
944 goto retry;
948 * Reset a USB port. After this call succeeds, the USB port is
949 * online and servicing requests.
951 * @usb: USB device state populated by cvmx_usb_initialize().
953 static void cvmx_usb_reset_port(struct octeon_hcd *usb)
955 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
956 CVMX_USBCX_HPRT(usb->index));
958 /* Program the port reset bit to start the reset process */
959 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
960 prtrst, 1);
963 * Wait at least 50ms (high speed), or 10ms (full speed) for the reset
964 * process to complete.
966 mdelay(50);
968 /* Program the port reset bit to 0, USBC_HPRT[PRTRST] = 0 */
969 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
970 prtrst, 0);
973 * Read the port speed field to get the enumerated speed,
974 * USBC_HPRT[PRTSPD].
976 usb->usbcx_hprt.u32 = cvmx_usb_read_csr32(usb,
977 CVMX_USBCX_HPRT(usb->index));
981 * Disable a USB port. After this call the USB port will not
982 * generate data transfers and will not generate events.
983 * Transactions in process will fail and call their
984 * associated callbacks.
986 * @usb: USB device state populated by cvmx_usb_initialize().
988 * Returns: 0 or a negative error code.
990 static int cvmx_usb_disable(struct octeon_hcd *usb)
992 /* Disable the port */
993 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index), cvmx_usbcx_hprt,
994 prtena, 1);
995 return 0;
999 * Get the current state of the USB port. Use this call to
1000 * determine if the usb port has anything connected, is enabled,
1001 * or has some sort of error condition. The return value of this
1002 * call has "changed" bits to signal of the value of some fields
1003 * have changed between calls.
1005 * @usb: USB device state populated by cvmx_usb_initialize().
1007 * Returns: Port status information
1009 static struct cvmx_usb_port_status cvmx_usb_get_status(struct octeon_hcd *usb)
1011 union cvmx_usbcx_hprt usbc_hprt;
1012 struct cvmx_usb_port_status result;
1014 memset(&result, 0, sizeof(result));
1016 usbc_hprt.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
1017 result.port_enabled = usbc_hprt.s.prtena;
1018 result.port_over_current = usbc_hprt.s.prtovrcurract;
1019 result.port_powered = usbc_hprt.s.prtpwr;
1020 result.port_speed = usbc_hprt.s.prtspd;
1021 result.connected = usbc_hprt.s.prtconnsts;
1022 result.connect_change =
1023 result.connected != usb->port_status.connected;
1025 return result;
1029 * Open a virtual pipe between the host and a USB device. A pipe
1030 * must be opened before data can be transferred between a device
1031 * and Octeon.
1033 * @usb: USB device state populated by cvmx_usb_initialize().
1034 * @device_addr:
1035 * USB device address to open the pipe to
1036 * (0-127).
1037 * @endpoint_num:
1038 * USB endpoint number to open the pipe to
1039 * (0-15).
1040 * @device_speed:
1041 * The speed of the device the pipe is going
1042 * to. This must match the device's speed,
1043 * which may be different than the port speed.
1044 * @max_packet: The maximum packet length the device can
1045 * transmit/receive (low speed=0-8, full
1046 * speed=0-1023, high speed=0-1024). This value
1047 * comes from the standard endpoint descriptor
1048 * field wMaxPacketSize bits <10:0>.
1049 * @transfer_type:
1050 * The type of transfer this pipe is for.
1051 * @transfer_dir:
1052 * The direction the pipe is in. This is not
1053 * used for control pipes.
1054 * @interval: For ISOCHRONOUS and INTERRUPT transfers,
1055 * this is how often the transfer is scheduled
1056 * for. All other transfers should specify
1057 * zero. The units are in frames (8000/sec at
1058 * high speed, 1000/sec for full speed).
1059 * @multi_count:
1060 * For high speed devices, this is the maximum
1061 * allowed number of packet per microframe.
1062 * Specify zero for non high speed devices. This
1063 * value comes from the standard endpoint descriptor
1064 * field wMaxPacketSize bits <12:11>.
1065 * @hub_device_addr:
1066 * Hub device address this device is connected
1067 * to. Devices connected directly to Octeon
1068 * use zero. This is only used when the device
1069 * is full/low speed behind a high speed hub.
1070 * The address will be of the high speed hub,
1071 * not and full speed hubs after it.
1072 * @hub_port: Which port on the hub the device is
1073 * connected. Use zero for devices connected
1074 * directly to Octeon. Like hub_device_addr,
1075 * this is only used for full/low speed
1076 * devices behind a high speed hub.
1078 * Returns: A non-NULL value is a pipe. NULL means an error.
1080 static struct cvmx_usb_pipe *cvmx_usb_open_pipe(struct octeon_hcd *usb,
1081 int device_addr,
1082 int endpoint_num,
1083 enum cvmx_usb_speed
1084 device_speed,
1085 int max_packet,
1086 enum cvmx_usb_transfer
1087 transfer_type,
1088 enum cvmx_usb_direction
1089 transfer_dir,
1090 int interval, int multi_count,
1091 int hub_device_addr,
1092 int hub_port)
1094 struct cvmx_usb_pipe *pipe;
1096 pipe = kzalloc(sizeof(*pipe), GFP_ATOMIC);
1097 if (!pipe)
1098 return NULL;
1099 if ((device_speed == CVMX_USB_SPEED_HIGH) &&
1100 (transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1101 (transfer_type == CVMX_USB_TRANSFER_BULK))
1102 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
1103 pipe->device_addr = device_addr;
1104 pipe->endpoint_num = endpoint_num;
1105 pipe->device_speed = device_speed;
1106 pipe->max_packet = max_packet;
1107 pipe->transfer_type = transfer_type;
1108 pipe->transfer_dir = transfer_dir;
1109 INIT_LIST_HEAD(&pipe->transactions);
1112 * All pipes use interval to rate limit NAK processing. Force an
1113 * interval if one wasn't supplied
1115 if (!interval)
1116 interval = 1;
1117 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1118 pipe->interval = interval * 8;
1119 /* Force start splits to be schedule on uFrame 0 */
1120 pipe->next_tx_frame = ((usb->frame_number + 7) & ~7) +
1121 pipe->interval;
1122 } else {
1123 pipe->interval = interval;
1124 pipe->next_tx_frame = usb->frame_number + pipe->interval;
1126 pipe->multi_count = multi_count;
1127 pipe->hub_device_addr = hub_device_addr;
1128 pipe->hub_port = hub_port;
1129 pipe->pid_toggle = 0;
1130 pipe->split_sc_frame = -1;
1131 list_add_tail(&pipe->node, &usb->idle_pipes);
1134 * We don't need to tell the hardware about this pipe yet since
1135 * it doesn't have any submitted requests
1138 return pipe;
1142 * Poll the RX FIFOs and remove data as needed. This function is only used
1143 * in non DMA mode. It is very important that this function be called quickly
1144 * enough to prevent FIFO overflow.
1146 * @usb: USB device state populated by cvmx_usb_initialize().
1148 static void cvmx_usb_poll_rx_fifo(struct octeon_hcd *usb)
1150 union cvmx_usbcx_grxstsph rx_status;
1151 int channel;
1152 int bytes;
1153 u64 address;
1154 u32 *ptr;
1156 rx_status.u32 = cvmx_usb_read_csr32(usb,
1157 CVMX_USBCX_GRXSTSPH(usb->index));
1158 /* Only read data if IN data is there */
1159 if (rx_status.s.pktsts != 2)
1160 return;
1161 /* Check if no data is available */
1162 if (!rx_status.s.bcnt)
1163 return;
1165 channel = rx_status.s.chnum;
1166 bytes = rx_status.s.bcnt;
1167 if (!bytes)
1168 return;
1170 /* Get where the DMA engine would have written this data */
1171 address = cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) +
1172 channel * 8);
1174 ptr = cvmx_phys_to_ptr(address);
1175 cvmx_write64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index) + channel * 8,
1176 address + bytes);
1178 /* Loop writing the FIFO data for this packet into memory */
1179 while (bytes > 0) {
1180 *ptr++ = cvmx_usb_read_csr32(usb,
1181 USB_FIFO_ADDRESS(channel, usb->index));
1182 bytes -= 4;
1184 CVMX_SYNCW;
1188 * Fill the TX hardware fifo with data out of the software
1189 * fifos
1191 * @usb: USB device state populated by cvmx_usb_initialize().
1192 * @fifo: Software fifo to use
1193 * @available: Amount of space in the hardware fifo
1195 * Returns: Non zero if the hardware fifo was too small and needs
1196 * to be serviced again.
1198 static int cvmx_usb_fill_tx_hw(struct octeon_hcd *usb,
1199 struct cvmx_usb_tx_fifo *fifo, int available)
1202 * We're done either when there isn't anymore space or the software FIFO
1203 * is empty
1205 while (available && (fifo->head != fifo->tail)) {
1206 int i = fifo->tail;
1207 const u32 *ptr = cvmx_phys_to_ptr(fifo->entry[i].address);
1208 u64 csr_address = USB_FIFO_ADDRESS(fifo->entry[i].channel,
1209 usb->index) ^ 4;
1210 int words = available;
1212 /* Limit the amount of data to what the SW fifo has */
1213 if (fifo->entry[i].size <= available) {
1214 words = fifo->entry[i].size;
1215 fifo->tail++;
1216 if (fifo->tail > MAX_CHANNELS)
1217 fifo->tail = 0;
1220 /* Update the next locations and counts */
1221 available -= words;
1222 fifo->entry[i].address += words * 4;
1223 fifo->entry[i].size -= words;
1226 * Write the HW fifo data. The read every three writes is due
1227 * to an errata on CN3XXX chips
1229 while (words > 3) {
1230 cvmx_write64_uint32(csr_address, *ptr++);
1231 cvmx_write64_uint32(csr_address, *ptr++);
1232 cvmx_write64_uint32(csr_address, *ptr++);
1233 cvmx_read64_uint64(
1234 CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1235 words -= 3;
1237 cvmx_write64_uint32(csr_address, *ptr++);
1238 if (--words) {
1239 cvmx_write64_uint32(csr_address, *ptr++);
1240 if (--words)
1241 cvmx_write64_uint32(csr_address, *ptr++);
1243 cvmx_read64_uint64(CVMX_USBNX_DMA0_INB_CHN0(usb->index));
1245 return fifo->head != fifo->tail;
1249 * Check the hardware FIFOs and fill them as needed
1251 * @usb: USB device state populated by cvmx_usb_initialize().
1253 static void cvmx_usb_poll_tx_fifo(struct octeon_hcd *usb)
1255 if (usb->periodic.head != usb->periodic.tail) {
1256 union cvmx_usbcx_hptxsts tx_status;
1258 tx_status.u32 = cvmx_usb_read_csr32(usb,
1259 CVMX_USBCX_HPTXSTS(usb->index));
1260 if (cvmx_usb_fill_tx_hw(usb, &usb->periodic,
1261 tx_status.s.ptxfspcavail))
1262 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1263 cvmx_usbcx_gintmsk, ptxfempmsk, 1);
1264 else
1265 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1266 cvmx_usbcx_gintmsk, ptxfempmsk, 0);
1269 if (usb->nonperiodic.head != usb->nonperiodic.tail) {
1270 union cvmx_usbcx_gnptxsts tx_status;
1272 tx_status.u32 = cvmx_usb_read_csr32(usb,
1273 CVMX_USBCX_GNPTXSTS(usb->index));
1274 if (cvmx_usb_fill_tx_hw(usb, &usb->nonperiodic,
1275 tx_status.s.nptxfspcavail))
1276 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1277 cvmx_usbcx_gintmsk, nptxfempmsk, 1);
1278 else
1279 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1280 cvmx_usbcx_gintmsk, nptxfempmsk, 0);
1285 * Fill the TX FIFO with an outgoing packet
1287 * @usb: USB device state populated by cvmx_usb_initialize().
1288 * @channel: Channel number to get packet from
1290 static void cvmx_usb_fill_tx_fifo(struct octeon_hcd *usb, int channel)
1292 union cvmx_usbcx_hccharx hcchar;
1293 union cvmx_usbcx_hcspltx usbc_hcsplt;
1294 union cvmx_usbcx_hctsizx usbc_hctsiz;
1295 struct cvmx_usb_tx_fifo *fifo;
1297 /* We only need to fill data on outbound channels */
1298 hcchar.u32 = cvmx_usb_read_csr32(usb,
1299 CVMX_USBCX_HCCHARX(channel, usb->index));
1300 if (hcchar.s.epdir != CVMX_USB_DIRECTION_OUT)
1301 return;
1303 /* OUT Splits only have data on the start and not the complete */
1304 usbc_hcsplt.u32 = cvmx_usb_read_csr32(usb,
1305 CVMX_USBCX_HCSPLTX(channel, usb->index));
1306 if (usbc_hcsplt.s.spltena && usbc_hcsplt.s.compsplt)
1307 return;
1310 * Find out how many bytes we need to fill and convert it into 32bit
1311 * words.
1313 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1314 CVMX_USBCX_HCTSIZX(channel, usb->index));
1315 if (!usbc_hctsiz.s.xfersize)
1316 return;
1318 if ((hcchar.s.eptype == CVMX_USB_TRANSFER_INTERRUPT) ||
1319 (hcchar.s.eptype == CVMX_USB_TRANSFER_ISOCHRONOUS))
1320 fifo = &usb->periodic;
1321 else
1322 fifo = &usb->nonperiodic;
1324 fifo->entry[fifo->head].channel = channel;
1325 fifo->entry[fifo->head].address =
1326 cvmx_read64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1327 channel * 8);
1328 fifo->entry[fifo->head].size = (usbc_hctsiz.s.xfersize + 3) >> 2;
1329 fifo->head++;
1330 if (fifo->head > MAX_CHANNELS)
1331 fifo->head = 0;
1333 cvmx_usb_poll_tx_fifo(usb);
1337 * Perform channel specific setup for Control transactions. All
1338 * the generic stuff will already have been done in cvmx_usb_start_channel().
1340 * @usb: USB device state populated by cvmx_usb_initialize().
1341 * @channel: Channel to setup
1342 * @pipe: Pipe for control transaction
1344 static void cvmx_usb_start_channel_control(struct octeon_hcd *usb,
1345 int channel,
1346 struct cvmx_usb_pipe *pipe)
1348 struct usb_hcd *hcd = octeon_to_hcd(usb);
1349 struct device *dev = hcd->self.controller;
1350 struct cvmx_usb_transaction *transaction =
1351 list_first_entry(&pipe->transactions, typeof(*transaction),
1352 node);
1353 struct usb_ctrlrequest *header =
1354 cvmx_phys_to_ptr(transaction->control_header);
1355 int bytes_to_transfer = transaction->buffer_length -
1356 transaction->actual_bytes;
1357 int packets_to_transfer;
1358 union cvmx_usbcx_hctsizx usbc_hctsiz;
1360 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
1361 CVMX_USBCX_HCTSIZX(channel, usb->index));
1363 switch (transaction->stage) {
1364 case CVMX_USB_STAGE_NON_CONTROL:
1365 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
1366 dev_err(dev, "%s: ERROR - Non control stage\n", __func__);
1367 break;
1368 case CVMX_USB_STAGE_SETUP:
1369 usbc_hctsiz.s.pid = 3; /* Setup */
1370 bytes_to_transfer = sizeof(*header);
1371 /* All Control operations start with a setup going OUT */
1372 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1373 cvmx_usbcx_hccharx, epdir,
1374 CVMX_USB_DIRECTION_OUT);
1376 * Setup send the control header instead of the buffer data. The
1377 * buffer data will be used in the next stage
1379 cvmx_write64_uint64(CVMX_USBNX_DMA0_OUTB_CHN0(usb->index) +
1380 channel * 8,
1381 transaction->control_header);
1382 break;
1383 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
1384 usbc_hctsiz.s.pid = 3; /* Setup */
1385 bytes_to_transfer = 0;
1386 /* All Control operations start with a setup going OUT */
1387 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1388 cvmx_usbcx_hccharx, epdir,
1389 CVMX_USB_DIRECTION_OUT);
1391 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1392 cvmx_usbcx_hcspltx, compsplt, 1);
1393 break;
1394 case CVMX_USB_STAGE_DATA:
1395 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1396 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1397 if (header->bRequestType & USB_DIR_IN)
1398 bytes_to_transfer = 0;
1399 else if (bytes_to_transfer > pipe->max_packet)
1400 bytes_to_transfer = pipe->max_packet;
1402 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1403 cvmx_usbcx_hccharx, epdir,
1404 ((header->bRequestType & USB_DIR_IN) ?
1405 CVMX_USB_DIRECTION_IN :
1406 CVMX_USB_DIRECTION_OUT));
1407 break;
1408 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
1409 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1410 if (!(header->bRequestType & USB_DIR_IN))
1411 bytes_to_transfer = 0;
1412 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1413 cvmx_usbcx_hccharx, epdir,
1414 ((header->bRequestType & USB_DIR_IN) ?
1415 CVMX_USB_DIRECTION_IN :
1416 CVMX_USB_DIRECTION_OUT));
1417 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1418 cvmx_usbcx_hcspltx, compsplt, 1);
1419 break;
1420 case CVMX_USB_STAGE_STATUS:
1421 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1422 bytes_to_transfer = 0;
1423 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1424 cvmx_usbcx_hccharx, epdir,
1425 ((header->bRequestType & USB_DIR_IN) ?
1426 CVMX_USB_DIRECTION_OUT :
1427 CVMX_USB_DIRECTION_IN));
1428 break;
1429 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
1430 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1431 bytes_to_transfer = 0;
1432 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1433 cvmx_usbcx_hccharx, epdir,
1434 ((header->bRequestType & USB_DIR_IN) ?
1435 CVMX_USB_DIRECTION_OUT :
1436 CVMX_USB_DIRECTION_IN));
1437 USB_SET_FIELD32(CVMX_USBCX_HCSPLTX(channel, usb->index),
1438 cvmx_usbcx_hcspltx, compsplt, 1);
1439 break;
1443 * Make sure the transfer never exceeds the byte limit of the hardware.
1444 * Further bytes will be sent as continued transactions
1446 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1447 /* Round MAX_TRANSFER_BYTES to a multiple of out packet size */
1448 bytes_to_transfer = MAX_TRANSFER_BYTES / pipe->max_packet;
1449 bytes_to_transfer *= pipe->max_packet;
1453 * Calculate the number of packets to transfer. If the length is zero
1454 * we still need to transfer one packet
1456 packets_to_transfer = DIV_ROUND_UP(bytes_to_transfer,
1457 pipe->max_packet);
1458 if (packets_to_transfer == 0) {
1459 packets_to_transfer = 1;
1460 } else if ((packets_to_transfer > 1) &&
1461 (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1463 * Limit to one packet when not using DMA. Channels must be
1464 * restarted between every packet for IN transactions, so there
1465 * is no reason to do multiple packets in a row
1467 packets_to_transfer = 1;
1468 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1469 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1471 * Limit the number of packet and data transferred to what the
1472 * hardware can handle
1474 packets_to_transfer = MAX_TRANSFER_PACKETS;
1475 bytes_to_transfer = packets_to_transfer * pipe->max_packet;
1478 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1479 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1481 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCTSIZX(channel, usb->index),
1482 usbc_hctsiz.u32);
1486 * Start a channel to perform the pipe's head transaction
1488 * @usb: USB device state populated by cvmx_usb_initialize().
1489 * @channel: Channel to setup
1490 * @pipe: Pipe to start
1492 static void cvmx_usb_start_channel(struct octeon_hcd *usb, int channel,
1493 struct cvmx_usb_pipe *pipe)
1495 struct cvmx_usb_transaction *transaction =
1496 list_first_entry(&pipe->transactions, typeof(*transaction),
1497 node);
1499 /* Make sure all writes to the DMA region get flushed */
1500 CVMX_SYNCW;
1502 /* Attach the channel to the pipe */
1503 usb->pipe_for_channel[channel] = pipe;
1504 pipe->channel = channel;
1505 pipe->flags |= CVMX_USB_PIPE_FLAGS_SCHEDULED;
1507 /* Mark this channel as in use */
1508 usb->idle_hardware_channels &= ~(1 << channel);
1510 /* Enable the channel interrupt bits */
1512 union cvmx_usbcx_hcintx usbc_hcint;
1513 union cvmx_usbcx_hcintmskx usbc_hcintmsk;
1514 union cvmx_usbcx_haintmsk usbc_haintmsk;
1516 /* Clear all channel status bits */
1517 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
1518 CVMX_USBCX_HCINTX(channel, usb->index));
1520 cvmx_usb_write_csr32(usb,
1521 CVMX_USBCX_HCINTX(channel, usb->index),
1522 usbc_hcint.u32);
1524 usbc_hcintmsk.u32 = 0;
1525 usbc_hcintmsk.s.chhltdmsk = 1;
1526 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1528 * Channels need these extra interrupts when we aren't
1529 * in DMA mode.
1531 usbc_hcintmsk.s.datatglerrmsk = 1;
1532 usbc_hcintmsk.s.frmovrunmsk = 1;
1533 usbc_hcintmsk.s.bblerrmsk = 1;
1534 usbc_hcintmsk.s.xacterrmsk = 1;
1535 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1537 * Splits don't generate xfercompl, so we need
1538 * ACK and NYET.
1540 usbc_hcintmsk.s.nyetmsk = 1;
1541 usbc_hcintmsk.s.ackmsk = 1;
1543 usbc_hcintmsk.s.nakmsk = 1;
1544 usbc_hcintmsk.s.stallmsk = 1;
1545 usbc_hcintmsk.s.xfercomplmsk = 1;
1547 cvmx_usb_write_csr32(usb,
1548 CVMX_USBCX_HCINTMSKX(channel, usb->index),
1549 usbc_hcintmsk.u32);
1551 /* Enable the channel interrupt to propagate */
1552 usbc_haintmsk.u32 = cvmx_usb_read_csr32(usb,
1553 CVMX_USBCX_HAINTMSK(usb->index));
1554 usbc_haintmsk.s.haintmsk |= 1 << channel;
1555 cvmx_usb_write_csr32(usb, CVMX_USBCX_HAINTMSK(usb->index),
1556 usbc_haintmsk.u32);
1559 /* Setup the location the DMA engine uses. */
1561 u64 reg;
1562 u64 dma_address = transaction->buffer +
1563 transaction->actual_bytes;
1565 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1566 dma_address = transaction->buffer +
1567 transaction->iso_packets[0].offset +
1568 transaction->actual_bytes;
1570 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT)
1571 reg = CVMX_USBNX_DMA0_OUTB_CHN0(usb->index);
1572 else
1573 reg = CVMX_USBNX_DMA0_INB_CHN0(usb->index);
1574 cvmx_write64_uint64(reg + channel * 8, dma_address);
1577 /* Setup both the size of the transfer and the SPLIT characteristics */
1579 union cvmx_usbcx_hcspltx usbc_hcsplt = {.u32 = 0};
1580 union cvmx_usbcx_hctsizx usbc_hctsiz = {.u32 = 0};
1581 int packets_to_transfer;
1582 int bytes_to_transfer = transaction->buffer_length -
1583 transaction->actual_bytes;
1586 * ISOCHRONOUS transactions store each individual transfer size
1587 * in the packet structure, not the global buffer_length
1589 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
1590 bytes_to_transfer =
1591 transaction->iso_packets[0].length -
1592 transaction->actual_bytes;
1595 * We need to do split transactions when we are talking to non
1596 * high speed devices that are behind a high speed hub
1598 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
1600 * On the start split phase (stage is even) record the
1601 * frame number we will need to send the split complete.
1602 * We only store the lower two bits since the time ahead
1603 * can only be two frames
1605 if ((transaction->stage & 1) == 0) {
1606 if (transaction->type == CVMX_USB_TRANSFER_BULK)
1607 pipe->split_sc_frame =
1608 (usb->frame_number + 1) & 0x7f;
1609 else
1610 pipe->split_sc_frame =
1611 (usb->frame_number + 2) & 0x7f;
1612 } else {
1613 pipe->split_sc_frame = -1;
1616 usbc_hcsplt.s.spltena = 1;
1617 usbc_hcsplt.s.hubaddr = pipe->hub_device_addr;
1618 usbc_hcsplt.s.prtaddr = pipe->hub_port;
1619 usbc_hcsplt.s.compsplt = (transaction->stage ==
1620 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE);
1623 * SPLIT transactions can only ever transmit one data
1624 * packet so limit the transfer size to the max packet
1625 * size
1627 if (bytes_to_transfer > pipe->max_packet)
1628 bytes_to_transfer = pipe->max_packet;
1631 * ISOCHRONOUS OUT splits are unique in that they limit
1632 * data transfers to 188 byte chunks representing the
1633 * begin/middle/end of the data or all
1635 if (!usbc_hcsplt.s.compsplt &&
1636 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
1637 (pipe->transfer_type ==
1638 CVMX_USB_TRANSFER_ISOCHRONOUS)) {
1640 * Clear the split complete frame number as
1641 * there isn't going to be a split complete
1643 pipe->split_sc_frame = -1;
1645 * See if we've started this transfer and sent
1646 * data
1648 if (transaction->actual_bytes == 0) {
1650 * Nothing sent yet, this is either a
1651 * begin or the entire payload
1653 if (bytes_to_transfer <= 188)
1654 /* Entire payload in one go */
1655 usbc_hcsplt.s.xactpos = 3;
1656 else
1657 /* First part of payload */
1658 usbc_hcsplt.s.xactpos = 2;
1659 } else {
1661 * Continuing the previous data, we must
1662 * either be in the middle or at the end
1664 if (bytes_to_transfer <= 188)
1665 /* End of payload */
1666 usbc_hcsplt.s.xactpos = 1;
1667 else
1668 /* Middle of payload */
1669 usbc_hcsplt.s.xactpos = 0;
1672 * Again, the transfer size is limited to 188
1673 * bytes
1675 if (bytes_to_transfer > 188)
1676 bytes_to_transfer = 188;
1681 * Make sure the transfer never exceeds the byte limit of the
1682 * hardware. Further bytes will be sent as continued
1683 * transactions
1685 if (bytes_to_transfer > MAX_TRANSFER_BYTES) {
1687 * Round MAX_TRANSFER_BYTES to a multiple of out packet
1688 * size
1690 bytes_to_transfer = MAX_TRANSFER_BYTES /
1691 pipe->max_packet;
1692 bytes_to_transfer *= pipe->max_packet;
1696 * Calculate the number of packets to transfer. If the length is
1697 * zero we still need to transfer one packet
1699 packets_to_transfer =
1700 DIV_ROUND_UP(bytes_to_transfer, pipe->max_packet);
1701 if (packets_to_transfer == 0) {
1702 packets_to_transfer = 1;
1703 } else if ((packets_to_transfer > 1) &&
1704 (usb->init_flags &
1705 CVMX_USB_INITIALIZE_FLAGS_NO_DMA)) {
1707 * Limit to one packet when not using DMA. Channels must
1708 * be restarted between every packet for IN
1709 * transactions, so there is no reason to do multiple
1710 * packets in a row
1712 packets_to_transfer = 1;
1713 bytes_to_transfer = packets_to_transfer *
1714 pipe->max_packet;
1715 } else if (packets_to_transfer > MAX_TRANSFER_PACKETS) {
1717 * Limit the number of packet and data transferred to
1718 * what the hardware can handle
1720 packets_to_transfer = MAX_TRANSFER_PACKETS;
1721 bytes_to_transfer = packets_to_transfer *
1722 pipe->max_packet;
1725 usbc_hctsiz.s.xfersize = bytes_to_transfer;
1726 usbc_hctsiz.s.pktcnt = packets_to_transfer;
1728 /* Update the DATA0/DATA1 toggle */
1729 usbc_hctsiz.s.pid = cvmx_usb_get_data_pid(pipe);
1731 * High speed pipes may need a hardware ping before they start
1733 if (pipe->flags & CVMX_USB_PIPE_FLAGS_NEED_PING)
1734 usbc_hctsiz.s.dopng = 1;
1736 cvmx_usb_write_csr32(usb,
1737 CVMX_USBCX_HCSPLTX(channel, usb->index),
1738 usbc_hcsplt.u32);
1739 cvmx_usb_write_csr32(usb,
1740 CVMX_USBCX_HCTSIZX(channel, usb->index),
1741 usbc_hctsiz.u32);
1744 /* Setup the Host Channel Characteristics Register */
1746 union cvmx_usbcx_hccharx usbc_hcchar = {.u32 = 0};
1749 * Set the startframe odd/even properly. This is only used for
1750 * periodic
1752 usbc_hcchar.s.oddfrm = usb->frame_number & 1;
1755 * Set the number of back to back packets allowed by this
1756 * endpoint. Split transactions interpret "ec" as the number of
1757 * immediate retries of failure. These retries happen too
1758 * quickly, so we disable these entirely for splits
1760 if (cvmx_usb_pipe_needs_split(usb, pipe))
1761 usbc_hcchar.s.ec = 1;
1762 else if (pipe->multi_count < 1)
1763 usbc_hcchar.s.ec = 1;
1764 else if (pipe->multi_count > 3)
1765 usbc_hcchar.s.ec = 3;
1766 else
1767 usbc_hcchar.s.ec = pipe->multi_count;
1769 /* Set the rest of the endpoint specific settings */
1770 usbc_hcchar.s.devaddr = pipe->device_addr;
1771 usbc_hcchar.s.eptype = transaction->type;
1772 usbc_hcchar.s.lspddev =
1773 (pipe->device_speed == CVMX_USB_SPEED_LOW);
1774 usbc_hcchar.s.epdir = pipe->transfer_dir;
1775 usbc_hcchar.s.epnum = pipe->endpoint_num;
1776 usbc_hcchar.s.mps = pipe->max_packet;
1777 cvmx_usb_write_csr32(usb,
1778 CVMX_USBCX_HCCHARX(channel, usb->index),
1779 usbc_hcchar.u32);
1782 /* Do transaction type specific fixups as needed */
1783 switch (transaction->type) {
1784 case CVMX_USB_TRANSFER_CONTROL:
1785 cvmx_usb_start_channel_control(usb, channel, pipe);
1786 break;
1787 case CVMX_USB_TRANSFER_BULK:
1788 case CVMX_USB_TRANSFER_INTERRUPT:
1789 break;
1790 case CVMX_USB_TRANSFER_ISOCHRONOUS:
1791 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
1793 * ISO transactions require different PIDs depending on
1794 * direction and how many packets are needed
1796 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
1797 if (pipe->multi_count < 2) /* Need DATA0 */
1798 USB_SET_FIELD32(
1799 CVMX_USBCX_HCTSIZX(channel,
1800 usb->index),
1801 cvmx_usbcx_hctsizx, pid, 0);
1802 else /* Need MDATA */
1803 USB_SET_FIELD32(
1804 CVMX_USBCX_HCTSIZX(channel,
1805 usb->index),
1806 cvmx_usbcx_hctsizx, pid, 3);
1809 break;
1812 union cvmx_usbcx_hctsizx usbc_hctsiz = { .u32 =
1813 cvmx_usb_read_csr32(usb,
1814 CVMX_USBCX_HCTSIZX(channel,
1815 usb->index))
1817 transaction->xfersize = usbc_hctsiz.s.xfersize;
1818 transaction->pktcnt = usbc_hctsiz.s.pktcnt;
1820 /* Remember when we start a split transaction */
1821 if (cvmx_usb_pipe_needs_split(usb, pipe))
1822 usb->active_split = transaction;
1823 USB_SET_FIELD32(CVMX_USBCX_HCCHARX(channel, usb->index),
1824 cvmx_usbcx_hccharx, chena, 1);
1825 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
1826 cvmx_usb_fill_tx_fifo(usb, channel);
1830 * Find a pipe that is ready to be scheduled to hardware.
1831 * @usb: USB device state populated by cvmx_usb_initialize().
1832 * @xfer_type: Transfer type
1834 * Returns: Pipe or NULL if none are ready
1836 static struct cvmx_usb_pipe *cvmx_usb_find_ready_pipe(
1837 struct octeon_hcd *usb,
1838 enum cvmx_usb_transfer xfer_type)
1840 struct list_head *list = usb->active_pipes + xfer_type;
1841 u64 current_frame = usb->frame_number;
1842 struct cvmx_usb_pipe *pipe;
1844 list_for_each_entry(pipe, list, node) {
1845 struct cvmx_usb_transaction *t =
1846 list_first_entry(&pipe->transactions, typeof(*t),
1847 node);
1848 if (!(pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED) && t &&
1849 (pipe->next_tx_frame <= current_frame) &&
1850 ((pipe->split_sc_frame == -1) ||
1851 ((((int)current_frame - pipe->split_sc_frame) & 0x7f) <
1852 0x40)) &&
1853 (!usb->active_split || (usb->active_split == t))) {
1854 prefetch(t);
1855 return pipe;
1858 return NULL;
1861 static struct cvmx_usb_pipe *cvmx_usb_next_pipe(struct octeon_hcd *usb,
1862 int is_sof)
1864 struct cvmx_usb_pipe *pipe;
1866 /* Find a pipe needing service. */
1867 if (is_sof) {
1869 * Only process periodic pipes on SOF interrupts. This way we
1870 * are sure that the periodic data is sent in the beginning of
1871 * the frame.
1873 pipe = cvmx_usb_find_ready_pipe(usb,
1874 CVMX_USB_TRANSFER_ISOCHRONOUS);
1875 if (pipe)
1876 return pipe;
1877 pipe = cvmx_usb_find_ready_pipe(usb,
1878 CVMX_USB_TRANSFER_INTERRUPT);
1879 if (pipe)
1880 return pipe;
1882 pipe = cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_CONTROL);
1883 if (pipe)
1884 return pipe;
1885 return cvmx_usb_find_ready_pipe(usb, CVMX_USB_TRANSFER_BULK);
1889 * Called whenever a pipe might need to be scheduled to the
1890 * hardware.
1892 * @usb: USB device state populated by cvmx_usb_initialize().
1893 * @is_sof: True if this schedule was called on a SOF interrupt.
1895 static void cvmx_usb_schedule(struct octeon_hcd *usb, int is_sof)
1897 int channel;
1898 struct cvmx_usb_pipe *pipe;
1899 int need_sof;
1900 enum cvmx_usb_transfer ttype;
1902 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
1904 * Without DMA we need to be careful to not schedule something
1905 * at the end of a frame and cause an overrun.
1907 union cvmx_usbcx_hfnum hfnum = {
1908 .u32 = cvmx_usb_read_csr32(usb,
1909 CVMX_USBCX_HFNUM(usb->index))
1912 union cvmx_usbcx_hfir hfir = {
1913 .u32 = cvmx_usb_read_csr32(usb,
1914 CVMX_USBCX_HFIR(usb->index))
1917 if (hfnum.s.frrem < hfir.s.frint / 4)
1918 goto done;
1921 while (usb->idle_hardware_channels) {
1922 /* Find an idle channel */
1923 channel = __fls(usb->idle_hardware_channels);
1924 if (unlikely(channel > 7))
1925 break;
1927 pipe = cvmx_usb_next_pipe(usb, is_sof);
1928 if (!pipe)
1929 break;
1931 cvmx_usb_start_channel(usb, channel, pipe);
1934 done:
1936 * Only enable SOF interrupts when we have transactions pending in the
1937 * future that might need to be scheduled
1939 need_sof = 0;
1940 for (ttype = CVMX_USB_TRANSFER_CONTROL;
1941 ttype <= CVMX_USB_TRANSFER_INTERRUPT; ttype++) {
1942 list_for_each_entry(pipe, &usb->active_pipes[ttype], node) {
1943 if (pipe->next_tx_frame > usb->frame_number) {
1944 need_sof = 1;
1945 break;
1949 USB_SET_FIELD32(CVMX_USBCX_GINTMSK(usb->index),
1950 cvmx_usbcx_gintmsk, sofmsk, need_sof);
1953 static void octeon_usb_urb_complete_callback(struct octeon_hcd *usb,
1954 enum cvmx_usb_status status,
1955 struct cvmx_usb_pipe *pipe,
1956 struct cvmx_usb_transaction
1957 *transaction,
1958 int bytes_transferred,
1959 struct urb *urb)
1961 struct usb_hcd *hcd = octeon_to_hcd(usb);
1962 struct device *dev = hcd->self.controller;
1964 if (likely(status == CVMX_USB_STATUS_OK))
1965 urb->actual_length = bytes_transferred;
1966 else
1967 urb->actual_length = 0;
1969 urb->hcpriv = NULL;
1971 /* For Isochronous transactions we need to update the URB packet status
1972 * list from data in our private copy
1974 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1975 int i;
1977 * The pointer to the private list is stored in the setup_packet
1978 * field.
1980 struct cvmx_usb_iso_packet *iso_packet =
1981 (struct cvmx_usb_iso_packet *)urb->setup_packet;
1982 /* Recalculate the transfer size by adding up each packet */
1983 urb->actual_length = 0;
1984 for (i = 0; i < urb->number_of_packets; i++) {
1985 if (iso_packet[i].status == CVMX_USB_STATUS_OK) {
1986 urb->iso_frame_desc[i].status = 0;
1987 urb->iso_frame_desc[i].actual_length =
1988 iso_packet[i].length;
1989 urb->actual_length +=
1990 urb->iso_frame_desc[i].actual_length;
1991 } else {
1992 dev_dbg(dev, "ISOCHRONOUS packet=%d of %d status=%d pipe=%p transaction=%p size=%d\n",
1993 i, urb->number_of_packets,
1994 iso_packet[i].status, pipe,
1995 transaction, iso_packet[i].length);
1996 urb->iso_frame_desc[i].status = -EREMOTEIO;
1999 /* Free the private list now that we don't need it anymore */
2000 kfree(iso_packet);
2001 urb->setup_packet = NULL;
2004 switch (status) {
2005 case CVMX_USB_STATUS_OK:
2006 urb->status = 0;
2007 break;
2008 case CVMX_USB_STATUS_CANCEL:
2009 if (urb->status == 0)
2010 urb->status = -ENOENT;
2011 break;
2012 case CVMX_USB_STATUS_STALL:
2013 dev_dbg(dev, "status=stall pipe=%p transaction=%p size=%d\n",
2014 pipe, transaction, bytes_transferred);
2015 urb->status = -EPIPE;
2016 break;
2017 case CVMX_USB_STATUS_BABBLEERR:
2018 dev_dbg(dev, "status=babble pipe=%p transaction=%p size=%d\n",
2019 pipe, transaction, bytes_transferred);
2020 urb->status = -EPIPE;
2021 break;
2022 case CVMX_USB_STATUS_SHORT:
2023 dev_dbg(dev, "status=short pipe=%p transaction=%p size=%d\n",
2024 pipe, transaction, bytes_transferred);
2025 urb->status = -EREMOTEIO;
2026 break;
2027 case CVMX_USB_STATUS_ERROR:
2028 case CVMX_USB_STATUS_XACTERR:
2029 case CVMX_USB_STATUS_DATATGLERR:
2030 case CVMX_USB_STATUS_FRAMEERR:
2031 dev_dbg(dev, "status=%d pipe=%p transaction=%p size=%d\n",
2032 status, pipe, transaction, bytes_transferred);
2033 urb->status = -EPROTO;
2034 break;
2036 usb_hcd_unlink_urb_from_ep(octeon_to_hcd(usb), urb);
2037 spin_unlock(&usb->lock);
2038 usb_hcd_giveback_urb(octeon_to_hcd(usb), urb, urb->status);
2039 spin_lock(&usb->lock);
2043 * Signal the completion of a transaction and free it. The
2044 * transaction will be removed from the pipe transaction list.
2046 * @usb: USB device state populated by cvmx_usb_initialize().
2047 * @pipe: Pipe the transaction is on
2048 * @transaction:
2049 * Transaction that completed
2050 * @complete_code:
2051 * Completion code
2053 static void cvmx_usb_complete(struct octeon_hcd *usb,
2054 struct cvmx_usb_pipe *pipe,
2055 struct cvmx_usb_transaction *transaction,
2056 enum cvmx_usb_status complete_code)
2058 /* If this was a split then clear our split in progress marker */
2059 if (usb->active_split == transaction)
2060 usb->active_split = NULL;
2063 * Isochronous transactions need extra processing as they might not be
2064 * done after a single data transfer
2066 if (unlikely(transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)) {
2067 /* Update the number of bytes transferred in this ISO packet */
2068 transaction->iso_packets[0].length = transaction->actual_bytes;
2069 transaction->iso_packets[0].status = complete_code;
2072 * If there are more ISOs pending and we succeeded, schedule the
2073 * next one
2075 if ((transaction->iso_number_packets > 1) &&
2076 (complete_code == CVMX_USB_STATUS_OK)) {
2077 /* No bytes transferred for this packet as of yet */
2078 transaction->actual_bytes = 0;
2079 /* One less ISO waiting to transfer */
2080 transaction->iso_number_packets--;
2081 /* Increment to the next location in our packet array */
2082 transaction->iso_packets++;
2083 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2084 return;
2088 /* Remove the transaction from the pipe list */
2089 list_del(&transaction->node);
2090 if (list_empty(&pipe->transactions))
2091 list_move_tail(&pipe->node, &usb->idle_pipes);
2092 octeon_usb_urb_complete_callback(usb, complete_code, pipe,
2093 transaction,
2094 transaction->actual_bytes,
2095 transaction->urb);
2096 kfree(transaction);
2100 * Submit a usb transaction to a pipe. Called for all types
2101 * of transactions.
2103 * @usb:
2104 * @pipe: Which pipe to submit to.
2105 * @type: Transaction type
2106 * @buffer: User buffer for the transaction
2107 * @buffer_length:
2108 * User buffer's length in bytes
2109 * @control_header:
2110 * For control transactions, the 8 byte standard header
2111 * @iso_start_frame:
2112 * For ISO transactions, the start frame
2113 * @iso_number_packets:
2114 * For ISO, the number of packet in the transaction.
2115 * @iso_packets:
2116 * A description of each ISO packet
2117 * @urb: URB for the callback
2119 * Returns: Transaction or NULL on failure.
2121 static struct cvmx_usb_transaction *cvmx_usb_submit_transaction(
2122 struct octeon_hcd *usb,
2123 struct cvmx_usb_pipe *pipe,
2124 enum cvmx_usb_transfer type,
2125 u64 buffer,
2126 int buffer_length,
2127 u64 control_header,
2128 int iso_start_frame,
2129 int iso_number_packets,
2130 struct cvmx_usb_iso_packet *iso_packets,
2131 struct urb *urb)
2133 struct cvmx_usb_transaction *transaction;
2135 if (unlikely(pipe->transfer_type != type))
2136 return NULL;
2138 transaction = kzalloc(sizeof(*transaction), GFP_ATOMIC);
2139 if (unlikely(!transaction))
2140 return NULL;
2142 transaction->type = type;
2143 transaction->buffer = buffer;
2144 transaction->buffer_length = buffer_length;
2145 transaction->control_header = control_header;
2146 /* FIXME: This is not used, implement it. */
2147 transaction->iso_start_frame = iso_start_frame;
2148 transaction->iso_number_packets = iso_number_packets;
2149 transaction->iso_packets = iso_packets;
2150 transaction->urb = urb;
2151 if (transaction->type == CVMX_USB_TRANSFER_CONTROL)
2152 transaction->stage = CVMX_USB_STAGE_SETUP;
2153 else
2154 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2156 if (!list_empty(&pipe->transactions)) {
2157 list_add_tail(&transaction->node, &pipe->transactions);
2158 } else {
2159 list_add_tail(&transaction->node, &pipe->transactions);
2160 list_move_tail(&pipe->node,
2161 &usb->active_pipes[pipe->transfer_type]);
2164 * We may need to schedule the pipe if this was the head of the
2165 * pipe.
2167 cvmx_usb_schedule(usb, 0);
2170 return transaction;
2174 * Call to submit a USB Bulk transfer to a pipe.
2176 * @usb: USB device state populated by cvmx_usb_initialize().
2177 * @pipe: Handle to the pipe for the transfer.
2178 * @urb: URB.
2180 * Returns: A submitted transaction or NULL on failure.
2182 static struct cvmx_usb_transaction *cvmx_usb_submit_bulk(
2183 struct octeon_hcd *usb,
2184 struct cvmx_usb_pipe *pipe,
2185 struct urb *urb)
2187 return cvmx_usb_submit_transaction(usb, pipe, CVMX_USB_TRANSFER_BULK,
2188 urb->transfer_dma,
2189 urb->transfer_buffer_length,
2190 0, /* control_header */
2191 0, /* iso_start_frame */
2192 0, /* iso_number_packets */
2193 NULL, /* iso_packets */
2194 urb);
2198 * Call to submit a USB Interrupt transfer to a pipe.
2200 * @usb: USB device state populated by cvmx_usb_initialize().
2201 * @pipe: Handle to the pipe for the transfer.
2202 * @urb: URB returned when the callback is called.
2204 * Returns: A submitted transaction or NULL on failure.
2206 static struct cvmx_usb_transaction *cvmx_usb_submit_interrupt(
2207 struct octeon_hcd *usb,
2208 struct cvmx_usb_pipe *pipe,
2209 struct urb *urb)
2211 return cvmx_usb_submit_transaction(usb, pipe,
2212 CVMX_USB_TRANSFER_INTERRUPT,
2213 urb->transfer_dma,
2214 urb->transfer_buffer_length,
2215 0, /* control_header */
2216 0, /* iso_start_frame */
2217 0, /* iso_number_packets */
2218 NULL, /* iso_packets */
2219 urb);
2223 * Call to submit a USB Control transfer to a pipe.
2225 * @usb: USB device state populated by cvmx_usb_initialize().
2226 * @pipe: Handle to the pipe for the transfer.
2227 * @urb: URB.
2229 * Returns: A submitted transaction or NULL on failure.
2231 static struct cvmx_usb_transaction *cvmx_usb_submit_control(
2232 struct octeon_hcd *usb,
2233 struct cvmx_usb_pipe *pipe,
2234 struct urb *urb)
2236 int buffer_length = urb->transfer_buffer_length;
2237 u64 control_header = urb->setup_dma;
2238 struct usb_ctrlrequest *header = cvmx_phys_to_ptr(control_header);
2240 if ((header->bRequestType & USB_DIR_IN) == 0)
2241 buffer_length = le16_to_cpu(header->wLength);
2243 return cvmx_usb_submit_transaction(usb, pipe,
2244 CVMX_USB_TRANSFER_CONTROL,
2245 urb->transfer_dma, buffer_length,
2246 control_header,
2247 0, /* iso_start_frame */
2248 0, /* iso_number_packets */
2249 NULL, /* iso_packets */
2250 urb);
2254 * Call to submit a USB Isochronous transfer to a pipe.
2256 * @usb: USB device state populated by cvmx_usb_initialize().
2257 * @pipe: Handle to the pipe for the transfer.
2258 * @urb: URB returned when the callback is called.
2260 * Returns: A submitted transaction or NULL on failure.
2262 static struct cvmx_usb_transaction *cvmx_usb_submit_isochronous(
2263 struct octeon_hcd *usb,
2264 struct cvmx_usb_pipe *pipe,
2265 struct urb *urb)
2267 struct cvmx_usb_iso_packet *packets;
2269 packets = (struct cvmx_usb_iso_packet *)urb->setup_packet;
2270 return cvmx_usb_submit_transaction(usb, pipe,
2271 CVMX_USB_TRANSFER_ISOCHRONOUS,
2272 urb->transfer_dma,
2273 urb->transfer_buffer_length,
2274 0, /* control_header */
2275 urb->start_frame,
2276 urb->number_of_packets,
2277 packets, urb);
2281 * Cancel one outstanding request in a pipe. Canceling a request
2282 * can fail if the transaction has already completed before cancel
2283 * is called. Even after a successful cancel call, it may take
2284 * a frame or two for the cvmx_usb_poll() function to call the
2285 * associated callback.
2287 * @usb: USB device state populated by cvmx_usb_initialize().
2288 * @pipe: Pipe to cancel requests in.
2289 * @transaction: Transaction to cancel, returned by the submit function.
2291 * Returns: 0 or a negative error code.
2293 static int cvmx_usb_cancel(struct octeon_hcd *usb,
2294 struct cvmx_usb_pipe *pipe,
2295 struct cvmx_usb_transaction *transaction)
2298 * If the transaction is the HEAD of the queue and scheduled. We need to
2299 * treat it special
2301 if (list_first_entry(&pipe->transactions, typeof(*transaction), node) ==
2302 transaction && (pipe->flags & CVMX_USB_PIPE_FLAGS_SCHEDULED)) {
2303 union cvmx_usbcx_hccharx usbc_hcchar;
2305 usb->pipe_for_channel[pipe->channel] = NULL;
2306 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2308 CVMX_SYNCW;
2310 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2311 CVMX_USBCX_HCCHARX(pipe->channel, usb->index));
2313 * If the channel isn't enabled then the transaction already
2314 * completed.
2316 if (usbc_hcchar.s.chena) {
2317 usbc_hcchar.s.chdis = 1;
2318 cvmx_usb_write_csr32(usb,
2319 CVMX_USBCX_HCCHARX(pipe->channel,
2320 usb->index),
2321 usbc_hcchar.u32);
2324 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_CANCEL);
2325 return 0;
2329 * Cancel all outstanding requests in a pipe. Logically all this
2330 * does is call cvmx_usb_cancel() in a loop.
2332 * @usb: USB device state populated by cvmx_usb_initialize().
2333 * @pipe: Pipe to cancel requests in.
2335 * Returns: 0 or a negative error code.
2337 static int cvmx_usb_cancel_all(struct octeon_hcd *usb,
2338 struct cvmx_usb_pipe *pipe)
2340 struct cvmx_usb_transaction *transaction, *next;
2342 /* Simply loop through and attempt to cancel each transaction */
2343 list_for_each_entry_safe(transaction, next, &pipe->transactions, node) {
2344 int result = cvmx_usb_cancel(usb, pipe, transaction);
2346 if (unlikely(result != 0))
2347 return result;
2349 return 0;
2353 * Close a pipe created with cvmx_usb_open_pipe().
2355 * @usb: USB device state populated by cvmx_usb_initialize().
2356 * @pipe: Pipe to close.
2358 * Returns: 0 or a negative error code. EBUSY is returned if the pipe has
2359 * outstanding transfers.
2361 static int cvmx_usb_close_pipe(struct octeon_hcd *usb,
2362 struct cvmx_usb_pipe *pipe)
2364 /* Fail if the pipe has pending transactions */
2365 if (!list_empty(&pipe->transactions))
2366 return -EBUSY;
2368 list_del(&pipe->node);
2369 kfree(pipe);
2371 return 0;
2375 * Get the current USB protocol level frame number. The frame
2376 * number is always in the range of 0-0x7ff.
2378 * @usb: USB device state populated by cvmx_usb_initialize().
2380 * Returns: USB frame number
2382 static int cvmx_usb_get_frame_number(struct octeon_hcd *usb)
2384 int frame_number;
2385 union cvmx_usbcx_hfnum usbc_hfnum;
2387 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2388 frame_number = usbc_hfnum.s.frnum;
2390 return frame_number;
2393 static void cvmx_usb_transfer_control(struct octeon_hcd *usb,
2394 struct cvmx_usb_pipe *pipe,
2395 struct cvmx_usb_transaction *transaction,
2396 union cvmx_usbcx_hccharx usbc_hcchar,
2397 int buffer_space_left,
2398 int bytes_in_last_packet)
2400 switch (transaction->stage) {
2401 case CVMX_USB_STAGE_NON_CONTROL:
2402 case CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE:
2403 /* This should be impossible */
2404 cvmx_usb_complete(usb, pipe, transaction,
2405 CVMX_USB_STATUS_ERROR);
2406 break;
2407 case CVMX_USB_STAGE_SETUP:
2408 pipe->pid_toggle = 1;
2409 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2410 transaction->stage =
2411 CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE;
2412 } else {
2413 struct usb_ctrlrequest *header =
2414 cvmx_phys_to_ptr(transaction->control_header);
2415 if (header->wLength)
2416 transaction->stage = CVMX_USB_STAGE_DATA;
2417 else
2418 transaction->stage = CVMX_USB_STAGE_STATUS;
2420 break;
2421 case CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE:
2423 struct usb_ctrlrequest *header =
2424 cvmx_phys_to_ptr(transaction->control_header);
2425 if (header->wLength)
2426 transaction->stage = CVMX_USB_STAGE_DATA;
2427 else
2428 transaction->stage = CVMX_USB_STAGE_STATUS;
2430 break;
2431 case CVMX_USB_STAGE_DATA:
2432 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2433 transaction->stage = CVMX_USB_STAGE_DATA_SPLIT_COMPLETE;
2435 * For setup OUT data that are splits,
2436 * the hardware doesn't appear to count
2437 * transferred data. Here we manually
2438 * update the data transferred
2440 if (!usbc_hcchar.s.epdir) {
2441 if (buffer_space_left < pipe->max_packet)
2442 transaction->actual_bytes +=
2443 buffer_space_left;
2444 else
2445 transaction->actual_bytes +=
2446 pipe->max_packet;
2448 } else if ((buffer_space_left == 0) ||
2449 (bytes_in_last_packet < pipe->max_packet)) {
2450 pipe->pid_toggle = 1;
2451 transaction->stage = CVMX_USB_STAGE_STATUS;
2453 break;
2454 case CVMX_USB_STAGE_DATA_SPLIT_COMPLETE:
2455 if ((buffer_space_left == 0) ||
2456 (bytes_in_last_packet < pipe->max_packet)) {
2457 pipe->pid_toggle = 1;
2458 transaction->stage = CVMX_USB_STAGE_STATUS;
2459 } else {
2460 transaction->stage = CVMX_USB_STAGE_DATA;
2462 break;
2463 case CVMX_USB_STAGE_STATUS:
2464 if (cvmx_usb_pipe_needs_split(usb, pipe))
2465 transaction->stage =
2466 CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE;
2467 else
2468 cvmx_usb_complete(usb, pipe, transaction,
2469 CVMX_USB_STATUS_OK);
2470 break;
2471 case CVMX_USB_STAGE_STATUS_SPLIT_COMPLETE:
2472 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2473 break;
2477 static void cvmx_usb_transfer_bulk(struct octeon_hcd *usb,
2478 struct cvmx_usb_pipe *pipe,
2479 struct cvmx_usb_transaction *transaction,
2480 union cvmx_usbcx_hcintx usbc_hcint,
2481 int buffer_space_left,
2482 int bytes_in_last_packet)
2485 * The only time a bulk transfer isn't complete when it finishes with
2486 * an ACK is during a split transaction. For splits we need to continue
2487 * the transfer if more data is needed.
2489 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2490 if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL)
2491 transaction->stage =
2492 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2493 else if (buffer_space_left &&
2494 (bytes_in_last_packet == pipe->max_packet))
2495 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2496 else
2497 cvmx_usb_complete(usb, pipe, transaction,
2498 CVMX_USB_STATUS_OK);
2499 } else {
2500 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2501 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) &&
2502 (usbc_hcint.s.nak))
2503 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2504 if (!buffer_space_left ||
2505 (bytes_in_last_packet < pipe->max_packet))
2506 cvmx_usb_complete(usb, pipe, transaction,
2507 CVMX_USB_STATUS_OK);
2511 static void cvmx_usb_transfer_intr(struct octeon_hcd *usb,
2512 struct cvmx_usb_pipe *pipe,
2513 struct cvmx_usb_transaction *transaction,
2514 int buffer_space_left,
2515 int bytes_in_last_packet)
2517 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2518 if (transaction->stage == CVMX_USB_STAGE_NON_CONTROL) {
2519 transaction->stage =
2520 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2521 } else if (buffer_space_left &&
2522 (bytes_in_last_packet == pipe->max_packet)) {
2523 transaction->stage = CVMX_USB_STAGE_NON_CONTROL;
2524 } else {
2525 pipe->next_tx_frame += pipe->interval;
2526 cvmx_usb_complete(usb, pipe, transaction,
2527 CVMX_USB_STATUS_OK);
2529 } else if (!buffer_space_left ||
2530 (bytes_in_last_packet < pipe->max_packet)) {
2531 pipe->next_tx_frame += pipe->interval;
2532 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2536 static void cvmx_usb_transfer_isoc(struct octeon_hcd *usb,
2537 struct cvmx_usb_pipe *pipe,
2538 struct cvmx_usb_transaction *transaction,
2539 int buffer_space_left,
2540 int bytes_in_last_packet,
2541 int bytes_this_transfer)
2543 if (cvmx_usb_pipe_needs_split(usb, pipe)) {
2545 * ISOCHRONOUS OUT splits don't require a complete split stage.
2546 * Instead they use a sequence of begin OUT splits to transfer
2547 * the data 188 bytes at a time. Once the transfer is complete,
2548 * the pipe sleeps until the next schedule interval.
2550 if (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT) {
2552 * If no space left or this wasn't a max size packet
2553 * then this transfer is complete. Otherwise start it
2554 * again to send the next 188 bytes
2556 if (!buffer_space_left || (bytes_this_transfer < 188)) {
2557 pipe->next_tx_frame += pipe->interval;
2558 cvmx_usb_complete(usb, pipe, transaction,
2559 CVMX_USB_STATUS_OK);
2561 return;
2563 if (transaction->stage ==
2564 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE) {
2566 * We are in the incoming data phase. Keep getting data
2567 * until we run out of space or get a small packet
2569 if ((buffer_space_left == 0) ||
2570 (bytes_in_last_packet < pipe->max_packet)) {
2571 pipe->next_tx_frame += pipe->interval;
2572 cvmx_usb_complete(usb, pipe, transaction,
2573 CVMX_USB_STATUS_OK);
2575 } else {
2576 transaction->stage =
2577 CVMX_USB_STAGE_NON_CONTROL_SPLIT_COMPLETE;
2579 } else {
2580 pipe->next_tx_frame += pipe->interval;
2581 cvmx_usb_complete(usb, pipe, transaction, CVMX_USB_STATUS_OK);
2586 * Poll a channel for status
2588 * @usb: USB device
2589 * @channel: Channel to poll
2591 * Returns: Zero on success
2593 static int cvmx_usb_poll_channel(struct octeon_hcd *usb, int channel)
2595 struct usb_hcd *hcd = octeon_to_hcd(usb);
2596 struct device *dev = hcd->self.controller;
2597 union cvmx_usbcx_hcintx usbc_hcint;
2598 union cvmx_usbcx_hctsizx usbc_hctsiz;
2599 union cvmx_usbcx_hccharx usbc_hcchar;
2600 struct cvmx_usb_pipe *pipe;
2601 struct cvmx_usb_transaction *transaction;
2602 int bytes_this_transfer;
2603 int bytes_in_last_packet;
2604 int packets_processed;
2605 int buffer_space_left;
2607 /* Read the interrupt status bits for the channel */
2608 usbc_hcint.u32 = cvmx_usb_read_csr32(usb,
2609 CVMX_USBCX_HCINTX(channel, usb->index));
2611 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA) {
2612 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2613 CVMX_USBCX_HCCHARX(channel, usb->index));
2615 if (usbc_hcchar.s.chena && usbc_hcchar.s.chdis) {
2617 * There seems to be a bug in CN31XX which can cause
2618 * interrupt IN transfers to get stuck until we do a
2619 * write of HCCHARX without changing things
2621 cvmx_usb_write_csr32(usb,
2622 CVMX_USBCX_HCCHARX(channel,
2623 usb->index),
2624 usbc_hcchar.u32);
2625 return 0;
2629 * In non DMA mode the channels don't halt themselves. We need
2630 * to manually disable channels that are left running
2632 if (!usbc_hcint.s.chhltd) {
2633 if (usbc_hcchar.s.chena) {
2634 union cvmx_usbcx_hcintmskx hcintmsk;
2635 /* Disable all interrupts except CHHLTD */
2636 hcintmsk.u32 = 0;
2637 hcintmsk.s.chhltdmsk = 1;
2638 cvmx_usb_write_csr32(usb,
2639 CVMX_USBCX_HCINTMSKX(channel, usb->index),
2640 hcintmsk.u32);
2641 usbc_hcchar.s.chdis = 1;
2642 cvmx_usb_write_csr32(usb,
2643 CVMX_USBCX_HCCHARX(channel, usb->index),
2644 usbc_hcchar.u32);
2645 return 0;
2646 } else if (usbc_hcint.s.xfercompl) {
2648 * Successful IN/OUT with transfer complete.
2649 * Channel halt isn't needed.
2651 } else {
2652 dev_err(dev, "USB%d: Channel %d interrupt without halt\n",
2653 usb->index, channel);
2654 return 0;
2657 } else {
2659 * There is are no interrupts that we need to process when the
2660 * channel is still running
2662 if (!usbc_hcint.s.chhltd)
2663 return 0;
2666 /* Disable the channel interrupts now that it is done */
2667 cvmx_usb_write_csr32(usb, CVMX_USBCX_HCINTMSKX(channel, usb->index), 0);
2668 usb->idle_hardware_channels |= (1 << channel);
2670 /* Make sure this channel is tied to a valid pipe */
2671 pipe = usb->pipe_for_channel[channel];
2672 prefetch(pipe);
2673 if (!pipe)
2674 return 0;
2675 transaction = list_first_entry(&pipe->transactions,
2676 typeof(*transaction),
2677 node);
2678 prefetch(transaction);
2681 * Disconnect this pipe from the HW channel. Later the schedule
2682 * function will figure out which pipe needs to go
2684 usb->pipe_for_channel[channel] = NULL;
2685 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_SCHEDULED;
2688 * Read the channel config info so we can figure out how much data
2689 * transferred
2691 usbc_hcchar.u32 = cvmx_usb_read_csr32(usb,
2692 CVMX_USBCX_HCCHARX(channel, usb->index));
2693 usbc_hctsiz.u32 = cvmx_usb_read_csr32(usb,
2694 CVMX_USBCX_HCTSIZX(channel, usb->index));
2697 * Calculating the number of bytes successfully transferred is dependent
2698 * on the transfer direction
2700 packets_processed = transaction->pktcnt - usbc_hctsiz.s.pktcnt;
2701 if (usbc_hcchar.s.epdir) {
2703 * IN transactions are easy. For every byte received the
2704 * hardware decrements xfersize. All we need to do is subtract
2705 * the current value of xfersize from its starting value and we
2706 * know how many bytes were written to the buffer
2708 bytes_this_transfer = transaction->xfersize -
2709 usbc_hctsiz.s.xfersize;
2710 } else {
2712 * OUT transaction don't decrement xfersize. Instead pktcnt is
2713 * decremented on every successful packet send. The hardware
2714 * does this when it receives an ACK, or NYET. If it doesn't
2715 * receive one of these responses pktcnt doesn't change
2717 bytes_this_transfer = packets_processed * usbc_hcchar.s.mps;
2719 * The last packet may not be a full transfer if we didn't have
2720 * enough data
2722 if (bytes_this_transfer > transaction->xfersize)
2723 bytes_this_transfer = transaction->xfersize;
2725 /* Figure out how many bytes were in the last packet of the transfer */
2726 if (packets_processed)
2727 bytes_in_last_packet = bytes_this_transfer -
2728 (packets_processed - 1) * usbc_hcchar.s.mps;
2729 else
2730 bytes_in_last_packet = bytes_this_transfer;
2733 * As a special case, setup transactions output the setup header, not
2734 * the user's data. For this reason we don't count setup data as bytes
2735 * transferred
2737 if ((transaction->stage == CVMX_USB_STAGE_SETUP) ||
2738 (transaction->stage == CVMX_USB_STAGE_SETUP_SPLIT_COMPLETE))
2739 bytes_this_transfer = 0;
2742 * Add the bytes transferred to the running total. It is important that
2743 * bytes_this_transfer doesn't count any data that needs to be
2744 * retransmitted
2746 transaction->actual_bytes += bytes_this_transfer;
2747 if (transaction->type == CVMX_USB_TRANSFER_ISOCHRONOUS)
2748 buffer_space_left = transaction->iso_packets[0].length -
2749 transaction->actual_bytes;
2750 else
2751 buffer_space_left = transaction->buffer_length -
2752 transaction->actual_bytes;
2755 * We need to remember the PID toggle state for the next transaction.
2756 * The hardware already updated it for the next transaction
2758 pipe->pid_toggle = !(usbc_hctsiz.s.pid == 0);
2761 * For high speed bulk out, assume the next transaction will need to do
2762 * a ping before proceeding. If this isn't true the ACK processing below
2763 * will clear this flag
2765 if ((pipe->device_speed == CVMX_USB_SPEED_HIGH) &&
2766 (pipe->transfer_type == CVMX_USB_TRANSFER_BULK) &&
2767 (pipe->transfer_dir == CVMX_USB_DIRECTION_OUT))
2768 pipe->flags |= CVMX_USB_PIPE_FLAGS_NEED_PING;
2770 if (unlikely(WARN_ON_ONCE(bytes_this_transfer < 0))) {
2772 * In some rare cases the DMA engine seems to get stuck and
2773 * keeps substracting same byte count over and over again. In
2774 * such case we just need to fail every transaction.
2776 cvmx_usb_complete(usb, pipe, transaction,
2777 CVMX_USB_STATUS_ERROR);
2778 return 0;
2781 if (usbc_hcint.s.stall) {
2783 * STALL as a response means this transaction cannot be
2784 * completed because the device can't process transactions. Tell
2785 * the user. Any data that was transferred will be counted on
2786 * the actual bytes transferred
2788 pipe->pid_toggle = 0;
2789 cvmx_usb_complete(usb, pipe, transaction,
2790 CVMX_USB_STATUS_STALL);
2791 } else if (usbc_hcint.s.xacterr) {
2793 * XactErr as a response means the device signaled
2794 * something wrong with the transfer. For example, PID
2795 * toggle errors cause these.
2797 cvmx_usb_complete(usb, pipe, transaction,
2798 CVMX_USB_STATUS_XACTERR);
2799 } else if (usbc_hcint.s.bblerr) {
2800 /* Babble Error (BblErr) */
2801 cvmx_usb_complete(usb, pipe, transaction,
2802 CVMX_USB_STATUS_BABBLEERR);
2803 } else if (usbc_hcint.s.datatglerr) {
2804 /* Data toggle error */
2805 cvmx_usb_complete(usb, pipe, transaction,
2806 CVMX_USB_STATUS_DATATGLERR);
2807 } else if (usbc_hcint.s.nyet) {
2809 * NYET as a response is only allowed in three cases: as a
2810 * response to a ping, as a response to a split transaction, and
2811 * as a response to a bulk out. The ping case is handled by
2812 * hardware, so we only have splits and bulk out
2814 if (!cvmx_usb_pipe_needs_split(usb, pipe)) {
2815 transaction->retries = 0;
2817 * If there is more data to go then we need to try
2818 * again. Otherwise this transaction is complete
2820 if ((buffer_space_left == 0) ||
2821 (bytes_in_last_packet < pipe->max_packet))
2822 cvmx_usb_complete(usb, pipe,
2823 transaction,
2824 CVMX_USB_STATUS_OK);
2825 } else {
2827 * Split transactions retry the split complete 4 times
2828 * then rewind to the start split and do the entire
2829 * transactions again
2831 transaction->retries++;
2832 if ((transaction->retries & 0x3) == 0) {
2834 * Rewind to the beginning of the transaction by
2835 * anding off the split complete bit
2837 transaction->stage &= ~1;
2838 pipe->split_sc_frame = -1;
2841 } else if (usbc_hcint.s.ack) {
2842 transaction->retries = 0;
2844 * The ACK bit can only be checked after the other error bits.
2845 * This is because a multi packet transfer may succeed in a
2846 * number of packets and then get a different response on the
2847 * last packet. In this case both ACK and the last response bit
2848 * will be set. If none of the other response bits is set, then
2849 * the last packet must have been an ACK
2851 * Since we got an ACK, we know we don't need to do a ping on
2852 * this pipe
2854 pipe->flags &= ~CVMX_USB_PIPE_FLAGS_NEED_PING;
2856 switch (transaction->type) {
2857 case CVMX_USB_TRANSFER_CONTROL:
2858 cvmx_usb_transfer_control(usb, pipe, transaction,
2859 usbc_hcchar,
2860 buffer_space_left,
2861 bytes_in_last_packet);
2862 break;
2863 case CVMX_USB_TRANSFER_BULK:
2864 cvmx_usb_transfer_bulk(usb, pipe, transaction,
2865 usbc_hcint, buffer_space_left,
2866 bytes_in_last_packet);
2867 break;
2868 case CVMX_USB_TRANSFER_INTERRUPT:
2869 cvmx_usb_transfer_intr(usb, pipe, transaction,
2870 buffer_space_left,
2871 bytes_in_last_packet);
2872 break;
2873 case CVMX_USB_TRANSFER_ISOCHRONOUS:
2874 cvmx_usb_transfer_isoc(usb, pipe, transaction,
2875 buffer_space_left,
2876 bytes_in_last_packet,
2877 bytes_this_transfer);
2878 break;
2880 } else if (usbc_hcint.s.nak) {
2882 * If this was a split then clear our split in progress marker.
2884 if (usb->active_split == transaction)
2885 usb->active_split = NULL;
2887 * NAK as a response means the device couldn't accept the
2888 * transaction, but it should be retried in the future. Rewind
2889 * to the beginning of the transaction by anding off the split
2890 * complete bit. Retry in the next interval
2892 transaction->retries = 0;
2893 transaction->stage &= ~1;
2894 pipe->next_tx_frame += pipe->interval;
2895 if (pipe->next_tx_frame < usb->frame_number)
2896 pipe->next_tx_frame = usb->frame_number +
2897 pipe->interval -
2898 (usb->frame_number - pipe->next_tx_frame) %
2899 pipe->interval;
2900 } else {
2901 struct cvmx_usb_port_status port;
2903 port = cvmx_usb_get_status(usb);
2904 if (port.port_enabled) {
2905 /* We'll retry the exact same transaction again */
2906 transaction->retries++;
2907 } else {
2909 * We get channel halted interrupts with no result bits
2910 * sets when the cable is unplugged
2912 cvmx_usb_complete(usb, pipe, transaction,
2913 CVMX_USB_STATUS_ERROR);
2916 return 0;
2919 static void octeon_usb_port_callback(struct octeon_hcd *usb)
2921 spin_unlock(&usb->lock);
2922 usb_hcd_poll_rh_status(octeon_to_hcd(usb));
2923 spin_lock(&usb->lock);
2927 * Poll the USB block for status and call all needed callback
2928 * handlers. This function is meant to be called in the interrupt
2929 * handler for the USB controller. It can also be called
2930 * periodically in a loop for non-interrupt based operation.
2932 * @usb: USB device state populated by cvmx_usb_initialize().
2934 * Returns: 0 or a negative error code.
2936 static int cvmx_usb_poll(struct octeon_hcd *usb)
2938 union cvmx_usbcx_hfnum usbc_hfnum;
2939 union cvmx_usbcx_gintsts usbc_gintsts;
2941 prefetch_range(usb, sizeof(*usb));
2943 /* Update the frame counter */
2944 usbc_hfnum.u32 = cvmx_usb_read_csr32(usb, CVMX_USBCX_HFNUM(usb->index));
2945 if ((usb->frame_number & 0x3fff) > usbc_hfnum.s.frnum)
2946 usb->frame_number += 0x4000;
2947 usb->frame_number &= ~0x3fffull;
2948 usb->frame_number |= usbc_hfnum.s.frnum;
2950 /* Read the pending interrupts */
2951 usbc_gintsts.u32 = cvmx_usb_read_csr32(usb,
2952 CVMX_USBCX_GINTSTS(usb->index));
2954 /* Clear the interrupts now that we know about them */
2955 cvmx_usb_write_csr32(usb, CVMX_USBCX_GINTSTS(usb->index),
2956 usbc_gintsts.u32);
2958 if (usbc_gintsts.s.rxflvl) {
2960 * RxFIFO Non-Empty (RxFLvl)
2961 * Indicates that there is at least one packet pending to be
2962 * read from the RxFIFO.
2964 * In DMA mode this is handled by hardware
2966 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2967 cvmx_usb_poll_rx_fifo(usb);
2969 if (usbc_gintsts.s.ptxfemp || usbc_gintsts.s.nptxfemp) {
2970 /* Fill the Tx FIFOs when not in DMA mode */
2971 if (usb->init_flags & CVMX_USB_INITIALIZE_FLAGS_NO_DMA)
2972 cvmx_usb_poll_tx_fifo(usb);
2974 if (usbc_gintsts.s.disconnint || usbc_gintsts.s.prtint) {
2975 union cvmx_usbcx_hprt usbc_hprt;
2977 * Disconnect Detected Interrupt (DisconnInt)
2978 * Asserted when a device disconnect is detected.
2980 * Host Port Interrupt (PrtInt)
2981 * The core sets this bit to indicate a change in port status of
2982 * one of the O2P USB core ports in Host mode. The application
2983 * must read the Host Port Control and Status (HPRT) register to
2984 * determine the exact event that caused this interrupt. The
2985 * application must clear the appropriate status bit in the Host
2986 * Port Control and Status register to clear this bit.
2988 * Call the user's port callback
2990 octeon_usb_port_callback(usb);
2991 /* Clear the port change bits */
2992 usbc_hprt.u32 =
2993 cvmx_usb_read_csr32(usb, CVMX_USBCX_HPRT(usb->index));
2994 usbc_hprt.s.prtena = 0;
2995 cvmx_usb_write_csr32(usb, CVMX_USBCX_HPRT(usb->index),
2996 usbc_hprt.u32);
2998 if (usbc_gintsts.s.hchint) {
3000 * Host Channels Interrupt (HChInt)
3001 * The core sets this bit to indicate that an interrupt is
3002 * pending on one of the channels of the core (in Host mode).
3003 * The application must read the Host All Channels Interrupt
3004 * (HAINT) register to determine the exact number of the channel
3005 * on which the interrupt occurred, and then read the
3006 * corresponding Host Channel-n Interrupt (HCINTn) register to
3007 * determine the exact cause of the interrupt. The application
3008 * must clear the appropriate status bit in the HCINTn register
3009 * to clear this bit.
3011 union cvmx_usbcx_haint usbc_haint;
3013 usbc_haint.u32 = cvmx_usb_read_csr32(usb,
3014 CVMX_USBCX_HAINT(usb->index));
3015 while (usbc_haint.u32) {
3016 int channel;
3018 channel = __fls(usbc_haint.u32);
3019 cvmx_usb_poll_channel(usb, channel);
3020 usbc_haint.u32 ^= 1 << channel;
3024 cvmx_usb_schedule(usb, usbc_gintsts.s.sof);
3026 return 0;
3029 /* convert between an HCD pointer and the corresponding struct octeon_hcd */
3030 static inline struct octeon_hcd *hcd_to_octeon(struct usb_hcd *hcd)
3032 return (struct octeon_hcd *)(hcd->hcd_priv);
3035 static irqreturn_t octeon_usb_irq(struct usb_hcd *hcd)
3037 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3038 unsigned long flags;
3040 spin_lock_irqsave(&usb->lock, flags);
3041 cvmx_usb_poll(usb);
3042 spin_unlock_irqrestore(&usb->lock, flags);
3043 return IRQ_HANDLED;
3046 static int octeon_usb_start(struct usb_hcd *hcd)
3048 hcd->state = HC_STATE_RUNNING;
3049 return 0;
3052 static void octeon_usb_stop(struct usb_hcd *hcd)
3054 hcd->state = HC_STATE_HALT;
3057 static int octeon_usb_get_frame_number(struct usb_hcd *hcd)
3059 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3061 return cvmx_usb_get_frame_number(usb);
3064 static int octeon_usb_urb_enqueue(struct usb_hcd *hcd,
3065 struct urb *urb,
3066 gfp_t mem_flags)
3068 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3069 struct device *dev = hcd->self.controller;
3070 struct cvmx_usb_transaction *transaction = NULL;
3071 struct cvmx_usb_pipe *pipe;
3072 unsigned long flags;
3073 struct cvmx_usb_iso_packet *iso_packet;
3074 struct usb_host_endpoint *ep = urb->ep;
3075 int rc;
3077 urb->status = 0;
3078 spin_lock_irqsave(&usb->lock, flags);
3080 rc = usb_hcd_link_urb_to_ep(hcd, urb);
3081 if (rc) {
3082 spin_unlock_irqrestore(&usb->lock, flags);
3083 return rc;
3086 if (!ep->hcpriv) {
3087 enum cvmx_usb_transfer transfer_type;
3088 enum cvmx_usb_speed speed;
3089 int split_device = 0;
3090 int split_port = 0;
3092 switch (usb_pipetype(urb->pipe)) {
3093 case PIPE_ISOCHRONOUS:
3094 transfer_type = CVMX_USB_TRANSFER_ISOCHRONOUS;
3095 break;
3096 case PIPE_INTERRUPT:
3097 transfer_type = CVMX_USB_TRANSFER_INTERRUPT;
3098 break;
3099 case PIPE_CONTROL:
3100 transfer_type = CVMX_USB_TRANSFER_CONTROL;
3101 break;
3102 default:
3103 transfer_type = CVMX_USB_TRANSFER_BULK;
3104 break;
3106 switch (urb->dev->speed) {
3107 case USB_SPEED_LOW:
3108 speed = CVMX_USB_SPEED_LOW;
3109 break;
3110 case USB_SPEED_FULL:
3111 speed = CVMX_USB_SPEED_FULL;
3112 break;
3113 default:
3114 speed = CVMX_USB_SPEED_HIGH;
3115 break;
3118 * For slow devices on high speed ports we need to find the hub
3119 * that does the speed translation so we know where to send the
3120 * split transactions.
3122 if (speed != CVMX_USB_SPEED_HIGH) {
3124 * Start at this device and work our way up the usb
3125 * tree.
3127 struct usb_device *dev = urb->dev;
3129 while (dev->parent) {
3131 * If our parent is high speed then he'll
3132 * receive the splits.
3134 if (dev->parent->speed == USB_SPEED_HIGH) {
3135 split_device = dev->parent->devnum;
3136 split_port = dev->portnum;
3137 break;
3140 * Move up the tree one level. If we make it all
3141 * the way up the tree, then the port must not
3142 * be in high speed mode and we don't need a
3143 * split.
3145 dev = dev->parent;
3148 pipe = cvmx_usb_open_pipe(usb, usb_pipedevice(urb->pipe),
3149 usb_pipeendpoint(urb->pipe), speed,
3150 le16_to_cpu(ep->desc.wMaxPacketSize)
3151 & 0x7ff,
3152 transfer_type,
3153 usb_pipein(urb->pipe) ?
3154 CVMX_USB_DIRECTION_IN :
3155 CVMX_USB_DIRECTION_OUT,
3156 urb->interval,
3157 (le16_to_cpu(ep->desc.wMaxPacketSize)
3158 >> 11) & 0x3,
3159 split_device, split_port);
3160 if (!pipe) {
3161 usb_hcd_unlink_urb_from_ep(hcd, urb);
3162 spin_unlock_irqrestore(&usb->lock, flags);
3163 dev_dbg(dev, "Failed to create pipe\n");
3164 return -ENOMEM;
3166 ep->hcpriv = pipe;
3167 } else {
3168 pipe = ep->hcpriv;
3171 switch (usb_pipetype(urb->pipe)) {
3172 case PIPE_ISOCHRONOUS:
3173 dev_dbg(dev, "Submit isochronous to %d.%d\n",
3174 usb_pipedevice(urb->pipe),
3175 usb_pipeendpoint(urb->pipe));
3177 * Allocate a structure to use for our private list of
3178 * isochronous packets.
3180 iso_packet = kmalloc_array(urb->number_of_packets,
3181 sizeof(struct cvmx_usb_iso_packet),
3182 GFP_ATOMIC);
3183 if (iso_packet) {
3184 int i;
3185 /* Fill the list with the data from the URB */
3186 for (i = 0; i < urb->number_of_packets; i++) {
3187 iso_packet[i].offset =
3188 urb->iso_frame_desc[i].offset;
3189 iso_packet[i].length =
3190 urb->iso_frame_desc[i].length;
3191 iso_packet[i].status = CVMX_USB_STATUS_ERROR;
3194 * Store a pointer to the list in the URB setup_packet
3195 * field. We know this currently isn't being used and
3196 * this saves us a bunch of logic.
3198 urb->setup_packet = (char *)iso_packet;
3199 transaction = cvmx_usb_submit_isochronous(usb,
3200 pipe, urb);
3202 * If submit failed we need to free our private packet
3203 * list.
3205 if (!transaction) {
3206 urb->setup_packet = NULL;
3207 kfree(iso_packet);
3210 break;
3211 case PIPE_INTERRUPT:
3212 dev_dbg(dev, "Submit interrupt to %d.%d\n",
3213 usb_pipedevice(urb->pipe),
3214 usb_pipeendpoint(urb->pipe));
3215 transaction = cvmx_usb_submit_interrupt(usb, pipe, urb);
3216 break;
3217 case PIPE_CONTROL:
3218 dev_dbg(dev, "Submit control to %d.%d\n",
3219 usb_pipedevice(urb->pipe),
3220 usb_pipeendpoint(urb->pipe));
3221 transaction = cvmx_usb_submit_control(usb, pipe, urb);
3222 break;
3223 case PIPE_BULK:
3224 dev_dbg(dev, "Submit bulk to %d.%d\n",
3225 usb_pipedevice(urb->pipe),
3226 usb_pipeendpoint(urb->pipe));
3227 transaction = cvmx_usb_submit_bulk(usb, pipe, urb);
3228 break;
3230 if (!transaction) {
3231 usb_hcd_unlink_urb_from_ep(hcd, urb);
3232 spin_unlock_irqrestore(&usb->lock, flags);
3233 dev_dbg(dev, "Failed to submit\n");
3234 return -ENOMEM;
3236 urb->hcpriv = transaction;
3237 spin_unlock_irqrestore(&usb->lock, flags);
3238 return 0;
3241 static int octeon_usb_urb_dequeue(struct usb_hcd *hcd,
3242 struct urb *urb,
3243 int status)
3245 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3246 unsigned long flags;
3247 int rc;
3249 if (!urb->dev)
3250 return -EINVAL;
3252 spin_lock_irqsave(&usb->lock, flags);
3254 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
3255 if (rc)
3256 goto out;
3258 urb->status = status;
3259 cvmx_usb_cancel(usb, urb->ep->hcpriv, urb->hcpriv);
3261 out:
3262 spin_unlock_irqrestore(&usb->lock, flags);
3264 return rc;
3267 static void octeon_usb_endpoint_disable(struct usb_hcd *hcd,
3268 struct usb_host_endpoint *ep)
3270 struct device *dev = hcd->self.controller;
3272 if (ep->hcpriv) {
3273 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3274 struct cvmx_usb_pipe *pipe = ep->hcpriv;
3275 unsigned long flags;
3277 spin_lock_irqsave(&usb->lock, flags);
3278 cvmx_usb_cancel_all(usb, pipe);
3279 if (cvmx_usb_close_pipe(usb, pipe))
3280 dev_dbg(dev, "Closing pipe %p failed\n", pipe);
3281 spin_unlock_irqrestore(&usb->lock, flags);
3282 ep->hcpriv = NULL;
3286 static int octeon_usb_hub_status_data(struct usb_hcd *hcd, char *buf)
3288 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3289 struct cvmx_usb_port_status port_status;
3290 unsigned long flags;
3292 spin_lock_irqsave(&usb->lock, flags);
3293 port_status = cvmx_usb_get_status(usb);
3294 spin_unlock_irqrestore(&usb->lock, flags);
3295 buf[0] = port_status.connect_change << 1;
3297 return buf[0] != 0;
3300 static int octeon_usb_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
3301 u16 wIndex, char *buf, u16 wLength)
3303 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3304 struct device *dev = hcd->self.controller;
3305 struct cvmx_usb_port_status usb_port_status;
3306 int port_status;
3307 struct usb_hub_descriptor *desc;
3308 unsigned long flags;
3310 switch (typeReq) {
3311 case ClearHubFeature:
3312 dev_dbg(dev, "ClearHubFeature\n");
3313 switch (wValue) {
3314 case C_HUB_LOCAL_POWER:
3315 case C_HUB_OVER_CURRENT:
3316 /* Nothing required here */
3317 break;
3318 default:
3319 return -EINVAL;
3321 break;
3322 case ClearPortFeature:
3323 dev_dbg(dev, "ClearPortFeature\n");
3324 if (wIndex != 1) {
3325 dev_dbg(dev, " INVALID\n");
3326 return -EINVAL;
3329 switch (wValue) {
3330 case USB_PORT_FEAT_ENABLE:
3331 dev_dbg(dev, " ENABLE\n");
3332 spin_lock_irqsave(&usb->lock, flags);
3333 cvmx_usb_disable(usb);
3334 spin_unlock_irqrestore(&usb->lock, flags);
3335 break;
3336 case USB_PORT_FEAT_SUSPEND:
3337 dev_dbg(dev, " SUSPEND\n");
3338 /* Not supported on Octeon */
3339 break;
3340 case USB_PORT_FEAT_POWER:
3341 dev_dbg(dev, " POWER\n");
3342 /* Not supported on Octeon */
3343 break;
3344 case USB_PORT_FEAT_INDICATOR:
3345 dev_dbg(dev, " INDICATOR\n");
3346 /* Port inidicator not supported */
3347 break;
3348 case USB_PORT_FEAT_C_CONNECTION:
3349 dev_dbg(dev, " C_CONNECTION\n");
3350 /* Clears drivers internal connect status change flag */
3351 spin_lock_irqsave(&usb->lock, flags);
3352 usb->port_status = cvmx_usb_get_status(usb);
3353 spin_unlock_irqrestore(&usb->lock, flags);
3354 break;
3355 case USB_PORT_FEAT_C_RESET:
3356 dev_dbg(dev, " C_RESET\n");
3358 * Clears the driver's internal Port Reset Change flag.
3360 spin_lock_irqsave(&usb->lock, flags);
3361 usb->port_status = cvmx_usb_get_status(usb);
3362 spin_unlock_irqrestore(&usb->lock, flags);
3363 break;
3364 case USB_PORT_FEAT_C_ENABLE:
3365 dev_dbg(dev, " C_ENABLE\n");
3367 * Clears the driver's internal Port Enable/Disable
3368 * Change flag.
3370 spin_lock_irqsave(&usb->lock, flags);
3371 usb->port_status = cvmx_usb_get_status(usb);
3372 spin_unlock_irqrestore(&usb->lock, flags);
3373 break;
3374 case USB_PORT_FEAT_C_SUSPEND:
3375 dev_dbg(dev, " C_SUSPEND\n");
3377 * Clears the driver's internal Port Suspend Change
3378 * flag, which is set when resume signaling on the host
3379 * port is complete.
3381 break;
3382 case USB_PORT_FEAT_C_OVER_CURRENT:
3383 dev_dbg(dev, " C_OVER_CURRENT\n");
3384 /* Clears the driver's overcurrent Change flag */
3385 spin_lock_irqsave(&usb->lock, flags);
3386 usb->port_status = cvmx_usb_get_status(usb);
3387 spin_unlock_irqrestore(&usb->lock, flags);
3388 break;
3389 default:
3390 dev_dbg(dev, " UNKNOWN\n");
3391 return -EINVAL;
3393 break;
3394 case GetHubDescriptor:
3395 dev_dbg(dev, "GetHubDescriptor\n");
3396 desc = (struct usb_hub_descriptor *)buf;
3397 desc->bDescLength = 9;
3398 desc->bDescriptorType = 0x29;
3399 desc->bNbrPorts = 1;
3400 desc->wHubCharacteristics = cpu_to_le16(0x08);
3401 desc->bPwrOn2PwrGood = 1;
3402 desc->bHubContrCurrent = 0;
3403 desc->u.hs.DeviceRemovable[0] = 0;
3404 desc->u.hs.DeviceRemovable[1] = 0xff;
3405 break;
3406 case GetHubStatus:
3407 dev_dbg(dev, "GetHubStatus\n");
3408 *(__le32 *)buf = 0;
3409 break;
3410 case GetPortStatus:
3411 dev_dbg(dev, "GetPortStatus\n");
3412 if (wIndex != 1) {
3413 dev_dbg(dev, " INVALID\n");
3414 return -EINVAL;
3417 spin_lock_irqsave(&usb->lock, flags);
3418 usb_port_status = cvmx_usb_get_status(usb);
3419 spin_unlock_irqrestore(&usb->lock, flags);
3420 port_status = 0;
3422 if (usb_port_status.connect_change) {
3423 port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
3424 dev_dbg(dev, " C_CONNECTION\n");
3427 if (usb_port_status.port_enabled) {
3428 port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
3429 dev_dbg(dev, " C_ENABLE\n");
3432 if (usb_port_status.connected) {
3433 port_status |= (1 << USB_PORT_FEAT_CONNECTION);
3434 dev_dbg(dev, " CONNECTION\n");
3437 if (usb_port_status.port_enabled) {
3438 port_status |= (1 << USB_PORT_FEAT_ENABLE);
3439 dev_dbg(dev, " ENABLE\n");
3442 if (usb_port_status.port_over_current) {
3443 port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
3444 dev_dbg(dev, " OVER_CURRENT\n");
3447 if (usb_port_status.port_powered) {
3448 port_status |= (1 << USB_PORT_FEAT_POWER);
3449 dev_dbg(dev, " POWER\n");
3452 if (usb_port_status.port_speed == CVMX_USB_SPEED_HIGH) {
3453 port_status |= USB_PORT_STAT_HIGH_SPEED;
3454 dev_dbg(dev, " HIGHSPEED\n");
3455 } else if (usb_port_status.port_speed == CVMX_USB_SPEED_LOW) {
3456 port_status |= (1 << USB_PORT_FEAT_LOWSPEED);
3457 dev_dbg(dev, " LOWSPEED\n");
3460 *((__le32 *)buf) = cpu_to_le32(port_status);
3461 break;
3462 case SetHubFeature:
3463 dev_dbg(dev, "SetHubFeature\n");
3464 /* No HUB features supported */
3465 break;
3466 case SetPortFeature:
3467 dev_dbg(dev, "SetPortFeature\n");
3468 if (wIndex != 1) {
3469 dev_dbg(dev, " INVALID\n");
3470 return -EINVAL;
3473 switch (wValue) {
3474 case USB_PORT_FEAT_SUSPEND:
3475 dev_dbg(dev, " SUSPEND\n");
3476 return -EINVAL;
3477 case USB_PORT_FEAT_POWER:
3478 dev_dbg(dev, " POWER\n");
3480 * Program the port power bit to drive VBUS on the USB.
3482 spin_lock_irqsave(&usb->lock, flags);
3483 USB_SET_FIELD32(CVMX_USBCX_HPRT(usb->index),
3484 cvmx_usbcx_hprt, prtpwr, 1);
3485 spin_unlock_irqrestore(&usb->lock, flags);
3486 return 0;
3487 case USB_PORT_FEAT_RESET:
3488 dev_dbg(dev, " RESET\n");
3489 spin_lock_irqsave(&usb->lock, flags);
3490 cvmx_usb_reset_port(usb);
3491 spin_unlock_irqrestore(&usb->lock, flags);
3492 return 0;
3493 case USB_PORT_FEAT_INDICATOR:
3494 dev_dbg(dev, " INDICATOR\n");
3495 /* Not supported */
3496 break;
3497 default:
3498 dev_dbg(dev, " UNKNOWN\n");
3499 return -EINVAL;
3501 break;
3502 default:
3503 dev_dbg(dev, "Unknown root hub request\n");
3504 return -EINVAL;
3506 return 0;
3509 static const struct hc_driver octeon_hc_driver = {
3510 .description = "Octeon USB",
3511 .product_desc = "Octeon Host Controller",
3512 .hcd_priv_size = sizeof(struct octeon_hcd),
3513 .irq = octeon_usb_irq,
3514 .flags = HCD_MEMORY | HCD_USB2,
3515 .start = octeon_usb_start,
3516 .stop = octeon_usb_stop,
3517 .urb_enqueue = octeon_usb_urb_enqueue,
3518 .urb_dequeue = octeon_usb_urb_dequeue,
3519 .endpoint_disable = octeon_usb_endpoint_disable,
3520 .get_frame_number = octeon_usb_get_frame_number,
3521 .hub_status_data = octeon_usb_hub_status_data,
3522 .hub_control = octeon_usb_hub_control,
3523 .map_urb_for_dma = octeon_map_urb_for_dma,
3524 .unmap_urb_for_dma = octeon_unmap_urb_for_dma,
3527 static int octeon_usb_probe(struct platform_device *pdev)
3529 int status;
3530 int initialize_flags;
3531 int usb_num;
3532 struct resource *res_mem;
3533 struct device_node *usbn_node;
3534 int irq = platform_get_irq(pdev, 0);
3535 struct device *dev = &pdev->dev;
3536 struct octeon_hcd *usb;
3537 struct usb_hcd *hcd;
3538 u32 clock_rate = 48000000;
3539 bool is_crystal_clock = false;
3540 const char *clock_type;
3541 int i;
3543 if (!dev->of_node) {
3544 dev_err(dev, "Error: empty of_node\n");
3545 return -ENXIO;
3547 usbn_node = dev->of_node->parent;
3549 i = of_property_read_u32(usbn_node,
3550 "clock-frequency", &clock_rate);
3551 if (i)
3552 i = of_property_read_u32(usbn_node,
3553 "refclk-frequency", &clock_rate);
3554 if (i) {
3555 dev_err(dev, "No USBN \"clock-frequency\"\n");
3556 return -ENXIO;
3558 switch (clock_rate) {
3559 case 12000000:
3560 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_12MHZ;
3561 break;
3562 case 24000000:
3563 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_24MHZ;
3564 break;
3565 case 48000000:
3566 initialize_flags = CVMX_USB_INITIALIZE_FLAGS_CLOCK_48MHZ;
3567 break;
3568 default:
3569 dev_err(dev, "Illegal USBN \"clock-frequency\" %u\n",
3570 clock_rate);
3571 return -ENXIO;
3574 i = of_property_read_string(usbn_node,
3575 "cavium,refclk-type", &clock_type);
3576 if (i)
3577 i = of_property_read_string(usbn_node,
3578 "refclk-type", &clock_type);
3580 if (!i && strcmp("crystal", clock_type) == 0)
3581 is_crystal_clock = true;
3583 if (is_crystal_clock)
3584 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_XI;
3585 else
3586 initialize_flags |= CVMX_USB_INITIALIZE_FLAGS_CLOCK_XO_GND;
3588 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3589 if (!res_mem) {
3590 dev_err(dev, "found no memory resource\n");
3591 return -ENXIO;
3593 usb_num = (res_mem->start >> 44) & 1;
3595 if (irq < 0) {
3596 /* Defective device tree, but we know how to fix it. */
3597 irq_hw_number_t hwirq = usb_num ? (1 << 6) + 17 : 56;
3599 irq = irq_create_mapping(NULL, hwirq);
3603 * Set the DMA mask to 64bits so we get buffers already translated for
3604 * DMA.
3606 dev->coherent_dma_mask = ~0;
3607 dev->dma_mask = &dev->coherent_dma_mask;
3610 * Only cn52XX and cn56XX have DWC_OTG USB hardware and the
3611 * IOB priority registers. Under heavy network load USB
3612 * hardware can be starved by the IOB causing a crash. Give
3613 * it a priority boost if it has been waiting more than 400
3614 * cycles to avoid this situation.
3616 * Testing indicates that a cnt_val of 8192 is not sufficient,
3617 * but no failures are seen with 4096. We choose a value of
3618 * 400 to give a safety factor of 10.
3620 if (OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX)) {
3621 union cvmx_iob_n2c_l2c_pri_cnt pri_cnt;
3623 pri_cnt.u64 = 0;
3624 pri_cnt.s.cnt_enb = 1;
3625 pri_cnt.s.cnt_val = 400;
3626 cvmx_write_csr(CVMX_IOB_N2C_L2C_PRI_CNT, pri_cnt.u64);
3629 hcd = usb_create_hcd(&octeon_hc_driver, dev, dev_name(dev));
3630 if (!hcd) {
3631 dev_dbg(dev, "Failed to allocate memory for HCD\n");
3632 return -1;
3634 hcd->uses_new_polling = 1;
3635 usb = (struct octeon_hcd *)hcd->hcd_priv;
3637 spin_lock_init(&usb->lock);
3639 usb->init_flags = initialize_flags;
3641 /* Initialize the USB state structure */
3642 usb->index = usb_num;
3643 INIT_LIST_HEAD(&usb->idle_pipes);
3644 for (i = 0; i < ARRAY_SIZE(usb->active_pipes); i++)
3645 INIT_LIST_HEAD(&usb->active_pipes[i]);
3647 /* Due to an errata, CN31XX doesn't support DMA */
3648 if (OCTEON_IS_MODEL(OCTEON_CN31XX)) {
3649 usb->init_flags |= CVMX_USB_INITIALIZE_FLAGS_NO_DMA;
3650 /* Only use one channel with non DMA */
3651 usb->idle_hardware_channels = 0x1;
3652 } else if (OCTEON_IS_MODEL(OCTEON_CN5XXX)) {
3653 /* CN5XXX have an errata with channel 3 */
3654 usb->idle_hardware_channels = 0xf7;
3655 } else {
3656 usb->idle_hardware_channels = 0xff;
3659 status = cvmx_usb_initialize(dev, usb);
3660 if (status) {
3661 dev_dbg(dev, "USB initialization failed with %d\n", status);
3662 kfree(hcd);
3663 return -1;
3666 status = usb_add_hcd(hcd, irq, 0);
3667 if (status) {
3668 dev_dbg(dev, "USB add HCD failed with %d\n", status);
3669 kfree(hcd);
3670 return -1;
3672 device_wakeup_enable(hcd->self.controller);
3674 dev_info(dev, "Registered HCD for port %d on irq %d\n", usb_num, irq);
3676 return 0;
3679 static int octeon_usb_remove(struct platform_device *pdev)
3681 int status;
3682 struct device *dev = &pdev->dev;
3683 struct usb_hcd *hcd = dev_get_drvdata(dev);
3684 struct octeon_hcd *usb = hcd_to_octeon(hcd);
3685 unsigned long flags;
3687 usb_remove_hcd(hcd);
3688 spin_lock_irqsave(&usb->lock, flags);
3689 status = cvmx_usb_shutdown(usb);
3690 spin_unlock_irqrestore(&usb->lock, flags);
3691 if (status)
3692 dev_dbg(dev, "USB shutdown failed with %d\n", status);
3694 kfree(hcd);
3696 return 0;
3699 static const struct of_device_id octeon_usb_match[] = {
3701 .compatible = "cavium,octeon-5750-usbc",
3705 MODULE_DEVICE_TABLE(of, octeon_usb_match);
3707 static struct platform_driver octeon_usb_driver = {
3708 .driver = {
3709 .name = "octeon-hcd",
3710 .of_match_table = octeon_usb_match,
3712 .probe = octeon_usb_probe,
3713 .remove = octeon_usb_remove,
3716 static int __init octeon_usb_driver_init(void)
3718 if (usb_disabled())
3719 return 0;
3721 return platform_driver_register(&octeon_usb_driver);
3723 module_init(octeon_usb_driver_init);
3725 static void __exit octeon_usb_driver_exit(void)
3727 if (usb_disabled())
3728 return;
3730 platform_driver_unregister(&octeon_usb_driver);
3732 module_exit(octeon_usb_driver_exit);
3734 MODULE_LICENSE("GPL");
3735 MODULE_AUTHOR("Cavium, Inc. <support@cavium.com>");
3736 MODULE_DESCRIPTION("Cavium Inc. OCTEON USB Host driver.");