fs/ext4/inode.c: use pr_warn_ratelimited()
[linux/fpc-iii.git] / kernel / sched_fair.c
blobc62ebae65cf0c5e5d1628b0368692a94cda37568
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 750000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 8;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
93 * The exponential sliding window over which load is averaged for shares
94 * distribution.
95 * (default: 10msec)
97 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
99 static const struct sched_class fair_sched_class;
101 /**************************************************************
102 * CFS operations on generic schedulable entities:
105 #ifdef CONFIG_FAIR_GROUP_SCHED
107 /* cpu runqueue to which this cfs_rq is attached */
108 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
110 return cfs_rq->rq;
113 /* An entity is a task if it doesn't "own" a runqueue */
114 #define entity_is_task(se) (!se->my_q)
116 static inline struct task_struct *task_of(struct sched_entity *se)
118 #ifdef CONFIG_SCHED_DEBUG
119 WARN_ON_ONCE(!entity_is_task(se));
120 #endif
121 return container_of(se, struct task_struct, se);
124 /* Walk up scheduling entities hierarchy */
125 #define for_each_sched_entity(se) \
126 for (; se; se = se->parent)
128 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
130 return p->se.cfs_rq;
133 /* runqueue on which this entity is (to be) queued */
134 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
136 return se->cfs_rq;
139 /* runqueue "owned" by this group */
140 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
142 return grp->my_q;
145 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
146 * another cpu ('this_cpu')
148 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
150 return cfs_rq->tg->cfs_rq[this_cpu];
153 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
155 if (!cfs_rq->on_list) {
157 * Ensure we either appear before our parent (if already
158 * enqueued) or force our parent to appear after us when it is
159 * enqueued. The fact that we always enqueue bottom-up
160 * reduces this to two cases.
162 if (cfs_rq->tg->parent &&
163 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
164 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
165 &rq_of(cfs_rq)->leaf_cfs_rq_list);
166 } else {
167 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
168 &rq_of(cfs_rq)->leaf_cfs_rq_list);
171 cfs_rq->on_list = 1;
175 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
177 if (cfs_rq->on_list) {
178 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
179 cfs_rq->on_list = 0;
183 /* Iterate thr' all leaf cfs_rq's on a runqueue */
184 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
185 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
187 /* Do the two (enqueued) entities belong to the same group ? */
188 static inline int
189 is_same_group(struct sched_entity *se, struct sched_entity *pse)
191 if (se->cfs_rq == pse->cfs_rq)
192 return 1;
194 return 0;
197 static inline struct sched_entity *parent_entity(struct sched_entity *se)
199 return se->parent;
202 /* return depth at which a sched entity is present in the hierarchy */
203 static inline int depth_se(struct sched_entity *se)
205 int depth = 0;
207 for_each_sched_entity(se)
208 depth++;
210 return depth;
213 static void
214 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
216 int se_depth, pse_depth;
219 * preemption test can be made between sibling entities who are in the
220 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
221 * both tasks until we find their ancestors who are siblings of common
222 * parent.
225 /* First walk up until both entities are at same depth */
226 se_depth = depth_se(*se);
227 pse_depth = depth_se(*pse);
229 while (se_depth > pse_depth) {
230 se_depth--;
231 *se = parent_entity(*se);
234 while (pse_depth > se_depth) {
235 pse_depth--;
236 *pse = parent_entity(*pse);
239 while (!is_same_group(*se, *pse)) {
240 *se = parent_entity(*se);
241 *pse = parent_entity(*pse);
245 #else /* !CONFIG_FAIR_GROUP_SCHED */
247 static inline struct task_struct *task_of(struct sched_entity *se)
249 return container_of(se, struct task_struct, se);
252 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
254 return container_of(cfs_rq, struct rq, cfs);
257 #define entity_is_task(se) 1
259 #define for_each_sched_entity(se) \
260 for (; se; se = NULL)
262 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
264 return &task_rq(p)->cfs;
267 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
269 struct task_struct *p = task_of(se);
270 struct rq *rq = task_rq(p);
272 return &rq->cfs;
275 /* runqueue "owned" by this group */
276 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
278 return NULL;
281 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
283 return &cpu_rq(this_cpu)->cfs;
286 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
290 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
294 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
295 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
297 static inline int
298 is_same_group(struct sched_entity *se, struct sched_entity *pse)
300 return 1;
303 static inline struct sched_entity *parent_entity(struct sched_entity *se)
305 return NULL;
308 static inline void
309 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
313 #endif /* CONFIG_FAIR_GROUP_SCHED */
316 /**************************************************************
317 * Scheduling class tree data structure manipulation methods:
320 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
322 s64 delta = (s64)(vruntime - min_vruntime);
323 if (delta > 0)
324 min_vruntime = vruntime;
326 return min_vruntime;
329 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
331 s64 delta = (s64)(vruntime - min_vruntime);
332 if (delta < 0)
333 min_vruntime = vruntime;
335 return min_vruntime;
338 static inline int entity_before(struct sched_entity *a,
339 struct sched_entity *b)
341 return (s64)(a->vruntime - b->vruntime) < 0;
344 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
346 return se->vruntime - cfs_rq->min_vruntime;
349 static void update_min_vruntime(struct cfs_rq *cfs_rq)
351 u64 vruntime = cfs_rq->min_vruntime;
353 if (cfs_rq->curr)
354 vruntime = cfs_rq->curr->vruntime;
356 if (cfs_rq->rb_leftmost) {
357 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
358 struct sched_entity,
359 run_node);
361 if (!cfs_rq->curr)
362 vruntime = se->vruntime;
363 else
364 vruntime = min_vruntime(vruntime, se->vruntime);
367 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
371 * Enqueue an entity into the rb-tree:
373 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
375 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
376 struct rb_node *parent = NULL;
377 struct sched_entity *entry;
378 s64 key = entity_key(cfs_rq, se);
379 int leftmost = 1;
382 * Find the right place in the rbtree:
384 while (*link) {
385 parent = *link;
386 entry = rb_entry(parent, struct sched_entity, run_node);
388 * We dont care about collisions. Nodes with
389 * the same key stay together.
391 if (key < entity_key(cfs_rq, entry)) {
392 link = &parent->rb_left;
393 } else {
394 link = &parent->rb_right;
395 leftmost = 0;
400 * Maintain a cache of leftmost tree entries (it is frequently
401 * used):
403 if (leftmost)
404 cfs_rq->rb_leftmost = &se->run_node;
406 rb_link_node(&se->run_node, parent, link);
407 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
410 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 if (cfs_rq->rb_leftmost == &se->run_node) {
413 struct rb_node *next_node;
415 next_node = rb_next(&se->run_node);
416 cfs_rq->rb_leftmost = next_node;
419 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
422 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
424 struct rb_node *left = cfs_rq->rb_leftmost;
426 if (!left)
427 return NULL;
429 return rb_entry(left, struct sched_entity, run_node);
432 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
434 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
436 if (!last)
437 return NULL;
439 return rb_entry(last, struct sched_entity, run_node);
442 /**************************************************************
443 * Scheduling class statistics methods:
446 #ifdef CONFIG_SCHED_DEBUG
447 int sched_proc_update_handler(struct ctl_table *table, int write,
448 void __user *buffer, size_t *lenp,
449 loff_t *ppos)
451 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
452 int factor = get_update_sysctl_factor();
454 if (ret || !write)
455 return ret;
457 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
458 sysctl_sched_min_granularity);
460 #define WRT_SYSCTL(name) \
461 (normalized_sysctl_##name = sysctl_##name / (factor))
462 WRT_SYSCTL(sched_min_granularity);
463 WRT_SYSCTL(sched_latency);
464 WRT_SYSCTL(sched_wakeup_granularity);
465 #undef WRT_SYSCTL
467 return 0;
469 #endif
472 * delta /= w
474 static inline unsigned long
475 calc_delta_fair(unsigned long delta, struct sched_entity *se)
477 if (unlikely(se->load.weight != NICE_0_LOAD))
478 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
480 return delta;
484 * The idea is to set a period in which each task runs once.
486 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
487 * this period because otherwise the slices get too small.
489 * p = (nr <= nl) ? l : l*nr/nl
491 static u64 __sched_period(unsigned long nr_running)
493 u64 period = sysctl_sched_latency;
494 unsigned long nr_latency = sched_nr_latency;
496 if (unlikely(nr_running > nr_latency)) {
497 period = sysctl_sched_min_granularity;
498 period *= nr_running;
501 return period;
505 * We calculate the wall-time slice from the period by taking a part
506 * proportional to the weight.
508 * s = p*P[w/rw]
510 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
512 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
514 for_each_sched_entity(se) {
515 struct load_weight *load;
516 struct load_weight lw;
518 cfs_rq = cfs_rq_of(se);
519 load = &cfs_rq->load;
521 if (unlikely(!se->on_rq)) {
522 lw = cfs_rq->load;
524 update_load_add(&lw, se->load.weight);
525 load = &lw;
527 slice = calc_delta_mine(slice, se->load.weight, load);
529 return slice;
533 * We calculate the vruntime slice of a to be inserted task
535 * vs = s/w
537 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
539 return calc_delta_fair(sched_slice(cfs_rq, se), se);
542 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
543 static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta);
546 * Update the current task's runtime statistics. Skip current tasks that
547 * are not in our scheduling class.
549 static inline void
550 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
551 unsigned long delta_exec)
553 unsigned long delta_exec_weighted;
555 schedstat_set(curr->statistics.exec_max,
556 max((u64)delta_exec, curr->statistics.exec_max));
558 curr->sum_exec_runtime += delta_exec;
559 schedstat_add(cfs_rq, exec_clock, delta_exec);
560 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
562 curr->vruntime += delta_exec_weighted;
563 update_min_vruntime(cfs_rq);
565 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
566 cfs_rq->load_unacc_exec_time += delta_exec;
567 #endif
570 static void update_curr(struct cfs_rq *cfs_rq)
572 struct sched_entity *curr = cfs_rq->curr;
573 u64 now = rq_of(cfs_rq)->clock_task;
574 unsigned long delta_exec;
576 if (unlikely(!curr))
577 return;
580 * Get the amount of time the current task was running
581 * since the last time we changed load (this cannot
582 * overflow on 32 bits):
584 delta_exec = (unsigned long)(now - curr->exec_start);
585 if (!delta_exec)
586 return;
588 __update_curr(cfs_rq, curr, delta_exec);
589 curr->exec_start = now;
591 if (entity_is_task(curr)) {
592 struct task_struct *curtask = task_of(curr);
594 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
595 cpuacct_charge(curtask, delta_exec);
596 account_group_exec_runtime(curtask, delta_exec);
600 static inline void
601 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
603 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
607 * Task is being enqueued - update stats:
609 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
612 * Are we enqueueing a waiting task? (for current tasks
613 * a dequeue/enqueue event is a NOP)
615 if (se != cfs_rq->curr)
616 update_stats_wait_start(cfs_rq, se);
619 static void
620 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
622 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
623 rq_of(cfs_rq)->clock - se->statistics.wait_start));
624 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
625 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
626 rq_of(cfs_rq)->clock - se->statistics.wait_start);
627 #ifdef CONFIG_SCHEDSTATS
628 if (entity_is_task(se)) {
629 trace_sched_stat_wait(task_of(se),
630 rq_of(cfs_rq)->clock - se->statistics.wait_start);
632 #endif
633 schedstat_set(se->statistics.wait_start, 0);
636 static inline void
637 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
640 * Mark the end of the wait period if dequeueing a
641 * waiting task:
643 if (se != cfs_rq->curr)
644 update_stats_wait_end(cfs_rq, se);
648 * We are picking a new current task - update its stats:
650 static inline void
651 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 * We are starting a new run period:
656 se->exec_start = rq_of(cfs_rq)->clock_task;
659 /**************************************************
660 * Scheduling class queueing methods:
663 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
664 static void
665 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
667 cfs_rq->task_weight += weight;
669 #else
670 static inline void
671 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
674 #endif
676 static void
677 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
679 update_load_add(&cfs_rq->load, se->load.weight);
680 if (!parent_entity(se))
681 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
682 if (entity_is_task(se)) {
683 add_cfs_task_weight(cfs_rq, se->load.weight);
684 list_add(&se->group_node, &cfs_rq->tasks);
686 cfs_rq->nr_running++;
689 static void
690 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
692 update_load_sub(&cfs_rq->load, se->load.weight);
693 if (!parent_entity(se))
694 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
695 if (entity_is_task(se)) {
696 add_cfs_task_weight(cfs_rq, -se->load.weight);
697 list_del_init(&se->group_node);
699 cfs_rq->nr_running--;
702 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
703 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
704 int global_update)
706 struct task_group *tg = cfs_rq->tg;
707 long load_avg;
709 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
710 load_avg -= cfs_rq->load_contribution;
712 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
713 atomic_add(load_avg, &tg->load_weight);
714 cfs_rq->load_contribution += load_avg;
718 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
720 u64 period = sysctl_sched_shares_window;
721 u64 now, delta;
722 unsigned long load = cfs_rq->load.weight;
724 if (!cfs_rq)
725 return;
727 now = rq_of(cfs_rq)->clock;
728 delta = now - cfs_rq->load_stamp;
730 /* truncate load history at 4 idle periods */
731 if (cfs_rq->load_stamp > cfs_rq->load_last &&
732 now - cfs_rq->load_last > 4 * period) {
733 cfs_rq->load_period = 0;
734 cfs_rq->load_avg = 0;
737 cfs_rq->load_stamp = now;
738 cfs_rq->load_unacc_exec_time = 0;
739 cfs_rq->load_period += delta;
740 if (load) {
741 cfs_rq->load_last = now;
742 cfs_rq->load_avg += delta * load;
745 /* consider updating load contribution on each fold or truncate */
746 if (global_update || cfs_rq->load_period > period
747 || !cfs_rq->load_period)
748 update_cfs_rq_load_contribution(cfs_rq, global_update);
750 while (cfs_rq->load_period > period) {
752 * Inline assembly required to prevent the compiler
753 * optimising this loop into a divmod call.
754 * See __iter_div_u64_rem() for another example of this.
756 asm("" : "+rm" (cfs_rq->load_period));
757 cfs_rq->load_period /= 2;
758 cfs_rq->load_avg /= 2;
761 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
762 list_del_leaf_cfs_rq(cfs_rq);
765 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
766 unsigned long weight)
768 if (se->on_rq) {
769 /* commit outstanding execution time */
770 if (cfs_rq->curr == se)
771 update_curr(cfs_rq);
772 account_entity_dequeue(cfs_rq, se);
775 update_load_set(&se->load, weight);
777 if (se->on_rq)
778 account_entity_enqueue(cfs_rq, se);
781 static void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
783 struct task_group *tg;
784 struct sched_entity *se;
785 long load_weight, load, shares;
787 if (!cfs_rq)
788 return;
790 tg = cfs_rq->tg;
791 se = tg->se[cpu_of(rq_of(cfs_rq))];
792 if (!se)
793 return;
795 load = cfs_rq->load.weight + weight_delta;
797 load_weight = atomic_read(&tg->load_weight);
798 load_weight -= cfs_rq->load_contribution;
799 load_weight += load;
801 shares = (tg->shares * load);
802 if (load_weight)
803 shares /= load_weight;
805 if (shares < MIN_SHARES)
806 shares = MIN_SHARES;
807 if (shares > tg->shares)
808 shares = tg->shares;
810 reweight_entity(cfs_rq_of(se), se, shares);
813 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
815 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
816 update_cfs_load(cfs_rq, 0);
817 update_cfs_shares(cfs_rq, 0);
820 #else /* CONFIG_FAIR_GROUP_SCHED */
821 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
825 static inline void update_cfs_shares(struct cfs_rq *cfs_rq, long weight_delta)
829 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
832 #endif /* CONFIG_FAIR_GROUP_SCHED */
834 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
836 #ifdef CONFIG_SCHEDSTATS
837 struct task_struct *tsk = NULL;
839 if (entity_is_task(se))
840 tsk = task_of(se);
842 if (se->statistics.sleep_start) {
843 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
845 if ((s64)delta < 0)
846 delta = 0;
848 if (unlikely(delta > se->statistics.sleep_max))
849 se->statistics.sleep_max = delta;
851 se->statistics.sleep_start = 0;
852 se->statistics.sum_sleep_runtime += delta;
854 if (tsk) {
855 account_scheduler_latency(tsk, delta >> 10, 1);
856 trace_sched_stat_sleep(tsk, delta);
859 if (se->statistics.block_start) {
860 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
862 if ((s64)delta < 0)
863 delta = 0;
865 if (unlikely(delta > se->statistics.block_max))
866 se->statistics.block_max = delta;
868 se->statistics.block_start = 0;
869 se->statistics.sum_sleep_runtime += delta;
871 if (tsk) {
872 if (tsk->in_iowait) {
873 se->statistics.iowait_sum += delta;
874 se->statistics.iowait_count++;
875 trace_sched_stat_iowait(tsk, delta);
879 * Blocking time is in units of nanosecs, so shift by
880 * 20 to get a milliseconds-range estimation of the
881 * amount of time that the task spent sleeping:
883 if (unlikely(prof_on == SLEEP_PROFILING)) {
884 profile_hits(SLEEP_PROFILING,
885 (void *)get_wchan(tsk),
886 delta >> 20);
888 account_scheduler_latency(tsk, delta >> 10, 0);
891 #endif
894 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
896 #ifdef CONFIG_SCHED_DEBUG
897 s64 d = se->vruntime - cfs_rq->min_vruntime;
899 if (d < 0)
900 d = -d;
902 if (d > 3*sysctl_sched_latency)
903 schedstat_inc(cfs_rq, nr_spread_over);
904 #endif
907 static void
908 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
910 u64 vruntime = cfs_rq->min_vruntime;
913 * The 'current' period is already promised to the current tasks,
914 * however the extra weight of the new task will slow them down a
915 * little, place the new task so that it fits in the slot that
916 * stays open at the end.
918 if (initial && sched_feat(START_DEBIT))
919 vruntime += sched_vslice(cfs_rq, se);
921 /* sleeps up to a single latency don't count. */
922 if (!initial) {
923 unsigned long thresh = sysctl_sched_latency;
926 * Halve their sleep time's effect, to allow
927 * for a gentler effect of sleepers:
929 if (sched_feat(GENTLE_FAIR_SLEEPERS))
930 thresh >>= 1;
932 vruntime -= thresh;
935 /* ensure we never gain time by being placed backwards. */
936 vruntime = max_vruntime(se->vruntime, vruntime);
938 se->vruntime = vruntime;
941 static void
942 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
945 * Update the normalized vruntime before updating min_vruntime
946 * through callig update_curr().
948 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
949 se->vruntime += cfs_rq->min_vruntime;
952 * Update run-time statistics of the 'current'.
954 update_curr(cfs_rq);
955 update_cfs_load(cfs_rq, 0);
956 update_cfs_shares(cfs_rq, se->load.weight);
957 account_entity_enqueue(cfs_rq, se);
959 if (flags & ENQUEUE_WAKEUP) {
960 place_entity(cfs_rq, se, 0);
961 enqueue_sleeper(cfs_rq, se);
964 update_stats_enqueue(cfs_rq, se);
965 check_spread(cfs_rq, se);
966 if (se != cfs_rq->curr)
967 __enqueue_entity(cfs_rq, se);
968 se->on_rq = 1;
970 if (cfs_rq->nr_running == 1)
971 list_add_leaf_cfs_rq(cfs_rq);
974 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
976 if (!se || cfs_rq->last == se)
977 cfs_rq->last = NULL;
979 if (!se || cfs_rq->next == se)
980 cfs_rq->next = NULL;
983 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
985 for_each_sched_entity(se)
986 __clear_buddies(cfs_rq_of(se), se);
989 static void
990 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
993 * Update run-time statistics of the 'current'.
995 update_curr(cfs_rq);
997 update_stats_dequeue(cfs_rq, se);
998 if (flags & DEQUEUE_SLEEP) {
999 #ifdef CONFIG_SCHEDSTATS
1000 if (entity_is_task(se)) {
1001 struct task_struct *tsk = task_of(se);
1003 if (tsk->state & TASK_INTERRUPTIBLE)
1004 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1005 if (tsk->state & TASK_UNINTERRUPTIBLE)
1006 se->statistics.block_start = rq_of(cfs_rq)->clock;
1008 #endif
1011 clear_buddies(cfs_rq, se);
1013 if (se != cfs_rq->curr)
1014 __dequeue_entity(cfs_rq, se);
1015 se->on_rq = 0;
1016 update_cfs_load(cfs_rq, 0);
1017 account_entity_dequeue(cfs_rq, se);
1018 update_min_vruntime(cfs_rq);
1019 update_cfs_shares(cfs_rq, 0);
1022 * Normalize the entity after updating the min_vruntime because the
1023 * update can refer to the ->curr item and we need to reflect this
1024 * movement in our normalized position.
1026 if (!(flags & DEQUEUE_SLEEP))
1027 se->vruntime -= cfs_rq->min_vruntime;
1031 * Preempt the current task with a newly woken task if needed:
1033 static void
1034 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1036 unsigned long ideal_runtime, delta_exec;
1038 ideal_runtime = sched_slice(cfs_rq, curr);
1039 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1040 if (delta_exec > ideal_runtime) {
1041 resched_task(rq_of(cfs_rq)->curr);
1043 * The current task ran long enough, ensure it doesn't get
1044 * re-elected due to buddy favours.
1046 clear_buddies(cfs_rq, curr);
1047 return;
1051 * Ensure that a task that missed wakeup preemption by a
1052 * narrow margin doesn't have to wait for a full slice.
1053 * This also mitigates buddy induced latencies under load.
1055 if (!sched_feat(WAKEUP_PREEMPT))
1056 return;
1058 if (delta_exec < sysctl_sched_min_granularity)
1059 return;
1061 if (cfs_rq->nr_running > 1) {
1062 struct sched_entity *se = __pick_next_entity(cfs_rq);
1063 s64 delta = curr->vruntime - se->vruntime;
1065 if (delta > ideal_runtime)
1066 resched_task(rq_of(cfs_rq)->curr);
1070 static void
1071 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1073 /* 'current' is not kept within the tree. */
1074 if (se->on_rq) {
1076 * Any task has to be enqueued before it get to execute on
1077 * a CPU. So account for the time it spent waiting on the
1078 * runqueue.
1080 update_stats_wait_end(cfs_rq, se);
1081 __dequeue_entity(cfs_rq, se);
1084 update_stats_curr_start(cfs_rq, se);
1085 cfs_rq->curr = se;
1086 #ifdef CONFIG_SCHEDSTATS
1088 * Track our maximum slice length, if the CPU's load is at
1089 * least twice that of our own weight (i.e. dont track it
1090 * when there are only lesser-weight tasks around):
1092 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1093 se->statistics.slice_max = max(se->statistics.slice_max,
1094 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1096 #endif
1097 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1100 static int
1101 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1103 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1105 struct sched_entity *se = __pick_next_entity(cfs_rq);
1106 struct sched_entity *left = se;
1108 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1109 se = cfs_rq->next;
1112 * Prefer last buddy, try to return the CPU to a preempted task.
1114 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1115 se = cfs_rq->last;
1117 clear_buddies(cfs_rq, se);
1119 return se;
1122 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1125 * If still on the runqueue then deactivate_task()
1126 * was not called and update_curr() has to be done:
1128 if (prev->on_rq)
1129 update_curr(cfs_rq);
1131 check_spread(cfs_rq, prev);
1132 if (prev->on_rq) {
1133 update_stats_wait_start(cfs_rq, prev);
1134 /* Put 'current' back into the tree. */
1135 __enqueue_entity(cfs_rq, prev);
1137 cfs_rq->curr = NULL;
1140 static void
1141 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1144 * Update run-time statistics of the 'current'.
1146 update_curr(cfs_rq);
1149 * Update share accounting for long-running entities.
1151 update_entity_shares_tick(cfs_rq);
1153 #ifdef CONFIG_SCHED_HRTICK
1155 * queued ticks are scheduled to match the slice, so don't bother
1156 * validating it and just reschedule.
1158 if (queued) {
1159 resched_task(rq_of(cfs_rq)->curr);
1160 return;
1163 * don't let the period tick interfere with the hrtick preemption
1165 if (!sched_feat(DOUBLE_TICK) &&
1166 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1167 return;
1168 #endif
1170 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1171 check_preempt_tick(cfs_rq, curr);
1174 /**************************************************
1175 * CFS operations on tasks:
1178 #ifdef CONFIG_SCHED_HRTICK
1179 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1181 struct sched_entity *se = &p->se;
1182 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1184 WARN_ON(task_rq(p) != rq);
1186 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1187 u64 slice = sched_slice(cfs_rq, se);
1188 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1189 s64 delta = slice - ran;
1191 if (delta < 0) {
1192 if (rq->curr == p)
1193 resched_task(p);
1194 return;
1198 * Don't schedule slices shorter than 10000ns, that just
1199 * doesn't make sense. Rely on vruntime for fairness.
1201 if (rq->curr != p)
1202 delta = max_t(s64, 10000LL, delta);
1204 hrtick_start(rq, delta);
1209 * called from enqueue/dequeue and updates the hrtick when the
1210 * current task is from our class and nr_running is low enough
1211 * to matter.
1213 static void hrtick_update(struct rq *rq)
1215 struct task_struct *curr = rq->curr;
1217 if (curr->sched_class != &fair_sched_class)
1218 return;
1220 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1221 hrtick_start_fair(rq, curr);
1223 #else /* !CONFIG_SCHED_HRTICK */
1224 static inline void
1225 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1229 static inline void hrtick_update(struct rq *rq)
1232 #endif
1235 * The enqueue_task method is called before nr_running is
1236 * increased. Here we update the fair scheduling stats and
1237 * then put the task into the rbtree:
1239 static void
1240 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1242 struct cfs_rq *cfs_rq;
1243 struct sched_entity *se = &p->se;
1245 for_each_sched_entity(se) {
1246 if (se->on_rq)
1247 break;
1248 cfs_rq = cfs_rq_of(se);
1249 enqueue_entity(cfs_rq, se, flags);
1250 flags = ENQUEUE_WAKEUP;
1253 for_each_sched_entity(se) {
1254 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1256 update_cfs_load(cfs_rq, 0);
1257 update_cfs_shares(cfs_rq, 0);
1260 hrtick_update(rq);
1264 * The dequeue_task method is called before nr_running is
1265 * decreased. We remove the task from the rbtree and
1266 * update the fair scheduling stats:
1268 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1270 struct cfs_rq *cfs_rq;
1271 struct sched_entity *se = &p->se;
1273 for_each_sched_entity(se) {
1274 cfs_rq = cfs_rq_of(se);
1275 dequeue_entity(cfs_rq, se, flags);
1277 /* Don't dequeue parent if it has other entities besides us */
1278 if (cfs_rq->load.weight)
1279 break;
1280 flags |= DEQUEUE_SLEEP;
1283 for_each_sched_entity(se) {
1284 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1286 update_cfs_load(cfs_rq, 0);
1287 update_cfs_shares(cfs_rq, 0);
1290 hrtick_update(rq);
1294 * sched_yield() support is very simple - we dequeue and enqueue.
1296 * If compat_yield is turned on then we requeue to the end of the tree.
1298 static void yield_task_fair(struct rq *rq)
1300 struct task_struct *curr = rq->curr;
1301 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1302 struct sched_entity *rightmost, *se = &curr->se;
1305 * Are we the only task in the tree?
1307 if (unlikely(cfs_rq->nr_running == 1))
1308 return;
1310 clear_buddies(cfs_rq, se);
1312 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1313 update_rq_clock(rq);
1315 * Update run-time statistics of the 'current'.
1317 update_curr(cfs_rq);
1319 return;
1322 * Find the rightmost entry in the rbtree:
1324 rightmost = __pick_last_entity(cfs_rq);
1326 * Already in the rightmost position?
1328 if (unlikely(!rightmost || entity_before(rightmost, se)))
1329 return;
1332 * Minimally necessary key value to be last in the tree:
1333 * Upon rescheduling, sched_class::put_prev_task() will place
1334 * 'current' within the tree based on its new key value.
1336 se->vruntime = rightmost->vruntime + 1;
1339 #ifdef CONFIG_SMP
1341 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1343 struct sched_entity *se = &p->se;
1344 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1346 se->vruntime -= cfs_rq->min_vruntime;
1349 #ifdef CONFIG_FAIR_GROUP_SCHED
1351 * effective_load() calculates the load change as seen from the root_task_group
1353 * Adding load to a group doesn't make a group heavier, but can cause movement
1354 * of group shares between cpus. Assuming the shares were perfectly aligned one
1355 * can calculate the shift in shares.
1357 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1359 struct sched_entity *se = tg->se[cpu];
1361 if (!tg->parent)
1362 return wl;
1364 for_each_sched_entity(se) {
1365 long S, rw, s, a, b;
1367 S = se->my_q->tg->shares;
1368 s = se->load.weight;
1369 rw = se->my_q->load.weight;
1371 a = S*(rw + wl);
1372 b = S*rw + s*wg;
1374 wl = s*(a-b);
1376 if (likely(b))
1377 wl /= b;
1380 * Assume the group is already running and will
1381 * thus already be accounted for in the weight.
1383 * That is, moving shares between CPUs, does not
1384 * alter the group weight.
1386 wg = 0;
1389 return wl;
1392 #else
1394 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1395 unsigned long wl, unsigned long wg)
1397 return wl;
1400 #endif
1402 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1404 unsigned long this_load, load;
1405 int idx, this_cpu, prev_cpu;
1406 unsigned long tl_per_task;
1407 struct task_group *tg;
1408 unsigned long weight;
1409 int balanced;
1411 idx = sd->wake_idx;
1412 this_cpu = smp_processor_id();
1413 prev_cpu = task_cpu(p);
1414 load = source_load(prev_cpu, idx);
1415 this_load = target_load(this_cpu, idx);
1418 * If sync wakeup then subtract the (maximum possible)
1419 * effect of the currently running task from the load
1420 * of the current CPU:
1422 rcu_read_lock();
1423 if (sync) {
1424 tg = task_group(current);
1425 weight = current->se.load.weight;
1427 this_load += effective_load(tg, this_cpu, -weight, -weight);
1428 load += effective_load(tg, prev_cpu, 0, -weight);
1431 tg = task_group(p);
1432 weight = p->se.load.weight;
1435 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1436 * due to the sync cause above having dropped this_load to 0, we'll
1437 * always have an imbalance, but there's really nothing you can do
1438 * about that, so that's good too.
1440 * Otherwise check if either cpus are near enough in load to allow this
1441 * task to be woken on this_cpu.
1443 if (this_load) {
1444 unsigned long this_eff_load, prev_eff_load;
1446 this_eff_load = 100;
1447 this_eff_load *= power_of(prev_cpu);
1448 this_eff_load *= this_load +
1449 effective_load(tg, this_cpu, weight, weight);
1451 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1452 prev_eff_load *= power_of(this_cpu);
1453 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1455 balanced = this_eff_load <= prev_eff_load;
1456 } else
1457 balanced = true;
1458 rcu_read_unlock();
1461 * If the currently running task will sleep within
1462 * a reasonable amount of time then attract this newly
1463 * woken task:
1465 if (sync && balanced)
1466 return 1;
1468 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1469 tl_per_task = cpu_avg_load_per_task(this_cpu);
1471 if (balanced ||
1472 (this_load <= load &&
1473 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1475 * This domain has SD_WAKE_AFFINE and
1476 * p is cache cold in this domain, and
1477 * there is no bad imbalance.
1479 schedstat_inc(sd, ttwu_move_affine);
1480 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1482 return 1;
1484 return 0;
1488 * find_idlest_group finds and returns the least busy CPU group within the
1489 * domain.
1491 static struct sched_group *
1492 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1493 int this_cpu, int load_idx)
1495 struct sched_group *idlest = NULL, *group = sd->groups;
1496 unsigned long min_load = ULONG_MAX, this_load = 0;
1497 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1499 do {
1500 unsigned long load, avg_load;
1501 int local_group;
1502 int i;
1504 /* Skip over this group if it has no CPUs allowed */
1505 if (!cpumask_intersects(sched_group_cpus(group),
1506 &p->cpus_allowed))
1507 continue;
1509 local_group = cpumask_test_cpu(this_cpu,
1510 sched_group_cpus(group));
1512 /* Tally up the load of all CPUs in the group */
1513 avg_load = 0;
1515 for_each_cpu(i, sched_group_cpus(group)) {
1516 /* Bias balancing toward cpus of our domain */
1517 if (local_group)
1518 load = source_load(i, load_idx);
1519 else
1520 load = target_load(i, load_idx);
1522 avg_load += load;
1525 /* Adjust by relative CPU power of the group */
1526 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1528 if (local_group) {
1529 this_load = avg_load;
1530 } else if (avg_load < min_load) {
1531 min_load = avg_load;
1532 idlest = group;
1534 } while (group = group->next, group != sd->groups);
1536 if (!idlest || 100*this_load < imbalance*min_load)
1537 return NULL;
1538 return idlest;
1542 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1544 static int
1545 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1547 unsigned long load, min_load = ULONG_MAX;
1548 int idlest = -1;
1549 int i;
1551 /* Traverse only the allowed CPUs */
1552 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1553 load = weighted_cpuload(i);
1555 if (load < min_load || (load == min_load && i == this_cpu)) {
1556 min_load = load;
1557 idlest = i;
1561 return idlest;
1565 * Try and locate an idle CPU in the sched_domain.
1567 static int select_idle_sibling(struct task_struct *p, int target)
1569 int cpu = smp_processor_id();
1570 int prev_cpu = task_cpu(p);
1571 struct sched_domain *sd;
1572 int i;
1575 * If the task is going to be woken-up on this cpu and if it is
1576 * already idle, then it is the right target.
1578 if (target == cpu && idle_cpu(cpu))
1579 return cpu;
1582 * If the task is going to be woken-up on the cpu where it previously
1583 * ran and if it is currently idle, then it the right target.
1585 if (target == prev_cpu && idle_cpu(prev_cpu))
1586 return prev_cpu;
1589 * Otherwise, iterate the domains and find an elegible idle cpu.
1591 for_each_domain(target, sd) {
1592 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1593 break;
1595 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1596 if (idle_cpu(i)) {
1597 target = i;
1598 break;
1603 * Lets stop looking for an idle sibling when we reached
1604 * the domain that spans the current cpu and prev_cpu.
1606 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1607 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1608 break;
1611 return target;
1615 * sched_balance_self: balance the current task (running on cpu) in domains
1616 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1617 * SD_BALANCE_EXEC.
1619 * Balance, ie. select the least loaded group.
1621 * Returns the target CPU number, or the same CPU if no balancing is needed.
1623 * preempt must be disabled.
1625 static int
1626 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1628 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1629 int cpu = smp_processor_id();
1630 int prev_cpu = task_cpu(p);
1631 int new_cpu = cpu;
1632 int want_affine = 0;
1633 int want_sd = 1;
1634 int sync = wake_flags & WF_SYNC;
1636 if (sd_flag & SD_BALANCE_WAKE) {
1637 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1638 want_affine = 1;
1639 new_cpu = prev_cpu;
1642 for_each_domain(cpu, tmp) {
1643 if (!(tmp->flags & SD_LOAD_BALANCE))
1644 continue;
1647 * If power savings logic is enabled for a domain, see if we
1648 * are not overloaded, if so, don't balance wider.
1650 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1651 unsigned long power = 0;
1652 unsigned long nr_running = 0;
1653 unsigned long capacity;
1654 int i;
1656 for_each_cpu(i, sched_domain_span(tmp)) {
1657 power += power_of(i);
1658 nr_running += cpu_rq(i)->cfs.nr_running;
1661 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1663 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1664 nr_running /= 2;
1666 if (nr_running < capacity)
1667 want_sd = 0;
1671 * If both cpu and prev_cpu are part of this domain,
1672 * cpu is a valid SD_WAKE_AFFINE target.
1674 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1675 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1676 affine_sd = tmp;
1677 want_affine = 0;
1680 if (!want_sd && !want_affine)
1681 break;
1683 if (!(tmp->flags & sd_flag))
1684 continue;
1686 if (want_sd)
1687 sd = tmp;
1690 if (affine_sd) {
1691 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1692 return select_idle_sibling(p, cpu);
1693 else
1694 return select_idle_sibling(p, prev_cpu);
1697 while (sd) {
1698 int load_idx = sd->forkexec_idx;
1699 struct sched_group *group;
1700 int weight;
1702 if (!(sd->flags & sd_flag)) {
1703 sd = sd->child;
1704 continue;
1707 if (sd_flag & SD_BALANCE_WAKE)
1708 load_idx = sd->wake_idx;
1710 group = find_idlest_group(sd, p, cpu, load_idx);
1711 if (!group) {
1712 sd = sd->child;
1713 continue;
1716 new_cpu = find_idlest_cpu(group, p, cpu);
1717 if (new_cpu == -1 || new_cpu == cpu) {
1718 /* Now try balancing at a lower domain level of cpu */
1719 sd = sd->child;
1720 continue;
1723 /* Now try balancing at a lower domain level of new_cpu */
1724 cpu = new_cpu;
1725 weight = sd->span_weight;
1726 sd = NULL;
1727 for_each_domain(cpu, tmp) {
1728 if (weight <= tmp->span_weight)
1729 break;
1730 if (tmp->flags & sd_flag)
1731 sd = tmp;
1733 /* while loop will break here if sd == NULL */
1736 return new_cpu;
1738 #endif /* CONFIG_SMP */
1740 static unsigned long
1741 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1743 unsigned long gran = sysctl_sched_wakeup_granularity;
1746 * Since its curr running now, convert the gran from real-time
1747 * to virtual-time in his units.
1749 * By using 'se' instead of 'curr' we penalize light tasks, so
1750 * they get preempted easier. That is, if 'se' < 'curr' then
1751 * the resulting gran will be larger, therefore penalizing the
1752 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1753 * be smaller, again penalizing the lighter task.
1755 * This is especially important for buddies when the leftmost
1756 * task is higher priority than the buddy.
1758 if (unlikely(se->load.weight != NICE_0_LOAD))
1759 gran = calc_delta_fair(gran, se);
1761 return gran;
1765 * Should 'se' preempt 'curr'.
1767 * |s1
1768 * |s2
1769 * |s3
1771 * |<--->|c
1773 * w(c, s1) = -1
1774 * w(c, s2) = 0
1775 * w(c, s3) = 1
1778 static int
1779 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1781 s64 gran, vdiff = curr->vruntime - se->vruntime;
1783 if (vdiff <= 0)
1784 return -1;
1786 gran = wakeup_gran(curr, se);
1787 if (vdiff > gran)
1788 return 1;
1790 return 0;
1793 static void set_last_buddy(struct sched_entity *se)
1795 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1796 for_each_sched_entity(se)
1797 cfs_rq_of(se)->last = se;
1801 static void set_next_buddy(struct sched_entity *se)
1803 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1804 for_each_sched_entity(se)
1805 cfs_rq_of(se)->next = se;
1810 * Preempt the current task with a newly woken task if needed:
1812 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1814 struct task_struct *curr = rq->curr;
1815 struct sched_entity *se = &curr->se, *pse = &p->se;
1816 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1817 int scale = cfs_rq->nr_running >= sched_nr_latency;
1819 if (unlikely(se == pse))
1820 return;
1822 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1823 set_next_buddy(pse);
1826 * We can come here with TIF_NEED_RESCHED already set from new task
1827 * wake up path.
1829 if (test_tsk_need_resched(curr))
1830 return;
1833 * Batch and idle tasks do not preempt (their preemption is driven by
1834 * the tick):
1836 if (unlikely(p->policy != SCHED_NORMAL))
1837 return;
1839 /* Idle tasks are by definition preempted by everybody. */
1840 if (unlikely(curr->policy == SCHED_IDLE))
1841 goto preempt;
1843 if (!sched_feat(WAKEUP_PREEMPT))
1844 return;
1846 update_curr(cfs_rq);
1847 find_matching_se(&se, &pse);
1848 BUG_ON(!pse);
1849 if (wakeup_preempt_entity(se, pse) == 1)
1850 goto preempt;
1852 return;
1854 preempt:
1855 resched_task(curr);
1857 * Only set the backward buddy when the current task is still
1858 * on the rq. This can happen when a wakeup gets interleaved
1859 * with schedule on the ->pre_schedule() or idle_balance()
1860 * point, either of which can * drop the rq lock.
1862 * Also, during early boot the idle thread is in the fair class,
1863 * for obvious reasons its a bad idea to schedule back to it.
1865 if (unlikely(!se->on_rq || curr == rq->idle))
1866 return;
1868 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1869 set_last_buddy(se);
1872 static struct task_struct *pick_next_task_fair(struct rq *rq)
1874 struct task_struct *p;
1875 struct cfs_rq *cfs_rq = &rq->cfs;
1876 struct sched_entity *se;
1878 if (!cfs_rq->nr_running)
1879 return NULL;
1881 do {
1882 se = pick_next_entity(cfs_rq);
1883 set_next_entity(cfs_rq, se);
1884 cfs_rq = group_cfs_rq(se);
1885 } while (cfs_rq);
1887 p = task_of(se);
1888 hrtick_start_fair(rq, p);
1890 return p;
1894 * Account for a descheduled task:
1896 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1898 struct sched_entity *se = &prev->se;
1899 struct cfs_rq *cfs_rq;
1901 for_each_sched_entity(se) {
1902 cfs_rq = cfs_rq_of(se);
1903 put_prev_entity(cfs_rq, se);
1907 #ifdef CONFIG_SMP
1908 /**************************************************
1909 * Fair scheduling class load-balancing methods:
1913 * pull_task - move a task from a remote runqueue to the local runqueue.
1914 * Both runqueues must be locked.
1916 static void pull_task(struct rq *src_rq, struct task_struct *p,
1917 struct rq *this_rq, int this_cpu)
1919 deactivate_task(src_rq, p, 0);
1920 set_task_cpu(p, this_cpu);
1921 activate_task(this_rq, p, 0);
1922 check_preempt_curr(this_rq, p, 0);
1926 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1928 static
1929 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1930 struct sched_domain *sd, enum cpu_idle_type idle,
1931 int *all_pinned)
1933 int tsk_cache_hot = 0;
1935 * We do not migrate tasks that are:
1936 * 1) running (obviously), or
1937 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1938 * 3) are cache-hot on their current CPU.
1940 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1941 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1942 return 0;
1944 *all_pinned = 0;
1946 if (task_running(rq, p)) {
1947 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1948 return 0;
1952 * Aggressive migration if:
1953 * 1) task is cache cold, or
1954 * 2) too many balance attempts have failed.
1957 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
1958 if (!tsk_cache_hot ||
1959 sd->nr_balance_failed > sd->cache_nice_tries) {
1960 #ifdef CONFIG_SCHEDSTATS
1961 if (tsk_cache_hot) {
1962 schedstat_inc(sd, lb_hot_gained[idle]);
1963 schedstat_inc(p, se.statistics.nr_forced_migrations);
1965 #endif
1966 return 1;
1969 if (tsk_cache_hot) {
1970 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1971 return 0;
1973 return 1;
1977 * move_one_task tries to move exactly one task from busiest to this_rq, as
1978 * part of active balancing operations within "domain".
1979 * Returns 1 if successful and 0 otherwise.
1981 * Called with both runqueues locked.
1983 static int
1984 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1985 struct sched_domain *sd, enum cpu_idle_type idle)
1987 struct task_struct *p, *n;
1988 struct cfs_rq *cfs_rq;
1989 int pinned = 0;
1991 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1992 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1994 if (!can_migrate_task(p, busiest, this_cpu,
1995 sd, idle, &pinned))
1996 continue;
1998 pull_task(busiest, p, this_rq, this_cpu);
2000 * Right now, this is only the second place pull_task()
2001 * is called, so we can safely collect pull_task()
2002 * stats here rather than inside pull_task().
2004 schedstat_inc(sd, lb_gained[idle]);
2005 return 1;
2009 return 0;
2012 static unsigned long
2013 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2014 unsigned long max_load_move, struct sched_domain *sd,
2015 enum cpu_idle_type idle, int *all_pinned,
2016 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
2018 int loops = 0, pulled = 0, pinned = 0;
2019 long rem_load_move = max_load_move;
2020 struct task_struct *p, *n;
2022 if (max_load_move == 0)
2023 goto out;
2025 pinned = 1;
2027 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2028 if (loops++ > sysctl_sched_nr_migrate)
2029 break;
2031 if ((p->se.load.weight >> 1) > rem_load_move ||
2032 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
2033 continue;
2035 pull_task(busiest, p, this_rq, this_cpu);
2036 pulled++;
2037 rem_load_move -= p->se.load.weight;
2039 #ifdef CONFIG_PREEMPT
2041 * NEWIDLE balancing is a source of latency, so preemptible
2042 * kernels will stop after the first task is pulled to minimize
2043 * the critical section.
2045 if (idle == CPU_NEWLY_IDLE)
2046 break;
2047 #endif
2050 * We only want to steal up to the prescribed amount of
2051 * weighted load.
2053 if (rem_load_move <= 0)
2054 break;
2056 if (p->prio < *this_best_prio)
2057 *this_best_prio = p->prio;
2059 out:
2061 * Right now, this is one of only two places pull_task() is called,
2062 * so we can safely collect pull_task() stats here rather than
2063 * inside pull_task().
2065 schedstat_add(sd, lb_gained[idle], pulled);
2067 if (all_pinned)
2068 *all_pinned = pinned;
2070 return max_load_move - rem_load_move;
2073 #ifdef CONFIG_FAIR_GROUP_SCHED
2075 * update tg->load_weight by folding this cpu's load_avg
2077 static int update_shares_cpu(struct task_group *tg, int cpu)
2079 struct cfs_rq *cfs_rq;
2080 unsigned long flags;
2081 struct rq *rq;
2083 if (!tg->se[cpu])
2084 return 0;
2086 rq = cpu_rq(cpu);
2087 cfs_rq = tg->cfs_rq[cpu];
2089 raw_spin_lock_irqsave(&rq->lock, flags);
2091 update_rq_clock(rq);
2092 update_cfs_load(cfs_rq, 1);
2095 * We need to update shares after updating tg->load_weight in
2096 * order to adjust the weight of groups with long running tasks.
2098 update_cfs_shares(cfs_rq, 0);
2100 raw_spin_unlock_irqrestore(&rq->lock, flags);
2102 return 0;
2105 static void update_shares(int cpu)
2107 struct cfs_rq *cfs_rq;
2108 struct rq *rq = cpu_rq(cpu);
2110 rcu_read_lock();
2111 for_each_leaf_cfs_rq(rq, cfs_rq)
2112 update_shares_cpu(cfs_rq->tg, cpu);
2113 rcu_read_unlock();
2116 static unsigned long
2117 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2118 unsigned long max_load_move,
2119 struct sched_domain *sd, enum cpu_idle_type idle,
2120 int *all_pinned, int *this_best_prio)
2122 long rem_load_move = max_load_move;
2123 int busiest_cpu = cpu_of(busiest);
2124 struct task_group *tg;
2126 rcu_read_lock();
2127 update_h_load(busiest_cpu);
2129 list_for_each_entry_rcu(tg, &task_groups, list) {
2130 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2131 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2132 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2133 u64 rem_load, moved_load;
2136 * empty group
2138 if (!busiest_cfs_rq->task_weight)
2139 continue;
2141 rem_load = (u64)rem_load_move * busiest_weight;
2142 rem_load = div_u64(rem_load, busiest_h_load + 1);
2144 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2145 rem_load, sd, idle, all_pinned, this_best_prio,
2146 busiest_cfs_rq);
2148 if (!moved_load)
2149 continue;
2151 moved_load *= busiest_h_load;
2152 moved_load = div_u64(moved_load, busiest_weight + 1);
2154 rem_load_move -= moved_load;
2155 if (rem_load_move < 0)
2156 break;
2158 rcu_read_unlock();
2160 return max_load_move - rem_load_move;
2162 #else
2163 static inline void update_shares(int cpu)
2167 static unsigned long
2168 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2169 unsigned long max_load_move,
2170 struct sched_domain *sd, enum cpu_idle_type idle,
2171 int *all_pinned, int *this_best_prio)
2173 return balance_tasks(this_rq, this_cpu, busiest,
2174 max_load_move, sd, idle, all_pinned,
2175 this_best_prio, &busiest->cfs);
2177 #endif
2180 * move_tasks tries to move up to max_load_move weighted load from busiest to
2181 * this_rq, as part of a balancing operation within domain "sd".
2182 * Returns 1 if successful and 0 otherwise.
2184 * Called with both runqueues locked.
2186 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2187 unsigned long max_load_move,
2188 struct sched_domain *sd, enum cpu_idle_type idle,
2189 int *all_pinned)
2191 unsigned long total_load_moved = 0, load_moved;
2192 int this_best_prio = this_rq->curr->prio;
2194 do {
2195 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2196 max_load_move - total_load_moved,
2197 sd, idle, all_pinned, &this_best_prio);
2199 total_load_moved += load_moved;
2201 #ifdef CONFIG_PREEMPT
2203 * NEWIDLE balancing is a source of latency, so preemptible
2204 * kernels will stop after the first task is pulled to minimize
2205 * the critical section.
2207 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2208 break;
2210 if (raw_spin_is_contended(&this_rq->lock) ||
2211 raw_spin_is_contended(&busiest->lock))
2212 break;
2213 #endif
2214 } while (load_moved && max_load_move > total_load_moved);
2216 return total_load_moved > 0;
2219 /********** Helpers for find_busiest_group ************************/
2221 * sd_lb_stats - Structure to store the statistics of a sched_domain
2222 * during load balancing.
2224 struct sd_lb_stats {
2225 struct sched_group *busiest; /* Busiest group in this sd */
2226 struct sched_group *this; /* Local group in this sd */
2227 unsigned long total_load; /* Total load of all groups in sd */
2228 unsigned long total_pwr; /* Total power of all groups in sd */
2229 unsigned long avg_load; /* Average load across all groups in sd */
2231 /** Statistics of this group */
2232 unsigned long this_load;
2233 unsigned long this_load_per_task;
2234 unsigned long this_nr_running;
2235 unsigned long this_has_capacity;
2236 unsigned int this_idle_cpus;
2238 /* Statistics of the busiest group */
2239 unsigned int busiest_idle_cpus;
2240 unsigned long max_load;
2241 unsigned long busiest_load_per_task;
2242 unsigned long busiest_nr_running;
2243 unsigned long busiest_group_capacity;
2244 unsigned long busiest_has_capacity;
2245 unsigned int busiest_group_weight;
2247 int group_imb; /* Is there imbalance in this sd */
2248 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2249 int power_savings_balance; /* Is powersave balance needed for this sd */
2250 struct sched_group *group_min; /* Least loaded group in sd */
2251 struct sched_group *group_leader; /* Group which relieves group_min */
2252 unsigned long min_load_per_task; /* load_per_task in group_min */
2253 unsigned long leader_nr_running; /* Nr running of group_leader */
2254 unsigned long min_nr_running; /* Nr running of group_min */
2255 #endif
2259 * sg_lb_stats - stats of a sched_group required for load_balancing
2261 struct sg_lb_stats {
2262 unsigned long avg_load; /*Avg load across the CPUs of the group */
2263 unsigned long group_load; /* Total load over the CPUs of the group */
2264 unsigned long sum_nr_running; /* Nr tasks running in the group */
2265 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2266 unsigned long group_capacity;
2267 unsigned long idle_cpus;
2268 unsigned long group_weight;
2269 int group_imb; /* Is there an imbalance in the group ? */
2270 int group_has_capacity; /* Is there extra capacity in the group? */
2274 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2275 * @group: The group whose first cpu is to be returned.
2277 static inline unsigned int group_first_cpu(struct sched_group *group)
2279 return cpumask_first(sched_group_cpus(group));
2283 * get_sd_load_idx - Obtain the load index for a given sched domain.
2284 * @sd: The sched_domain whose load_idx is to be obtained.
2285 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2287 static inline int get_sd_load_idx(struct sched_domain *sd,
2288 enum cpu_idle_type idle)
2290 int load_idx;
2292 switch (idle) {
2293 case CPU_NOT_IDLE:
2294 load_idx = sd->busy_idx;
2295 break;
2297 case CPU_NEWLY_IDLE:
2298 load_idx = sd->newidle_idx;
2299 break;
2300 default:
2301 load_idx = sd->idle_idx;
2302 break;
2305 return load_idx;
2309 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2311 * init_sd_power_savings_stats - Initialize power savings statistics for
2312 * the given sched_domain, during load balancing.
2314 * @sd: Sched domain whose power-savings statistics are to be initialized.
2315 * @sds: Variable containing the statistics for sd.
2316 * @idle: Idle status of the CPU at which we're performing load-balancing.
2318 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2319 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2322 * Busy processors will not participate in power savings
2323 * balance.
2325 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2326 sds->power_savings_balance = 0;
2327 else {
2328 sds->power_savings_balance = 1;
2329 sds->min_nr_running = ULONG_MAX;
2330 sds->leader_nr_running = 0;
2335 * update_sd_power_savings_stats - Update the power saving stats for a
2336 * sched_domain while performing load balancing.
2338 * @group: sched_group belonging to the sched_domain under consideration.
2339 * @sds: Variable containing the statistics of the sched_domain
2340 * @local_group: Does group contain the CPU for which we're performing
2341 * load balancing ?
2342 * @sgs: Variable containing the statistics of the group.
2344 static inline void update_sd_power_savings_stats(struct sched_group *group,
2345 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2348 if (!sds->power_savings_balance)
2349 return;
2352 * If the local group is idle or completely loaded
2353 * no need to do power savings balance at this domain
2355 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2356 !sds->this_nr_running))
2357 sds->power_savings_balance = 0;
2360 * If a group is already running at full capacity or idle,
2361 * don't include that group in power savings calculations
2363 if (!sds->power_savings_balance ||
2364 sgs->sum_nr_running >= sgs->group_capacity ||
2365 !sgs->sum_nr_running)
2366 return;
2369 * Calculate the group which has the least non-idle load.
2370 * This is the group from where we need to pick up the load
2371 * for saving power
2373 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2374 (sgs->sum_nr_running == sds->min_nr_running &&
2375 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2376 sds->group_min = group;
2377 sds->min_nr_running = sgs->sum_nr_running;
2378 sds->min_load_per_task = sgs->sum_weighted_load /
2379 sgs->sum_nr_running;
2383 * Calculate the group which is almost near its
2384 * capacity but still has some space to pick up some load
2385 * from other group and save more power
2387 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2388 return;
2390 if (sgs->sum_nr_running > sds->leader_nr_running ||
2391 (sgs->sum_nr_running == sds->leader_nr_running &&
2392 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2393 sds->group_leader = group;
2394 sds->leader_nr_running = sgs->sum_nr_running;
2399 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2400 * @sds: Variable containing the statistics of the sched_domain
2401 * under consideration.
2402 * @this_cpu: Cpu at which we're currently performing load-balancing.
2403 * @imbalance: Variable to store the imbalance.
2405 * Description:
2406 * Check if we have potential to perform some power-savings balance.
2407 * If yes, set the busiest group to be the least loaded group in the
2408 * sched_domain, so that it's CPUs can be put to idle.
2410 * Returns 1 if there is potential to perform power-savings balance.
2411 * Else returns 0.
2413 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2414 int this_cpu, unsigned long *imbalance)
2416 if (!sds->power_savings_balance)
2417 return 0;
2419 if (sds->this != sds->group_leader ||
2420 sds->group_leader == sds->group_min)
2421 return 0;
2423 *imbalance = sds->min_load_per_task;
2424 sds->busiest = sds->group_min;
2426 return 1;
2429 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2430 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2431 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2433 return;
2436 static inline void update_sd_power_savings_stats(struct sched_group *group,
2437 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2439 return;
2442 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2443 int this_cpu, unsigned long *imbalance)
2445 return 0;
2447 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2450 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2452 return SCHED_LOAD_SCALE;
2455 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2457 return default_scale_freq_power(sd, cpu);
2460 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2462 unsigned long weight = sd->span_weight;
2463 unsigned long smt_gain = sd->smt_gain;
2465 smt_gain /= weight;
2467 return smt_gain;
2470 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2472 return default_scale_smt_power(sd, cpu);
2475 unsigned long scale_rt_power(int cpu)
2477 struct rq *rq = cpu_rq(cpu);
2478 u64 total, available;
2480 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2482 if (unlikely(total < rq->rt_avg)) {
2483 /* Ensures that power won't end up being negative */
2484 available = 0;
2485 } else {
2486 available = total - rq->rt_avg;
2489 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2490 total = SCHED_LOAD_SCALE;
2492 total >>= SCHED_LOAD_SHIFT;
2494 return div_u64(available, total);
2497 static void update_cpu_power(struct sched_domain *sd, int cpu)
2499 unsigned long weight = sd->span_weight;
2500 unsigned long power = SCHED_LOAD_SCALE;
2501 struct sched_group *sdg = sd->groups;
2503 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2504 if (sched_feat(ARCH_POWER))
2505 power *= arch_scale_smt_power(sd, cpu);
2506 else
2507 power *= default_scale_smt_power(sd, cpu);
2509 power >>= SCHED_LOAD_SHIFT;
2512 sdg->cpu_power_orig = power;
2514 if (sched_feat(ARCH_POWER))
2515 power *= arch_scale_freq_power(sd, cpu);
2516 else
2517 power *= default_scale_freq_power(sd, cpu);
2519 power >>= SCHED_LOAD_SHIFT;
2521 power *= scale_rt_power(cpu);
2522 power >>= SCHED_LOAD_SHIFT;
2524 if (!power)
2525 power = 1;
2527 cpu_rq(cpu)->cpu_power = power;
2528 sdg->cpu_power = power;
2531 static void update_group_power(struct sched_domain *sd, int cpu)
2533 struct sched_domain *child = sd->child;
2534 struct sched_group *group, *sdg = sd->groups;
2535 unsigned long power;
2537 if (!child) {
2538 update_cpu_power(sd, cpu);
2539 return;
2542 power = 0;
2544 group = child->groups;
2545 do {
2546 power += group->cpu_power;
2547 group = group->next;
2548 } while (group != child->groups);
2550 sdg->cpu_power = power;
2554 * Try and fix up capacity for tiny siblings, this is needed when
2555 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2556 * which on its own isn't powerful enough.
2558 * See update_sd_pick_busiest() and check_asym_packing().
2560 static inline int
2561 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2564 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2566 if (sd->level != SD_LV_SIBLING)
2567 return 0;
2570 * If ~90% of the cpu_power is still there, we're good.
2572 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2573 return 1;
2575 return 0;
2579 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2580 * @sd: The sched_domain whose statistics are to be updated.
2581 * @group: sched_group whose statistics are to be updated.
2582 * @this_cpu: Cpu for which load balance is currently performed.
2583 * @idle: Idle status of this_cpu
2584 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2585 * @sd_idle: Idle status of the sched_domain containing group.
2586 * @local_group: Does group contain this_cpu.
2587 * @cpus: Set of cpus considered for load balancing.
2588 * @balance: Should we balance.
2589 * @sgs: variable to hold the statistics for this group.
2591 static inline void update_sg_lb_stats(struct sched_domain *sd,
2592 struct sched_group *group, int this_cpu,
2593 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2594 int local_group, const struct cpumask *cpus,
2595 int *balance, struct sg_lb_stats *sgs)
2597 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2598 int i;
2599 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2600 unsigned long avg_load_per_task = 0;
2602 if (local_group)
2603 balance_cpu = group_first_cpu(group);
2605 /* Tally up the load of all CPUs in the group */
2606 max_cpu_load = 0;
2607 min_cpu_load = ~0UL;
2608 max_nr_running = 0;
2610 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2611 struct rq *rq = cpu_rq(i);
2613 if (*sd_idle && rq->nr_running)
2614 *sd_idle = 0;
2616 /* Bias balancing toward cpus of our domain */
2617 if (local_group) {
2618 if (idle_cpu(i) && !first_idle_cpu) {
2619 first_idle_cpu = 1;
2620 balance_cpu = i;
2623 load = target_load(i, load_idx);
2624 } else {
2625 load = source_load(i, load_idx);
2626 if (load > max_cpu_load) {
2627 max_cpu_load = load;
2628 max_nr_running = rq->nr_running;
2630 if (min_cpu_load > load)
2631 min_cpu_load = load;
2634 sgs->group_load += load;
2635 sgs->sum_nr_running += rq->nr_running;
2636 sgs->sum_weighted_load += weighted_cpuload(i);
2637 if (idle_cpu(i))
2638 sgs->idle_cpus++;
2642 * First idle cpu or the first cpu(busiest) in this sched group
2643 * is eligible for doing load balancing at this and above
2644 * domains. In the newly idle case, we will allow all the cpu's
2645 * to do the newly idle load balance.
2647 if (idle != CPU_NEWLY_IDLE && local_group) {
2648 if (balance_cpu != this_cpu) {
2649 *balance = 0;
2650 return;
2652 update_group_power(sd, this_cpu);
2655 /* Adjust by relative CPU power of the group */
2656 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2659 * Consider the group unbalanced when the imbalance is larger
2660 * than the average weight of two tasks.
2662 * APZ: with cgroup the avg task weight can vary wildly and
2663 * might not be a suitable number - should we keep a
2664 * normalized nr_running number somewhere that negates
2665 * the hierarchy?
2667 if (sgs->sum_nr_running)
2668 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2670 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task && max_nr_running > 1)
2671 sgs->group_imb = 1;
2673 sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2674 if (!sgs->group_capacity)
2675 sgs->group_capacity = fix_small_capacity(sd, group);
2676 sgs->group_weight = group->group_weight;
2678 if (sgs->group_capacity > sgs->sum_nr_running)
2679 sgs->group_has_capacity = 1;
2683 * update_sd_pick_busiest - return 1 on busiest group
2684 * @sd: sched_domain whose statistics are to be checked
2685 * @sds: sched_domain statistics
2686 * @sg: sched_group candidate to be checked for being the busiest
2687 * @sgs: sched_group statistics
2688 * @this_cpu: the current cpu
2690 * Determine if @sg is a busier group than the previously selected
2691 * busiest group.
2693 static bool update_sd_pick_busiest(struct sched_domain *sd,
2694 struct sd_lb_stats *sds,
2695 struct sched_group *sg,
2696 struct sg_lb_stats *sgs,
2697 int this_cpu)
2699 if (sgs->avg_load <= sds->max_load)
2700 return false;
2702 if (sgs->sum_nr_running > sgs->group_capacity)
2703 return true;
2705 if (sgs->group_imb)
2706 return true;
2709 * ASYM_PACKING needs to move all the work to the lowest
2710 * numbered CPUs in the group, therefore mark all groups
2711 * higher than ourself as busy.
2713 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2714 this_cpu < group_first_cpu(sg)) {
2715 if (!sds->busiest)
2716 return true;
2718 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2719 return true;
2722 return false;
2726 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2727 * @sd: sched_domain whose statistics are to be updated.
2728 * @this_cpu: Cpu for which load balance is currently performed.
2729 * @idle: Idle status of this_cpu
2730 * @sd_idle: Idle status of the sched_domain containing sg.
2731 * @cpus: Set of cpus considered for load balancing.
2732 * @balance: Should we balance.
2733 * @sds: variable to hold the statistics for this sched_domain.
2735 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2736 enum cpu_idle_type idle, int *sd_idle,
2737 const struct cpumask *cpus, int *balance,
2738 struct sd_lb_stats *sds)
2740 struct sched_domain *child = sd->child;
2741 struct sched_group *sg = sd->groups;
2742 struct sg_lb_stats sgs;
2743 int load_idx, prefer_sibling = 0;
2745 if (child && child->flags & SD_PREFER_SIBLING)
2746 prefer_sibling = 1;
2748 init_sd_power_savings_stats(sd, sds, idle);
2749 load_idx = get_sd_load_idx(sd, idle);
2751 do {
2752 int local_group;
2754 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2755 memset(&sgs, 0, sizeof(sgs));
2756 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2757 local_group, cpus, balance, &sgs);
2759 if (local_group && !(*balance))
2760 return;
2762 sds->total_load += sgs.group_load;
2763 sds->total_pwr += sg->cpu_power;
2766 * In case the child domain prefers tasks go to siblings
2767 * first, lower the sg capacity to one so that we'll try
2768 * and move all the excess tasks away. We lower the capacity
2769 * of a group only if the local group has the capacity to fit
2770 * these excess tasks, i.e. nr_running < group_capacity. The
2771 * extra check prevents the case where you always pull from the
2772 * heaviest group when it is already under-utilized (possible
2773 * with a large weight task outweighs the tasks on the system).
2775 if (prefer_sibling && !local_group && sds->this_has_capacity)
2776 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2778 if (local_group) {
2779 sds->this_load = sgs.avg_load;
2780 sds->this = sg;
2781 sds->this_nr_running = sgs.sum_nr_running;
2782 sds->this_load_per_task = sgs.sum_weighted_load;
2783 sds->this_has_capacity = sgs.group_has_capacity;
2784 sds->this_idle_cpus = sgs.idle_cpus;
2785 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2786 sds->max_load = sgs.avg_load;
2787 sds->busiest = sg;
2788 sds->busiest_nr_running = sgs.sum_nr_running;
2789 sds->busiest_idle_cpus = sgs.idle_cpus;
2790 sds->busiest_group_capacity = sgs.group_capacity;
2791 sds->busiest_load_per_task = sgs.sum_weighted_load;
2792 sds->busiest_has_capacity = sgs.group_has_capacity;
2793 sds->busiest_group_weight = sgs.group_weight;
2794 sds->group_imb = sgs.group_imb;
2797 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2798 sg = sg->next;
2799 } while (sg != sd->groups);
2802 int __weak arch_sd_sibling_asym_packing(void)
2804 return 0*SD_ASYM_PACKING;
2808 * check_asym_packing - Check to see if the group is packed into the
2809 * sched doman.
2811 * This is primarily intended to used at the sibling level. Some
2812 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2813 * case of POWER7, it can move to lower SMT modes only when higher
2814 * threads are idle. When in lower SMT modes, the threads will
2815 * perform better since they share less core resources. Hence when we
2816 * have idle threads, we want them to be the higher ones.
2818 * This packing function is run on idle threads. It checks to see if
2819 * the busiest CPU in this domain (core in the P7 case) has a higher
2820 * CPU number than the packing function is being run on. Here we are
2821 * assuming lower CPU number will be equivalent to lower a SMT thread
2822 * number.
2824 * Returns 1 when packing is required and a task should be moved to
2825 * this CPU. The amount of the imbalance is returned in *imbalance.
2827 * @sd: The sched_domain whose packing is to be checked.
2828 * @sds: Statistics of the sched_domain which is to be packed
2829 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2830 * @imbalance: returns amount of imbalanced due to packing.
2832 static int check_asym_packing(struct sched_domain *sd,
2833 struct sd_lb_stats *sds,
2834 int this_cpu, unsigned long *imbalance)
2836 int busiest_cpu;
2838 if (!(sd->flags & SD_ASYM_PACKING))
2839 return 0;
2841 if (!sds->busiest)
2842 return 0;
2844 busiest_cpu = group_first_cpu(sds->busiest);
2845 if (this_cpu > busiest_cpu)
2846 return 0;
2848 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2849 SCHED_LOAD_SCALE);
2850 return 1;
2854 * fix_small_imbalance - Calculate the minor imbalance that exists
2855 * amongst the groups of a sched_domain, during
2856 * load balancing.
2857 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2858 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2859 * @imbalance: Variable to store the imbalance.
2861 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2862 int this_cpu, unsigned long *imbalance)
2864 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2865 unsigned int imbn = 2;
2866 unsigned long scaled_busy_load_per_task;
2868 if (sds->this_nr_running) {
2869 sds->this_load_per_task /= sds->this_nr_running;
2870 if (sds->busiest_load_per_task >
2871 sds->this_load_per_task)
2872 imbn = 1;
2873 } else
2874 sds->this_load_per_task =
2875 cpu_avg_load_per_task(this_cpu);
2877 scaled_busy_load_per_task = sds->busiest_load_per_task
2878 * SCHED_LOAD_SCALE;
2879 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2881 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2882 (scaled_busy_load_per_task * imbn)) {
2883 *imbalance = sds->busiest_load_per_task;
2884 return;
2888 * OK, we don't have enough imbalance to justify moving tasks,
2889 * however we may be able to increase total CPU power used by
2890 * moving them.
2893 pwr_now += sds->busiest->cpu_power *
2894 min(sds->busiest_load_per_task, sds->max_load);
2895 pwr_now += sds->this->cpu_power *
2896 min(sds->this_load_per_task, sds->this_load);
2897 pwr_now /= SCHED_LOAD_SCALE;
2899 /* Amount of load we'd subtract */
2900 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2901 sds->busiest->cpu_power;
2902 if (sds->max_load > tmp)
2903 pwr_move += sds->busiest->cpu_power *
2904 min(sds->busiest_load_per_task, sds->max_load - tmp);
2906 /* Amount of load we'd add */
2907 if (sds->max_load * sds->busiest->cpu_power <
2908 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2909 tmp = (sds->max_load * sds->busiest->cpu_power) /
2910 sds->this->cpu_power;
2911 else
2912 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2913 sds->this->cpu_power;
2914 pwr_move += sds->this->cpu_power *
2915 min(sds->this_load_per_task, sds->this_load + tmp);
2916 pwr_move /= SCHED_LOAD_SCALE;
2918 /* Move if we gain throughput */
2919 if (pwr_move > pwr_now)
2920 *imbalance = sds->busiest_load_per_task;
2924 * calculate_imbalance - Calculate the amount of imbalance present within the
2925 * groups of a given sched_domain during load balance.
2926 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2927 * @this_cpu: Cpu for which currently load balance is being performed.
2928 * @imbalance: The variable to store the imbalance.
2930 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2931 unsigned long *imbalance)
2933 unsigned long max_pull, load_above_capacity = ~0UL;
2935 sds->busiest_load_per_task /= sds->busiest_nr_running;
2936 if (sds->group_imb) {
2937 sds->busiest_load_per_task =
2938 min(sds->busiest_load_per_task, sds->avg_load);
2942 * In the presence of smp nice balancing, certain scenarios can have
2943 * max load less than avg load(as we skip the groups at or below
2944 * its cpu_power, while calculating max_load..)
2946 if (sds->max_load < sds->avg_load) {
2947 *imbalance = 0;
2948 return fix_small_imbalance(sds, this_cpu, imbalance);
2951 if (!sds->group_imb) {
2953 * Don't want to pull so many tasks that a group would go idle.
2955 load_above_capacity = (sds->busiest_nr_running -
2956 sds->busiest_group_capacity);
2958 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2960 load_above_capacity /= sds->busiest->cpu_power;
2964 * We're trying to get all the cpus to the average_load, so we don't
2965 * want to push ourselves above the average load, nor do we wish to
2966 * reduce the max loaded cpu below the average load. At the same time,
2967 * we also don't want to reduce the group load below the group capacity
2968 * (so that we can implement power-savings policies etc). Thus we look
2969 * for the minimum possible imbalance.
2970 * Be careful of negative numbers as they'll appear as very large values
2971 * with unsigned longs.
2973 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2975 /* How much load to actually move to equalise the imbalance */
2976 *imbalance = min(max_pull * sds->busiest->cpu_power,
2977 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2978 / SCHED_LOAD_SCALE;
2981 * if *imbalance is less than the average load per runnable task
2982 * there is no gaurantee that any tasks will be moved so we'll have
2983 * a think about bumping its value to force at least one task to be
2984 * moved
2986 if (*imbalance < sds->busiest_load_per_task)
2987 return fix_small_imbalance(sds, this_cpu, imbalance);
2991 /******* find_busiest_group() helpers end here *********************/
2994 * find_busiest_group - Returns the busiest group within the sched_domain
2995 * if there is an imbalance. If there isn't an imbalance, and
2996 * the user has opted for power-savings, it returns a group whose
2997 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2998 * such a group exists.
3000 * Also calculates the amount of weighted load which should be moved
3001 * to restore balance.
3003 * @sd: The sched_domain whose busiest group is to be returned.
3004 * @this_cpu: The cpu for which load balancing is currently being performed.
3005 * @imbalance: Variable which stores amount of weighted load which should
3006 * be moved to restore balance/put a group to idle.
3007 * @idle: The idle status of this_cpu.
3008 * @sd_idle: The idleness of sd
3009 * @cpus: The set of CPUs under consideration for load-balancing.
3010 * @balance: Pointer to a variable indicating if this_cpu
3011 * is the appropriate cpu to perform load balancing at this_level.
3013 * Returns: - the busiest group if imbalance exists.
3014 * - If no imbalance and user has opted for power-savings balance,
3015 * return the least loaded group whose CPUs can be
3016 * put to idle by rebalancing its tasks onto our group.
3018 static struct sched_group *
3019 find_busiest_group(struct sched_domain *sd, int this_cpu,
3020 unsigned long *imbalance, enum cpu_idle_type idle,
3021 int *sd_idle, const struct cpumask *cpus, int *balance)
3023 struct sd_lb_stats sds;
3025 memset(&sds, 0, sizeof(sds));
3028 * Compute the various statistics relavent for load balancing at
3029 * this level.
3031 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3032 balance, &sds);
3034 /* Cases where imbalance does not exist from POV of this_cpu */
3035 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3036 * at this level.
3037 * 2) There is no busy sibling group to pull from.
3038 * 3) This group is the busiest group.
3039 * 4) This group is more busy than the avg busieness at this
3040 * sched_domain.
3041 * 5) The imbalance is within the specified limit.
3043 * Note: when doing newidle balance, if the local group has excess
3044 * capacity (i.e. nr_running < group_capacity) and the busiest group
3045 * does not have any capacity, we force a load balance to pull tasks
3046 * to the local group. In this case, we skip past checks 3, 4 and 5.
3048 if (!(*balance))
3049 goto ret;
3051 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3052 check_asym_packing(sd, &sds, this_cpu, imbalance))
3053 return sds.busiest;
3055 if (!sds.busiest || sds.busiest_nr_running == 0)
3056 goto out_balanced;
3058 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3059 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3060 !sds.busiest_has_capacity)
3061 goto force_balance;
3063 if (sds.this_load >= sds.max_load)
3064 goto out_balanced;
3066 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3068 if (sds.this_load >= sds.avg_load)
3069 goto out_balanced;
3072 * In the CPU_NEWLY_IDLE, use imbalance_pct to be conservative.
3073 * And to check for busy balance use !idle_cpu instead of
3074 * CPU_NOT_IDLE. This is because HT siblings will use CPU_NOT_IDLE
3075 * even when they are idle.
3077 if (idle == CPU_NEWLY_IDLE || !idle_cpu(this_cpu)) {
3078 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3079 goto out_balanced;
3080 } else {
3082 * This cpu is idle. If the busiest group load doesn't
3083 * have more tasks than the number of available cpu's and
3084 * there is no imbalance between this and busiest group
3085 * wrt to idle cpu's, it is balanced.
3087 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3088 sds.busiest_nr_running <= sds.busiest_group_weight)
3089 goto out_balanced;
3092 force_balance:
3093 /* Looks like there is an imbalance. Compute it */
3094 calculate_imbalance(&sds, this_cpu, imbalance);
3095 return sds.busiest;
3097 out_balanced:
3099 * There is no obvious imbalance. But check if we can do some balancing
3100 * to save power.
3102 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3103 return sds.busiest;
3104 ret:
3105 *imbalance = 0;
3106 return NULL;
3110 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3112 static struct rq *
3113 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3114 enum cpu_idle_type idle, unsigned long imbalance,
3115 const struct cpumask *cpus)
3117 struct rq *busiest = NULL, *rq;
3118 unsigned long max_load = 0;
3119 int i;
3121 for_each_cpu(i, sched_group_cpus(group)) {
3122 unsigned long power = power_of(i);
3123 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
3124 unsigned long wl;
3126 if (!capacity)
3127 capacity = fix_small_capacity(sd, group);
3129 if (!cpumask_test_cpu(i, cpus))
3130 continue;
3132 rq = cpu_rq(i);
3133 wl = weighted_cpuload(i);
3136 * When comparing with imbalance, use weighted_cpuload()
3137 * which is not scaled with the cpu power.
3139 if (capacity && rq->nr_running == 1 && wl > imbalance)
3140 continue;
3143 * For the load comparisons with the other cpu's, consider
3144 * the weighted_cpuload() scaled with the cpu power, so that
3145 * the load can be moved away from the cpu that is potentially
3146 * running at a lower capacity.
3148 wl = (wl * SCHED_LOAD_SCALE) / power;
3150 if (wl > max_load) {
3151 max_load = wl;
3152 busiest = rq;
3156 return busiest;
3160 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3161 * so long as it is large enough.
3163 #define MAX_PINNED_INTERVAL 512
3165 /* Working cpumask for load_balance and load_balance_newidle. */
3166 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3168 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
3169 int busiest_cpu, int this_cpu)
3171 if (idle == CPU_NEWLY_IDLE) {
3174 * ASYM_PACKING needs to force migrate tasks from busy but
3175 * higher numbered CPUs in order to pack all tasks in the
3176 * lowest numbered CPUs.
3178 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3179 return 1;
3182 * The only task running in a non-idle cpu can be moved to this
3183 * cpu in an attempt to completely freeup the other CPU
3184 * package.
3186 * The package power saving logic comes from
3187 * find_busiest_group(). If there are no imbalance, then
3188 * f_b_g() will return NULL. However when sched_mc={1,2} then
3189 * f_b_g() will select a group from which a running task may be
3190 * pulled to this cpu in order to make the other package idle.
3191 * If there is no opportunity to make a package idle and if
3192 * there are no imbalance, then f_b_g() will return NULL and no
3193 * action will be taken in load_balance_newidle().
3195 * Under normal task pull operation due to imbalance, there
3196 * will be more than one task in the source run queue and
3197 * move_tasks() will succeed. ld_moved will be true and this
3198 * active balance code will not be triggered.
3200 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3201 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3202 return 0;
3204 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3205 return 0;
3208 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3211 static int active_load_balance_cpu_stop(void *data);
3214 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3215 * tasks if there is an imbalance.
3217 static int load_balance(int this_cpu, struct rq *this_rq,
3218 struct sched_domain *sd, enum cpu_idle_type idle,
3219 int *balance)
3221 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3222 struct sched_group *group;
3223 unsigned long imbalance;
3224 struct rq *busiest;
3225 unsigned long flags;
3226 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3228 cpumask_copy(cpus, cpu_active_mask);
3231 * When power savings policy is enabled for the parent domain, idle
3232 * sibling can pick up load irrespective of busy siblings. In this case,
3233 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3234 * portraying it as CPU_NOT_IDLE.
3236 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3237 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3238 sd_idle = 1;
3240 schedstat_inc(sd, lb_count[idle]);
3242 redo:
3243 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3244 cpus, balance);
3246 if (*balance == 0)
3247 goto out_balanced;
3249 if (!group) {
3250 schedstat_inc(sd, lb_nobusyg[idle]);
3251 goto out_balanced;
3254 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3255 if (!busiest) {
3256 schedstat_inc(sd, lb_nobusyq[idle]);
3257 goto out_balanced;
3260 BUG_ON(busiest == this_rq);
3262 schedstat_add(sd, lb_imbalance[idle], imbalance);
3264 ld_moved = 0;
3265 if (busiest->nr_running > 1) {
3267 * Attempt to move tasks. If find_busiest_group has found
3268 * an imbalance but busiest->nr_running <= 1, the group is
3269 * still unbalanced. ld_moved simply stays zero, so it is
3270 * correctly treated as an imbalance.
3272 local_irq_save(flags);
3273 double_rq_lock(this_rq, busiest);
3274 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3275 imbalance, sd, idle, &all_pinned);
3276 double_rq_unlock(this_rq, busiest);
3277 local_irq_restore(flags);
3280 * some other cpu did the load balance for us.
3282 if (ld_moved && this_cpu != smp_processor_id())
3283 resched_cpu(this_cpu);
3285 /* All tasks on this runqueue were pinned by CPU affinity */
3286 if (unlikely(all_pinned)) {
3287 cpumask_clear_cpu(cpu_of(busiest), cpus);
3288 if (!cpumask_empty(cpus))
3289 goto redo;
3290 goto out_balanced;
3294 if (!ld_moved) {
3295 schedstat_inc(sd, lb_failed[idle]);
3297 * Increment the failure counter only on periodic balance.
3298 * We do not want newidle balance, which can be very
3299 * frequent, pollute the failure counter causing
3300 * excessive cache_hot migrations and active balances.
3302 if (idle != CPU_NEWLY_IDLE)
3303 sd->nr_balance_failed++;
3305 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3306 this_cpu)) {
3307 raw_spin_lock_irqsave(&busiest->lock, flags);
3309 /* don't kick the active_load_balance_cpu_stop,
3310 * if the curr task on busiest cpu can't be
3311 * moved to this_cpu
3313 if (!cpumask_test_cpu(this_cpu,
3314 &busiest->curr->cpus_allowed)) {
3315 raw_spin_unlock_irqrestore(&busiest->lock,
3316 flags);
3317 all_pinned = 1;
3318 goto out_one_pinned;
3322 * ->active_balance synchronizes accesses to
3323 * ->active_balance_work. Once set, it's cleared
3324 * only after active load balance is finished.
3326 if (!busiest->active_balance) {
3327 busiest->active_balance = 1;
3328 busiest->push_cpu = this_cpu;
3329 active_balance = 1;
3331 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3333 if (active_balance)
3334 stop_one_cpu_nowait(cpu_of(busiest),
3335 active_load_balance_cpu_stop, busiest,
3336 &busiest->active_balance_work);
3339 * We've kicked active balancing, reset the failure
3340 * counter.
3342 sd->nr_balance_failed = sd->cache_nice_tries+1;
3344 } else
3345 sd->nr_balance_failed = 0;
3347 if (likely(!active_balance)) {
3348 /* We were unbalanced, so reset the balancing interval */
3349 sd->balance_interval = sd->min_interval;
3350 } else {
3352 * If we've begun active balancing, start to back off. This
3353 * case may not be covered by the all_pinned logic if there
3354 * is only 1 task on the busy runqueue (because we don't call
3355 * move_tasks).
3357 if (sd->balance_interval < sd->max_interval)
3358 sd->balance_interval *= 2;
3361 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3362 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3363 ld_moved = -1;
3365 goto out;
3367 out_balanced:
3368 schedstat_inc(sd, lb_balanced[idle]);
3370 sd->nr_balance_failed = 0;
3372 out_one_pinned:
3373 /* tune up the balancing interval */
3374 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3375 (sd->balance_interval < sd->max_interval))
3376 sd->balance_interval *= 2;
3378 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3379 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3380 ld_moved = -1;
3381 else
3382 ld_moved = 0;
3383 out:
3384 return ld_moved;
3388 * idle_balance is called by schedule() if this_cpu is about to become
3389 * idle. Attempts to pull tasks from other CPUs.
3391 static void idle_balance(int this_cpu, struct rq *this_rq)
3393 struct sched_domain *sd;
3394 int pulled_task = 0;
3395 unsigned long next_balance = jiffies + HZ;
3397 this_rq->idle_stamp = this_rq->clock;
3399 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3400 return;
3403 * Drop the rq->lock, but keep IRQ/preempt disabled.
3405 raw_spin_unlock(&this_rq->lock);
3407 update_shares(this_cpu);
3408 for_each_domain(this_cpu, sd) {
3409 unsigned long interval;
3410 int balance = 1;
3412 if (!(sd->flags & SD_LOAD_BALANCE))
3413 continue;
3415 if (sd->flags & SD_BALANCE_NEWIDLE) {
3416 /* If we've pulled tasks over stop searching: */
3417 pulled_task = load_balance(this_cpu, this_rq,
3418 sd, CPU_NEWLY_IDLE, &balance);
3421 interval = msecs_to_jiffies(sd->balance_interval);
3422 if (time_after(next_balance, sd->last_balance + interval))
3423 next_balance = sd->last_balance + interval;
3424 if (pulled_task) {
3425 this_rq->idle_stamp = 0;
3426 break;
3430 raw_spin_lock(&this_rq->lock);
3432 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3434 * We are going idle. next_balance may be set based on
3435 * a busy processor. So reset next_balance.
3437 this_rq->next_balance = next_balance;
3442 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3443 * running tasks off the busiest CPU onto idle CPUs. It requires at
3444 * least 1 task to be running on each physical CPU where possible, and
3445 * avoids physical / logical imbalances.
3447 static int active_load_balance_cpu_stop(void *data)
3449 struct rq *busiest_rq = data;
3450 int busiest_cpu = cpu_of(busiest_rq);
3451 int target_cpu = busiest_rq->push_cpu;
3452 struct rq *target_rq = cpu_rq(target_cpu);
3453 struct sched_domain *sd;
3455 raw_spin_lock_irq(&busiest_rq->lock);
3457 /* make sure the requested cpu hasn't gone down in the meantime */
3458 if (unlikely(busiest_cpu != smp_processor_id() ||
3459 !busiest_rq->active_balance))
3460 goto out_unlock;
3462 /* Is there any task to move? */
3463 if (busiest_rq->nr_running <= 1)
3464 goto out_unlock;
3467 * This condition is "impossible", if it occurs
3468 * we need to fix it. Originally reported by
3469 * Bjorn Helgaas on a 128-cpu setup.
3471 BUG_ON(busiest_rq == target_rq);
3473 /* move a task from busiest_rq to target_rq */
3474 double_lock_balance(busiest_rq, target_rq);
3476 /* Search for an sd spanning us and the target CPU. */
3477 for_each_domain(target_cpu, sd) {
3478 if ((sd->flags & SD_LOAD_BALANCE) &&
3479 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3480 break;
3483 if (likely(sd)) {
3484 schedstat_inc(sd, alb_count);
3486 if (move_one_task(target_rq, target_cpu, busiest_rq,
3487 sd, CPU_IDLE))
3488 schedstat_inc(sd, alb_pushed);
3489 else
3490 schedstat_inc(sd, alb_failed);
3492 double_unlock_balance(busiest_rq, target_rq);
3493 out_unlock:
3494 busiest_rq->active_balance = 0;
3495 raw_spin_unlock_irq(&busiest_rq->lock);
3496 return 0;
3499 #ifdef CONFIG_NO_HZ
3501 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3503 static void trigger_sched_softirq(void *data)
3505 raise_softirq_irqoff(SCHED_SOFTIRQ);
3508 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3510 csd->func = trigger_sched_softirq;
3511 csd->info = NULL;
3512 csd->flags = 0;
3513 csd->priv = 0;
3517 * idle load balancing details
3518 * - One of the idle CPUs nominates itself as idle load_balancer, while
3519 * entering idle.
3520 * - This idle load balancer CPU will also go into tickless mode when
3521 * it is idle, just like all other idle CPUs
3522 * - When one of the busy CPUs notice that there may be an idle rebalancing
3523 * needed, they will kick the idle load balancer, which then does idle
3524 * load balancing for all the idle CPUs.
3526 static struct {
3527 atomic_t load_balancer;
3528 atomic_t first_pick_cpu;
3529 atomic_t second_pick_cpu;
3530 cpumask_var_t idle_cpus_mask;
3531 cpumask_var_t grp_idle_mask;
3532 unsigned long next_balance; /* in jiffy units */
3533 } nohz ____cacheline_aligned;
3535 int get_nohz_load_balancer(void)
3537 return atomic_read(&nohz.load_balancer);
3540 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3542 * lowest_flag_domain - Return lowest sched_domain containing flag.
3543 * @cpu: The cpu whose lowest level of sched domain is to
3544 * be returned.
3545 * @flag: The flag to check for the lowest sched_domain
3546 * for the given cpu.
3548 * Returns the lowest sched_domain of a cpu which contains the given flag.
3550 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3552 struct sched_domain *sd;
3554 for_each_domain(cpu, sd)
3555 if (sd && (sd->flags & flag))
3556 break;
3558 return sd;
3562 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3563 * @cpu: The cpu whose domains we're iterating over.
3564 * @sd: variable holding the value of the power_savings_sd
3565 * for cpu.
3566 * @flag: The flag to filter the sched_domains to be iterated.
3568 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3569 * set, starting from the lowest sched_domain to the highest.
3571 #define for_each_flag_domain(cpu, sd, flag) \
3572 for (sd = lowest_flag_domain(cpu, flag); \
3573 (sd && (sd->flags & flag)); sd = sd->parent)
3576 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3577 * @ilb_group: group to be checked for semi-idleness
3579 * Returns: 1 if the group is semi-idle. 0 otherwise.
3581 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3582 * and atleast one non-idle CPU. This helper function checks if the given
3583 * sched_group is semi-idle or not.
3585 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3587 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3588 sched_group_cpus(ilb_group));
3591 * A sched_group is semi-idle when it has atleast one busy cpu
3592 * and atleast one idle cpu.
3594 if (cpumask_empty(nohz.grp_idle_mask))
3595 return 0;
3597 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3598 return 0;
3600 return 1;
3603 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3604 * @cpu: The cpu which is nominating a new idle_load_balancer.
3606 * Returns: Returns the id of the idle load balancer if it exists,
3607 * Else, returns >= nr_cpu_ids.
3609 * This algorithm picks the idle load balancer such that it belongs to a
3610 * semi-idle powersavings sched_domain. The idea is to try and avoid
3611 * completely idle packages/cores just for the purpose of idle load balancing
3612 * when there are other idle cpu's which are better suited for that job.
3614 static int find_new_ilb(int cpu)
3616 struct sched_domain *sd;
3617 struct sched_group *ilb_group;
3620 * Have idle load balancer selection from semi-idle packages only
3621 * when power-aware load balancing is enabled
3623 if (!(sched_smt_power_savings || sched_mc_power_savings))
3624 goto out_done;
3627 * Optimize for the case when we have no idle CPUs or only one
3628 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3630 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3631 goto out_done;
3633 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3634 ilb_group = sd->groups;
3636 do {
3637 if (is_semi_idle_group(ilb_group))
3638 return cpumask_first(nohz.grp_idle_mask);
3640 ilb_group = ilb_group->next;
3642 } while (ilb_group != sd->groups);
3645 out_done:
3646 return nr_cpu_ids;
3648 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3649 static inline int find_new_ilb(int call_cpu)
3651 return nr_cpu_ids;
3653 #endif
3656 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3657 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3658 * CPU (if there is one).
3660 static void nohz_balancer_kick(int cpu)
3662 int ilb_cpu;
3664 nohz.next_balance++;
3666 ilb_cpu = get_nohz_load_balancer();
3668 if (ilb_cpu >= nr_cpu_ids) {
3669 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3670 if (ilb_cpu >= nr_cpu_ids)
3671 return;
3674 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3675 struct call_single_data *cp;
3677 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3678 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3679 __smp_call_function_single(ilb_cpu, cp, 0);
3681 return;
3685 * This routine will try to nominate the ilb (idle load balancing)
3686 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3687 * load balancing on behalf of all those cpus.
3689 * When the ilb owner becomes busy, we will not have new ilb owner until some
3690 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3691 * idle load balancing by kicking one of the idle CPUs.
3693 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3694 * ilb owner CPU in future (when there is a need for idle load balancing on
3695 * behalf of all idle CPUs).
3697 void select_nohz_load_balancer(int stop_tick)
3699 int cpu = smp_processor_id();
3701 if (stop_tick) {
3702 if (!cpu_active(cpu)) {
3703 if (atomic_read(&nohz.load_balancer) != cpu)
3704 return;
3707 * If we are going offline and still the leader,
3708 * give up!
3710 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3711 nr_cpu_ids) != cpu)
3712 BUG();
3714 return;
3717 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3719 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3720 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3721 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3722 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3724 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3725 int new_ilb;
3727 /* make me the ilb owner */
3728 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3729 cpu) != nr_cpu_ids)
3730 return;
3733 * Check to see if there is a more power-efficient
3734 * ilb.
3736 new_ilb = find_new_ilb(cpu);
3737 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3738 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3739 resched_cpu(new_ilb);
3740 return;
3742 return;
3744 } else {
3745 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3746 return;
3748 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3750 if (atomic_read(&nohz.load_balancer) == cpu)
3751 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3752 nr_cpu_ids) != cpu)
3753 BUG();
3755 return;
3757 #endif
3759 static DEFINE_SPINLOCK(balancing);
3762 * It checks each scheduling domain to see if it is due to be balanced,
3763 * and initiates a balancing operation if so.
3765 * Balancing parameters are set up in arch_init_sched_domains.
3767 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3769 int balance = 1;
3770 struct rq *rq = cpu_rq(cpu);
3771 unsigned long interval;
3772 struct sched_domain *sd;
3773 /* Earliest time when we have to do rebalance again */
3774 unsigned long next_balance = jiffies + 60*HZ;
3775 int update_next_balance = 0;
3776 int need_serialize;
3778 update_shares(cpu);
3780 for_each_domain(cpu, sd) {
3781 if (!(sd->flags & SD_LOAD_BALANCE))
3782 continue;
3784 interval = sd->balance_interval;
3785 if (idle != CPU_IDLE)
3786 interval *= sd->busy_factor;
3788 /* scale ms to jiffies */
3789 interval = msecs_to_jiffies(interval);
3790 if (unlikely(!interval))
3791 interval = 1;
3792 if (interval > HZ*NR_CPUS/10)
3793 interval = HZ*NR_CPUS/10;
3795 need_serialize = sd->flags & SD_SERIALIZE;
3797 if (need_serialize) {
3798 if (!spin_trylock(&balancing))
3799 goto out;
3802 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3803 if (load_balance(cpu, rq, sd, idle, &balance)) {
3805 * We've pulled tasks over so either we're no
3806 * longer idle, or one of our SMT siblings is
3807 * not idle.
3809 idle = CPU_NOT_IDLE;
3811 sd->last_balance = jiffies;
3813 if (need_serialize)
3814 spin_unlock(&balancing);
3815 out:
3816 if (time_after(next_balance, sd->last_balance + interval)) {
3817 next_balance = sd->last_balance + interval;
3818 update_next_balance = 1;
3822 * Stop the load balance at this level. There is another
3823 * CPU in our sched group which is doing load balancing more
3824 * actively.
3826 if (!balance)
3827 break;
3831 * next_balance will be updated only when there is a need.
3832 * When the cpu is attached to null domain for ex, it will not be
3833 * updated.
3835 if (likely(update_next_balance))
3836 rq->next_balance = next_balance;
3839 #ifdef CONFIG_NO_HZ
3841 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3842 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3844 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3846 struct rq *this_rq = cpu_rq(this_cpu);
3847 struct rq *rq;
3848 int balance_cpu;
3850 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3851 return;
3853 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3854 if (balance_cpu == this_cpu)
3855 continue;
3858 * If this cpu gets work to do, stop the load balancing
3859 * work being done for other cpus. Next load
3860 * balancing owner will pick it up.
3862 if (need_resched()) {
3863 this_rq->nohz_balance_kick = 0;
3864 break;
3867 raw_spin_lock_irq(&this_rq->lock);
3868 update_rq_clock(this_rq);
3869 update_cpu_load(this_rq);
3870 raw_spin_unlock_irq(&this_rq->lock);
3872 rebalance_domains(balance_cpu, CPU_IDLE);
3874 rq = cpu_rq(balance_cpu);
3875 if (time_after(this_rq->next_balance, rq->next_balance))
3876 this_rq->next_balance = rq->next_balance;
3878 nohz.next_balance = this_rq->next_balance;
3879 this_rq->nohz_balance_kick = 0;
3883 * Current heuristic for kicking the idle load balancer
3884 * - first_pick_cpu is the one of the busy CPUs. It will kick
3885 * idle load balancer when it has more than one process active. This
3886 * eliminates the need for idle load balancing altogether when we have
3887 * only one running process in the system (common case).
3888 * - If there are more than one busy CPU, idle load balancer may have
3889 * to run for active_load_balance to happen (i.e., two busy CPUs are
3890 * SMT or core siblings and can run better if they move to different
3891 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3892 * which will kick idle load balancer as soon as it has any load.
3894 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3896 unsigned long now = jiffies;
3897 int ret;
3898 int first_pick_cpu, second_pick_cpu;
3900 if (time_before(now, nohz.next_balance))
3901 return 0;
3903 if (rq->idle_at_tick)
3904 return 0;
3906 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3907 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3909 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3910 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3911 return 0;
3913 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3914 if (ret == nr_cpu_ids || ret == cpu) {
3915 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3916 if (rq->nr_running > 1)
3917 return 1;
3918 } else {
3919 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3920 if (ret == nr_cpu_ids || ret == cpu) {
3921 if (rq->nr_running)
3922 return 1;
3925 return 0;
3927 #else
3928 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3929 #endif
3932 * run_rebalance_domains is triggered when needed from the scheduler tick.
3933 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3935 static void run_rebalance_domains(struct softirq_action *h)
3937 int this_cpu = smp_processor_id();
3938 struct rq *this_rq = cpu_rq(this_cpu);
3939 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3940 CPU_IDLE : CPU_NOT_IDLE;
3942 rebalance_domains(this_cpu, idle);
3945 * If this cpu has a pending nohz_balance_kick, then do the
3946 * balancing on behalf of the other idle cpus whose ticks are
3947 * stopped.
3949 nohz_idle_balance(this_cpu, idle);
3952 static inline int on_null_domain(int cpu)
3954 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3958 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3960 static inline void trigger_load_balance(struct rq *rq, int cpu)
3962 /* Don't need to rebalance while attached to NULL domain */
3963 if (time_after_eq(jiffies, rq->next_balance) &&
3964 likely(!on_null_domain(cpu)))
3965 raise_softirq(SCHED_SOFTIRQ);
3966 #ifdef CONFIG_NO_HZ
3967 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3968 nohz_balancer_kick(cpu);
3969 #endif
3972 static void rq_online_fair(struct rq *rq)
3974 update_sysctl();
3977 static void rq_offline_fair(struct rq *rq)
3979 update_sysctl();
3982 #else /* CONFIG_SMP */
3985 * on UP we do not need to balance between CPUs:
3987 static inline void idle_balance(int cpu, struct rq *rq)
3991 #endif /* CONFIG_SMP */
3994 * scheduler tick hitting a task of our scheduling class:
3996 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3998 struct cfs_rq *cfs_rq;
3999 struct sched_entity *se = &curr->se;
4001 for_each_sched_entity(se) {
4002 cfs_rq = cfs_rq_of(se);
4003 entity_tick(cfs_rq, se, queued);
4008 * called on fork with the child task as argument from the parent's context
4009 * - child not yet on the tasklist
4010 * - preemption disabled
4012 static void task_fork_fair(struct task_struct *p)
4014 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4015 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4016 int this_cpu = smp_processor_id();
4017 struct rq *rq = this_rq();
4018 unsigned long flags;
4020 raw_spin_lock_irqsave(&rq->lock, flags);
4022 update_rq_clock(rq);
4024 if (unlikely(task_cpu(p) != this_cpu)) {
4025 rcu_read_lock();
4026 __set_task_cpu(p, this_cpu);
4027 rcu_read_unlock();
4030 update_curr(cfs_rq);
4032 if (curr)
4033 se->vruntime = curr->vruntime;
4034 place_entity(cfs_rq, se, 1);
4036 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4038 * Upon rescheduling, sched_class::put_prev_task() will place
4039 * 'current' within the tree based on its new key value.
4041 swap(curr->vruntime, se->vruntime);
4042 resched_task(rq->curr);
4045 se->vruntime -= cfs_rq->min_vruntime;
4047 raw_spin_unlock_irqrestore(&rq->lock, flags);
4051 * Priority of the task has changed. Check to see if we preempt
4052 * the current task.
4054 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
4055 int oldprio, int running)
4058 * Reschedule if we are currently running on this runqueue and
4059 * our priority decreased, or if we are not currently running on
4060 * this runqueue and our priority is higher than the current's
4062 if (running) {
4063 if (p->prio > oldprio)
4064 resched_task(rq->curr);
4065 } else
4066 check_preempt_curr(rq, p, 0);
4070 * We switched to the sched_fair class.
4072 static void switched_to_fair(struct rq *rq, struct task_struct *p,
4073 int running)
4076 * We were most likely switched from sched_rt, so
4077 * kick off the schedule if running, otherwise just see
4078 * if we can still preempt the current task.
4080 if (running)
4081 resched_task(rq->curr);
4082 else
4083 check_preempt_curr(rq, p, 0);
4086 /* Account for a task changing its policy or group.
4088 * This routine is mostly called to set cfs_rq->curr field when a task
4089 * migrates between groups/classes.
4091 static void set_curr_task_fair(struct rq *rq)
4093 struct sched_entity *se = &rq->curr->se;
4095 for_each_sched_entity(se)
4096 set_next_entity(cfs_rq_of(se), se);
4099 #ifdef CONFIG_FAIR_GROUP_SCHED
4100 static void task_move_group_fair(struct task_struct *p, int on_rq)
4103 * If the task was not on the rq at the time of this cgroup movement
4104 * it must have been asleep, sleeping tasks keep their ->vruntime
4105 * absolute on their old rq until wakeup (needed for the fair sleeper
4106 * bonus in place_entity()).
4108 * If it was on the rq, we've just 'preempted' it, which does convert
4109 * ->vruntime to a relative base.
4111 * Make sure both cases convert their relative position when migrating
4112 * to another cgroup's rq. This does somewhat interfere with the
4113 * fair sleeper stuff for the first placement, but who cares.
4115 if (!on_rq)
4116 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4117 set_task_rq(p, task_cpu(p));
4118 if (!on_rq)
4119 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4121 #endif
4123 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4125 struct sched_entity *se = &task->se;
4126 unsigned int rr_interval = 0;
4129 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4130 * idle runqueue:
4132 if (rq->cfs.load.weight)
4133 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4135 return rr_interval;
4139 * All the scheduling class methods:
4141 static const struct sched_class fair_sched_class = {
4142 .next = &idle_sched_class,
4143 .enqueue_task = enqueue_task_fair,
4144 .dequeue_task = dequeue_task_fair,
4145 .yield_task = yield_task_fair,
4147 .check_preempt_curr = check_preempt_wakeup,
4149 .pick_next_task = pick_next_task_fair,
4150 .put_prev_task = put_prev_task_fair,
4152 #ifdef CONFIG_SMP
4153 .select_task_rq = select_task_rq_fair,
4155 .rq_online = rq_online_fair,
4156 .rq_offline = rq_offline_fair,
4158 .task_waking = task_waking_fair,
4159 #endif
4161 .set_curr_task = set_curr_task_fair,
4162 .task_tick = task_tick_fair,
4163 .task_fork = task_fork_fair,
4165 .prio_changed = prio_changed_fair,
4166 .switched_to = switched_to_fair,
4168 .get_rr_interval = get_rr_interval_fair,
4170 #ifdef CONFIG_FAIR_GROUP_SCHED
4171 .task_move_group = task_move_group_fair,
4172 #endif
4175 #ifdef CONFIG_SCHED_DEBUG
4176 static void print_cfs_stats(struct seq_file *m, int cpu)
4178 struct cfs_rq *cfs_rq;
4180 rcu_read_lock();
4181 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4182 print_cfs_rq(m, cpu, cfs_rq);
4183 rcu_read_unlock();
4185 #endif