1 // SPDX-License-Identifier: GPL-2.0
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
88 #include <linux/uaccess.h>
92 /* One queue for each sleeping process in the system. */
94 struct list_head list
; /* queue of pending operations */
95 struct task_struct
*sleeper
; /* this process */
96 struct sem_undo
*undo
; /* undo structure */
97 int pid
; /* process id of requesting process */
98 int status
; /* completion status of operation */
99 struct sembuf
*sops
; /* array of pending operations */
100 struct sembuf
*blocking
; /* the operation that blocked */
101 int nsops
; /* number of operations */
102 bool alter
; /* does *sops alter the array? */
103 bool dupsop
; /* sops on more than one sem_num */
106 /* Each task has a list of undo requests. They are executed automatically
107 * when the process exits.
110 struct list_head list_proc
; /* per-process list: *
111 * all undos from one process
113 struct rcu_head rcu
; /* rcu struct for sem_undo */
114 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
115 struct list_head list_id
; /* per semaphore array list:
116 * all undos for one array */
117 int semid
; /* semaphore set identifier */
118 short *semadj
; /* array of adjustments */
119 /* one per semaphore */
122 /* sem_undo_list controls shared access to the list of sem_undo structures
123 * that may be shared among all a CLONE_SYSVSEM task group.
125 struct sem_undo_list
{
128 struct list_head list_proc
;
132 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
134 static int newary(struct ipc_namespace
*, struct ipc_params
*);
135 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
136 #ifdef CONFIG_PROC_FS
137 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
140 #define SEMMSL_FAST 256 /* 512 bytes on stack */
141 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
144 * Switching from the mode suitable for simple ops
145 * to the mode for complex ops is costly. Therefore:
146 * use some hysteresis
148 #define USE_GLOBAL_LOCK_HYSTERESIS 10
152 * a) global sem_lock() for read/write
154 * sem_array.complex_count,
155 * sem_array.pending{_alter,_const},
158 * b) global or semaphore sem_lock() for read/write:
159 * sem_array.sems[i].pending_{const,alter}:
162 * sem_undo_list.list_proc:
163 * * undo_list->lock for write
166 * * global sem_lock() for write
167 * * either local or global sem_lock() for read.
170 * Most ordering is enforced by using spin_lock() and spin_unlock().
171 * The special case is use_global_lock:
172 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
173 * using smp_store_release().
174 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
175 * smp_load_acquire().
176 * Setting it from 0 to non-zero must be ordered with regards to
177 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
178 * is inside a spin_lock() and after a write from 0 to non-zero a
179 * spin_lock()+spin_unlock() is done.
182 #define sc_semmsl sem_ctls[0]
183 #define sc_semmns sem_ctls[1]
184 #define sc_semopm sem_ctls[2]
185 #define sc_semmni sem_ctls[3]
187 int sem_init_ns(struct ipc_namespace
*ns
)
189 ns
->sc_semmsl
= SEMMSL
;
190 ns
->sc_semmns
= SEMMNS
;
191 ns
->sc_semopm
= SEMOPM
;
192 ns
->sc_semmni
= SEMMNI
;
194 return ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
198 void sem_exit_ns(struct ipc_namespace
*ns
)
200 free_ipcs(ns
, &sem_ids(ns
), freeary
);
201 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
202 rhashtable_destroy(&ns
->ids
[IPC_SEM_IDS
].key_ht
);
206 int __init
sem_init(void)
208 const int err
= sem_init_ns(&init_ipc_ns
);
210 ipc_init_proc_interface("sysvipc/sem",
211 " key semid perms nsems uid gid cuid cgid otime ctime\n",
212 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
217 * unmerge_queues - unmerge queues, if possible.
218 * @sma: semaphore array
220 * The function unmerges the wait queues if complex_count is 0.
221 * It must be called prior to dropping the global semaphore array lock.
223 static void unmerge_queues(struct sem_array
*sma
)
225 struct sem_queue
*q
, *tq
;
227 /* complex operations still around? */
228 if (sma
->complex_count
)
231 * We will switch back to simple mode.
232 * Move all pending operation back into the per-semaphore
235 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
237 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
239 list_add_tail(&q
->list
, &curr
->pending_alter
);
241 INIT_LIST_HEAD(&sma
->pending_alter
);
245 * merge_queues - merge single semop queues into global queue
246 * @sma: semaphore array
248 * This function merges all per-semaphore queues into the global queue.
249 * It is necessary to achieve FIFO ordering for the pending single-sop
250 * operations when a multi-semop operation must sleep.
251 * Only the alter operations must be moved, the const operations can stay.
253 static void merge_queues(struct sem_array
*sma
)
256 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
257 struct sem
*sem
= &sma
->sems
[i
];
259 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
263 static void sem_rcu_free(struct rcu_head
*head
)
265 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
266 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
268 security_sem_free(sma
);
273 * Enter the mode suitable for non-simple operations:
274 * Caller must own sem_perm.lock.
276 static void complexmode_enter(struct sem_array
*sma
)
281 if (sma
->use_global_lock
> 0) {
283 * We are already in global lock mode.
284 * Nothing to do, just reset the
285 * counter until we return to simple mode.
287 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
290 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
292 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
294 spin_lock(&sem
->lock
);
295 spin_unlock(&sem
->lock
);
300 * Try to leave the mode that disallows simple operations:
301 * Caller must own sem_perm.lock.
303 static void complexmode_tryleave(struct sem_array
*sma
)
305 if (sma
->complex_count
) {
306 /* Complex ops are sleeping.
307 * We must stay in complex mode
311 if (sma
->use_global_lock
== 1) {
313 * Immediately after setting use_global_lock to 0,
314 * a simple op can start. Thus: all memory writes
315 * performed by the current operation must be visible
316 * before we set use_global_lock to 0.
318 smp_store_release(&sma
->use_global_lock
, 0);
320 sma
->use_global_lock
--;
324 #define SEM_GLOBAL_LOCK (-1)
326 * If the request contains only one semaphore operation, and there are
327 * no complex transactions pending, lock only the semaphore involved.
328 * Otherwise, lock the entire semaphore array, since we either have
329 * multiple semaphores in our own semops, or we need to look at
330 * semaphores from other pending complex operations.
332 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
338 /* Complex operation - acquire a full lock */
339 ipc_lock_object(&sma
->sem_perm
);
341 /* Prevent parallel simple ops */
342 complexmode_enter(sma
);
343 return SEM_GLOBAL_LOCK
;
347 * Only one semaphore affected - try to optimize locking.
348 * Optimized locking is possible if no complex operation
349 * is either enqueued or processed right now.
351 * Both facts are tracked by use_global_mode.
353 sem
= &sma
->sems
[sops
->sem_num
];
356 * Initial check for use_global_lock. Just an optimization,
357 * no locking, no memory barrier.
359 if (!sma
->use_global_lock
) {
361 * It appears that no complex operation is around.
362 * Acquire the per-semaphore lock.
364 spin_lock(&sem
->lock
);
366 /* pairs with smp_store_release() */
367 if (!smp_load_acquire(&sma
->use_global_lock
)) {
368 /* fast path successful! */
369 return sops
->sem_num
;
371 spin_unlock(&sem
->lock
);
374 /* slow path: acquire the full lock */
375 ipc_lock_object(&sma
->sem_perm
);
377 if (sma
->use_global_lock
== 0) {
379 * The use_global_lock mode ended while we waited for
380 * sma->sem_perm.lock. Thus we must switch to locking
382 * Unlike in the fast path, there is no need to recheck
383 * sma->use_global_lock after we have acquired sem->lock:
384 * We own sma->sem_perm.lock, thus use_global_lock cannot
387 spin_lock(&sem
->lock
);
389 ipc_unlock_object(&sma
->sem_perm
);
390 return sops
->sem_num
;
393 * Not a false alarm, thus continue to use the global lock
394 * mode. No need for complexmode_enter(), this was done by
395 * the caller that has set use_global_mode to non-zero.
397 return SEM_GLOBAL_LOCK
;
401 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
403 if (locknum
== SEM_GLOBAL_LOCK
) {
405 complexmode_tryleave(sma
);
406 ipc_unlock_object(&sma
->sem_perm
);
408 struct sem
*sem
= &sma
->sems
[locknum
];
409 spin_unlock(&sem
->lock
);
414 * sem_lock_(check_) routines are called in the paths where the rwsem
417 * The caller holds the RCU read lock.
419 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
421 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
424 return ERR_CAST(ipcp
);
426 return container_of(ipcp
, struct sem_array
, sem_perm
);
429 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
432 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
435 return ERR_CAST(ipcp
);
437 return container_of(ipcp
, struct sem_array
, sem_perm
);
440 static inline void sem_lock_and_putref(struct sem_array
*sma
)
442 sem_lock(sma
, NULL
, -1);
443 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
446 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
448 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
451 static struct sem_array
*sem_alloc(size_t nsems
)
453 struct sem_array
*sma
;
456 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
459 size
= sizeof(*sma
) + nsems
* sizeof(sma
->sems
[0]);
460 sma
= kvmalloc(size
, GFP_KERNEL
);
464 memset(sma
, 0, size
);
470 * newary - Create a new semaphore set
472 * @params: ptr to the structure that contains key, semflg and nsems
474 * Called with sem_ids.rwsem held (as a writer)
476 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
479 struct sem_array
*sma
;
480 key_t key
= params
->key
;
481 int nsems
= params
->u
.nsems
;
482 int semflg
= params
->flg
;
487 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
490 sma
= sem_alloc(nsems
);
494 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
495 sma
->sem_perm
.key
= key
;
497 sma
->sem_perm
.security
= NULL
;
498 retval
= security_sem_alloc(sma
);
504 for (i
= 0; i
< nsems
; i
++) {
505 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
506 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
507 spin_lock_init(&sma
->sems
[i
].lock
);
510 sma
->complex_count
= 0;
511 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
512 INIT_LIST_HEAD(&sma
->pending_alter
);
513 INIT_LIST_HEAD(&sma
->pending_const
);
514 INIT_LIST_HEAD(&sma
->list_id
);
515 sma
->sem_nsems
= nsems
;
516 sma
->sem_ctime
= ktime_get_real_seconds();
518 /* ipc_addid() locks sma upon success. */
519 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
521 call_rcu(&sma
->sem_perm
.rcu
, sem_rcu_free
);
524 ns
->used_sems
+= nsems
;
529 return sma
->sem_perm
.id
;
534 * Called with sem_ids.rwsem and ipcp locked.
536 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
538 struct sem_array
*sma
;
540 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
541 return security_sem_associate(sma
, semflg
);
545 * Called with sem_ids.rwsem and ipcp locked.
547 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
548 struct ipc_params
*params
)
550 struct sem_array
*sma
;
552 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
553 if (params
->u
.nsems
> sma
->sem_nsems
)
559 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
561 struct ipc_namespace
*ns
;
562 static const struct ipc_ops sem_ops
= {
564 .associate
= sem_security
,
565 .more_checks
= sem_more_checks
,
567 struct ipc_params sem_params
;
569 ns
= current
->nsproxy
->ipc_ns
;
571 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
574 sem_params
.key
= key
;
575 sem_params
.flg
= semflg
;
576 sem_params
.u
.nsems
= nsems
;
578 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
582 * perform_atomic_semop[_slow] - Attempt to perform semaphore
583 * operations on a given array.
584 * @sma: semaphore array
585 * @q: struct sem_queue that describes the operation
587 * Caller blocking are as follows, based the value
588 * indicated by the semaphore operation (sem_op):
590 * (1) >0 never blocks.
591 * (2) 0 (wait-for-zero operation): semval is non-zero.
592 * (3) <0 attempting to decrement semval to a value smaller than zero.
594 * Returns 0 if the operation was possible.
595 * Returns 1 if the operation is impossible, the caller must sleep.
596 * Returns <0 for error codes.
598 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
600 int result
, sem_op
, nsops
, pid
;
610 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
611 curr
= &sma
->sems
[sop
->sem_num
];
612 sem_op
= sop
->sem_op
;
613 result
= curr
->semval
;
615 if (!sem_op
&& result
)
624 if (sop
->sem_flg
& SEM_UNDO
) {
625 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
626 /* Exceeding the undo range is an error. */
627 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
629 un
->semadj
[sop
->sem_num
] = undo
;
632 curr
->semval
= result
;
637 while (sop
>= sops
) {
638 sma
->sems
[sop
->sem_num
].sempid
= pid
;
651 if (sop
->sem_flg
& IPC_NOWAIT
)
658 while (sop
>= sops
) {
659 sem_op
= sop
->sem_op
;
660 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
661 if (sop
->sem_flg
& SEM_UNDO
)
662 un
->semadj
[sop
->sem_num
] += sem_op
;
669 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
671 int result
, sem_op
, nsops
;
681 if (unlikely(q
->dupsop
))
682 return perform_atomic_semop_slow(sma
, q
);
685 * We scan the semaphore set twice, first to ensure that the entire
686 * operation can succeed, therefore avoiding any pointless writes
687 * to shared memory and having to undo such changes in order to block
688 * until the operations can go through.
690 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
691 curr
= &sma
->sems
[sop
->sem_num
];
692 sem_op
= sop
->sem_op
;
693 result
= curr
->semval
;
695 if (!sem_op
&& result
)
696 goto would_block
; /* wait-for-zero */
705 if (sop
->sem_flg
& SEM_UNDO
) {
706 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
708 /* Exceeding the undo range is an error. */
709 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
714 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
715 curr
= &sma
->sems
[sop
->sem_num
];
716 sem_op
= sop
->sem_op
;
717 result
= curr
->semval
;
719 if (sop
->sem_flg
& SEM_UNDO
) {
720 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
722 un
->semadj
[sop
->sem_num
] = undo
;
724 curr
->semval
+= sem_op
;
725 curr
->sempid
= q
->pid
;
732 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
735 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
736 struct wake_q_head
*wake_q
)
738 wake_q_add(wake_q
, q
->sleeper
);
740 * Rely on the above implicit barrier, such that we can
741 * ensure that we hold reference to the task before setting
742 * q->status. Otherwise we could race with do_exit if the
743 * task is awoken by an external event before calling
746 WRITE_ONCE(q
->status
, error
);
749 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
753 sma
->complex_count
--;
756 /** check_restart(sma, q)
757 * @sma: semaphore array
758 * @q: the operation that just completed
760 * update_queue is O(N^2) when it restarts scanning the whole queue of
761 * waiting operations. Therefore this function checks if the restart is
762 * really necessary. It is called after a previously waiting operation
763 * modified the array.
764 * Note that wait-for-zero operations are handled without restart.
766 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
768 /* pending complex alter operations are too difficult to analyse */
769 if (!list_empty(&sma
->pending_alter
))
772 /* we were a sleeping complex operation. Too difficult */
776 /* It is impossible that someone waits for the new value:
777 * - complex operations always restart.
778 * - wait-for-zero are handled seperately.
779 * - q is a previously sleeping simple operation that
780 * altered the array. It must be a decrement, because
781 * simple increments never sleep.
782 * - If there are older (higher priority) decrements
783 * in the queue, then they have observed the original
784 * semval value and couldn't proceed. The operation
785 * decremented to value - thus they won't proceed either.
791 * wake_const_ops - wake up non-alter tasks
792 * @sma: semaphore array.
793 * @semnum: semaphore that was modified.
794 * @wake_q: lockless wake-queue head.
796 * wake_const_ops must be called after a semaphore in a semaphore array
797 * was set to 0. If complex const operations are pending, wake_const_ops must
798 * be called with semnum = -1, as well as with the number of each modified
800 * The tasks that must be woken up are added to @wake_q. The return code
801 * is stored in q->pid.
802 * The function returns 1 if at least one operation was completed successfully.
804 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
805 struct wake_q_head
*wake_q
)
807 struct sem_queue
*q
, *tmp
;
808 struct list_head
*pending_list
;
809 int semop_completed
= 0;
812 pending_list
= &sma
->pending_const
;
814 pending_list
= &sma
->sems
[semnum
].pending_const
;
816 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
817 int error
= perform_atomic_semop(sma
, q
);
821 /* operation completed, remove from queue & wakeup */
822 unlink_queue(sma
, q
);
824 wake_up_sem_queue_prepare(q
, error
, wake_q
);
829 return semop_completed
;
833 * do_smart_wakeup_zero - wakeup all wait for zero tasks
834 * @sma: semaphore array
835 * @sops: operations that were performed
836 * @nsops: number of operations
837 * @wake_q: lockless wake-queue head
839 * Checks all required queue for wait-for-zero operations, based
840 * on the actual changes that were performed on the semaphore array.
841 * The function returns 1 if at least one operation was completed successfully.
843 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
844 int nsops
, struct wake_q_head
*wake_q
)
847 int semop_completed
= 0;
850 /* first: the per-semaphore queues, if known */
852 for (i
= 0; i
< nsops
; i
++) {
853 int num
= sops
[i
].sem_num
;
855 if (sma
->sems
[num
].semval
== 0) {
857 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
862 * No sops means modified semaphores not known.
863 * Assume all were changed.
865 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
866 if (sma
->sems
[i
].semval
== 0) {
868 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
873 * If one of the modified semaphores got 0,
874 * then check the global queue, too.
877 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
879 return semop_completed
;
884 * update_queue - look for tasks that can be completed.
885 * @sma: semaphore array.
886 * @semnum: semaphore that was modified.
887 * @wake_q: lockless wake-queue head.
889 * update_queue must be called after a semaphore in a semaphore array
890 * was modified. If multiple semaphores were modified, update_queue must
891 * be called with semnum = -1, as well as with the number of each modified
893 * The tasks that must be woken up are added to @wake_q. The return code
894 * is stored in q->pid.
895 * The function internally checks if const operations can now succeed.
897 * The function return 1 if at least one semop was completed successfully.
899 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
901 struct sem_queue
*q
, *tmp
;
902 struct list_head
*pending_list
;
903 int semop_completed
= 0;
906 pending_list
= &sma
->pending_alter
;
908 pending_list
= &sma
->sems
[semnum
].pending_alter
;
911 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
914 /* If we are scanning the single sop, per-semaphore list of
915 * one semaphore and that semaphore is 0, then it is not
916 * necessary to scan further: simple increments
917 * that affect only one entry succeed immediately and cannot
918 * be in the per semaphore pending queue, and decrements
919 * cannot be successful if the value is already 0.
921 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
924 error
= perform_atomic_semop(sma
, q
);
926 /* Does q->sleeper still need to sleep? */
930 unlink_queue(sma
, q
);
936 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
937 restart
= check_restart(sma
, q
);
940 wake_up_sem_queue_prepare(q
, error
, wake_q
);
944 return semop_completed
;
948 * set_semotime - set sem_otime
949 * @sma: semaphore array
950 * @sops: operations that modified the array, may be NULL
952 * sem_otime is replicated to avoid cache line trashing.
953 * This function sets one instance to the current time.
955 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
958 sma
->sems
[0].sem_otime
= get_seconds();
960 sma
->sems
[sops
[0].sem_num
].sem_otime
=
966 * do_smart_update - optimized update_queue
967 * @sma: semaphore array
968 * @sops: operations that were performed
969 * @nsops: number of operations
970 * @otime: force setting otime
971 * @wake_q: lockless wake-queue head
973 * do_smart_update() does the required calls to update_queue and wakeup_zero,
974 * based on the actual changes that were performed on the semaphore array.
975 * Note that the function does not do the actual wake-up: the caller is
976 * responsible for calling wake_up_q().
977 * It is safe to perform this call after dropping all locks.
979 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
980 int otime
, struct wake_q_head
*wake_q
)
984 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
986 if (!list_empty(&sma
->pending_alter
)) {
987 /* semaphore array uses the global queue - just process it. */
988 otime
|= update_queue(sma
, -1, wake_q
);
992 * No sops, thus the modified semaphores are not
995 for (i
= 0; i
< sma
->sem_nsems
; i
++)
996 otime
|= update_queue(sma
, i
, wake_q
);
999 * Check the semaphores that were increased:
1000 * - No complex ops, thus all sleeping ops are
1002 * - if we decreased the value, then any sleeping
1003 * semaphore ops wont be able to run: If the
1004 * previous value was too small, then the new
1005 * value will be too small, too.
1007 for (i
= 0; i
< nsops
; i
++) {
1008 if (sops
[i
].sem_op
> 0) {
1009 otime
|= update_queue(sma
,
1010 sops
[i
].sem_num
, wake_q
);
1016 set_semotime(sma
, sops
);
1020 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1022 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1025 struct sembuf
*sop
= q
->blocking
;
1028 * Linux always (since 0.99.10) reported a task as sleeping on all
1029 * semaphores. This violates SUS, therefore it was changed to the
1030 * standard compliant behavior.
1031 * Give the administrators a chance to notice that an application
1032 * might misbehave because it relies on the Linux behavior.
1034 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1035 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1036 current
->comm
, task_pid_nr(current
));
1038 if (sop
->sem_num
!= semnum
)
1041 if (count_zero
&& sop
->sem_op
== 0)
1043 if (!count_zero
&& sop
->sem_op
< 0)
1049 /* The following counts are associated to each semaphore:
1050 * semncnt number of tasks waiting on semval being nonzero
1051 * semzcnt number of tasks waiting on semval being zero
1053 * Per definition, a task waits only on the semaphore of the first semop
1054 * that cannot proceed, even if additional operation would block, too.
1056 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1059 struct list_head
*l
;
1060 struct sem_queue
*q
;
1064 /* First: check the simple operations. They are easy to evaluate */
1066 l
= &sma
->sems
[semnum
].pending_const
;
1068 l
= &sma
->sems
[semnum
].pending_alter
;
1070 list_for_each_entry(q
, l
, list
) {
1071 /* all task on a per-semaphore list sleep on exactly
1077 /* Then: check the complex operations. */
1078 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1079 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1082 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1083 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1089 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1090 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1091 * remains locked on exit.
1093 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1095 struct sem_undo
*un
, *tu
;
1096 struct sem_queue
*q
, *tq
;
1097 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1099 DEFINE_WAKE_Q(wake_q
);
1101 /* Free the existing undo structures for this semaphore set. */
1102 ipc_assert_locked_object(&sma
->sem_perm
);
1103 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1104 list_del(&un
->list_id
);
1105 spin_lock(&un
->ulp
->lock
);
1107 list_del_rcu(&un
->list_proc
);
1108 spin_unlock(&un
->ulp
->lock
);
1112 /* Wake up all pending processes and let them fail with EIDRM. */
1113 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1114 unlink_queue(sma
, q
);
1115 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1118 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1119 unlink_queue(sma
, q
);
1120 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1122 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1123 struct sem
*sem
= &sma
->sems
[i
];
1124 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1125 unlink_queue(sma
, q
);
1126 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1128 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1129 unlink_queue(sma
, q
);
1130 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1134 /* Remove the semaphore set from the IDR */
1136 sem_unlock(sma
, -1);
1140 ns
->used_sems
-= sma
->sem_nsems
;
1141 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1144 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1148 return copy_to_user(buf
, in
, sizeof(*in
));
1151 struct semid_ds out
;
1153 memset(&out
, 0, sizeof(out
));
1155 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1157 out
.sem_otime
= in
->sem_otime
;
1158 out
.sem_ctime
= in
->sem_ctime
;
1159 out
.sem_nsems
= in
->sem_nsems
;
1161 return copy_to_user(buf
, &out
, sizeof(out
));
1168 static time64_t
get_semotime(struct sem_array
*sma
)
1173 res
= sma
->sems
[0].sem_otime
;
1174 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1175 time64_t to
= sma
->sems
[i
].sem_otime
;
1183 static int semctl_stat(struct ipc_namespace
*ns
, int semid
,
1184 int cmd
, struct semid64_ds
*semid64
)
1186 struct sem_array
*sma
;
1190 memset(semid64
, 0, sizeof(*semid64
));
1193 if (cmd
== SEM_STAT
) {
1194 sma
= sem_obtain_object(ns
, semid
);
1199 id
= sma
->sem_perm
.id
;
1201 sma
= sem_obtain_object_check(ns
, semid
);
1209 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1212 err
= security_sem_semctl(sma
, cmd
);
1216 ipc_lock_object(&sma
->sem_perm
);
1218 if (!ipc_valid_object(&sma
->sem_perm
)) {
1219 ipc_unlock_object(&sma
->sem_perm
);
1224 kernel_to_ipc64_perm(&sma
->sem_perm
, &semid64
->sem_perm
);
1225 semid64
->sem_otime
= get_semotime(sma
);
1226 semid64
->sem_ctime
= sma
->sem_ctime
;
1227 semid64
->sem_nsems
= sma
->sem_nsems
;
1229 ipc_unlock_object(&sma
->sem_perm
);
1238 static int semctl_info(struct ipc_namespace
*ns
, int semid
,
1239 int cmd
, void __user
*p
)
1241 struct seminfo seminfo
;
1245 err
= security_sem_semctl(NULL
, cmd
);
1249 memset(&seminfo
, 0, sizeof(seminfo
));
1250 seminfo
.semmni
= ns
->sc_semmni
;
1251 seminfo
.semmns
= ns
->sc_semmns
;
1252 seminfo
.semmsl
= ns
->sc_semmsl
;
1253 seminfo
.semopm
= ns
->sc_semopm
;
1254 seminfo
.semvmx
= SEMVMX
;
1255 seminfo
.semmnu
= SEMMNU
;
1256 seminfo
.semmap
= SEMMAP
;
1257 seminfo
.semume
= SEMUME
;
1258 down_read(&sem_ids(ns
).rwsem
);
1259 if (cmd
== SEM_INFO
) {
1260 seminfo
.semusz
= sem_ids(ns
).in_use
;
1261 seminfo
.semaem
= ns
->used_sems
;
1263 seminfo
.semusz
= SEMUSZ
;
1264 seminfo
.semaem
= SEMAEM
;
1266 max_id
= ipc_get_maxid(&sem_ids(ns
));
1267 up_read(&sem_ids(ns
).rwsem
);
1268 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1270 return (max_id
< 0) ? 0 : max_id
;
1273 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1276 struct sem_undo
*un
;
1277 struct sem_array
*sma
;
1280 DEFINE_WAKE_Q(wake_q
);
1282 if (val
> SEMVMX
|| val
< 0)
1286 sma
= sem_obtain_object_check(ns
, semid
);
1289 return PTR_ERR(sma
);
1292 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1298 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1303 err
= security_sem_semctl(sma
, SETVAL
);
1309 sem_lock(sma
, NULL
, -1);
1311 if (!ipc_valid_object(&sma
->sem_perm
)) {
1312 sem_unlock(sma
, -1);
1317 curr
= &sma
->sems
[semnum
];
1319 ipc_assert_locked_object(&sma
->sem_perm
);
1320 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1321 un
->semadj
[semnum
] = 0;
1324 curr
->sempid
= task_tgid_vnr(current
);
1325 sma
->sem_ctime
= ktime_get_real_seconds();
1326 /* maybe some queued-up processes were waiting for this */
1327 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1328 sem_unlock(sma
, -1);
1334 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1335 int cmd
, void __user
*p
)
1337 struct sem_array
*sma
;
1340 ushort fast_sem_io
[SEMMSL_FAST
];
1341 ushort
*sem_io
= fast_sem_io
;
1342 DEFINE_WAKE_Q(wake_q
);
1345 sma
= sem_obtain_object_check(ns
, semid
);
1348 return PTR_ERR(sma
);
1351 nsems
= sma
->sem_nsems
;
1354 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1355 goto out_rcu_wakeup
;
1357 err
= security_sem_semctl(sma
, cmd
);
1359 goto out_rcu_wakeup
;
1365 ushort __user
*array
= p
;
1368 sem_lock(sma
, NULL
, -1);
1369 if (!ipc_valid_object(&sma
->sem_perm
)) {
1373 if (nsems
> SEMMSL_FAST
) {
1374 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1378 sem_unlock(sma
, -1);
1380 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1382 if (sem_io
== NULL
) {
1383 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1388 sem_lock_and_putref(sma
);
1389 if (!ipc_valid_object(&sma
->sem_perm
)) {
1394 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1395 sem_io
[i
] = sma
->sems
[i
].semval
;
1396 sem_unlock(sma
, -1);
1399 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1406 struct sem_undo
*un
;
1408 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1410 goto out_rcu_wakeup
;
1414 if (nsems
> SEMMSL_FAST
) {
1415 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1417 if (sem_io
== NULL
) {
1418 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1423 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1424 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1429 for (i
= 0; i
< nsems
; i
++) {
1430 if (sem_io
[i
] > SEMVMX
) {
1431 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1437 sem_lock_and_putref(sma
);
1438 if (!ipc_valid_object(&sma
->sem_perm
)) {
1443 for (i
= 0; i
< nsems
; i
++) {
1444 sma
->sems
[i
].semval
= sem_io
[i
];
1445 sma
->sems
[i
].sempid
= task_tgid_vnr(current
);
1448 ipc_assert_locked_object(&sma
->sem_perm
);
1449 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1450 for (i
= 0; i
< nsems
; i
++)
1453 sma
->sem_ctime
= ktime_get_real_seconds();
1454 /* maybe some queued-up processes were waiting for this */
1455 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1459 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1462 if (semnum
< 0 || semnum
>= nsems
)
1463 goto out_rcu_wakeup
;
1465 sem_lock(sma
, NULL
, -1);
1466 if (!ipc_valid_object(&sma
->sem_perm
)) {
1470 curr
= &sma
->sems
[semnum
];
1480 err
= count_semcnt(sma
, semnum
, 0);
1483 err
= count_semcnt(sma
, semnum
, 1);
1488 sem_unlock(sma
, -1);
1493 if (sem_io
!= fast_sem_io
)
1498 static inline unsigned long
1499 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1503 if (copy_from_user(out
, buf
, sizeof(*out
)))
1508 struct semid_ds tbuf_old
;
1510 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1513 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1514 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1515 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1525 * This function handles some semctl commands which require the rwsem
1526 * to be held in write mode.
1527 * NOTE: no locks must be held, the rwsem is taken inside this function.
1529 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1530 int cmd
, struct semid64_ds
*semid64
)
1532 struct sem_array
*sma
;
1534 struct kern_ipc_perm
*ipcp
;
1536 down_write(&sem_ids(ns
).rwsem
);
1539 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1540 &semid64
->sem_perm
, 0);
1542 err
= PTR_ERR(ipcp
);
1546 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1548 err
= security_sem_semctl(sma
, cmd
);
1554 sem_lock(sma
, NULL
, -1);
1555 /* freeary unlocks the ipc object and rcu */
1559 sem_lock(sma
, NULL
, -1);
1560 err
= ipc_update_perm(&semid64
->sem_perm
, ipcp
);
1563 sma
->sem_ctime
= ktime_get_real_seconds();
1571 sem_unlock(sma
, -1);
1575 up_write(&sem_ids(ns
).rwsem
);
1579 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1582 struct ipc_namespace
*ns
;
1583 void __user
*p
= (void __user
*)arg
;
1584 struct semid64_ds semid64
;
1590 version
= ipc_parse_version(&cmd
);
1591 ns
= current
->nsproxy
->ipc_ns
;
1596 return semctl_info(ns
, semid
, cmd
, p
);
1599 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1602 if (copy_semid_to_user(p
, &semid64
, version
))
1611 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1614 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1615 /* big-endian 64bit */
1618 /* 32bit or little-endian 64bit */
1621 return semctl_setval(ns
, semid
, semnum
, val
);
1624 if (copy_semid_from_user(&semid64
, p
, version
))
1627 return semctl_down(ns
, semid
, cmd
, &semid64
);
1633 #ifdef CONFIG_COMPAT
1635 struct compat_semid_ds
{
1636 struct compat_ipc_perm sem_perm
;
1637 compat_time_t sem_otime
;
1638 compat_time_t sem_ctime
;
1639 compat_uptr_t sem_base
;
1640 compat_uptr_t sem_pending
;
1641 compat_uptr_t sem_pending_last
;
1643 unsigned short sem_nsems
;
1646 static int copy_compat_semid_from_user(struct semid64_ds
*out
, void __user
*buf
,
1649 memset(out
, 0, sizeof(*out
));
1650 if (version
== IPC_64
) {
1651 struct compat_semid64_ds __user
*p
= buf
;
1652 return get_compat_ipc64_perm(&out
->sem_perm
, &p
->sem_perm
);
1654 struct compat_semid_ds __user
*p
= buf
;
1655 return get_compat_ipc_perm(&out
->sem_perm
, &p
->sem_perm
);
1659 static int copy_compat_semid_to_user(void __user
*buf
, struct semid64_ds
*in
,
1662 if (version
== IPC_64
) {
1663 struct compat_semid64_ds v
;
1664 memset(&v
, 0, sizeof(v
));
1665 to_compat_ipc64_perm(&v
.sem_perm
, &in
->sem_perm
);
1666 v
.sem_otime
= in
->sem_otime
;
1667 v
.sem_ctime
= in
->sem_ctime
;
1668 v
.sem_nsems
= in
->sem_nsems
;
1669 return copy_to_user(buf
, &v
, sizeof(v
));
1671 struct compat_semid_ds v
;
1672 memset(&v
, 0, sizeof(v
));
1673 to_compat_ipc_perm(&v
.sem_perm
, &in
->sem_perm
);
1674 v
.sem_otime
= in
->sem_otime
;
1675 v
.sem_ctime
= in
->sem_ctime
;
1676 v
.sem_nsems
= in
->sem_nsems
;
1677 return copy_to_user(buf
, &v
, sizeof(v
));
1681 COMPAT_SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, int, arg
)
1683 void __user
*p
= compat_ptr(arg
);
1684 struct ipc_namespace
*ns
;
1685 struct semid64_ds semid64
;
1686 int version
= compat_ipc_parse_version(&cmd
);
1689 ns
= current
->nsproxy
->ipc_ns
;
1694 switch (cmd
& (~IPC_64
)) {
1697 return semctl_info(ns
, semid
, cmd
, p
);
1700 err
= semctl_stat(ns
, semid
, cmd
, &semid64
);
1703 if (copy_compat_semid_to_user(p
, &semid64
, version
))
1712 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1714 return semctl_setval(ns
, semid
, semnum
, arg
);
1716 if (copy_compat_semid_from_user(&semid64
, p
, version
))
1720 return semctl_down(ns
, semid
, cmd
, &semid64
);
1727 /* If the task doesn't already have a undo_list, then allocate one
1728 * here. We guarantee there is only one thread using this undo list,
1729 * and current is THE ONE
1731 * If this allocation and assignment succeeds, but later
1732 * portions of this code fail, there is no need to free the sem_undo_list.
1733 * Just let it stay associated with the task, and it'll be freed later
1736 * This can block, so callers must hold no locks.
1738 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1740 struct sem_undo_list
*undo_list
;
1742 undo_list
= current
->sysvsem
.undo_list
;
1744 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1745 if (undo_list
== NULL
)
1747 spin_lock_init(&undo_list
->lock
);
1748 refcount_set(&undo_list
->refcnt
, 1);
1749 INIT_LIST_HEAD(&undo_list
->list_proc
);
1751 current
->sysvsem
.undo_list
= undo_list
;
1753 *undo_listp
= undo_list
;
1757 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1759 struct sem_undo
*un
;
1761 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1762 if (un
->semid
== semid
)
1768 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1770 struct sem_undo
*un
;
1772 assert_spin_locked(&ulp
->lock
);
1774 un
= __lookup_undo(ulp
, semid
);
1776 list_del_rcu(&un
->list_proc
);
1777 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1783 * find_alloc_undo - lookup (and if not present create) undo array
1785 * @semid: semaphore array id
1787 * The function looks up (and if not present creates) the undo structure.
1788 * The size of the undo structure depends on the size of the semaphore
1789 * array, thus the alloc path is not that straightforward.
1790 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1791 * performs a rcu_read_lock().
1793 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1795 struct sem_array
*sma
;
1796 struct sem_undo_list
*ulp
;
1797 struct sem_undo
*un
, *new;
1800 error
= get_undo_list(&ulp
);
1802 return ERR_PTR(error
);
1805 spin_lock(&ulp
->lock
);
1806 un
= lookup_undo(ulp
, semid
);
1807 spin_unlock(&ulp
->lock
);
1808 if (likely(un
!= NULL
))
1811 /* no undo structure around - allocate one. */
1812 /* step 1: figure out the size of the semaphore array */
1813 sma
= sem_obtain_object_check(ns
, semid
);
1816 return ERR_CAST(sma
);
1819 nsems
= sma
->sem_nsems
;
1820 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1822 un
= ERR_PTR(-EIDRM
);
1827 /* step 2: allocate new undo structure */
1828 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1830 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1831 return ERR_PTR(-ENOMEM
);
1834 /* step 3: Acquire the lock on semaphore array */
1836 sem_lock_and_putref(sma
);
1837 if (!ipc_valid_object(&sma
->sem_perm
)) {
1838 sem_unlock(sma
, -1);
1841 un
= ERR_PTR(-EIDRM
);
1844 spin_lock(&ulp
->lock
);
1847 * step 4: check for races: did someone else allocate the undo struct?
1849 un
= lookup_undo(ulp
, semid
);
1854 /* step 5: initialize & link new undo structure */
1855 new->semadj
= (short *) &new[1];
1858 assert_spin_locked(&ulp
->lock
);
1859 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1860 ipc_assert_locked_object(&sma
->sem_perm
);
1861 list_add(&new->list_id
, &sma
->list_id
);
1865 spin_unlock(&ulp
->lock
);
1866 sem_unlock(sma
, -1);
1871 static long do_semtimedop(int semid
, struct sembuf __user
*tsops
,
1872 unsigned nsops
, const struct timespec64
*timeout
)
1874 int error
= -EINVAL
;
1875 struct sem_array
*sma
;
1876 struct sembuf fast_sops
[SEMOPM_FAST
];
1877 struct sembuf
*sops
= fast_sops
, *sop
;
1878 struct sem_undo
*un
;
1880 bool undos
= false, alter
= false, dupsop
= false;
1881 struct sem_queue queue
;
1882 unsigned long dup
= 0, jiffies_left
= 0;
1883 struct ipc_namespace
*ns
;
1885 ns
= current
->nsproxy
->ipc_ns
;
1887 if (nsops
< 1 || semid
< 0)
1889 if (nsops
> ns
->sc_semopm
)
1891 if (nsops
> SEMOPM_FAST
) {
1892 sops
= kvmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1897 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1903 if (timeout
->tv_sec
< 0 || timeout
->tv_nsec
< 0 ||
1904 timeout
->tv_nsec
>= 1000000000L) {
1908 jiffies_left
= timespec64_to_jiffies(timeout
);
1912 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1913 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
1915 if (sop
->sem_num
>= max
)
1917 if (sop
->sem_flg
& SEM_UNDO
)
1921 * There was a previous alter access that appears
1922 * to have accessed the same semaphore, thus use
1923 * the dupsop logic. "appears", because the detection
1924 * can only check % BITS_PER_LONG.
1928 if (sop
->sem_op
!= 0) {
1935 /* On success, find_alloc_undo takes the rcu_read_lock */
1936 un
= find_alloc_undo(ns
, semid
);
1938 error
= PTR_ERR(un
);
1946 sma
= sem_obtain_object_check(ns
, semid
);
1949 error
= PTR_ERR(sma
);
1954 if (max
>= sma
->sem_nsems
) {
1960 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
1965 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1972 locknum
= sem_lock(sma
, sops
, nsops
);
1974 * We eventually might perform the following check in a lockless
1975 * fashion, considering ipc_valid_object() locking constraints.
1976 * If nsops == 1 and there is no contention for sem_perm.lock, then
1977 * only a per-semaphore lock is held and it's OK to proceed with the
1978 * check below. More details on the fine grained locking scheme
1979 * entangled here and why it's RMID race safe on comments at sem_lock()
1981 if (!ipc_valid_object(&sma
->sem_perm
))
1982 goto out_unlock_free
;
1984 * semid identifiers are not unique - find_alloc_undo may have
1985 * allocated an undo structure, it was invalidated by an RMID
1986 * and now a new array with received the same id. Check and fail.
1987 * This case can be detected checking un->semid. The existence of
1988 * "un" itself is guaranteed by rcu.
1990 if (un
&& un
->semid
== -1)
1991 goto out_unlock_free
;
1994 queue
.nsops
= nsops
;
1996 queue
.pid
= task_tgid_vnr(current
);
1997 queue
.alter
= alter
;
1998 queue
.dupsop
= dupsop
;
2000 error
= perform_atomic_semop(sma
, &queue
);
2001 if (error
== 0) { /* non-blocking succesfull path */
2002 DEFINE_WAKE_Q(wake_q
);
2005 * If the operation was successful, then do
2006 * the required updates.
2009 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
2011 set_semotime(sma
, sops
);
2013 sem_unlock(sma
, locknum
);
2019 if (error
< 0) /* non-blocking error path */
2020 goto out_unlock_free
;
2023 * We need to sleep on this operation, so we put the current
2024 * task into the pending queue and go to sleep.
2028 curr
= &sma
->sems
[sops
->sem_num
];
2031 if (sma
->complex_count
) {
2032 list_add_tail(&queue
.list
,
2033 &sma
->pending_alter
);
2036 list_add_tail(&queue
.list
,
2037 &curr
->pending_alter
);
2040 list_add_tail(&queue
.list
, &curr
->pending_const
);
2043 if (!sma
->complex_count
)
2047 list_add_tail(&queue
.list
, &sma
->pending_alter
);
2049 list_add_tail(&queue
.list
, &sma
->pending_const
);
2051 sma
->complex_count
++;
2055 queue
.status
= -EINTR
;
2056 queue
.sleeper
= current
;
2058 __set_current_state(TASK_INTERRUPTIBLE
);
2059 sem_unlock(sma
, locknum
);
2063 jiffies_left
= schedule_timeout(jiffies_left
);
2068 * fastpath: the semop has completed, either successfully or
2069 * not, from the syscall pov, is quite irrelevant to us at this
2070 * point; we're done.
2072 * We _do_ care, nonetheless, about being awoken by a signal or
2073 * spuriously. The queue.status is checked again in the
2074 * slowpath (aka after taking sem_lock), such that we can detect
2075 * scenarios where we were awakened externally, during the
2076 * window between wake_q_add() and wake_up_q().
2078 error
= READ_ONCE(queue
.status
);
2079 if (error
!= -EINTR
) {
2081 * User space could assume that semop() is a memory
2082 * barrier: Without the mb(), the cpu could
2083 * speculatively read in userspace stale data that was
2084 * overwritten by the previous owner of the semaphore.
2091 locknum
= sem_lock(sma
, sops
, nsops
);
2093 if (!ipc_valid_object(&sma
->sem_perm
))
2094 goto out_unlock_free
;
2096 error
= READ_ONCE(queue
.status
);
2099 * If queue.status != -EINTR we are woken up by another process.
2100 * Leave without unlink_queue(), but with sem_unlock().
2102 if (error
!= -EINTR
)
2103 goto out_unlock_free
;
2106 * If an interrupt occurred we have to clean up the queue.
2108 if (timeout
&& jiffies_left
== 0)
2110 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2112 unlink_queue(sma
, &queue
);
2115 sem_unlock(sma
, locknum
);
2118 if (sops
!= fast_sops
)
2123 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
2124 unsigned, nsops
, const struct timespec __user
*, timeout
)
2127 struct timespec64 ts
;
2128 if (get_timespec64(&ts
, timeout
))
2130 return do_semtimedop(semid
, tsops
, nsops
, &ts
);
2132 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2135 #ifdef CONFIG_COMPAT
2136 COMPAT_SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsems
,
2138 const struct compat_timespec __user
*, timeout
)
2141 struct timespec64 ts
;
2142 if (compat_get_timespec64(&ts
, timeout
))
2144 return do_semtimedop(semid
, tsems
, nsops
, &ts
);
2146 return do_semtimedop(semid
, tsems
, nsops
, NULL
);
2150 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2153 return do_semtimedop(semid
, tsops
, nsops
, NULL
);
2156 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2157 * parent and child tasks.
2160 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2162 struct sem_undo_list
*undo_list
;
2165 if (clone_flags
& CLONE_SYSVSEM
) {
2166 error
= get_undo_list(&undo_list
);
2169 refcount_inc(&undo_list
->refcnt
);
2170 tsk
->sysvsem
.undo_list
= undo_list
;
2172 tsk
->sysvsem
.undo_list
= NULL
;
2178 * add semadj values to semaphores, free undo structures.
2179 * undo structures are not freed when semaphore arrays are destroyed
2180 * so some of them may be out of date.
2181 * IMPLEMENTATION NOTE: There is some confusion over whether the
2182 * set of adjustments that needs to be done should be done in an atomic
2183 * manner or not. That is, if we are attempting to decrement the semval
2184 * should we queue up and wait until we can do so legally?
2185 * The original implementation attempted to do this (queue and wait).
2186 * The current implementation does not do so. The POSIX standard
2187 * and SVID should be consulted to determine what behavior is mandated.
2189 void exit_sem(struct task_struct
*tsk
)
2191 struct sem_undo_list
*ulp
;
2193 ulp
= tsk
->sysvsem
.undo_list
;
2196 tsk
->sysvsem
.undo_list
= NULL
;
2198 if (!refcount_dec_and_test(&ulp
->refcnt
))
2202 struct sem_array
*sma
;
2203 struct sem_undo
*un
;
2205 DEFINE_WAKE_Q(wake_q
);
2210 un
= list_entry_rcu(ulp
->list_proc
.next
,
2211 struct sem_undo
, list_proc
);
2212 if (&un
->list_proc
== &ulp
->list_proc
) {
2214 * We must wait for freeary() before freeing this ulp,
2215 * in case we raced with last sem_undo. There is a small
2216 * possibility where we exit while freeary() didn't
2217 * finish unlocking sem_undo_list.
2219 spin_lock(&ulp
->lock
);
2220 spin_unlock(&ulp
->lock
);
2224 spin_lock(&ulp
->lock
);
2226 spin_unlock(&ulp
->lock
);
2228 /* exit_sem raced with IPC_RMID, nothing to do */
2234 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2235 /* exit_sem raced with IPC_RMID, nothing to do */
2241 sem_lock(sma
, NULL
, -1);
2242 /* exit_sem raced with IPC_RMID, nothing to do */
2243 if (!ipc_valid_object(&sma
->sem_perm
)) {
2244 sem_unlock(sma
, -1);
2248 un
= __lookup_undo(ulp
, semid
);
2250 /* exit_sem raced with IPC_RMID+semget() that created
2251 * exactly the same semid. Nothing to do.
2253 sem_unlock(sma
, -1);
2258 /* remove un from the linked lists */
2259 ipc_assert_locked_object(&sma
->sem_perm
);
2260 list_del(&un
->list_id
);
2262 /* we are the last process using this ulp, acquiring ulp->lock
2263 * isn't required. Besides that, we are also protected against
2264 * IPC_RMID as we hold sma->sem_perm lock now
2266 list_del_rcu(&un
->list_proc
);
2268 /* perform adjustments registered in un */
2269 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2270 struct sem
*semaphore
= &sma
->sems
[i
];
2271 if (un
->semadj
[i
]) {
2272 semaphore
->semval
+= un
->semadj
[i
];
2274 * Range checks of the new semaphore value,
2275 * not defined by sus:
2276 * - Some unices ignore the undo entirely
2277 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2278 * - some cap the value (e.g. FreeBSD caps
2279 * at 0, but doesn't enforce SEMVMX)
2281 * Linux caps the semaphore value, both at 0
2284 * Manfred <manfred@colorfullife.com>
2286 if (semaphore
->semval
< 0)
2287 semaphore
->semval
= 0;
2288 if (semaphore
->semval
> SEMVMX
)
2289 semaphore
->semval
= SEMVMX
;
2290 semaphore
->sempid
= task_tgid_vnr(current
);
2293 /* maybe some queued-up processes were waiting for this */
2294 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2295 sem_unlock(sma
, -1);
2304 #ifdef CONFIG_PROC_FS
2305 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2307 struct user_namespace
*user_ns
= seq_user_ns(s
);
2308 struct kern_ipc_perm
*ipcp
= it
;
2309 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2313 * The proc interface isn't aware of sem_lock(), it calls
2314 * ipc_lock_object() directly (in sysvipc_find_ipc).
2315 * In order to stay compatible with sem_lock(), we must
2316 * enter / leave complex_mode.
2318 complexmode_enter(sma
);
2320 sem_otime
= get_semotime(sma
);
2323 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2328 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2329 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2330 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2331 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2335 complexmode_tryleave(sma
);