KVM: PPC: Book3S: Fix compile error that occurs with some gcc versions
[linux/fpc-iii.git] / fs / xfs / libxfs / xfs_ialloc.c
blob0e2cf5f0be1f364cb4651a4e3cf2edd64653fb79
1 /*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_sb.h"
26 #include "xfs_mount.h"
27 #include "xfs_defer.h"
28 #include "xfs_inode.h"
29 #include "xfs_btree.h"
30 #include "xfs_ialloc.h"
31 #include "xfs_ialloc_btree.h"
32 #include "xfs_alloc.h"
33 #include "xfs_rtalloc.h"
34 #include "xfs_errortag.h"
35 #include "xfs_error.h"
36 #include "xfs_bmap.h"
37 #include "xfs_cksum.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_icreate_item.h"
41 #include "xfs_icache.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
44 #include "xfs_rmap.h"
48 * Allocation group level functions.
50 int
51 xfs_ialloc_cluster_alignment(
52 struct xfs_mount *mp)
54 if (xfs_sb_version_hasalign(&mp->m_sb) &&
55 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
56 return mp->m_sb.sb_inoalignmt;
57 return 1;
61 * Lookup a record by ino in the btree given by cur.
63 int /* error */
64 xfs_inobt_lookup(
65 struct xfs_btree_cur *cur, /* btree cursor */
66 xfs_agino_t ino, /* starting inode of chunk */
67 xfs_lookup_t dir, /* <=, >=, == */
68 int *stat) /* success/failure */
70 cur->bc_rec.i.ir_startino = ino;
71 cur->bc_rec.i.ir_holemask = 0;
72 cur->bc_rec.i.ir_count = 0;
73 cur->bc_rec.i.ir_freecount = 0;
74 cur->bc_rec.i.ir_free = 0;
75 return xfs_btree_lookup(cur, dir, stat);
79 * Update the record referred to by cur to the value given.
80 * This either works (return 0) or gets an EFSCORRUPTED error.
82 STATIC int /* error */
83 xfs_inobt_update(
84 struct xfs_btree_cur *cur, /* btree cursor */
85 xfs_inobt_rec_incore_t *irec) /* btree record */
87 union xfs_btree_rec rec;
89 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
90 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
91 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
92 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
93 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
94 } else {
95 /* ir_holemask/ir_count not supported on-disk */
96 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
98 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
99 return xfs_btree_update(cur, &rec);
102 /* Convert on-disk btree record to incore inobt record. */
103 void
104 xfs_inobt_btrec_to_irec(
105 struct xfs_mount *mp,
106 union xfs_btree_rec *rec,
107 struct xfs_inobt_rec_incore *irec)
109 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
110 if (xfs_sb_version_hassparseinodes(&mp->m_sb)) {
111 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
112 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
113 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
114 } else {
116 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
117 * values for full inode chunks.
119 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
120 irec->ir_count = XFS_INODES_PER_CHUNK;
121 irec->ir_freecount =
122 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
124 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
128 * Get the data from the pointed-to record.
131 xfs_inobt_get_rec(
132 struct xfs_btree_cur *cur,
133 struct xfs_inobt_rec_incore *irec,
134 int *stat)
136 union xfs_btree_rec *rec;
137 int error;
139 error = xfs_btree_get_rec(cur, &rec, stat);
140 if (error || *stat == 0)
141 return error;
143 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, irec);
145 return 0;
149 * Insert a single inobt record. Cursor must already point to desired location.
151 STATIC int
152 xfs_inobt_insert_rec(
153 struct xfs_btree_cur *cur,
154 uint16_t holemask,
155 uint8_t count,
156 int32_t freecount,
157 xfs_inofree_t free,
158 int *stat)
160 cur->bc_rec.i.ir_holemask = holemask;
161 cur->bc_rec.i.ir_count = count;
162 cur->bc_rec.i.ir_freecount = freecount;
163 cur->bc_rec.i.ir_free = free;
164 return xfs_btree_insert(cur, stat);
168 * Insert records describing a newly allocated inode chunk into the inobt.
170 STATIC int
171 xfs_inobt_insert(
172 struct xfs_mount *mp,
173 struct xfs_trans *tp,
174 struct xfs_buf *agbp,
175 xfs_agino_t newino,
176 xfs_agino_t newlen,
177 xfs_btnum_t btnum)
179 struct xfs_btree_cur *cur;
180 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
181 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
182 xfs_agino_t thisino;
183 int i;
184 int error;
186 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
188 for (thisino = newino;
189 thisino < newino + newlen;
190 thisino += XFS_INODES_PER_CHUNK) {
191 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
192 if (error) {
193 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
194 return error;
196 ASSERT(i == 0);
198 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
199 XFS_INODES_PER_CHUNK,
200 XFS_INODES_PER_CHUNK,
201 XFS_INOBT_ALL_FREE, &i);
202 if (error) {
203 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
204 return error;
206 ASSERT(i == 1);
209 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
211 return 0;
215 * Verify that the number of free inodes in the AGI is correct.
217 #ifdef DEBUG
218 STATIC int
219 xfs_check_agi_freecount(
220 struct xfs_btree_cur *cur,
221 struct xfs_agi *agi)
223 if (cur->bc_nlevels == 1) {
224 xfs_inobt_rec_incore_t rec;
225 int freecount = 0;
226 int error;
227 int i;
229 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
230 if (error)
231 return error;
233 do {
234 error = xfs_inobt_get_rec(cur, &rec, &i);
235 if (error)
236 return error;
238 if (i) {
239 freecount += rec.ir_freecount;
240 error = xfs_btree_increment(cur, 0, &i);
241 if (error)
242 return error;
244 } while (i == 1);
246 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
247 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
249 return 0;
251 #else
252 #define xfs_check_agi_freecount(cur, agi) 0
253 #endif
256 * Initialise a new set of inodes. When called without a transaction context
257 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
258 * than logging them (which in a transaction context puts them into the AIL
259 * for writeback rather than the xfsbufd queue).
262 xfs_ialloc_inode_init(
263 struct xfs_mount *mp,
264 struct xfs_trans *tp,
265 struct list_head *buffer_list,
266 int icount,
267 xfs_agnumber_t agno,
268 xfs_agblock_t agbno,
269 xfs_agblock_t length,
270 unsigned int gen)
272 struct xfs_buf *fbuf;
273 struct xfs_dinode *free;
274 int nbufs, blks_per_cluster, inodes_per_cluster;
275 int version;
276 int i, j;
277 xfs_daddr_t d;
278 xfs_ino_t ino = 0;
281 * Loop over the new block(s), filling in the inodes. For small block
282 * sizes, manipulate the inodes in buffers which are multiples of the
283 * blocks size.
285 blks_per_cluster = xfs_icluster_size_fsb(mp);
286 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
287 nbufs = length / blks_per_cluster;
290 * Figure out what version number to use in the inodes we create. If
291 * the superblock version has caught up to the one that supports the new
292 * inode format, then use the new inode version. Otherwise use the old
293 * version so that old kernels will continue to be able to use the file
294 * system.
296 * For v3 inodes, we also need to write the inode number into the inode,
297 * so calculate the first inode number of the chunk here as
298 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
299 * across multiple filesystem blocks (such as a cluster) and so cannot
300 * be used in the cluster buffer loop below.
302 * Further, because we are writing the inode directly into the buffer
303 * and calculating a CRC on the entire inode, we have ot log the entire
304 * inode so that the entire range the CRC covers is present in the log.
305 * That means for v3 inode we log the entire buffer rather than just the
306 * inode cores.
308 if (xfs_sb_version_hascrc(&mp->m_sb)) {
309 version = 3;
310 ino = XFS_AGINO_TO_INO(mp, agno,
311 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
314 * log the initialisation that is about to take place as an
315 * logical operation. This means the transaction does not
316 * need to log the physical changes to the inode buffers as log
317 * recovery will know what initialisation is actually needed.
318 * Hence we only need to log the buffers as "ordered" buffers so
319 * they track in the AIL as if they were physically logged.
321 if (tp)
322 xfs_icreate_log(tp, agno, agbno, icount,
323 mp->m_sb.sb_inodesize, length, gen);
324 } else
325 version = 2;
327 for (j = 0; j < nbufs; j++) {
329 * Get the block.
331 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
332 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
333 mp->m_bsize * blks_per_cluster,
334 XBF_UNMAPPED);
335 if (!fbuf)
336 return -ENOMEM;
338 /* Initialize the inode buffers and log them appropriately. */
339 fbuf->b_ops = &xfs_inode_buf_ops;
340 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
341 for (i = 0; i < inodes_per_cluster; i++) {
342 int ioffset = i << mp->m_sb.sb_inodelog;
343 uint isize = xfs_dinode_size(version);
345 free = xfs_make_iptr(mp, fbuf, i);
346 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
347 free->di_version = version;
348 free->di_gen = cpu_to_be32(gen);
349 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
351 if (version == 3) {
352 free->di_ino = cpu_to_be64(ino);
353 ino++;
354 uuid_copy(&free->di_uuid,
355 &mp->m_sb.sb_meta_uuid);
356 xfs_dinode_calc_crc(mp, free);
357 } else if (tp) {
358 /* just log the inode core */
359 xfs_trans_log_buf(tp, fbuf, ioffset,
360 ioffset + isize - 1);
364 if (tp) {
366 * Mark the buffer as an inode allocation buffer so it
367 * sticks in AIL at the point of this allocation
368 * transaction. This ensures the they are on disk before
369 * the tail of the log can be moved past this
370 * transaction (i.e. by preventing relogging from moving
371 * it forward in the log).
373 xfs_trans_inode_alloc_buf(tp, fbuf);
374 if (version == 3) {
376 * Mark the buffer as ordered so that they are
377 * not physically logged in the transaction but
378 * still tracked in the AIL as part of the
379 * transaction and pin the log appropriately.
381 xfs_trans_ordered_buf(tp, fbuf);
383 } else {
384 fbuf->b_flags |= XBF_DONE;
385 xfs_buf_delwri_queue(fbuf, buffer_list);
386 xfs_buf_relse(fbuf);
389 return 0;
393 * Align startino and allocmask for a recently allocated sparse chunk such that
394 * they are fit for insertion (or merge) into the on-disk inode btrees.
396 * Background:
398 * When enabled, sparse inode support increases the inode alignment from cluster
399 * size to inode chunk size. This means that the minimum range between two
400 * non-adjacent inode records in the inobt is large enough for a full inode
401 * record. This allows for cluster sized, cluster aligned block allocation
402 * without need to worry about whether the resulting inode record overlaps with
403 * another record in the tree. Without this basic rule, we would have to deal
404 * with the consequences of overlap by potentially undoing recent allocations in
405 * the inode allocation codepath.
407 * Because of this alignment rule (which is enforced on mount), there are two
408 * inobt possibilities for newly allocated sparse chunks. One is that the
409 * aligned inode record for the chunk covers a range of inodes not already
410 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
411 * other is that a record already exists at the aligned startino that considers
412 * the newly allocated range as sparse. In the latter case, record content is
413 * merged in hope that sparse inode chunks fill to full chunks over time.
415 STATIC void
416 xfs_align_sparse_ino(
417 struct xfs_mount *mp,
418 xfs_agino_t *startino,
419 uint16_t *allocmask)
421 xfs_agblock_t agbno;
422 xfs_agblock_t mod;
423 int offset;
425 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
426 mod = agbno % mp->m_sb.sb_inoalignmt;
427 if (!mod)
428 return;
430 /* calculate the inode offset and align startino */
431 offset = mod << mp->m_sb.sb_inopblog;
432 *startino -= offset;
435 * Since startino has been aligned down, left shift allocmask such that
436 * it continues to represent the same physical inodes relative to the
437 * new startino.
439 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
443 * Determine whether the source inode record can merge into the target. Both
444 * records must be sparse, the inode ranges must match and there must be no
445 * allocation overlap between the records.
447 STATIC bool
448 __xfs_inobt_can_merge(
449 struct xfs_inobt_rec_incore *trec, /* tgt record */
450 struct xfs_inobt_rec_incore *srec) /* src record */
452 uint64_t talloc;
453 uint64_t salloc;
455 /* records must cover the same inode range */
456 if (trec->ir_startino != srec->ir_startino)
457 return false;
459 /* both records must be sparse */
460 if (!xfs_inobt_issparse(trec->ir_holemask) ||
461 !xfs_inobt_issparse(srec->ir_holemask))
462 return false;
464 /* both records must track some inodes */
465 if (!trec->ir_count || !srec->ir_count)
466 return false;
468 /* can't exceed capacity of a full record */
469 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
470 return false;
472 /* verify there is no allocation overlap */
473 talloc = xfs_inobt_irec_to_allocmask(trec);
474 salloc = xfs_inobt_irec_to_allocmask(srec);
475 if (talloc & salloc)
476 return false;
478 return true;
482 * Merge the source inode record into the target. The caller must call
483 * __xfs_inobt_can_merge() to ensure the merge is valid.
485 STATIC void
486 __xfs_inobt_rec_merge(
487 struct xfs_inobt_rec_incore *trec, /* target */
488 struct xfs_inobt_rec_incore *srec) /* src */
490 ASSERT(trec->ir_startino == srec->ir_startino);
492 /* combine the counts */
493 trec->ir_count += srec->ir_count;
494 trec->ir_freecount += srec->ir_freecount;
497 * Merge the holemask and free mask. For both fields, 0 bits refer to
498 * allocated inodes. We combine the allocated ranges with bitwise AND.
500 trec->ir_holemask &= srec->ir_holemask;
501 trec->ir_free &= srec->ir_free;
505 * Insert a new sparse inode chunk into the associated inode btree. The inode
506 * record for the sparse chunk is pre-aligned to a startino that should match
507 * any pre-existing sparse inode record in the tree. This allows sparse chunks
508 * to fill over time.
510 * This function supports two modes of handling preexisting records depending on
511 * the merge flag. If merge is true, the provided record is merged with the
512 * existing record and updated in place. The merged record is returned in nrec.
513 * If merge is false, an existing record is replaced with the provided record.
514 * If no preexisting record exists, the provided record is always inserted.
516 * It is considered corruption if a merge is requested and not possible. Given
517 * the sparse inode alignment constraints, this should never happen.
519 STATIC int
520 xfs_inobt_insert_sprec(
521 struct xfs_mount *mp,
522 struct xfs_trans *tp,
523 struct xfs_buf *agbp,
524 int btnum,
525 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
526 bool merge) /* merge or replace */
528 struct xfs_btree_cur *cur;
529 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
530 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
531 int error;
532 int i;
533 struct xfs_inobt_rec_incore rec;
535 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
537 /* the new record is pre-aligned so we know where to look */
538 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
539 if (error)
540 goto error;
541 /* if nothing there, insert a new record and return */
542 if (i == 0) {
543 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
544 nrec->ir_count, nrec->ir_freecount,
545 nrec->ir_free, &i);
546 if (error)
547 goto error;
548 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
550 goto out;
554 * A record exists at this startino. Merge or replace the record
555 * depending on what we've been asked to do.
557 if (merge) {
558 error = xfs_inobt_get_rec(cur, &rec, &i);
559 if (error)
560 goto error;
561 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
562 XFS_WANT_CORRUPTED_GOTO(mp,
563 rec.ir_startino == nrec->ir_startino,
564 error);
567 * This should never fail. If we have coexisting records that
568 * cannot merge, something is seriously wrong.
570 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
571 error);
573 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
574 rec.ir_holemask, nrec->ir_startino,
575 nrec->ir_holemask);
577 /* merge to nrec to output the updated record */
578 __xfs_inobt_rec_merge(nrec, &rec);
580 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
581 nrec->ir_holemask);
583 error = xfs_inobt_rec_check_count(mp, nrec);
584 if (error)
585 goto error;
588 error = xfs_inobt_update(cur, nrec);
589 if (error)
590 goto error;
592 out:
593 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
594 return 0;
595 error:
596 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
597 return error;
601 * Allocate new inodes in the allocation group specified by agbp.
602 * Return 0 for success, else error code.
604 STATIC int /* error code or 0 */
605 xfs_ialloc_ag_alloc(
606 xfs_trans_t *tp, /* transaction pointer */
607 xfs_buf_t *agbp, /* alloc group buffer */
608 int *alloc)
610 xfs_agi_t *agi; /* allocation group header */
611 xfs_alloc_arg_t args; /* allocation argument structure */
612 xfs_agnumber_t agno;
613 int error;
614 xfs_agino_t newino; /* new first inode's number */
615 xfs_agino_t newlen; /* new number of inodes */
616 int isaligned = 0; /* inode allocation at stripe unit */
617 /* boundary */
618 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
619 struct xfs_inobt_rec_incore rec;
620 struct xfs_perag *pag;
621 int do_sparse = 0;
623 memset(&args, 0, sizeof(args));
624 args.tp = tp;
625 args.mp = tp->t_mountp;
626 args.fsbno = NULLFSBLOCK;
627 xfs_rmap_ag_owner(&args.oinfo, XFS_RMAP_OWN_INODES);
629 #ifdef DEBUG
630 /* randomly do sparse inode allocations */
631 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
632 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
633 do_sparse = prandom_u32() & 1;
634 #endif
637 * Locking will ensure that we don't have two callers in here
638 * at one time.
640 newlen = args.mp->m_ialloc_inos;
641 if (args.mp->m_maxicount &&
642 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
643 args.mp->m_maxicount)
644 return -ENOSPC;
645 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
647 * First try to allocate inodes contiguous with the last-allocated
648 * chunk of inodes. If the filesystem is striped, this will fill
649 * an entire stripe unit with inodes.
651 agi = XFS_BUF_TO_AGI(agbp);
652 newino = be32_to_cpu(agi->agi_newino);
653 agno = be32_to_cpu(agi->agi_seqno);
654 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
655 args.mp->m_ialloc_blks;
656 if (do_sparse)
657 goto sparse_alloc;
658 if (likely(newino != NULLAGINO &&
659 (args.agbno < be32_to_cpu(agi->agi_length)))) {
660 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
661 args.type = XFS_ALLOCTYPE_THIS_BNO;
662 args.prod = 1;
665 * We need to take into account alignment here to ensure that
666 * we don't modify the free list if we fail to have an exact
667 * block. If we don't have an exact match, and every oher
668 * attempt allocation attempt fails, we'll end up cancelling
669 * a dirty transaction and shutting down.
671 * For an exact allocation, alignment must be 1,
672 * however we need to take cluster alignment into account when
673 * fixing up the freelist. Use the minalignslop field to
674 * indicate that extra blocks might be required for alignment,
675 * but not to use them in the actual exact allocation.
677 args.alignment = 1;
678 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
680 /* Allow space for the inode btree to split. */
681 args.minleft = args.mp->m_in_maxlevels - 1;
682 if ((error = xfs_alloc_vextent(&args)))
683 return error;
686 * This request might have dirtied the transaction if the AG can
687 * satisfy the request, but the exact block was not available.
688 * If the allocation did fail, subsequent requests will relax
689 * the exact agbno requirement and increase the alignment
690 * instead. It is critical that the total size of the request
691 * (len + alignment + slop) does not increase from this point
692 * on, so reset minalignslop to ensure it is not included in
693 * subsequent requests.
695 args.minalignslop = 0;
698 if (unlikely(args.fsbno == NULLFSBLOCK)) {
700 * Set the alignment for the allocation.
701 * If stripe alignment is turned on then align at stripe unit
702 * boundary.
703 * If the cluster size is smaller than a filesystem block
704 * then we're doing I/O for inodes in filesystem block size
705 * pieces, so don't need alignment anyway.
707 isaligned = 0;
708 if (args.mp->m_sinoalign) {
709 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
710 args.alignment = args.mp->m_dalign;
711 isaligned = 1;
712 } else
713 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
715 * Need to figure out where to allocate the inode blocks.
716 * Ideally they should be spaced out through the a.g.
717 * For now, just allocate blocks up front.
719 args.agbno = be32_to_cpu(agi->agi_root);
720 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
722 * Allocate a fixed-size extent of inodes.
724 args.type = XFS_ALLOCTYPE_NEAR_BNO;
725 args.prod = 1;
727 * Allow space for the inode btree to split.
729 args.minleft = args.mp->m_in_maxlevels - 1;
730 if ((error = xfs_alloc_vextent(&args)))
731 return error;
735 * If stripe alignment is turned on, then try again with cluster
736 * alignment.
738 if (isaligned && args.fsbno == NULLFSBLOCK) {
739 args.type = XFS_ALLOCTYPE_NEAR_BNO;
740 args.agbno = be32_to_cpu(agi->agi_root);
741 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
742 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
743 if ((error = xfs_alloc_vextent(&args)))
744 return error;
748 * Finally, try a sparse allocation if the filesystem supports it and
749 * the sparse allocation length is smaller than a full chunk.
751 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
752 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
753 args.fsbno == NULLFSBLOCK) {
754 sparse_alloc:
755 args.type = XFS_ALLOCTYPE_NEAR_BNO;
756 args.agbno = be32_to_cpu(agi->agi_root);
757 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
758 args.alignment = args.mp->m_sb.sb_spino_align;
759 args.prod = 1;
761 args.minlen = args.mp->m_ialloc_min_blks;
762 args.maxlen = args.minlen;
765 * The inode record will be aligned to full chunk size. We must
766 * prevent sparse allocation from AG boundaries that result in
767 * invalid inode records, such as records that start at agbno 0
768 * or extend beyond the AG.
770 * Set min agbno to the first aligned, non-zero agbno and max to
771 * the last aligned agbno that is at least one full chunk from
772 * the end of the AG.
774 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
775 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
776 args.mp->m_sb.sb_inoalignmt) -
777 args.mp->m_ialloc_blks;
779 error = xfs_alloc_vextent(&args);
780 if (error)
781 return error;
783 newlen = args.len << args.mp->m_sb.sb_inopblog;
784 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
785 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
788 if (args.fsbno == NULLFSBLOCK) {
789 *alloc = 0;
790 return 0;
792 ASSERT(args.len == args.minlen);
795 * Stamp and write the inode buffers.
797 * Seed the new inode cluster with a random generation number. This
798 * prevents short-term reuse of generation numbers if a chunk is
799 * freed and then immediately reallocated. We use random numbers
800 * rather than a linear progression to prevent the next generation
801 * number from being easily guessable.
803 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
804 args.agbno, args.len, prandom_u32());
806 if (error)
807 return error;
809 * Convert the results.
811 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
813 if (xfs_inobt_issparse(~allocmask)) {
815 * We've allocated a sparse chunk. Align the startino and mask.
817 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
819 rec.ir_startino = newino;
820 rec.ir_holemask = ~allocmask;
821 rec.ir_count = newlen;
822 rec.ir_freecount = newlen;
823 rec.ir_free = XFS_INOBT_ALL_FREE;
826 * Insert the sparse record into the inobt and allow for a merge
827 * if necessary. If a merge does occur, rec is updated to the
828 * merged record.
830 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
831 &rec, true);
832 if (error == -EFSCORRUPTED) {
833 xfs_alert(args.mp,
834 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
835 XFS_AGINO_TO_INO(args.mp, agno,
836 rec.ir_startino),
837 rec.ir_holemask, rec.ir_count);
838 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
840 if (error)
841 return error;
844 * We can't merge the part we've just allocated as for the inobt
845 * due to finobt semantics. The original record may or may not
846 * exist independent of whether physical inodes exist in this
847 * sparse chunk.
849 * We must update the finobt record based on the inobt record.
850 * rec contains the fully merged and up to date inobt record
851 * from the previous call. Set merge false to replace any
852 * existing record with this one.
854 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
855 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
856 XFS_BTNUM_FINO, &rec,
857 false);
858 if (error)
859 return error;
861 } else {
862 /* full chunk - insert new records to both btrees */
863 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
864 XFS_BTNUM_INO);
865 if (error)
866 return error;
868 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
869 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
870 newlen, XFS_BTNUM_FINO);
871 if (error)
872 return error;
877 * Update AGI counts and newino.
879 be32_add_cpu(&agi->agi_count, newlen);
880 be32_add_cpu(&agi->agi_freecount, newlen);
881 pag = xfs_perag_get(args.mp, agno);
882 pag->pagi_freecount += newlen;
883 xfs_perag_put(pag);
884 agi->agi_newino = cpu_to_be32(newino);
887 * Log allocation group header fields
889 xfs_ialloc_log_agi(tp, agbp,
890 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
892 * Modify/log superblock values for inode count and inode free count.
894 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
895 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
896 *alloc = 1;
897 return 0;
900 STATIC xfs_agnumber_t
901 xfs_ialloc_next_ag(
902 xfs_mount_t *mp)
904 xfs_agnumber_t agno;
906 spin_lock(&mp->m_agirotor_lock);
907 agno = mp->m_agirotor;
908 if (++mp->m_agirotor >= mp->m_maxagi)
909 mp->m_agirotor = 0;
910 spin_unlock(&mp->m_agirotor_lock);
912 return agno;
916 * Select an allocation group to look for a free inode in, based on the parent
917 * inode and the mode. Return the allocation group buffer.
919 STATIC xfs_agnumber_t
920 xfs_ialloc_ag_select(
921 xfs_trans_t *tp, /* transaction pointer */
922 xfs_ino_t parent, /* parent directory inode number */
923 umode_t mode) /* bits set to indicate file type */
925 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
926 xfs_agnumber_t agno; /* current ag number */
927 int flags; /* alloc buffer locking flags */
928 xfs_extlen_t ineed; /* blocks needed for inode allocation */
929 xfs_extlen_t longest = 0; /* longest extent available */
930 xfs_mount_t *mp; /* mount point structure */
931 int needspace; /* file mode implies space allocated */
932 xfs_perag_t *pag; /* per allocation group data */
933 xfs_agnumber_t pagno; /* parent (starting) ag number */
934 int error;
937 * Files of these types need at least one block if length > 0
938 * (and they won't fit in the inode, but that's hard to figure out).
940 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
941 mp = tp->t_mountp;
942 agcount = mp->m_maxagi;
943 if (S_ISDIR(mode))
944 pagno = xfs_ialloc_next_ag(mp);
945 else {
946 pagno = XFS_INO_TO_AGNO(mp, parent);
947 if (pagno >= agcount)
948 pagno = 0;
951 ASSERT(pagno < agcount);
954 * Loop through allocation groups, looking for one with a little
955 * free space in it. Note we don't look for free inodes, exactly.
956 * Instead, we include whether there is a need to allocate inodes
957 * to mean that blocks must be allocated for them,
958 * if none are currently free.
960 agno = pagno;
961 flags = XFS_ALLOC_FLAG_TRYLOCK;
962 for (;;) {
963 pag = xfs_perag_get(mp, agno);
964 if (!pag->pagi_inodeok) {
965 xfs_ialloc_next_ag(mp);
966 goto nextag;
969 if (!pag->pagi_init) {
970 error = xfs_ialloc_pagi_init(mp, tp, agno);
971 if (error)
972 goto nextag;
975 if (pag->pagi_freecount) {
976 xfs_perag_put(pag);
977 return agno;
980 if (!pag->pagf_init) {
981 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
982 if (error)
983 goto nextag;
987 * Check that there is enough free space for the file plus a
988 * chunk of inodes if we need to allocate some. If this is the
989 * first pass across the AGs, take into account the potential
990 * space needed for alignment of inode chunks when checking the
991 * longest contiguous free space in the AG - this prevents us
992 * from getting ENOSPC because we have free space larger than
993 * m_ialloc_blks but alignment constraints prevent us from using
994 * it.
996 * If we can't find an AG with space for full alignment slack to
997 * be taken into account, we must be near ENOSPC in all AGs.
998 * Hence we don't include alignment for the second pass and so
999 * if we fail allocation due to alignment issues then it is most
1000 * likely a real ENOSPC condition.
1002 ineed = mp->m_ialloc_min_blks;
1003 if (flags && ineed > 1)
1004 ineed += xfs_ialloc_cluster_alignment(mp);
1005 longest = pag->pagf_longest;
1006 if (!longest)
1007 longest = pag->pagf_flcount > 0;
1009 if (pag->pagf_freeblks >= needspace + ineed &&
1010 longest >= ineed) {
1011 xfs_perag_put(pag);
1012 return agno;
1014 nextag:
1015 xfs_perag_put(pag);
1017 * No point in iterating over the rest, if we're shutting
1018 * down.
1020 if (XFS_FORCED_SHUTDOWN(mp))
1021 return NULLAGNUMBER;
1022 agno++;
1023 if (agno >= agcount)
1024 agno = 0;
1025 if (agno == pagno) {
1026 if (flags == 0)
1027 return NULLAGNUMBER;
1028 flags = 0;
1034 * Try to retrieve the next record to the left/right from the current one.
1036 STATIC int
1037 xfs_ialloc_next_rec(
1038 struct xfs_btree_cur *cur,
1039 xfs_inobt_rec_incore_t *rec,
1040 int *done,
1041 int left)
1043 int error;
1044 int i;
1046 if (left)
1047 error = xfs_btree_decrement(cur, 0, &i);
1048 else
1049 error = xfs_btree_increment(cur, 0, &i);
1051 if (error)
1052 return error;
1053 *done = !i;
1054 if (i) {
1055 error = xfs_inobt_get_rec(cur, rec, &i);
1056 if (error)
1057 return error;
1058 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1061 return 0;
1064 STATIC int
1065 xfs_ialloc_get_rec(
1066 struct xfs_btree_cur *cur,
1067 xfs_agino_t agino,
1068 xfs_inobt_rec_incore_t *rec,
1069 int *done)
1071 int error;
1072 int i;
1074 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1075 if (error)
1076 return error;
1077 *done = !i;
1078 if (i) {
1079 error = xfs_inobt_get_rec(cur, rec, &i);
1080 if (error)
1081 return error;
1082 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1085 return 0;
1089 * Return the offset of the first free inode in the record. If the inode chunk
1090 * is sparsely allocated, we convert the record holemask to inode granularity
1091 * and mask off the unallocated regions from the inode free mask.
1093 STATIC int
1094 xfs_inobt_first_free_inode(
1095 struct xfs_inobt_rec_incore *rec)
1097 xfs_inofree_t realfree;
1099 /* if there are no holes, return the first available offset */
1100 if (!xfs_inobt_issparse(rec->ir_holemask))
1101 return xfs_lowbit64(rec->ir_free);
1103 realfree = xfs_inobt_irec_to_allocmask(rec);
1104 realfree &= rec->ir_free;
1106 return xfs_lowbit64(realfree);
1110 * Allocate an inode using the inobt-only algorithm.
1112 STATIC int
1113 xfs_dialloc_ag_inobt(
1114 struct xfs_trans *tp,
1115 struct xfs_buf *agbp,
1116 xfs_ino_t parent,
1117 xfs_ino_t *inop)
1119 struct xfs_mount *mp = tp->t_mountp;
1120 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1121 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1122 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1123 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1124 struct xfs_perag *pag;
1125 struct xfs_btree_cur *cur, *tcur;
1126 struct xfs_inobt_rec_incore rec, trec;
1127 xfs_ino_t ino;
1128 int error;
1129 int offset;
1130 int i, j;
1131 int searchdistance = 10;
1133 pag = xfs_perag_get(mp, agno);
1135 ASSERT(pag->pagi_init);
1136 ASSERT(pag->pagi_inodeok);
1137 ASSERT(pag->pagi_freecount > 0);
1139 restart_pagno:
1140 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1142 * If pagino is 0 (this is the root inode allocation) use newino.
1143 * This must work because we've just allocated some.
1145 if (!pagino)
1146 pagino = be32_to_cpu(agi->agi_newino);
1148 error = xfs_check_agi_freecount(cur, agi);
1149 if (error)
1150 goto error0;
1153 * If in the same AG as the parent, try to get near the parent.
1155 if (pagno == agno) {
1156 int doneleft; /* done, to the left */
1157 int doneright; /* done, to the right */
1159 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
1160 if (error)
1161 goto error0;
1162 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1164 error = xfs_inobt_get_rec(cur, &rec, &j);
1165 if (error)
1166 goto error0;
1167 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
1169 if (rec.ir_freecount > 0) {
1171 * Found a free inode in the same chunk
1172 * as the parent, done.
1174 goto alloc_inode;
1179 * In the same AG as parent, but parent's chunk is full.
1182 /* duplicate the cursor, search left & right simultaneously */
1183 error = xfs_btree_dup_cursor(cur, &tcur);
1184 if (error)
1185 goto error0;
1188 * Skip to last blocks looked up if same parent inode.
1190 if (pagino != NULLAGINO &&
1191 pag->pagl_pagino == pagino &&
1192 pag->pagl_leftrec != NULLAGINO &&
1193 pag->pagl_rightrec != NULLAGINO) {
1194 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
1195 &trec, &doneleft);
1196 if (error)
1197 goto error1;
1199 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
1200 &rec, &doneright);
1201 if (error)
1202 goto error1;
1203 } else {
1204 /* search left with tcur, back up 1 record */
1205 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1206 if (error)
1207 goto error1;
1209 /* search right with cur, go forward 1 record. */
1210 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1211 if (error)
1212 goto error1;
1216 * Loop until we find an inode chunk with a free inode.
1218 while (--searchdistance > 0 && (!doneleft || !doneright)) {
1219 int useleft; /* using left inode chunk this time */
1221 /* figure out the closer block if both are valid. */
1222 if (!doneleft && !doneright) {
1223 useleft = pagino -
1224 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1225 rec.ir_startino - pagino;
1226 } else {
1227 useleft = !doneleft;
1230 /* free inodes to the left? */
1231 if (useleft && trec.ir_freecount) {
1232 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1233 cur = tcur;
1235 pag->pagl_leftrec = trec.ir_startino;
1236 pag->pagl_rightrec = rec.ir_startino;
1237 pag->pagl_pagino = pagino;
1238 rec = trec;
1239 goto alloc_inode;
1242 /* free inodes to the right? */
1243 if (!useleft && rec.ir_freecount) {
1244 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1246 pag->pagl_leftrec = trec.ir_startino;
1247 pag->pagl_rightrec = rec.ir_startino;
1248 pag->pagl_pagino = pagino;
1249 goto alloc_inode;
1252 /* get next record to check */
1253 if (useleft) {
1254 error = xfs_ialloc_next_rec(tcur, &trec,
1255 &doneleft, 1);
1256 } else {
1257 error = xfs_ialloc_next_rec(cur, &rec,
1258 &doneright, 0);
1260 if (error)
1261 goto error1;
1264 if (searchdistance <= 0) {
1266 * Not in range - save last search
1267 * location and allocate a new inode
1269 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1270 pag->pagl_leftrec = trec.ir_startino;
1271 pag->pagl_rightrec = rec.ir_startino;
1272 pag->pagl_pagino = pagino;
1274 } else {
1276 * We've reached the end of the btree. because
1277 * we are only searching a small chunk of the
1278 * btree each search, there is obviously free
1279 * inodes closer to the parent inode than we
1280 * are now. restart the search again.
1282 pag->pagl_pagino = NULLAGINO;
1283 pag->pagl_leftrec = NULLAGINO;
1284 pag->pagl_rightrec = NULLAGINO;
1285 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1286 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1287 goto restart_pagno;
1292 * In a different AG from the parent.
1293 * See if the most recently allocated block has any free.
1295 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1296 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1297 XFS_LOOKUP_EQ, &i);
1298 if (error)
1299 goto error0;
1301 if (i == 1) {
1302 error = xfs_inobt_get_rec(cur, &rec, &j);
1303 if (error)
1304 goto error0;
1306 if (j == 1 && rec.ir_freecount > 0) {
1308 * The last chunk allocated in the group
1309 * still has a free inode.
1311 goto alloc_inode;
1317 * None left in the last group, search the whole AG
1319 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1320 if (error)
1321 goto error0;
1322 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1324 for (;;) {
1325 error = xfs_inobt_get_rec(cur, &rec, &i);
1326 if (error)
1327 goto error0;
1328 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1329 if (rec.ir_freecount > 0)
1330 break;
1331 error = xfs_btree_increment(cur, 0, &i);
1332 if (error)
1333 goto error0;
1334 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1337 alloc_inode:
1338 offset = xfs_inobt_first_free_inode(&rec);
1339 ASSERT(offset >= 0);
1340 ASSERT(offset < XFS_INODES_PER_CHUNK);
1341 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1342 XFS_INODES_PER_CHUNK) == 0);
1343 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1344 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1345 rec.ir_freecount--;
1346 error = xfs_inobt_update(cur, &rec);
1347 if (error)
1348 goto error0;
1349 be32_add_cpu(&agi->agi_freecount, -1);
1350 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1351 pag->pagi_freecount--;
1353 error = xfs_check_agi_freecount(cur, agi);
1354 if (error)
1355 goto error0;
1357 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1358 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1359 xfs_perag_put(pag);
1360 *inop = ino;
1361 return 0;
1362 error1:
1363 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1364 error0:
1365 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1366 xfs_perag_put(pag);
1367 return error;
1371 * Use the free inode btree to allocate an inode based on distance from the
1372 * parent. Note that the provided cursor may be deleted and replaced.
1374 STATIC int
1375 xfs_dialloc_ag_finobt_near(
1376 xfs_agino_t pagino,
1377 struct xfs_btree_cur **ocur,
1378 struct xfs_inobt_rec_incore *rec)
1380 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1381 struct xfs_btree_cur *rcur; /* right search cursor */
1382 struct xfs_inobt_rec_incore rrec;
1383 int error;
1384 int i, j;
1386 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1387 if (error)
1388 return error;
1390 if (i == 1) {
1391 error = xfs_inobt_get_rec(lcur, rec, &i);
1392 if (error)
1393 return error;
1394 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1397 * See if we've landed in the parent inode record. The finobt
1398 * only tracks chunks with at least one free inode, so record
1399 * existence is enough.
1401 if (pagino >= rec->ir_startino &&
1402 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1403 return 0;
1406 error = xfs_btree_dup_cursor(lcur, &rcur);
1407 if (error)
1408 return error;
1410 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1411 if (error)
1412 goto error_rcur;
1413 if (j == 1) {
1414 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1415 if (error)
1416 goto error_rcur;
1417 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1420 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1421 if (i == 1 && j == 1) {
1423 * Both the left and right records are valid. Choose the closer
1424 * inode chunk to the target.
1426 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1427 (rrec.ir_startino - pagino)) {
1428 *rec = rrec;
1429 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1430 *ocur = rcur;
1431 } else {
1432 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1434 } else if (j == 1) {
1435 /* only the right record is valid */
1436 *rec = rrec;
1437 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1438 *ocur = rcur;
1439 } else if (i == 1) {
1440 /* only the left record is valid */
1441 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1444 return 0;
1446 error_rcur:
1447 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1448 return error;
1452 * Use the free inode btree to find a free inode based on a newino hint. If
1453 * the hint is NULL, find the first free inode in the AG.
1455 STATIC int
1456 xfs_dialloc_ag_finobt_newino(
1457 struct xfs_agi *agi,
1458 struct xfs_btree_cur *cur,
1459 struct xfs_inobt_rec_incore *rec)
1461 int error;
1462 int i;
1464 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1465 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1466 XFS_LOOKUP_EQ, &i);
1467 if (error)
1468 return error;
1469 if (i == 1) {
1470 error = xfs_inobt_get_rec(cur, rec, &i);
1471 if (error)
1472 return error;
1473 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1474 return 0;
1479 * Find the first inode available in the AG.
1481 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1482 if (error)
1483 return error;
1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1486 error = xfs_inobt_get_rec(cur, rec, &i);
1487 if (error)
1488 return error;
1489 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1491 return 0;
1495 * Update the inobt based on a modification made to the finobt. Also ensure that
1496 * the records from both trees are equivalent post-modification.
1498 STATIC int
1499 xfs_dialloc_ag_update_inobt(
1500 struct xfs_btree_cur *cur, /* inobt cursor */
1501 struct xfs_inobt_rec_incore *frec, /* finobt record */
1502 int offset) /* inode offset */
1504 struct xfs_inobt_rec_incore rec;
1505 int error;
1506 int i;
1508 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1509 if (error)
1510 return error;
1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1513 error = xfs_inobt_get_rec(cur, &rec, &i);
1514 if (error)
1515 return error;
1516 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1517 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1518 XFS_INODES_PER_CHUNK) == 0);
1520 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1521 rec.ir_freecount--;
1523 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1524 (rec.ir_freecount == frec->ir_freecount));
1526 return xfs_inobt_update(cur, &rec);
1530 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1531 * back to the inobt search algorithm.
1533 * The caller selected an AG for us, and made sure that free inodes are
1534 * available.
1536 STATIC int
1537 xfs_dialloc_ag(
1538 struct xfs_trans *tp,
1539 struct xfs_buf *agbp,
1540 xfs_ino_t parent,
1541 xfs_ino_t *inop)
1543 struct xfs_mount *mp = tp->t_mountp;
1544 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1545 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1546 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1547 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1548 struct xfs_perag *pag;
1549 struct xfs_btree_cur *cur; /* finobt cursor */
1550 struct xfs_btree_cur *icur; /* inobt cursor */
1551 struct xfs_inobt_rec_incore rec;
1552 xfs_ino_t ino;
1553 int error;
1554 int offset;
1555 int i;
1557 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1558 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1560 pag = xfs_perag_get(mp, agno);
1563 * If pagino is 0 (this is the root inode allocation) use newino.
1564 * This must work because we've just allocated some.
1566 if (!pagino)
1567 pagino = be32_to_cpu(agi->agi_newino);
1569 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1571 error = xfs_check_agi_freecount(cur, agi);
1572 if (error)
1573 goto error_cur;
1576 * The search algorithm depends on whether we're in the same AG as the
1577 * parent. If so, find the closest available inode to the parent. If
1578 * not, consider the agi hint or find the first free inode in the AG.
1580 if (agno == pagno)
1581 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1582 else
1583 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1584 if (error)
1585 goto error_cur;
1587 offset = xfs_inobt_first_free_inode(&rec);
1588 ASSERT(offset >= 0);
1589 ASSERT(offset < XFS_INODES_PER_CHUNK);
1590 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1591 XFS_INODES_PER_CHUNK) == 0);
1592 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1595 * Modify or remove the finobt record.
1597 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1598 rec.ir_freecount--;
1599 if (rec.ir_freecount)
1600 error = xfs_inobt_update(cur, &rec);
1601 else
1602 error = xfs_btree_delete(cur, &i);
1603 if (error)
1604 goto error_cur;
1607 * The finobt has now been updated appropriately. We haven't updated the
1608 * agi and superblock yet, so we can create an inobt cursor and validate
1609 * the original freecount. If all is well, make the equivalent update to
1610 * the inobt using the finobt record and offset information.
1612 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1614 error = xfs_check_agi_freecount(icur, agi);
1615 if (error)
1616 goto error_icur;
1618 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1619 if (error)
1620 goto error_icur;
1623 * Both trees have now been updated. We must update the perag and
1624 * superblock before we can check the freecount for each btree.
1626 be32_add_cpu(&agi->agi_freecount, -1);
1627 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1628 pag->pagi_freecount--;
1630 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1632 error = xfs_check_agi_freecount(icur, agi);
1633 if (error)
1634 goto error_icur;
1635 error = xfs_check_agi_freecount(cur, agi);
1636 if (error)
1637 goto error_icur;
1639 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1640 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1641 xfs_perag_put(pag);
1642 *inop = ino;
1643 return 0;
1645 error_icur:
1646 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1647 error_cur:
1648 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1649 xfs_perag_put(pag);
1650 return error;
1654 * Allocate an inode on disk.
1656 * Mode is used to tell whether the new inode will need space, and whether it
1657 * is a directory.
1659 * This function is designed to be called twice if it has to do an allocation
1660 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1661 * If an inode is available without having to performn an allocation, an inode
1662 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1663 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1664 * The caller should then commit the current transaction, allocate a
1665 * new transaction, and call xfs_dialloc() again, passing in the previous value
1666 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1667 * buffer is locked across the two calls, the second call is guaranteed to have
1668 * a free inode available.
1670 * Once we successfully pick an inode its number is returned and the on-disk
1671 * data structures are updated. The inode itself is not read in, since doing so
1672 * would break ordering constraints with xfs_reclaim.
1675 xfs_dialloc(
1676 struct xfs_trans *tp,
1677 xfs_ino_t parent,
1678 umode_t mode,
1679 struct xfs_buf **IO_agbp,
1680 xfs_ino_t *inop)
1682 struct xfs_mount *mp = tp->t_mountp;
1683 struct xfs_buf *agbp;
1684 xfs_agnumber_t agno;
1685 int error;
1686 int ialloced;
1687 int noroom = 0;
1688 xfs_agnumber_t start_agno;
1689 struct xfs_perag *pag;
1690 int okalloc = 1;
1692 if (*IO_agbp) {
1694 * If the caller passes in a pointer to the AGI buffer,
1695 * continue where we left off before. In this case, we
1696 * know that the allocation group has free inodes.
1698 agbp = *IO_agbp;
1699 goto out_alloc;
1703 * We do not have an agbp, so select an initial allocation
1704 * group for inode allocation.
1706 start_agno = xfs_ialloc_ag_select(tp, parent, mode);
1707 if (start_agno == NULLAGNUMBER) {
1708 *inop = NULLFSINO;
1709 return 0;
1713 * If we have already hit the ceiling of inode blocks then clear
1714 * okalloc so we scan all available agi structures for a free
1715 * inode.
1717 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1718 * which will sacrifice the preciseness but improve the performance.
1720 if (mp->m_maxicount &&
1721 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1722 > mp->m_maxicount) {
1723 noroom = 1;
1724 okalloc = 0;
1728 * Loop until we find an allocation group that either has free inodes
1729 * or in which we can allocate some inodes. Iterate through the
1730 * allocation groups upward, wrapping at the end.
1732 agno = start_agno;
1733 for (;;) {
1734 pag = xfs_perag_get(mp, agno);
1735 if (!pag->pagi_inodeok) {
1736 xfs_ialloc_next_ag(mp);
1737 goto nextag;
1740 if (!pag->pagi_init) {
1741 error = xfs_ialloc_pagi_init(mp, tp, agno);
1742 if (error)
1743 goto out_error;
1747 * Do a first racy fast path check if this AG is usable.
1749 if (!pag->pagi_freecount && !okalloc)
1750 goto nextag;
1753 * Then read in the AGI buffer and recheck with the AGI buffer
1754 * lock held.
1756 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1757 if (error)
1758 goto out_error;
1760 if (pag->pagi_freecount) {
1761 xfs_perag_put(pag);
1762 goto out_alloc;
1765 if (!okalloc)
1766 goto nextag_relse_buffer;
1769 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1770 if (error) {
1771 xfs_trans_brelse(tp, agbp);
1773 if (error != -ENOSPC)
1774 goto out_error;
1776 xfs_perag_put(pag);
1777 *inop = NULLFSINO;
1778 return 0;
1781 if (ialloced) {
1783 * We successfully allocated some inodes, return
1784 * the current context to the caller so that it
1785 * can commit the current transaction and call
1786 * us again where we left off.
1788 ASSERT(pag->pagi_freecount > 0);
1789 xfs_perag_put(pag);
1791 *IO_agbp = agbp;
1792 *inop = NULLFSINO;
1793 return 0;
1796 nextag_relse_buffer:
1797 xfs_trans_brelse(tp, agbp);
1798 nextag:
1799 xfs_perag_put(pag);
1800 if (++agno == mp->m_sb.sb_agcount)
1801 agno = 0;
1802 if (agno == start_agno) {
1803 *inop = NULLFSINO;
1804 return noroom ? -ENOSPC : 0;
1808 out_alloc:
1809 *IO_agbp = NULL;
1810 return xfs_dialloc_ag(tp, agbp, parent, inop);
1811 out_error:
1812 xfs_perag_put(pag);
1813 return error;
1817 * Free the blocks of an inode chunk. We must consider that the inode chunk
1818 * might be sparse and only free the regions that are allocated as part of the
1819 * chunk.
1821 STATIC void
1822 xfs_difree_inode_chunk(
1823 struct xfs_mount *mp,
1824 xfs_agnumber_t agno,
1825 struct xfs_inobt_rec_incore *rec,
1826 struct xfs_defer_ops *dfops)
1828 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1829 int startidx, endidx;
1830 int nextbit;
1831 xfs_agblock_t agbno;
1832 int contigblk;
1833 struct xfs_owner_info oinfo;
1834 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1835 xfs_rmap_ag_owner(&oinfo, XFS_RMAP_OWN_INODES);
1837 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1838 /* not sparse, calculate extent info directly */
1839 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
1840 mp->m_ialloc_blks, &oinfo);
1841 return;
1844 /* holemask is only 16-bits (fits in an unsigned long) */
1845 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1846 holemask[0] = rec->ir_holemask;
1849 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1850 * holemask and convert the start/end index of each range to an extent.
1851 * We start with the start and end index both pointing at the first 0 in
1852 * the mask.
1854 startidx = endidx = find_first_zero_bit(holemask,
1855 XFS_INOBT_HOLEMASK_BITS);
1856 nextbit = startidx + 1;
1857 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1858 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1859 nextbit);
1861 * If the next zero bit is contiguous, update the end index of
1862 * the current range and continue.
1864 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1865 nextbit == endidx + 1) {
1866 endidx = nextbit;
1867 goto next;
1871 * nextbit is not contiguous with the current end index. Convert
1872 * the current start/end to an extent and add it to the free
1873 * list.
1875 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1876 mp->m_sb.sb_inopblock;
1877 contigblk = ((endidx - startidx + 1) *
1878 XFS_INODES_PER_HOLEMASK_BIT) /
1879 mp->m_sb.sb_inopblock;
1881 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1882 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
1883 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
1884 contigblk, &oinfo);
1886 /* reset range to current bit and carry on... */
1887 startidx = endidx = nextbit;
1889 next:
1890 nextbit++;
1894 STATIC int
1895 xfs_difree_inobt(
1896 struct xfs_mount *mp,
1897 struct xfs_trans *tp,
1898 struct xfs_buf *agbp,
1899 xfs_agino_t agino,
1900 struct xfs_defer_ops *dfops,
1901 struct xfs_icluster *xic,
1902 struct xfs_inobt_rec_incore *orec)
1904 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1905 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1906 struct xfs_perag *pag;
1907 struct xfs_btree_cur *cur;
1908 struct xfs_inobt_rec_incore rec;
1909 int ilen;
1910 int error;
1911 int i;
1912 int off;
1914 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1915 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1918 * Initialize the cursor.
1920 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1922 error = xfs_check_agi_freecount(cur, agi);
1923 if (error)
1924 goto error0;
1927 * Look for the entry describing this inode.
1929 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1930 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1931 __func__, error);
1932 goto error0;
1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1935 error = xfs_inobt_get_rec(cur, &rec, &i);
1936 if (error) {
1937 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1938 __func__, error);
1939 goto error0;
1941 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1943 * Get the offset in the inode chunk.
1945 off = agino - rec.ir_startino;
1946 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1947 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1949 * Mark the inode free & increment the count.
1951 rec.ir_free |= XFS_INOBT_MASK(off);
1952 rec.ir_freecount++;
1955 * When an inode chunk is free, it becomes eligible for removal. Don't
1956 * remove the chunk if the block size is large enough for multiple inode
1957 * chunks (that might not be free).
1959 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1960 rec.ir_free == XFS_INOBT_ALL_FREE &&
1961 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
1962 xic->deleted = true;
1963 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1964 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1967 * Remove the inode cluster from the AGI B+Tree, adjust the
1968 * AGI and Superblock inode counts, and mark the disk space
1969 * to be freed when the transaction is committed.
1971 ilen = rec.ir_freecount;
1972 be32_add_cpu(&agi->agi_count, -ilen);
1973 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1974 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1975 pag = xfs_perag_get(mp, agno);
1976 pag->pagi_freecount -= ilen - 1;
1977 xfs_perag_put(pag);
1978 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1979 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1981 if ((error = xfs_btree_delete(cur, &i))) {
1982 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1983 __func__, error);
1984 goto error0;
1987 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1988 } else {
1989 xic->deleted = false;
1991 error = xfs_inobt_update(cur, &rec);
1992 if (error) {
1993 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1994 __func__, error);
1995 goto error0;
1999 * Change the inode free counts and log the ag/sb changes.
2001 be32_add_cpu(&agi->agi_freecount, 1);
2002 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
2003 pag = xfs_perag_get(mp, agno);
2004 pag->pagi_freecount++;
2005 xfs_perag_put(pag);
2006 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2009 error = xfs_check_agi_freecount(cur, agi);
2010 if (error)
2011 goto error0;
2013 *orec = rec;
2014 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2015 return 0;
2017 error0:
2018 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2019 return error;
2023 * Free an inode in the free inode btree.
2025 STATIC int
2026 xfs_difree_finobt(
2027 struct xfs_mount *mp,
2028 struct xfs_trans *tp,
2029 struct xfs_buf *agbp,
2030 xfs_agino_t agino,
2031 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2033 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2034 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2035 struct xfs_btree_cur *cur;
2036 struct xfs_inobt_rec_incore rec;
2037 int offset = agino - ibtrec->ir_startino;
2038 int error;
2039 int i;
2041 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2043 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2044 if (error)
2045 goto error;
2046 if (i == 0) {
2048 * If the record does not exist in the finobt, we must have just
2049 * freed an inode in a previously fully allocated chunk. If not,
2050 * something is out of sync.
2052 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
2054 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2055 ibtrec->ir_count,
2056 ibtrec->ir_freecount,
2057 ibtrec->ir_free, &i);
2058 if (error)
2059 goto error;
2060 ASSERT(i == 1);
2062 goto out;
2066 * Read and update the existing record. We could just copy the ibtrec
2067 * across here, but that would defeat the purpose of having redundant
2068 * metadata. By making the modifications independently, we can catch
2069 * corruptions that we wouldn't see if we just copied from one record
2070 * to another.
2072 error = xfs_inobt_get_rec(cur, &rec, &i);
2073 if (error)
2074 goto error;
2075 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
2077 rec.ir_free |= XFS_INOBT_MASK(offset);
2078 rec.ir_freecount++;
2080 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
2081 (rec.ir_freecount == ibtrec->ir_freecount),
2082 error);
2085 * The content of inobt records should always match between the inobt
2086 * and finobt. The lifecycle of records in the finobt is different from
2087 * the inobt in that the finobt only tracks records with at least one
2088 * free inode. Hence, if all of the inodes are free and we aren't
2089 * keeping inode chunks permanently on disk, remove the record.
2090 * Otherwise, update the record with the new information.
2092 * Note that we currently can't free chunks when the block size is large
2093 * enough for multiple chunks. Leave the finobt record to remain in sync
2094 * with the inobt.
2096 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2097 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
2098 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2099 error = xfs_btree_delete(cur, &i);
2100 if (error)
2101 goto error;
2102 ASSERT(i == 1);
2103 } else {
2104 error = xfs_inobt_update(cur, &rec);
2105 if (error)
2106 goto error;
2109 out:
2110 error = xfs_check_agi_freecount(cur, agi);
2111 if (error)
2112 goto error;
2114 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2115 return 0;
2117 error:
2118 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2119 return error;
2123 * Free disk inode. Carefully avoids touching the incore inode, all
2124 * manipulations incore are the caller's responsibility.
2125 * The on-disk inode is not changed by this operation, only the
2126 * btree (free inode mask) is changed.
2129 xfs_difree(
2130 struct xfs_trans *tp, /* transaction pointer */
2131 xfs_ino_t inode, /* inode to be freed */
2132 struct xfs_defer_ops *dfops, /* extents to free */
2133 struct xfs_icluster *xic) /* cluster info if deleted */
2135 /* REFERENCED */
2136 xfs_agblock_t agbno; /* block number containing inode */
2137 struct xfs_buf *agbp; /* buffer for allocation group header */
2138 xfs_agino_t agino; /* allocation group inode number */
2139 xfs_agnumber_t agno; /* allocation group number */
2140 int error; /* error return value */
2141 struct xfs_mount *mp; /* mount structure for filesystem */
2142 struct xfs_inobt_rec_incore rec;/* btree record */
2144 mp = tp->t_mountp;
2147 * Break up inode number into its components.
2149 agno = XFS_INO_TO_AGNO(mp, inode);
2150 if (agno >= mp->m_sb.sb_agcount) {
2151 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2152 __func__, agno, mp->m_sb.sb_agcount);
2153 ASSERT(0);
2154 return -EINVAL;
2156 agino = XFS_INO_TO_AGINO(mp, inode);
2157 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2158 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2159 __func__, (unsigned long long)inode,
2160 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2161 ASSERT(0);
2162 return -EINVAL;
2164 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2165 if (agbno >= mp->m_sb.sb_agblocks) {
2166 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2167 __func__, agbno, mp->m_sb.sb_agblocks);
2168 ASSERT(0);
2169 return -EINVAL;
2172 * Get the allocation group header.
2174 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2175 if (error) {
2176 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2177 __func__, error);
2178 return error;
2182 * Fix up the inode allocation btree.
2184 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2185 if (error)
2186 goto error0;
2189 * Fix up the free inode btree.
2191 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2192 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2193 if (error)
2194 goto error0;
2197 return 0;
2199 error0:
2200 return error;
2203 STATIC int
2204 xfs_imap_lookup(
2205 struct xfs_mount *mp,
2206 struct xfs_trans *tp,
2207 xfs_agnumber_t agno,
2208 xfs_agino_t agino,
2209 xfs_agblock_t agbno,
2210 xfs_agblock_t *chunk_agbno,
2211 xfs_agblock_t *offset_agbno,
2212 int flags)
2214 struct xfs_inobt_rec_incore rec;
2215 struct xfs_btree_cur *cur;
2216 struct xfs_buf *agbp;
2217 int error;
2218 int i;
2220 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2221 if (error) {
2222 xfs_alert(mp,
2223 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2224 __func__, error, agno);
2225 return error;
2229 * Lookup the inode record for the given agino. If the record cannot be
2230 * found, then it's an invalid inode number and we should abort. Once
2231 * we have a record, we need to ensure it contains the inode number
2232 * we are looking up.
2234 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
2235 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
2236 if (!error) {
2237 if (i)
2238 error = xfs_inobt_get_rec(cur, &rec, &i);
2239 if (!error && i == 0)
2240 error = -EINVAL;
2243 xfs_trans_brelse(tp, agbp);
2244 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
2245 if (error)
2246 return error;
2248 /* check that the returned record contains the required inode */
2249 if (rec.ir_startino > agino ||
2250 rec.ir_startino + mp->m_ialloc_inos <= agino)
2251 return -EINVAL;
2253 /* for untrusted inodes check it is allocated first */
2254 if ((flags & XFS_IGET_UNTRUSTED) &&
2255 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2256 return -EINVAL;
2258 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2259 *offset_agbno = agbno - *chunk_agbno;
2260 return 0;
2264 * Return the location of the inode in imap, for mapping it into a buffer.
2267 xfs_imap(
2268 xfs_mount_t *mp, /* file system mount structure */
2269 xfs_trans_t *tp, /* transaction pointer */
2270 xfs_ino_t ino, /* inode to locate */
2271 struct xfs_imap *imap, /* location map structure */
2272 uint flags) /* flags for inode btree lookup */
2274 xfs_agblock_t agbno; /* block number of inode in the alloc group */
2275 xfs_agino_t agino; /* inode number within alloc group */
2276 xfs_agnumber_t agno; /* allocation group number */
2277 int blks_per_cluster; /* num blocks per inode cluster */
2278 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
2279 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
2280 int error; /* error code */
2281 int offset; /* index of inode in its buffer */
2282 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
2284 ASSERT(ino != NULLFSINO);
2287 * Split up the inode number into its parts.
2289 agno = XFS_INO_TO_AGNO(mp, ino);
2290 agino = XFS_INO_TO_AGINO(mp, ino);
2291 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2292 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2293 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2294 #ifdef DEBUG
2296 * Don't output diagnostic information for untrusted inodes
2297 * as they can be invalid without implying corruption.
2299 if (flags & XFS_IGET_UNTRUSTED)
2300 return -EINVAL;
2301 if (agno >= mp->m_sb.sb_agcount) {
2302 xfs_alert(mp,
2303 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2304 __func__, agno, mp->m_sb.sb_agcount);
2306 if (agbno >= mp->m_sb.sb_agblocks) {
2307 xfs_alert(mp,
2308 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2309 __func__, (unsigned long long)agbno,
2310 (unsigned long)mp->m_sb.sb_agblocks);
2312 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2313 xfs_alert(mp,
2314 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2315 __func__, ino,
2316 XFS_AGINO_TO_INO(mp, agno, agino));
2318 xfs_stack_trace();
2319 #endif /* DEBUG */
2320 return -EINVAL;
2323 blks_per_cluster = xfs_icluster_size_fsb(mp);
2326 * For bulkstat and handle lookups, we have an untrusted inode number
2327 * that we have to verify is valid. We cannot do this just by reading
2328 * the inode buffer as it may have been unlinked and removed leaving
2329 * inodes in stale state on disk. Hence we have to do a btree lookup
2330 * in all cases where an untrusted inode number is passed.
2332 if (flags & XFS_IGET_UNTRUSTED) {
2333 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2334 &chunk_agbno, &offset_agbno, flags);
2335 if (error)
2336 return error;
2337 goto out_map;
2341 * If the inode cluster size is the same as the blocksize or
2342 * smaller we get to the buffer by simple arithmetics.
2344 if (blks_per_cluster == 1) {
2345 offset = XFS_INO_TO_OFFSET(mp, ino);
2346 ASSERT(offset < mp->m_sb.sb_inopblock);
2348 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2349 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2350 imap->im_boffset = (unsigned short)(offset <<
2351 mp->m_sb.sb_inodelog);
2352 return 0;
2356 * If the inode chunks are aligned then use simple maths to
2357 * find the location. Otherwise we have to do a btree
2358 * lookup to find the location.
2360 if (mp->m_inoalign_mask) {
2361 offset_agbno = agbno & mp->m_inoalign_mask;
2362 chunk_agbno = agbno - offset_agbno;
2363 } else {
2364 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2365 &chunk_agbno, &offset_agbno, flags);
2366 if (error)
2367 return error;
2370 out_map:
2371 ASSERT(agbno >= chunk_agbno);
2372 cluster_agbno = chunk_agbno +
2373 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2374 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2375 XFS_INO_TO_OFFSET(mp, ino);
2377 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2378 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2379 imap->im_boffset = (unsigned short)(offset << mp->m_sb.sb_inodelog);
2382 * If the inode number maps to a block outside the bounds
2383 * of the file system then return NULL rather than calling
2384 * read_buf and panicing when we get an error from the
2385 * driver.
2387 if ((imap->im_blkno + imap->im_len) >
2388 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2389 xfs_alert(mp,
2390 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2391 __func__, (unsigned long long) imap->im_blkno,
2392 (unsigned long long) imap->im_len,
2393 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2394 return -EINVAL;
2396 return 0;
2400 * Compute and fill in value of m_in_maxlevels.
2402 void
2403 xfs_ialloc_compute_maxlevels(
2404 xfs_mount_t *mp) /* file system mount structure */
2406 uint inodes;
2408 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2409 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2410 inodes);
2414 * Log specified fields for the ag hdr (inode section). The growth of the agi
2415 * structure over time requires that we interpret the buffer as two logical
2416 * regions delineated by the end of the unlinked list. This is due to the size
2417 * of the hash table and its location in the middle of the agi.
2419 * For example, a request to log a field before agi_unlinked and a field after
2420 * agi_unlinked could cause us to log the entire hash table and use an excessive
2421 * amount of log space. To avoid this behavior, log the region up through
2422 * agi_unlinked in one call and the region after agi_unlinked through the end of
2423 * the structure in another.
2425 void
2426 xfs_ialloc_log_agi(
2427 xfs_trans_t *tp, /* transaction pointer */
2428 xfs_buf_t *bp, /* allocation group header buffer */
2429 int fields) /* bitmask of fields to log */
2431 int first; /* first byte number */
2432 int last; /* last byte number */
2433 static const short offsets[] = { /* field starting offsets */
2434 /* keep in sync with bit definitions */
2435 offsetof(xfs_agi_t, agi_magicnum),
2436 offsetof(xfs_agi_t, agi_versionnum),
2437 offsetof(xfs_agi_t, agi_seqno),
2438 offsetof(xfs_agi_t, agi_length),
2439 offsetof(xfs_agi_t, agi_count),
2440 offsetof(xfs_agi_t, agi_root),
2441 offsetof(xfs_agi_t, agi_level),
2442 offsetof(xfs_agi_t, agi_freecount),
2443 offsetof(xfs_agi_t, agi_newino),
2444 offsetof(xfs_agi_t, agi_dirino),
2445 offsetof(xfs_agi_t, agi_unlinked),
2446 offsetof(xfs_agi_t, agi_free_root),
2447 offsetof(xfs_agi_t, agi_free_level),
2448 sizeof(xfs_agi_t)
2450 #ifdef DEBUG
2451 xfs_agi_t *agi; /* allocation group header */
2453 agi = XFS_BUF_TO_AGI(bp);
2454 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2455 #endif
2458 * Compute byte offsets for the first and last fields in the first
2459 * region and log the agi buffer. This only logs up through
2460 * agi_unlinked.
2462 if (fields & XFS_AGI_ALL_BITS_R1) {
2463 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2464 &first, &last);
2465 xfs_trans_log_buf(tp, bp, first, last);
2469 * Mask off the bits in the first region and calculate the first and
2470 * last field offsets for any bits in the second region.
2472 fields &= ~XFS_AGI_ALL_BITS_R1;
2473 if (fields) {
2474 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2475 &first, &last);
2476 xfs_trans_log_buf(tp, bp, first, last);
2480 #ifdef DEBUG
2481 STATIC void
2482 xfs_check_agi_unlinked(
2483 struct xfs_agi *agi)
2485 int i;
2487 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2488 ASSERT(agi->agi_unlinked[i]);
2490 #else
2491 #define xfs_check_agi_unlinked(agi)
2492 #endif
2494 static xfs_failaddr_t
2495 xfs_agi_verify(
2496 struct xfs_buf *bp)
2498 struct xfs_mount *mp = bp->b_target->bt_mount;
2499 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
2501 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2502 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2503 return __this_address;
2504 if (!xfs_log_check_lsn(mp,
2505 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
2506 return __this_address;
2510 * Validate the magic number of the agi block.
2512 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2513 return __this_address;
2514 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2515 return __this_address;
2517 if (be32_to_cpu(agi->agi_level) < 1 ||
2518 be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2519 return __this_address;
2521 if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
2522 (be32_to_cpu(agi->agi_free_level) < 1 ||
2523 be32_to_cpu(agi->agi_free_level) > XFS_BTREE_MAXLEVELS))
2524 return __this_address;
2527 * during growfs operations, the perag is not fully initialised,
2528 * so we can't use it for any useful checking. growfs ensures we can't
2529 * use it by using uncached buffers that don't have the perag attached
2530 * so we can detect and avoid this problem.
2532 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2533 return __this_address;
2535 xfs_check_agi_unlinked(agi);
2536 return NULL;
2539 static void
2540 xfs_agi_read_verify(
2541 struct xfs_buf *bp)
2543 struct xfs_mount *mp = bp->b_target->bt_mount;
2544 xfs_failaddr_t fa;
2546 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2547 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2548 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
2549 else {
2550 fa = xfs_agi_verify(bp);
2551 if (XFS_TEST_ERROR(fa, mp, XFS_ERRTAG_IALLOC_READ_AGI))
2552 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2556 static void
2557 xfs_agi_write_verify(
2558 struct xfs_buf *bp)
2560 struct xfs_mount *mp = bp->b_target->bt_mount;
2561 struct xfs_buf_log_item *bip = bp->b_log_item;
2562 xfs_failaddr_t fa;
2564 fa = xfs_agi_verify(bp);
2565 if (fa) {
2566 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
2567 return;
2570 if (!xfs_sb_version_hascrc(&mp->m_sb))
2571 return;
2573 if (bip)
2574 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2575 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2578 const struct xfs_buf_ops xfs_agi_buf_ops = {
2579 .name = "xfs_agi",
2580 .verify_read = xfs_agi_read_verify,
2581 .verify_write = xfs_agi_write_verify,
2582 .verify_struct = xfs_agi_verify,
2586 * Read in the allocation group header (inode allocation section)
2589 xfs_read_agi(
2590 struct xfs_mount *mp, /* file system mount structure */
2591 struct xfs_trans *tp, /* transaction pointer */
2592 xfs_agnumber_t agno, /* allocation group number */
2593 struct xfs_buf **bpp) /* allocation group hdr buf */
2595 int error;
2597 trace_xfs_read_agi(mp, agno);
2599 ASSERT(agno != NULLAGNUMBER);
2600 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2601 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2602 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2603 if (error)
2604 return error;
2605 if (tp)
2606 xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_AGI_BUF);
2608 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2609 return 0;
2613 xfs_ialloc_read_agi(
2614 struct xfs_mount *mp, /* file system mount structure */
2615 struct xfs_trans *tp, /* transaction pointer */
2616 xfs_agnumber_t agno, /* allocation group number */
2617 struct xfs_buf **bpp) /* allocation group hdr buf */
2619 struct xfs_agi *agi; /* allocation group header */
2620 struct xfs_perag *pag; /* per allocation group data */
2621 int error;
2623 trace_xfs_ialloc_read_agi(mp, agno);
2625 error = xfs_read_agi(mp, tp, agno, bpp);
2626 if (error)
2627 return error;
2629 agi = XFS_BUF_TO_AGI(*bpp);
2630 pag = xfs_perag_get(mp, agno);
2631 if (!pag->pagi_init) {
2632 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2633 pag->pagi_count = be32_to_cpu(agi->agi_count);
2634 pag->pagi_init = 1;
2638 * It's possible for these to be out of sync if
2639 * we are in the middle of a forced shutdown.
2641 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2642 XFS_FORCED_SHUTDOWN(mp));
2643 xfs_perag_put(pag);
2644 return 0;
2648 * Read in the agi to initialise the per-ag data in the mount structure
2651 xfs_ialloc_pagi_init(
2652 xfs_mount_t *mp, /* file system mount structure */
2653 xfs_trans_t *tp, /* transaction pointer */
2654 xfs_agnumber_t agno) /* allocation group number */
2656 xfs_buf_t *bp = NULL;
2657 int error;
2659 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2660 if (error)
2661 return error;
2662 if (bp)
2663 xfs_trans_brelse(tp, bp);
2664 return 0;
2667 /* Calculate the first and last possible inode number in an AG. */
2668 void
2669 xfs_ialloc_agino_range(
2670 struct xfs_mount *mp,
2671 xfs_agnumber_t agno,
2672 xfs_agino_t *first,
2673 xfs_agino_t *last)
2675 xfs_agblock_t bno;
2676 xfs_agblock_t eoag;
2678 eoag = xfs_ag_block_count(mp, agno);
2681 * Calculate the first inode, which will be in the first
2682 * cluster-aligned block after the AGFL.
2684 bno = round_up(XFS_AGFL_BLOCK(mp) + 1,
2685 xfs_ialloc_cluster_alignment(mp));
2686 *first = XFS_OFFBNO_TO_AGINO(mp, bno, 0);
2689 * Calculate the last inode, which will be at the end of the
2690 * last (aligned) cluster that can be allocated in the AG.
2692 bno = round_down(eoag, xfs_ialloc_cluster_alignment(mp));
2693 *last = XFS_OFFBNO_TO_AGINO(mp, bno, 0) - 1;
2697 * Verify that an AG inode number pointer neither points outside the AG
2698 * nor points at static metadata.
2700 bool
2701 xfs_verify_agino(
2702 struct xfs_mount *mp,
2703 xfs_agnumber_t agno,
2704 xfs_agino_t agino)
2706 xfs_agino_t first;
2707 xfs_agino_t last;
2709 xfs_ialloc_agino_range(mp, agno, &first, &last);
2710 return agino >= first && agino <= last;
2714 * Verify that an FS inode number pointer neither points outside the
2715 * filesystem nor points at static AG metadata.
2717 bool
2718 xfs_verify_ino(
2719 struct xfs_mount *mp,
2720 xfs_ino_t ino)
2722 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ino);
2723 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
2725 if (agno >= mp->m_sb.sb_agcount)
2726 return false;
2727 if (XFS_AGINO_TO_INO(mp, agno, agino) != ino)
2728 return false;
2729 return xfs_verify_agino(mp, agno, agino);
2732 /* Is this an internal inode number? */
2733 bool
2734 xfs_internal_inum(
2735 struct xfs_mount *mp,
2736 xfs_ino_t ino)
2738 return ino == mp->m_sb.sb_rbmino || ino == mp->m_sb.sb_rsumino ||
2739 (xfs_sb_version_hasquota(&mp->m_sb) &&
2740 xfs_is_quota_inode(&mp->m_sb, ino));
2744 * Verify that a directory entry's inode number doesn't point at an internal
2745 * inode, empty space, or static AG metadata.
2747 bool
2748 xfs_verify_dir_ino(
2749 struct xfs_mount *mp,
2750 xfs_ino_t ino)
2752 if (xfs_internal_inum(mp, ino))
2753 return false;
2754 return xfs_verify_ino(mp, ino);
2757 /* Is there an inode record covering a given range of inode numbers? */
2759 xfs_ialloc_has_inode_record(
2760 struct xfs_btree_cur *cur,
2761 xfs_agino_t low,
2762 xfs_agino_t high,
2763 bool *exists)
2765 struct xfs_inobt_rec_incore irec;
2766 xfs_agino_t agino;
2767 uint16_t holemask;
2768 int has_record;
2769 int i;
2770 int error;
2772 *exists = false;
2773 error = xfs_inobt_lookup(cur, low, XFS_LOOKUP_LE, &has_record);
2774 while (error == 0 && has_record) {
2775 error = xfs_inobt_get_rec(cur, &irec, &has_record);
2776 if (error || irec.ir_startino > high)
2777 break;
2779 agino = irec.ir_startino;
2780 holemask = irec.ir_holemask;
2781 for (i = 0; i < XFS_INOBT_HOLEMASK_BITS; holemask >>= 1,
2782 i++, agino += XFS_INODES_PER_HOLEMASK_BIT) {
2783 if (holemask & 1)
2784 continue;
2785 if (agino + XFS_INODES_PER_HOLEMASK_BIT > low &&
2786 agino <= high) {
2787 *exists = true;
2788 return 0;
2792 error = xfs_btree_increment(cur, 0, &has_record);
2794 return error;
2797 /* Is there an inode record covering a given extent? */
2799 xfs_ialloc_has_inodes_at_extent(
2800 struct xfs_btree_cur *cur,
2801 xfs_agblock_t bno,
2802 xfs_extlen_t len,
2803 bool *exists)
2805 xfs_agino_t low;
2806 xfs_agino_t high;
2808 low = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno, 0);
2809 high = XFS_OFFBNO_TO_AGINO(cur->bc_mp, bno + len, 0) - 1;
2811 return xfs_ialloc_has_inode_record(cur, low, high, exists);
2814 struct xfs_ialloc_count_inodes {
2815 xfs_agino_t count;
2816 xfs_agino_t freecount;
2819 /* Record inode counts across all inobt records. */
2820 STATIC int
2821 xfs_ialloc_count_inodes_rec(
2822 struct xfs_btree_cur *cur,
2823 union xfs_btree_rec *rec,
2824 void *priv)
2826 struct xfs_inobt_rec_incore irec;
2827 struct xfs_ialloc_count_inodes *ci = priv;
2829 xfs_inobt_btrec_to_irec(cur->bc_mp, rec, &irec);
2830 ci->count += irec.ir_count;
2831 ci->freecount += irec.ir_freecount;
2833 return 0;
2836 /* Count allocated and free inodes under an inobt. */
2838 xfs_ialloc_count_inodes(
2839 struct xfs_btree_cur *cur,
2840 xfs_agino_t *count,
2841 xfs_agino_t *freecount)
2843 struct xfs_ialloc_count_inodes ci = {0};
2844 int error;
2846 ASSERT(cur->bc_btnum == XFS_BTNUM_INO);
2847 error = xfs_btree_query_all(cur, xfs_ialloc_count_inodes_rec, &ci);
2848 if (error)
2849 return error;
2851 *count = ci.count;
2852 *freecount = ci.freecount;
2853 return 0;