[PATCH] i386: add memory clobbers to syscall macros
[linux/fpc-iii.git] / drivers / net / fec.c
blob85504fb900dab5a62402a2ddc60e7ec5febe52e3
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
16 * small packets.
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282.
22 * Copyright (c) 2001-2004 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2005 Macq Electronique SA.
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/string.h>
32 #include <linux/ptrace.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/skbuff.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
47 #include <asm/irq.h>
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 #include <asm/pgtable.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x)
54 #include <asm/coldfire.h>
55 #include <asm/mcfsim.h>
56 #include "fec.h"
57 #else
58 #include <asm/8xx_immap.h>
59 #include <asm/mpc8xx.h>
60 #include "commproc.h"
61 #endif
63 #if defined(CONFIG_FEC2)
64 #define FEC_MAX_PORTS 2
65 #else
66 #define FEC_MAX_PORTS 1
67 #endif
70 * Define the fixed address of the FEC hardware.
72 static unsigned int fec_hw[] = {
73 #if defined(CONFIG_M5272)
74 (MCF_MBAR + 0x840),
75 #elif defined(CONFIG_M527x)
76 (MCF_MBAR + 0x1000),
77 (MCF_MBAR + 0x1800),
78 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
79 (MCF_MBAR + 0x1000),
80 #else
81 &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec),
82 #endif
85 static unsigned char fec_mac_default[] = {
86 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
90 * Some hardware gets it MAC address out of local flash memory.
91 * if this is non-zero then assume it is the address to get MAC from.
93 #if defined(CONFIG_NETtel)
94 #define FEC_FLASHMAC 0xf0006006
95 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
96 #define FEC_FLASHMAC 0xf0006000
97 #elif defined (CONFIG_MTD_KeyTechnology)
98 #define FEC_FLASHMAC 0xffe04000
99 #elif defined(CONFIG_CANCam)
100 #define FEC_FLASHMAC 0xf0020000
101 #elif defined (CONFIG_M5272C3)
102 #define FEC_FLASHMAC (0xffe04000 + 4)
103 #elif defined(CONFIG_MOD5272)
104 #define FEC_FLASHMAC 0xffc0406b
105 #else
106 #define FEC_FLASHMAC 0
107 #endif
109 /* Forward declarations of some structures to support different PHYs
112 typedef struct {
113 uint mii_data;
114 void (*funct)(uint mii_reg, struct net_device *dev);
115 } phy_cmd_t;
117 typedef struct {
118 uint id;
119 char *name;
121 const phy_cmd_t *config;
122 const phy_cmd_t *startup;
123 const phy_cmd_t *ack_int;
124 const phy_cmd_t *shutdown;
125 } phy_info_t;
127 /* The number of Tx and Rx buffers. These are allocated from the page
128 * pool. The code may assume these are power of two, so it it best
129 * to keep them that size.
130 * We don't need to allocate pages for the transmitter. We just use
131 * the skbuffer directly.
133 #define FEC_ENET_RX_PAGES 8
134 #define FEC_ENET_RX_FRSIZE 2048
135 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
136 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
137 #define FEC_ENET_TX_FRSIZE 2048
138 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
139 #define TX_RING_SIZE 16 /* Must be power of two */
140 #define TX_RING_MOD_MASK 15 /* for this to work */
142 /* Interrupt events/masks.
144 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
145 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
146 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
147 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
148 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
149 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
150 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
151 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
152 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
153 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
155 /* The FEC stores dest/src/type, data, and checksum for receive packets.
157 #define PKT_MAXBUF_SIZE 1518
158 #define PKT_MINBUF_SIZE 64
159 #define PKT_MAXBLR_SIZE 1520
163 * The 5270/5271/5280/5282 RX control register also contains maximum frame
164 * size bits. Other FEC hardware does not, so we need to take that into
165 * account when setting it.
167 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
168 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
169 #else
170 #define OPT_FRAME_SIZE 0
171 #endif
173 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
174 * tx_bd_base always point to the base of the buffer descriptors. The
175 * cur_rx and cur_tx point to the currently available buffer.
176 * The dirty_tx tracks the current buffer that is being sent by the
177 * controller. The cur_tx and dirty_tx are equal under both completely
178 * empty and completely full conditions. The empty/ready indicator in
179 * the buffer descriptor determines the actual condition.
181 struct fec_enet_private {
182 /* Hardware registers of the FEC device */
183 volatile fec_t *hwp;
185 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
186 unsigned char *tx_bounce[TX_RING_SIZE];
187 struct sk_buff* tx_skbuff[TX_RING_SIZE];
188 ushort skb_cur;
189 ushort skb_dirty;
191 /* CPM dual port RAM relative addresses.
193 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
194 cbd_t *tx_bd_base;
195 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
196 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
197 struct net_device_stats stats;
198 uint tx_full;
199 spinlock_t lock;
201 uint phy_id;
202 uint phy_id_done;
203 uint phy_status;
204 uint phy_speed;
205 phy_info_t const *phy;
206 struct work_struct phy_task;
208 uint sequence_done;
209 uint mii_phy_task_queued;
211 uint phy_addr;
213 int index;
214 int opened;
215 int link;
216 int old_link;
217 int full_duplex;
220 static int fec_enet_open(struct net_device *dev);
221 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
222 static void fec_enet_mii(struct net_device *dev);
223 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs);
224 static void fec_enet_tx(struct net_device *dev);
225 static void fec_enet_rx(struct net_device *dev);
226 static int fec_enet_close(struct net_device *dev);
227 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
228 static void set_multicast_list(struct net_device *dev);
229 static void fec_restart(struct net_device *dev, int duplex);
230 static void fec_stop(struct net_device *dev);
231 static void fec_set_mac_address(struct net_device *dev);
234 /* MII processing. We keep this as simple as possible. Requests are
235 * placed on the list (if there is room). When the request is finished
236 * by the MII, an optional function may be called.
238 typedef struct mii_list {
239 uint mii_regval;
240 void (*mii_func)(uint val, struct net_device *dev);
241 struct mii_list *mii_next;
242 } mii_list_t;
244 #define NMII 20
245 static mii_list_t mii_cmds[NMII];
246 static mii_list_t *mii_free;
247 static mii_list_t *mii_head;
248 static mii_list_t *mii_tail;
250 static int mii_queue(struct net_device *dev, int request,
251 void (*func)(uint, struct net_device *));
253 /* Make MII read/write commands for the FEC.
255 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
256 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
257 (VAL & 0xffff))
258 #define mk_mii_end 0
260 /* Transmitter timeout.
262 #define TX_TIMEOUT (2*HZ)
264 /* Register definitions for the PHY.
267 #define MII_REG_CR 0 /* Control Register */
268 #define MII_REG_SR 1 /* Status Register */
269 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
270 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
271 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
272 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
273 #define MII_REG_ANER 6 /* A-N Expansion Register */
274 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
275 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
277 /* values for phy_status */
279 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
280 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
281 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
282 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
283 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
284 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
285 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
287 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
288 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
289 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
290 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
291 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
292 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
293 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
294 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
297 static int
298 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
300 struct fec_enet_private *fep;
301 volatile fec_t *fecp;
302 volatile cbd_t *bdp;
304 fep = netdev_priv(dev);
305 fecp = (volatile fec_t*)dev->base_addr;
307 if (!fep->link) {
308 /* Link is down or autonegotiation is in progress. */
309 return 1;
312 /* Fill in a Tx ring entry */
313 bdp = fep->cur_tx;
315 #ifndef final_version
316 if (bdp->cbd_sc & BD_ENET_TX_READY) {
317 /* Ooops. All transmit buffers are full. Bail out.
318 * This should not happen, since dev->tbusy should be set.
320 printk("%s: tx queue full!.\n", dev->name);
321 return 1;
323 #endif
325 /* Clear all of the status flags.
327 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
329 /* Set buffer length and buffer pointer.
331 bdp->cbd_bufaddr = __pa(skb->data);
332 bdp->cbd_datlen = skb->len;
335 * On some FEC implementations data must be aligned on
336 * 4-byte boundaries. Use bounce buffers to copy data
337 * and get it aligned. Ugh.
339 if (bdp->cbd_bufaddr & 0x3) {
340 unsigned int index;
341 index = bdp - fep->tx_bd_base;
342 memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen);
343 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
346 /* Save skb pointer.
348 fep->tx_skbuff[fep->skb_cur] = skb;
350 fep->stats.tx_bytes += skb->len;
351 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
353 /* Push the data cache so the CPM does not get stale memory
354 * data.
356 flush_dcache_range((unsigned long)skb->data,
357 (unsigned long)skb->data + skb->len);
359 spin_lock_irq(&fep->lock);
361 /* Send it on its way. Tell FEC its ready, interrupt when done,
362 * its the last BD of the frame, and to put the CRC on the end.
365 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
366 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
368 dev->trans_start = jiffies;
370 /* Trigger transmission start */
371 fecp->fec_x_des_active = 0x01000000;
373 /* If this was the last BD in the ring, start at the beginning again.
375 if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
376 bdp = fep->tx_bd_base;
377 } else {
378 bdp++;
381 if (bdp == fep->dirty_tx) {
382 fep->tx_full = 1;
383 netif_stop_queue(dev);
386 fep->cur_tx = (cbd_t *)bdp;
388 spin_unlock_irq(&fep->lock);
390 return 0;
393 static void
394 fec_timeout(struct net_device *dev)
396 struct fec_enet_private *fep = netdev_priv(dev);
398 printk("%s: transmit timed out.\n", dev->name);
399 fep->stats.tx_errors++;
400 #ifndef final_version
402 int i;
403 cbd_t *bdp;
405 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
406 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
407 (unsigned long)fep->dirty_tx,
408 (unsigned long)fep->cur_rx);
410 bdp = fep->tx_bd_base;
411 printk(" tx: %u buffers\n", TX_RING_SIZE);
412 for (i = 0 ; i < TX_RING_SIZE; i++) {
413 printk(" %08x: %04x %04x %08x\n",
414 (uint) bdp,
415 bdp->cbd_sc,
416 bdp->cbd_datlen,
417 (int) bdp->cbd_bufaddr);
418 bdp++;
421 bdp = fep->rx_bd_base;
422 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
423 for (i = 0 ; i < RX_RING_SIZE; i++) {
424 printk(" %08x: %04x %04x %08x\n",
425 (uint) bdp,
426 bdp->cbd_sc,
427 bdp->cbd_datlen,
428 (int) bdp->cbd_bufaddr);
429 bdp++;
432 #endif
433 fec_restart(dev, fep->full_duplex);
434 netif_wake_queue(dev);
437 /* The interrupt handler.
438 * This is called from the MPC core interrupt.
440 static irqreturn_t
441 fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs)
443 struct net_device *dev = dev_id;
444 volatile fec_t *fecp;
445 uint int_events;
446 int handled = 0;
448 fecp = (volatile fec_t*)dev->base_addr;
450 /* Get the interrupt events that caused us to be here.
452 while ((int_events = fecp->fec_ievent) != 0) {
453 fecp->fec_ievent = int_events;
455 /* Handle receive event in its own function.
457 if (int_events & FEC_ENET_RXF) {
458 handled = 1;
459 fec_enet_rx(dev);
462 /* Transmit OK, or non-fatal error. Update the buffer
463 descriptors. FEC handles all errors, we just discover
464 them as part of the transmit process.
466 if (int_events & FEC_ENET_TXF) {
467 handled = 1;
468 fec_enet_tx(dev);
471 if (int_events & FEC_ENET_MII) {
472 handled = 1;
473 fec_enet_mii(dev);
477 return IRQ_RETVAL(handled);
481 static void
482 fec_enet_tx(struct net_device *dev)
484 struct fec_enet_private *fep;
485 volatile cbd_t *bdp;
486 struct sk_buff *skb;
488 fep = netdev_priv(dev);
489 spin_lock(&fep->lock);
490 bdp = fep->dirty_tx;
492 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
493 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
495 skb = fep->tx_skbuff[fep->skb_dirty];
496 /* Check for errors. */
497 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
498 BD_ENET_TX_RL | BD_ENET_TX_UN |
499 BD_ENET_TX_CSL)) {
500 fep->stats.tx_errors++;
501 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
502 fep->stats.tx_heartbeat_errors++;
503 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
504 fep->stats.tx_window_errors++;
505 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
506 fep->stats.tx_aborted_errors++;
507 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
508 fep->stats.tx_fifo_errors++;
509 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
510 fep->stats.tx_carrier_errors++;
511 } else {
512 fep->stats.tx_packets++;
515 #ifndef final_version
516 if (bdp->cbd_sc & BD_ENET_TX_READY)
517 printk("HEY! Enet xmit interrupt and TX_READY.\n");
518 #endif
519 /* Deferred means some collisions occurred during transmit,
520 * but we eventually sent the packet OK.
522 if (bdp->cbd_sc & BD_ENET_TX_DEF)
523 fep->stats.collisions++;
525 /* Free the sk buffer associated with this last transmit.
527 dev_kfree_skb_any(skb);
528 fep->tx_skbuff[fep->skb_dirty] = NULL;
529 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
531 /* Update pointer to next buffer descriptor to be transmitted.
533 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
534 bdp = fep->tx_bd_base;
535 else
536 bdp++;
538 /* Since we have freed up a buffer, the ring is no longer
539 * full.
541 if (fep->tx_full) {
542 fep->tx_full = 0;
543 if (netif_queue_stopped(dev))
544 netif_wake_queue(dev);
547 fep->dirty_tx = (cbd_t *)bdp;
548 spin_unlock(&fep->lock);
552 /* During a receive, the cur_rx points to the current incoming buffer.
553 * When we update through the ring, if the next incoming buffer has
554 * not been given to the system, we just set the empty indicator,
555 * effectively tossing the packet.
557 static void
558 fec_enet_rx(struct net_device *dev)
560 struct fec_enet_private *fep;
561 volatile fec_t *fecp;
562 volatile cbd_t *bdp;
563 struct sk_buff *skb;
564 ushort pkt_len;
565 __u8 *data;
567 fep = netdev_priv(dev);
568 fecp = (volatile fec_t*)dev->base_addr;
570 /* First, grab all of the stats for the incoming packet.
571 * These get messed up if we get called due to a busy condition.
573 bdp = fep->cur_rx;
575 while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
577 #ifndef final_version
578 /* Since we have allocated space to hold a complete frame,
579 * the last indicator should be set.
581 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
582 printk("FEC ENET: rcv is not +last\n");
583 #endif
585 if (!fep->opened)
586 goto rx_processing_done;
588 /* Check for errors. */
589 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
590 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
591 fep->stats.rx_errors++;
592 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
593 /* Frame too long or too short. */
594 fep->stats.rx_length_errors++;
596 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
597 fep->stats.rx_frame_errors++;
598 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
599 fep->stats.rx_crc_errors++;
600 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
601 fep->stats.rx_crc_errors++;
604 /* Report late collisions as a frame error.
605 * On this error, the BD is closed, but we don't know what we
606 * have in the buffer. So, just drop this frame on the floor.
608 if (bdp->cbd_sc & BD_ENET_RX_CL) {
609 fep->stats.rx_errors++;
610 fep->stats.rx_frame_errors++;
611 goto rx_processing_done;
614 /* Process the incoming frame.
616 fep->stats.rx_packets++;
617 pkt_len = bdp->cbd_datlen;
618 fep->stats.rx_bytes += pkt_len;
619 data = (__u8*)__va(bdp->cbd_bufaddr);
621 /* This does 16 byte alignment, exactly what we need.
622 * The packet length includes FCS, but we don't want to
623 * include that when passing upstream as it messes up
624 * bridging applications.
626 skb = dev_alloc_skb(pkt_len-4);
628 if (skb == NULL) {
629 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
630 fep->stats.rx_dropped++;
631 } else {
632 skb->dev = dev;
633 skb_put(skb,pkt_len-4); /* Make room */
634 eth_copy_and_sum(skb,
635 (unsigned char *)__va(bdp->cbd_bufaddr),
636 pkt_len-4, 0);
637 skb->protocol=eth_type_trans(skb,dev);
638 netif_rx(skb);
640 rx_processing_done:
642 /* Clear the status flags for this buffer.
644 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
646 /* Mark the buffer empty.
648 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
650 /* Update BD pointer to next entry.
652 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
653 bdp = fep->rx_bd_base;
654 else
655 bdp++;
657 #if 1
658 /* Doing this here will keep the FEC running while we process
659 * incoming frames. On a heavily loaded network, we should be
660 * able to keep up at the expense of system resources.
662 fecp->fec_r_des_active = 0x01000000;
663 #endif
664 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
665 fep->cur_rx = (cbd_t *)bdp;
667 #if 0
668 /* Doing this here will allow us to process all frames in the
669 * ring before the FEC is allowed to put more there. On a heavily
670 * loaded network, some frames may be lost. Unfortunately, this
671 * increases the interrupt overhead since we can potentially work
672 * our way back to the interrupt return only to come right back
673 * here.
675 fecp->fec_r_des_active = 0x01000000;
676 #endif
680 static void
681 fec_enet_mii(struct net_device *dev)
683 struct fec_enet_private *fep;
684 volatile fec_t *ep;
685 mii_list_t *mip;
686 uint mii_reg;
688 fep = netdev_priv(dev);
689 ep = fep->hwp;
690 mii_reg = ep->fec_mii_data;
692 if ((mip = mii_head) == NULL) {
693 printk("MII and no head!\n");
694 return;
697 if (mip->mii_func != NULL)
698 (*(mip->mii_func))(mii_reg, dev);
700 mii_head = mip->mii_next;
701 mip->mii_next = mii_free;
702 mii_free = mip;
704 if ((mip = mii_head) != NULL)
705 ep->fec_mii_data = mip->mii_regval;
708 static int
709 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
711 struct fec_enet_private *fep;
712 unsigned long flags;
713 mii_list_t *mip;
714 int retval;
716 /* Add PHY address to register command.
718 fep = netdev_priv(dev);
719 regval |= fep->phy_addr << 23;
721 retval = 0;
723 save_flags(flags);
724 cli();
726 if ((mip = mii_free) != NULL) {
727 mii_free = mip->mii_next;
728 mip->mii_regval = regval;
729 mip->mii_func = func;
730 mip->mii_next = NULL;
731 if (mii_head) {
732 mii_tail->mii_next = mip;
733 mii_tail = mip;
735 else {
736 mii_head = mii_tail = mip;
737 fep->hwp->fec_mii_data = regval;
740 else {
741 retval = 1;
744 restore_flags(flags);
746 return(retval);
749 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
751 int k;
753 if(!c)
754 return;
756 for(k = 0; (c+k)->mii_data != mk_mii_end; k++) {
757 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
761 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
763 struct fec_enet_private *fep = netdev_priv(dev);
764 volatile uint *s = &(fep->phy_status);
765 uint status;
767 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
769 if (mii_reg & 0x0004)
770 status |= PHY_STAT_LINK;
771 if (mii_reg & 0x0010)
772 status |= PHY_STAT_FAULT;
773 if (mii_reg & 0x0020)
774 status |= PHY_STAT_ANC;
776 *s = status;
779 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
781 struct fec_enet_private *fep = netdev_priv(dev);
782 volatile uint *s = &(fep->phy_status);
783 uint status;
785 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
787 if (mii_reg & 0x1000)
788 status |= PHY_CONF_ANE;
789 if (mii_reg & 0x4000)
790 status |= PHY_CONF_LOOP;
791 *s = status;
794 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
796 struct fec_enet_private *fep = netdev_priv(dev);
797 volatile uint *s = &(fep->phy_status);
798 uint status;
800 status = *s & ~(PHY_CONF_SPMASK);
802 if (mii_reg & 0x0020)
803 status |= PHY_CONF_10HDX;
804 if (mii_reg & 0x0040)
805 status |= PHY_CONF_10FDX;
806 if (mii_reg & 0x0080)
807 status |= PHY_CONF_100HDX;
808 if (mii_reg & 0x00100)
809 status |= PHY_CONF_100FDX;
810 *s = status;
813 /* ------------------------------------------------------------------------- */
814 /* The Level one LXT970 is used by many boards */
816 #define MII_LXT970_MIRROR 16 /* Mirror register */
817 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
818 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
819 #define MII_LXT970_CONFIG 19 /* Configuration Register */
820 #define MII_LXT970_CSR 20 /* Chip Status Register */
822 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
824 struct fec_enet_private *fep = netdev_priv(dev);
825 volatile uint *s = &(fep->phy_status);
826 uint status;
828 status = *s & ~(PHY_STAT_SPMASK);
829 if (mii_reg & 0x0800) {
830 if (mii_reg & 0x1000)
831 status |= PHY_STAT_100FDX;
832 else
833 status |= PHY_STAT_100HDX;
834 } else {
835 if (mii_reg & 0x1000)
836 status |= PHY_STAT_10FDX;
837 else
838 status |= PHY_STAT_10HDX;
840 *s = status;
843 static phy_cmd_t const phy_cmd_lxt970_config[] = {
844 { mk_mii_read(MII_REG_CR), mii_parse_cr },
845 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
846 { mk_mii_end, }
848 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
849 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
850 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
851 { mk_mii_end, }
853 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
854 /* read SR and ISR to acknowledge */
855 { mk_mii_read(MII_REG_SR), mii_parse_sr },
856 { mk_mii_read(MII_LXT970_ISR), NULL },
858 /* find out the current status */
859 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
860 { mk_mii_end, }
862 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
863 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
864 { mk_mii_end, }
866 static phy_info_t const phy_info_lxt970 = {
867 .id = 0x07810000,
868 .name = "LXT970",
869 .config = phy_cmd_lxt970_config,
870 .startup = phy_cmd_lxt970_startup,
871 .ack_int = phy_cmd_lxt970_ack_int,
872 .shutdown = phy_cmd_lxt970_shutdown
875 /* ------------------------------------------------------------------------- */
876 /* The Level one LXT971 is used on some of my custom boards */
878 /* register definitions for the 971 */
880 #define MII_LXT971_PCR 16 /* Port Control Register */
881 #define MII_LXT971_SR2 17 /* Status Register 2 */
882 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
883 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
884 #define MII_LXT971_LCR 20 /* LED Control Register */
885 #define MII_LXT971_TCR 30 /* Transmit Control Register */
888 * I had some nice ideas of running the MDIO faster...
889 * The 971 should support 8MHz and I tried it, but things acted really
890 * weird, so 2.5 MHz ought to be enough for anyone...
893 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
895 struct fec_enet_private *fep = netdev_priv(dev);
896 volatile uint *s = &(fep->phy_status);
897 uint status;
899 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
901 if (mii_reg & 0x0400) {
902 fep->link = 1;
903 status |= PHY_STAT_LINK;
904 } else {
905 fep->link = 0;
907 if (mii_reg & 0x0080)
908 status |= PHY_STAT_ANC;
909 if (mii_reg & 0x4000) {
910 if (mii_reg & 0x0200)
911 status |= PHY_STAT_100FDX;
912 else
913 status |= PHY_STAT_100HDX;
914 } else {
915 if (mii_reg & 0x0200)
916 status |= PHY_STAT_10FDX;
917 else
918 status |= PHY_STAT_10HDX;
920 if (mii_reg & 0x0008)
921 status |= PHY_STAT_FAULT;
923 *s = status;
926 static phy_cmd_t const phy_cmd_lxt971_config[] = {
927 /* limit to 10MBit because my prototype board
928 * doesn't work with 100. */
929 { mk_mii_read(MII_REG_CR), mii_parse_cr },
930 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
931 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
932 { mk_mii_end, }
934 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
935 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
936 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
937 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
938 /* Somehow does the 971 tell me that the link is down
939 * the first read after power-up.
940 * read here to get a valid value in ack_int */
941 { mk_mii_read(MII_REG_SR), mii_parse_sr },
942 { mk_mii_end, }
944 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
945 /* acknowledge the int before reading status ! */
946 { mk_mii_read(MII_LXT971_ISR), NULL },
947 /* find out the current status */
948 { mk_mii_read(MII_REG_SR), mii_parse_sr },
949 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
950 { mk_mii_end, }
952 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
953 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
954 { mk_mii_end, }
956 static phy_info_t const phy_info_lxt971 = {
957 .id = 0x0001378e,
958 .name = "LXT971",
959 .config = phy_cmd_lxt971_config,
960 .startup = phy_cmd_lxt971_startup,
961 .ack_int = phy_cmd_lxt971_ack_int,
962 .shutdown = phy_cmd_lxt971_shutdown
965 /* ------------------------------------------------------------------------- */
966 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
968 /* register definitions */
970 #define MII_QS6612_MCR 17 /* Mode Control Register */
971 #define MII_QS6612_FTR 27 /* Factory Test Register */
972 #define MII_QS6612_MCO 28 /* Misc. Control Register */
973 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
974 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
975 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
977 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
979 struct fec_enet_private *fep = netdev_priv(dev);
980 volatile uint *s = &(fep->phy_status);
981 uint status;
983 status = *s & ~(PHY_STAT_SPMASK);
985 switch((mii_reg >> 2) & 7) {
986 case 1: status |= PHY_STAT_10HDX; break;
987 case 2: status |= PHY_STAT_100HDX; break;
988 case 5: status |= PHY_STAT_10FDX; break;
989 case 6: status |= PHY_STAT_100FDX; break;
992 *s = status;
995 static phy_cmd_t const phy_cmd_qs6612_config[] = {
996 /* The PHY powers up isolated on the RPX,
997 * so send a command to allow operation.
999 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1001 /* parse cr and anar to get some info */
1002 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1003 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1004 { mk_mii_end, }
1006 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1007 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1008 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1009 { mk_mii_end, }
1011 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1012 /* we need to read ISR, SR and ANER to acknowledge */
1013 { mk_mii_read(MII_QS6612_ISR), NULL },
1014 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1015 { mk_mii_read(MII_REG_ANER), NULL },
1017 /* read pcr to get info */
1018 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1019 { mk_mii_end, }
1021 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1022 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1023 { mk_mii_end, }
1025 static phy_info_t const phy_info_qs6612 = {
1026 .id = 0x00181440,
1027 .name = "QS6612",
1028 .config = phy_cmd_qs6612_config,
1029 .startup = phy_cmd_qs6612_startup,
1030 .ack_int = phy_cmd_qs6612_ack_int,
1031 .shutdown = phy_cmd_qs6612_shutdown
1034 /* ------------------------------------------------------------------------- */
1035 /* AMD AM79C874 phy */
1037 /* register definitions for the 874 */
1039 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1040 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1041 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1042 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1043 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1044 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1045 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1047 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1049 struct fec_enet_private *fep = netdev_priv(dev);
1050 volatile uint *s = &(fep->phy_status);
1051 uint status;
1053 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1055 if (mii_reg & 0x0080)
1056 status |= PHY_STAT_ANC;
1057 if (mii_reg & 0x0400)
1058 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1059 else
1060 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1062 *s = status;
1065 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1066 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1067 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1068 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1069 { mk_mii_end, }
1071 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1072 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1073 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1074 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1075 { mk_mii_end, }
1077 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1078 /* find out the current status */
1079 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1080 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1081 /* we only need to read ISR to acknowledge */
1082 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1083 { mk_mii_end, }
1085 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1086 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1087 { mk_mii_end, }
1089 static phy_info_t const phy_info_am79c874 = {
1090 .id = 0x00022561,
1091 .name = "AM79C874",
1092 .config = phy_cmd_am79c874_config,
1093 .startup = phy_cmd_am79c874_startup,
1094 .ack_int = phy_cmd_am79c874_ack_int,
1095 .shutdown = phy_cmd_am79c874_shutdown
1099 /* ------------------------------------------------------------------------- */
1100 /* Kendin KS8721BL phy */
1102 /* register definitions for the 8721 */
1104 #define MII_KS8721BL_RXERCR 21
1105 #define MII_KS8721BL_ICSR 22
1106 #define MII_KS8721BL_PHYCR 31
1108 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1109 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1110 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1111 { mk_mii_end, }
1113 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1114 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1115 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1116 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1117 { mk_mii_end, }
1119 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1120 /* find out the current status */
1121 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1122 /* we only need to read ISR to acknowledge */
1123 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1124 { mk_mii_end, }
1126 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1127 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1128 { mk_mii_end, }
1130 static phy_info_t const phy_info_ks8721bl = {
1131 .id = 0x00022161,
1132 .name = "KS8721BL",
1133 .config = phy_cmd_ks8721bl_config,
1134 .startup = phy_cmd_ks8721bl_startup,
1135 .ack_int = phy_cmd_ks8721bl_ack_int,
1136 .shutdown = phy_cmd_ks8721bl_shutdown
1139 /* ------------------------------------------------------------------------- */
1141 static phy_info_t const * const phy_info[] = {
1142 &phy_info_lxt970,
1143 &phy_info_lxt971,
1144 &phy_info_qs6612,
1145 &phy_info_am79c874,
1146 &phy_info_ks8721bl,
1147 NULL
1150 /* ------------------------------------------------------------------------- */
1152 #ifdef CONFIG_RPXCLASSIC
1153 static void
1154 mii_link_interrupt(void *dev_id);
1155 #else
1156 static irqreturn_t
1157 mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs);
1158 #endif
1160 #if defined(CONFIG_M5272)
1163 * Code specific to Coldfire 5272 setup.
1165 static void __inline__ fec_request_intrs(struct net_device *dev)
1167 volatile unsigned long *icrp;
1168 static const struct idesc {
1169 char *name;
1170 unsigned short irq;
1171 irqreturn_t (*handler)(int, void *, struct pt_regs *);
1172 } *idp, id[] = {
1173 { "fec(RX)", 86, fec_enet_interrupt },
1174 { "fec(TX)", 87, fec_enet_interrupt },
1175 { "fec(OTHER)", 88, fec_enet_interrupt },
1176 { "fec(MII)", 66, mii_link_interrupt },
1177 { NULL },
1180 /* Setup interrupt handlers. */
1181 for (idp = id; idp->name; idp++) {
1182 if (request_irq(idp->irq, idp->handler, 0, idp->name, dev) != 0)
1183 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, idp->irq);
1186 /* Unmask interrupt at ColdFire 5272 SIM */
1187 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3);
1188 *icrp = 0x00000ddd;
1189 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1190 *icrp = (*icrp & 0x70777777) | 0x0d000000;
1193 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1195 volatile fec_t *fecp;
1197 fecp = fep->hwp;
1198 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1199 fecp->fec_x_cntrl = 0x00;
1202 * Set MII speed to 2.5 MHz
1203 * See 5272 manual section 11.5.8: MSCR
1205 fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2;
1206 fecp->fec_mii_speed = fep->phy_speed;
1208 fec_restart(dev, 0);
1211 static void __inline__ fec_get_mac(struct net_device *dev)
1213 struct fec_enet_private *fep = netdev_priv(dev);
1214 volatile fec_t *fecp;
1215 unsigned char *iap, tmpaddr[ETH_ALEN];
1217 fecp = fep->hwp;
1219 if (FEC_FLASHMAC) {
1221 * Get MAC address from FLASH.
1222 * If it is all 1's or 0's, use the default.
1224 iap = (unsigned char *)FEC_FLASHMAC;
1225 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1226 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1227 iap = fec_mac_default;
1228 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1229 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1230 iap = fec_mac_default;
1231 } else {
1232 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1233 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1234 iap = &tmpaddr[0];
1237 memcpy(dev->dev_addr, iap, ETH_ALEN);
1239 /* Adjust MAC if using default MAC address */
1240 if (iap == fec_mac_default)
1241 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1244 static void __inline__ fec_enable_phy_intr(void)
1248 static void __inline__ fec_disable_phy_intr(void)
1250 volatile unsigned long *icrp;
1251 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1252 *icrp = (*icrp & 0x70777777) | 0x08000000;
1255 static void __inline__ fec_phy_ack_intr(void)
1257 volatile unsigned long *icrp;
1258 /* Acknowledge the interrupt */
1259 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1260 *icrp = (*icrp & 0x77777777) | 0x08000000;
1263 static void __inline__ fec_localhw_setup(void)
1268 * Do not need to make region uncached on 5272.
1270 static void __inline__ fec_uncache(unsigned long addr)
1274 /* ------------------------------------------------------------------------- */
1276 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1279 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1280 * the 5270/5271/5274/5275 and 5280/5282 setups.
1282 static void __inline__ fec_request_intrs(struct net_device *dev)
1284 struct fec_enet_private *fep;
1285 int b;
1286 static const struct idesc {
1287 char *name;
1288 unsigned short irq;
1289 } *idp, id[] = {
1290 { "fec(TXF)", 23 },
1291 { "fec(TXB)", 24 },
1292 { "fec(TXFIFO)", 25 },
1293 { "fec(TXCR)", 26 },
1294 { "fec(RXF)", 27 },
1295 { "fec(RXB)", 28 },
1296 { "fec(MII)", 29 },
1297 { "fec(LC)", 30 },
1298 { "fec(HBERR)", 31 },
1299 { "fec(GRA)", 32 },
1300 { "fec(EBERR)", 33 },
1301 { "fec(BABT)", 34 },
1302 { "fec(BABR)", 35 },
1303 { NULL },
1306 fep = netdev_priv(dev);
1307 b = (fep->index) ? 128 : 64;
1309 /* Setup interrupt handlers. */
1310 for (idp = id; idp->name; idp++) {
1311 if (request_irq(b+idp->irq, fec_enet_interrupt, 0, idp->name, dev) != 0)
1312 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp->name, b+idp->irq);
1315 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1317 volatile unsigned char *icrp;
1318 volatile unsigned long *imrp;
1319 int i;
1321 b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0;
1322 icrp = (volatile unsigned char *) (MCF_IPSBAR + b +
1323 MCFINTC_ICR0);
1324 for (i = 23; (i < 36); i++)
1325 icrp[i] = 0x23;
1327 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1328 MCFINTC_IMRH);
1329 *imrp &= ~0x0000000f;
1330 imrp = (volatile unsigned long *) (MCF_IPSBAR + b +
1331 MCFINTC_IMRL);
1332 *imrp &= ~0xff800001;
1335 #if defined(CONFIG_M528x)
1336 /* Set up gpio outputs for MII lines */
1338 volatile u16 *gpio_paspar;
1339 volatile u8 *gpio_pehlpar;
1341 gpio_paspar = (volatile u16 *) (MCF_IPSBAR + 0x100056);
1342 gpio_pehlpar = (volatile u16 *) (MCF_IPSBAR + 0x100058);
1343 *gpio_paspar |= 0x0f00;
1344 *gpio_pehlpar = 0xc0;
1346 #endif
1349 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1351 volatile fec_t *fecp;
1353 fecp = fep->hwp;
1354 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1355 fecp->fec_x_cntrl = 0x00;
1358 * Set MII speed to 2.5 MHz
1359 * See 5282 manual section 17.5.4.7: MSCR
1361 fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2;
1362 fecp->fec_mii_speed = fep->phy_speed;
1364 fec_restart(dev, 0);
1367 static void __inline__ fec_get_mac(struct net_device *dev)
1369 struct fec_enet_private *fep = netdev_priv(dev);
1370 volatile fec_t *fecp;
1371 unsigned char *iap, tmpaddr[ETH_ALEN];
1373 fecp = fep->hwp;
1375 if (FEC_FLASHMAC) {
1377 * Get MAC address from FLASH.
1378 * If it is all 1's or 0's, use the default.
1380 iap = FEC_FLASHMAC;
1381 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1382 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1383 iap = fec_mac_default;
1384 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1385 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1386 iap = fec_mac_default;
1387 } else {
1388 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1389 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1390 iap = &tmpaddr[0];
1393 memcpy(dev->dev_addr, iap, ETH_ALEN);
1395 /* Adjust MAC if using default MAC address */
1396 if (iap == fec_mac_default)
1397 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1400 static void __inline__ fec_enable_phy_intr(void)
1404 static void __inline__ fec_disable_phy_intr(void)
1408 static void __inline__ fec_phy_ack_intr(void)
1412 static void __inline__ fec_localhw_setup(void)
1417 * Do not need to make region uncached on 5272.
1419 static void __inline__ fec_uncache(unsigned long addr)
1423 /* ------------------------------------------------------------------------- */
1425 #else
1428 * Code specific to the MPC860T setup.
1430 static void __inline__ fec_request_intrs(struct net_device *dev)
1432 volatile immap_t *immap;
1434 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1436 if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1437 panic("Could not allocate FEC IRQ!");
1439 #ifdef CONFIG_RPXCLASSIC
1440 /* Make Port C, bit 15 an input that causes interrupts.
1442 immap->im_ioport.iop_pcpar &= ~0x0001;
1443 immap->im_ioport.iop_pcdir &= ~0x0001;
1444 immap->im_ioport.iop_pcso &= ~0x0001;
1445 immap->im_ioport.iop_pcint |= 0x0001;
1446 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1448 /* Make LEDS reflect Link status.
1450 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1451 #endif
1452 #ifdef CONFIG_FADS
1453 if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0)
1454 panic("Could not allocate MII IRQ!");
1455 #endif
1458 static void __inline__ fec_get_mac(struct net_device *dev)
1460 bd_t *bd;
1462 bd = (bd_t *)__res;
1463 memcpy(dev->dev_addr, bd->bi_enetaddr, ETH_ALEN);
1465 #ifdef CONFIG_RPXCLASSIC
1466 /* The Embedded Planet boards have only one MAC address in
1467 * the EEPROM, but can have two Ethernet ports. For the
1468 * FEC port, we create another address by setting one of
1469 * the address bits above something that would have (up to
1470 * now) been allocated.
1472 dev->dev_adrd[3] |= 0x80;
1473 #endif
1476 static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep)
1478 extern uint _get_IMMR(void);
1479 volatile immap_t *immap;
1480 volatile fec_t *fecp;
1482 fecp = fep->hwp;
1483 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1485 /* Configure all of port D for MII.
1487 immap->im_ioport.iop_pdpar = 0x1fff;
1489 /* Bits moved from Rev. D onward.
1491 if ((_get_IMMR() & 0xffff) < 0x0501)
1492 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1493 else
1494 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1496 /* Set MII speed to 2.5 MHz
1498 fecp->fec_mii_speed = fep->phy_speed =
1499 ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e;
1502 static void __inline__ fec_enable_phy_intr(void)
1504 volatile fec_t *fecp;
1506 fecp = fep->hwp;
1508 /* Enable MII command finished interrupt
1510 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1513 static void __inline__ fec_disable_phy_intr(void)
1517 static void __inline__ fec_phy_ack_intr(void)
1521 static void __inline__ fec_localhw_setup(void)
1523 volatile fec_t *fecp;
1525 fecp = fep->hwp;
1526 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1527 /* Enable big endian and don't care about SDMA FC.
1529 fecp->fec_fun_code = 0x78000000;
1532 static void __inline__ fec_uncache(unsigned long addr)
1534 pte_t *pte;
1535 pte = va_to_pte(mem_addr);
1536 pte_val(*pte) |= _PAGE_NO_CACHE;
1537 flush_tlb_page(init_mm.mmap, mem_addr);
1540 #endif
1542 /* ------------------------------------------------------------------------- */
1544 static void mii_display_status(struct net_device *dev)
1546 struct fec_enet_private *fep = netdev_priv(dev);
1547 volatile uint *s = &(fep->phy_status);
1549 if (!fep->link && !fep->old_link) {
1550 /* Link is still down - don't print anything */
1551 return;
1554 printk("%s: status: ", dev->name);
1556 if (!fep->link) {
1557 printk("link down");
1558 } else {
1559 printk("link up");
1561 switch(*s & PHY_STAT_SPMASK) {
1562 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1563 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1564 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1565 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1566 default:
1567 printk(", Unknown speed/duplex");
1570 if (*s & PHY_STAT_ANC)
1571 printk(", auto-negotiation complete");
1574 if (*s & PHY_STAT_FAULT)
1575 printk(", remote fault");
1577 printk(".\n");
1580 static void mii_display_config(struct net_device *dev)
1582 struct fec_enet_private *fep = netdev_priv(dev);
1583 uint status = fep->phy_status;
1586 ** When we get here, phy_task is already removed from
1587 ** the workqueue. It is thus safe to allow to reuse it.
1589 fep->mii_phy_task_queued = 0;
1590 printk("%s: config: auto-negotiation ", dev->name);
1592 if (status & PHY_CONF_ANE)
1593 printk("on");
1594 else
1595 printk("off");
1597 if (status & PHY_CONF_100FDX)
1598 printk(", 100FDX");
1599 if (status & PHY_CONF_100HDX)
1600 printk(", 100HDX");
1601 if (status & PHY_CONF_10FDX)
1602 printk(", 10FDX");
1603 if (status & PHY_CONF_10HDX)
1604 printk(", 10HDX");
1605 if (!(status & PHY_CONF_SPMASK))
1606 printk(", No speed/duplex selected?");
1608 if (status & PHY_CONF_LOOP)
1609 printk(", loopback enabled");
1611 printk(".\n");
1613 fep->sequence_done = 1;
1616 static void mii_relink(struct net_device *dev)
1618 struct fec_enet_private *fep = netdev_priv(dev);
1619 int duplex;
1622 ** When we get here, phy_task is already removed from
1623 ** the workqueue. It is thus safe to allow to reuse it.
1625 fep->mii_phy_task_queued = 0;
1626 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1627 mii_display_status(dev);
1628 fep->old_link = fep->link;
1630 if (fep->link) {
1631 duplex = 0;
1632 if (fep->phy_status
1633 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1634 duplex = 1;
1635 fec_restart(dev, duplex);
1637 else
1638 fec_stop(dev);
1640 #if 0
1641 enable_irq(fep->mii_irq);
1642 #endif
1646 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1647 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1649 struct fec_enet_private *fep = netdev_priv(dev);
1652 ** We cannot queue phy_task twice in the workqueue. It
1653 ** would cause an endless loop in the workqueue.
1654 ** Fortunately, if the last mii_relink entry has not yet been
1655 ** executed now, it will do the job for the current interrupt,
1656 ** which is just what we want.
1658 if (fep->mii_phy_task_queued)
1659 return;
1661 fep->mii_phy_task_queued = 1;
1662 INIT_WORK(&fep->phy_task, (void*)mii_relink, dev);
1663 schedule_work(&fep->phy_task);
1666 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1667 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1669 struct fec_enet_private *fep = netdev_priv(dev);
1671 if (fep->mii_phy_task_queued)
1672 return;
1674 fep->mii_phy_task_queued = 1;
1675 INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev);
1676 schedule_work(&fep->phy_task);
1679 phy_cmd_t const phy_cmd_relink[] = {
1680 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1681 { mk_mii_end, }
1683 phy_cmd_t const phy_cmd_config[] = {
1684 { mk_mii_read(MII_REG_CR), mii_queue_config },
1685 { mk_mii_end, }
1688 /* Read remainder of PHY ID.
1690 static void
1691 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1693 struct fec_enet_private *fep;
1694 int i;
1696 fep = netdev_priv(dev);
1697 fep->phy_id |= (mii_reg & 0xffff);
1698 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1700 for(i = 0; phy_info[i]; i++) {
1701 if(phy_info[i]->id == (fep->phy_id >> 4))
1702 break;
1705 if (phy_info[i])
1706 printk(" -- %s\n", phy_info[i]->name);
1707 else
1708 printk(" -- unknown PHY!\n");
1710 fep->phy = phy_info[i];
1711 fep->phy_id_done = 1;
1714 /* Scan all of the MII PHY addresses looking for someone to respond
1715 * with a valid ID. This usually happens quickly.
1717 static void
1718 mii_discover_phy(uint mii_reg, struct net_device *dev)
1720 struct fec_enet_private *fep;
1721 volatile fec_t *fecp;
1722 uint phytype;
1724 fep = netdev_priv(dev);
1725 fecp = fep->hwp;
1727 if (fep->phy_addr < 32) {
1728 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1730 /* Got first part of ID, now get remainder.
1732 fep->phy_id = phytype << 16;
1733 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1734 mii_discover_phy3);
1736 else {
1737 fep->phy_addr++;
1738 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1739 mii_discover_phy);
1741 } else {
1742 printk("FEC: No PHY device found.\n");
1743 /* Disable external MII interface */
1744 fecp->fec_mii_speed = fep->phy_speed = 0;
1745 fec_disable_phy_intr();
1749 /* This interrupt occurs when the PHY detects a link change.
1751 #ifdef CONFIG_RPXCLASSIC
1752 static void
1753 mii_link_interrupt(void *dev_id)
1754 #else
1755 static irqreturn_t
1756 mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs)
1757 #endif
1759 struct net_device *dev = dev_id;
1760 struct fec_enet_private *fep = netdev_priv(dev);
1762 fec_phy_ack_intr();
1764 #if 0
1765 disable_irq(fep->mii_irq); /* disable now, enable later */
1766 #endif
1768 mii_do_cmd(dev, fep->phy->ack_int);
1769 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1771 return IRQ_HANDLED;
1774 static int
1775 fec_enet_open(struct net_device *dev)
1777 struct fec_enet_private *fep = netdev_priv(dev);
1779 /* I should reset the ring buffers here, but I don't yet know
1780 * a simple way to do that.
1782 fec_set_mac_address(dev);
1784 fep->sequence_done = 0;
1785 fep->link = 0;
1787 if (fep->phy) {
1788 mii_do_cmd(dev, fep->phy->ack_int);
1789 mii_do_cmd(dev, fep->phy->config);
1790 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1792 /* FIXME: use netif_carrier_{on,off} ; this polls
1793 * until link is up which is wrong... could be
1794 * 30 seconds or more we are trapped in here. -jgarzik
1796 while(!fep->sequence_done)
1797 schedule();
1799 mii_do_cmd(dev, fep->phy->startup);
1801 /* Set the initial link state to true. A lot of hardware
1802 * based on this device does not implement a PHY interrupt,
1803 * so we are never notified of link change.
1805 fep->link = 1;
1806 } else {
1807 fep->link = 1; /* lets just try it and see */
1808 /* no phy, go full duplex, it's most likely a hub chip */
1809 fec_restart(dev, 1);
1812 netif_start_queue(dev);
1813 fep->opened = 1;
1814 return 0; /* Success */
1817 static int
1818 fec_enet_close(struct net_device *dev)
1820 struct fec_enet_private *fep = netdev_priv(dev);
1822 /* Don't know what to do yet.
1824 fep->opened = 0;
1825 netif_stop_queue(dev);
1826 fec_stop(dev);
1828 return 0;
1831 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
1833 struct fec_enet_private *fep = netdev_priv(dev);
1835 return &fep->stats;
1838 /* Set or clear the multicast filter for this adaptor.
1839 * Skeleton taken from sunlance driver.
1840 * The CPM Ethernet implementation allows Multicast as well as individual
1841 * MAC address filtering. Some of the drivers check to make sure it is
1842 * a group multicast address, and discard those that are not. I guess I
1843 * will do the same for now, but just remove the test if you want
1844 * individual filtering as well (do the upper net layers want or support
1845 * this kind of feature?).
1848 #define HASH_BITS 6 /* #bits in hash */
1849 #define CRC32_POLY 0xEDB88320
1851 static void set_multicast_list(struct net_device *dev)
1853 struct fec_enet_private *fep;
1854 volatile fec_t *ep;
1855 struct dev_mc_list *dmi;
1856 unsigned int i, j, bit, data, crc;
1857 unsigned char hash;
1859 fep = netdev_priv(dev);
1860 ep = fep->hwp;
1862 if (dev->flags&IFF_PROMISC) {
1863 /* Log any net taps. */
1864 printk("%s: Promiscuous mode enabled.\n", dev->name);
1865 ep->fec_r_cntrl |= 0x0008;
1866 } else {
1868 ep->fec_r_cntrl &= ~0x0008;
1870 if (dev->flags & IFF_ALLMULTI) {
1871 /* Catch all multicast addresses, so set the
1872 * filter to all 1's.
1874 ep->fec_hash_table_high = 0xffffffff;
1875 ep->fec_hash_table_low = 0xffffffff;
1876 } else {
1877 /* Clear filter and add the addresses in hash register.
1879 ep->fec_hash_table_high = 0;
1880 ep->fec_hash_table_low = 0;
1882 dmi = dev->mc_list;
1884 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
1886 /* Only support group multicast for now.
1888 if (!(dmi->dmi_addr[0] & 1))
1889 continue;
1891 /* calculate crc32 value of mac address
1893 crc = 0xffffffff;
1895 for (i = 0; i < dmi->dmi_addrlen; i++)
1897 data = dmi->dmi_addr[i];
1898 for (bit = 0; bit < 8; bit++, data >>= 1)
1900 crc = (crc >> 1) ^
1901 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1905 /* only upper 6 bits (HASH_BITS) are used
1906 which point to specific bit in he hash registers
1908 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1910 if (hash > 31)
1911 ep->fec_hash_table_high |= 1 << (hash - 32);
1912 else
1913 ep->fec_hash_table_low |= 1 << hash;
1919 /* Set a MAC change in hardware.
1921 static void
1922 fec_set_mac_address(struct net_device *dev)
1924 volatile fec_t *fecp;
1926 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
1928 /* Set station address. */
1929 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1930 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
1931 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
1932 (dev->dev_addr[4] << 24);
1936 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
1939 * XXX: We need to clean up on failure exits here.
1941 int __init fec_enet_init(struct net_device *dev)
1943 struct fec_enet_private *fep = netdev_priv(dev);
1944 unsigned long mem_addr;
1945 volatile cbd_t *bdp;
1946 cbd_t *cbd_base;
1947 volatile fec_t *fecp;
1948 int i, j;
1949 static int index = 0;
1951 /* Only allow us to be probed once. */
1952 if (index >= FEC_MAX_PORTS)
1953 return -ENXIO;
1955 /* Create an Ethernet device instance.
1957 fecp = (volatile fec_t *) fec_hw[index];
1959 fep->index = index;
1960 fep->hwp = fecp;
1962 /* Whack a reset. We should wait for this.
1964 fecp->fec_ecntrl = 1;
1965 udelay(10);
1967 /* Clear and enable interrupts */
1968 fecp->fec_ievent = 0xffc00000;
1969 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
1970 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
1971 fecp->fec_hash_table_high = 0;
1972 fecp->fec_hash_table_low = 0;
1973 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1974 fecp->fec_ecntrl = 2;
1975 fecp->fec_r_des_active = 0x01000000;
1977 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1978 * this needs some work to get unique addresses.
1980 * This is our default MAC address unless the user changes
1981 * it via eth_mac_addr (our dev->set_mac_addr handler).
1983 fec_get_mac(dev);
1985 /* Allocate memory for buffer descriptors.
1987 if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
1988 printk("FEC init error. Need more space.\n");
1989 printk("FEC initialization failed.\n");
1990 return 1;
1992 mem_addr = __get_free_page(GFP_KERNEL);
1993 cbd_base = (cbd_t *)mem_addr;
1994 /* XXX: missing check for allocation failure */
1996 fec_uncache(mem_addr);
1998 /* Set receive and transmit descriptor base.
2000 fep->rx_bd_base = cbd_base;
2001 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
2003 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2004 fep->cur_rx = fep->rx_bd_base;
2006 fep->skb_cur = fep->skb_dirty = 0;
2008 /* Initialize the receive buffer descriptors.
2010 bdp = fep->rx_bd_base;
2011 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
2013 /* Allocate a page.
2015 mem_addr = __get_free_page(GFP_KERNEL);
2016 /* XXX: missing check for allocation failure */
2018 fec_uncache(mem_addr);
2020 /* Initialize the BD for every fragment in the page.
2022 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
2023 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2024 bdp->cbd_bufaddr = __pa(mem_addr);
2025 mem_addr += FEC_ENET_RX_FRSIZE;
2026 bdp++;
2030 /* Set the last buffer to wrap.
2032 bdp--;
2033 bdp->cbd_sc |= BD_SC_WRAP;
2035 /* ...and the same for transmmit.
2037 bdp = fep->tx_bd_base;
2038 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
2039 if (j >= FEC_ENET_TX_FRPPG) {
2040 mem_addr = __get_free_page(GFP_KERNEL);
2041 j = 1;
2042 } else {
2043 mem_addr += FEC_ENET_TX_FRSIZE;
2044 j++;
2046 fep->tx_bounce[i] = (unsigned char *) mem_addr;
2048 /* Initialize the BD for every fragment in the page.
2050 bdp->cbd_sc = 0;
2051 bdp->cbd_bufaddr = 0;
2052 bdp++;
2055 /* Set the last buffer to wrap.
2057 bdp--;
2058 bdp->cbd_sc |= BD_SC_WRAP;
2060 /* Set receive and transmit descriptor base.
2062 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2063 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2065 /* Install our interrupt handlers. This varies depending on
2066 * the architecture.
2068 fec_request_intrs(dev);
2070 dev->base_addr = (unsigned long)fecp;
2072 /* The FEC Ethernet specific entries in the device structure. */
2073 dev->open = fec_enet_open;
2074 dev->hard_start_xmit = fec_enet_start_xmit;
2075 dev->tx_timeout = fec_timeout;
2076 dev->watchdog_timeo = TX_TIMEOUT;
2077 dev->stop = fec_enet_close;
2078 dev->get_stats = fec_enet_get_stats;
2079 dev->set_multicast_list = set_multicast_list;
2081 for (i=0; i<NMII-1; i++)
2082 mii_cmds[i].mii_next = &mii_cmds[i+1];
2083 mii_free = mii_cmds;
2085 /* setup MII interface */
2086 fec_set_mii(dev, fep);
2088 /* Queue up command to detect the PHY and initialize the
2089 * remainder of the interface.
2091 fep->phy_id_done = 0;
2092 fep->phy_addr = 0;
2093 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
2095 index++;
2096 return 0;
2099 /* This function is called to start or restart the FEC during a link
2100 * change. This only happens when switching between half and full
2101 * duplex.
2103 static void
2104 fec_restart(struct net_device *dev, int duplex)
2106 struct fec_enet_private *fep;
2107 volatile cbd_t *bdp;
2108 volatile fec_t *fecp;
2109 int i;
2111 fep = netdev_priv(dev);
2112 fecp = fep->hwp;
2114 /* Whack a reset. We should wait for this.
2116 fecp->fec_ecntrl = 1;
2117 udelay(10);
2119 /* Enable interrupts we wish to service.
2121 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB |
2122 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII);
2124 /* Clear any outstanding interrupt.
2126 fecp->fec_ievent = 0xffc00000;
2127 fec_enable_phy_intr();
2129 /* Set station address.
2131 fec_set_mac_address(dev);
2133 /* Reset all multicast.
2135 fecp->fec_hash_table_high = 0;
2136 fecp->fec_hash_table_low = 0;
2138 /* Set maximum receive buffer size.
2140 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
2142 fec_localhw_setup();
2144 /* Set receive and transmit descriptor base.
2146 fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base));
2147 fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base));
2149 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
2150 fep->cur_rx = fep->rx_bd_base;
2152 /* Reset SKB transmit buffers.
2154 fep->skb_cur = fep->skb_dirty = 0;
2155 for (i=0; i<=TX_RING_MOD_MASK; i++) {
2156 if (fep->tx_skbuff[i] != NULL) {
2157 dev_kfree_skb_any(fep->tx_skbuff[i]);
2158 fep->tx_skbuff[i] = NULL;
2162 /* Initialize the receive buffer descriptors.
2164 bdp = fep->rx_bd_base;
2165 for (i=0; i<RX_RING_SIZE; i++) {
2167 /* Initialize the BD for every fragment in the page.
2169 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2170 bdp++;
2173 /* Set the last buffer to wrap.
2175 bdp--;
2176 bdp->cbd_sc |= BD_SC_WRAP;
2178 /* ...and the same for transmmit.
2180 bdp = fep->tx_bd_base;
2181 for (i=0; i<TX_RING_SIZE; i++) {
2183 /* Initialize the BD for every fragment in the page.
2185 bdp->cbd_sc = 0;
2186 bdp->cbd_bufaddr = 0;
2187 bdp++;
2190 /* Set the last buffer to wrap.
2192 bdp--;
2193 bdp->cbd_sc |= BD_SC_WRAP;
2195 /* Enable MII mode.
2197 if (duplex) {
2198 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
2199 fecp->fec_x_cntrl = 0x04; /* FD enable */
2201 else {
2202 /* MII enable|No Rcv on Xmit */
2203 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
2204 fecp->fec_x_cntrl = 0x00;
2206 fep->full_duplex = duplex;
2208 /* Set MII speed.
2210 fecp->fec_mii_speed = fep->phy_speed;
2212 /* And last, enable the transmit and receive processing.
2214 fecp->fec_ecntrl = 2;
2215 fecp->fec_r_des_active = 0x01000000;
2218 static void
2219 fec_stop(struct net_device *dev)
2221 volatile fec_t *fecp;
2222 struct fec_enet_private *fep;
2224 fep = netdev_priv(dev);
2225 fecp = fep->hwp;
2227 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
2229 while(!(fecp->fec_ievent & FEC_ENET_GRA));
2231 /* Whack a reset. We should wait for this.
2233 fecp->fec_ecntrl = 1;
2234 udelay(10);
2236 /* Clear outstanding MII command interrupts.
2238 fecp->fec_ievent = FEC_ENET_MII;
2239 fec_enable_phy_intr();
2241 fecp->fec_imask = FEC_ENET_MII;
2242 fecp->fec_mii_speed = fep->phy_speed;
2245 static int __init fec_enet_module_init(void)
2247 struct net_device *dev;
2248 int i, j, err;
2250 printk("FEC ENET Version 0.2\n");
2252 for (i = 0; (i < FEC_MAX_PORTS); i++) {
2253 dev = alloc_etherdev(sizeof(struct fec_enet_private));
2254 if (!dev)
2255 return -ENOMEM;
2256 err = fec_enet_init(dev);
2257 if (err) {
2258 free_netdev(dev);
2259 continue;
2261 if (register_netdev(dev) != 0) {
2262 /* XXX: missing cleanup here */
2263 free_netdev(dev);
2264 return -EIO;
2267 printk("%s: ethernet ", dev->name);
2268 for (j = 0; (j < 5); j++)
2269 printk("%02x:", dev->dev_addr[j]);
2270 printk("%02x\n", dev->dev_addr[5]);
2272 return 0;
2275 module_init(fec_enet_module_init);
2277 MODULE_LICENSE("GPL");