2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
11 * Right now, I am very wasteful with the buffers. I allocate memory
12 * pages and then divide them into 2K frame buffers. This way I know I
13 * have buffers large enough to hold one frame within one buffer descriptor.
14 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
15 * will be much more memory efficient and will easily handle lots of
18 * Much better multiple PHY support by Magnus Damm.
19 * Copyright (c) 2000 Ericsson Radio Systems AB.
21 * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282.
22 * Copyright (c) 2001-2004 Greg Ungerer (gerg@snapgear.com)
24 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
25 * Copyright (c) 2004-2005 Macq Electronique SA.
28 #include <linux/config.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/string.h>
32 #include <linux/ptrace.h>
33 #include <linux/errno.h>
34 #include <linux/ioport.h>
35 #include <linux/slab.h>
36 #include <linux/interrupt.h>
37 #include <linux/pci.h>
38 #include <linux/init.h>
39 #include <linux/delay.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/skbuff.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
48 #include <asm/uaccess.h>
50 #include <asm/pgtable.h>
52 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || \
53 defined(CONFIG_M5272) || defined(CONFIG_M528x)
54 #include <asm/coldfire.h>
55 #include <asm/mcfsim.h>
58 #include <asm/8xx_immap.h>
59 #include <asm/mpc8xx.h>
63 #if defined(CONFIG_FEC2)
64 #define FEC_MAX_PORTS 2
66 #define FEC_MAX_PORTS 1
70 * Define the fixed address of the FEC hardware.
72 static unsigned int fec_hw
[] = {
73 #if defined(CONFIG_M5272)
75 #elif defined(CONFIG_M527x)
78 #elif defined(CONFIG_M523x) || defined(CONFIG_M528x)
81 &(((immap_t
*)IMAP_ADDR
)->im_cpm
.cp_fec
),
85 static unsigned char fec_mac_default
[] = {
86 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
90 * Some hardware gets it MAC address out of local flash memory.
91 * if this is non-zero then assume it is the address to get MAC from.
93 #if defined(CONFIG_NETtel)
94 #define FEC_FLASHMAC 0xf0006006
95 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
96 #define FEC_FLASHMAC 0xf0006000
97 #elif defined (CONFIG_MTD_KeyTechnology)
98 #define FEC_FLASHMAC 0xffe04000
99 #elif defined(CONFIG_CANCam)
100 #define FEC_FLASHMAC 0xf0020000
101 #elif defined (CONFIG_M5272C3)
102 #define FEC_FLASHMAC (0xffe04000 + 4)
103 #elif defined(CONFIG_MOD5272)
104 #define FEC_FLASHMAC 0xffc0406b
106 #define FEC_FLASHMAC 0
109 /* Forward declarations of some structures to support different PHYs
114 void (*funct
)(uint mii_reg
, struct net_device
*dev
);
121 const phy_cmd_t
*config
;
122 const phy_cmd_t
*startup
;
123 const phy_cmd_t
*ack_int
;
124 const phy_cmd_t
*shutdown
;
127 /* The number of Tx and Rx buffers. These are allocated from the page
128 * pool. The code may assume these are power of two, so it it best
129 * to keep them that size.
130 * We don't need to allocate pages for the transmitter. We just use
131 * the skbuffer directly.
133 #define FEC_ENET_RX_PAGES 8
134 #define FEC_ENET_RX_FRSIZE 2048
135 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
136 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
137 #define FEC_ENET_TX_FRSIZE 2048
138 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
139 #define TX_RING_SIZE 16 /* Must be power of two */
140 #define TX_RING_MOD_MASK 15 /* for this to work */
142 /* Interrupt events/masks.
144 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
145 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
146 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
147 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
148 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
149 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
150 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
151 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
152 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
153 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
155 /* The FEC stores dest/src/type, data, and checksum for receive packets.
157 #define PKT_MAXBUF_SIZE 1518
158 #define PKT_MINBUF_SIZE 64
159 #define PKT_MAXBLR_SIZE 1520
163 * The 5270/5271/5280/5282 RX control register also contains maximum frame
164 * size bits. Other FEC hardware does not, so we need to take that into
165 * account when setting it.
167 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
168 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
170 #define OPT_FRAME_SIZE 0
173 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
174 * tx_bd_base always point to the base of the buffer descriptors. The
175 * cur_rx and cur_tx point to the currently available buffer.
176 * The dirty_tx tracks the current buffer that is being sent by the
177 * controller. The cur_tx and dirty_tx are equal under both completely
178 * empty and completely full conditions. The empty/ready indicator in
179 * the buffer descriptor determines the actual condition.
181 struct fec_enet_private
{
182 /* Hardware registers of the FEC device */
185 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
186 unsigned char *tx_bounce
[TX_RING_SIZE
];
187 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
191 /* CPM dual port RAM relative addresses.
193 cbd_t
*rx_bd_base
; /* Address of Rx and Tx buffers. */
195 cbd_t
*cur_rx
, *cur_tx
; /* The next free ring entry */
196 cbd_t
*dirty_tx
; /* The ring entries to be free()ed. */
197 struct net_device_stats stats
;
205 phy_info_t
const *phy
;
206 struct work_struct phy_task
;
209 uint mii_phy_task_queued
;
220 static int fec_enet_open(struct net_device
*dev
);
221 static int fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
);
222 static void fec_enet_mii(struct net_device
*dev
);
223 static irqreturn_t
fec_enet_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
);
224 static void fec_enet_tx(struct net_device
*dev
);
225 static void fec_enet_rx(struct net_device
*dev
);
226 static int fec_enet_close(struct net_device
*dev
);
227 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
);
228 static void set_multicast_list(struct net_device
*dev
);
229 static void fec_restart(struct net_device
*dev
, int duplex
);
230 static void fec_stop(struct net_device
*dev
);
231 static void fec_set_mac_address(struct net_device
*dev
);
234 /* MII processing. We keep this as simple as possible. Requests are
235 * placed on the list (if there is room). When the request is finished
236 * by the MII, an optional function may be called.
238 typedef struct mii_list
{
240 void (*mii_func
)(uint val
, struct net_device
*dev
);
241 struct mii_list
*mii_next
;
245 static mii_list_t mii_cmds
[NMII
];
246 static mii_list_t
*mii_free
;
247 static mii_list_t
*mii_head
;
248 static mii_list_t
*mii_tail
;
250 static int mii_queue(struct net_device
*dev
, int request
,
251 void (*func
)(uint
, struct net_device
*));
253 /* Make MII read/write commands for the FEC.
255 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
256 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
260 /* Transmitter timeout.
262 #define TX_TIMEOUT (2*HZ)
264 /* Register definitions for the PHY.
267 #define MII_REG_CR 0 /* Control Register */
268 #define MII_REG_SR 1 /* Status Register */
269 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
270 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
271 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
272 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
273 #define MII_REG_ANER 6 /* A-N Expansion Register */
274 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
275 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
277 /* values for phy_status */
279 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
280 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
281 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
282 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
283 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
284 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
285 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
287 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
288 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
289 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
290 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
291 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
292 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
293 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
294 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
298 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
300 struct fec_enet_private
*fep
;
301 volatile fec_t
*fecp
;
304 fep
= netdev_priv(dev
);
305 fecp
= (volatile fec_t
*)dev
->base_addr
;
308 /* Link is down or autonegotiation is in progress. */
312 /* Fill in a Tx ring entry */
315 #ifndef final_version
316 if (bdp
->cbd_sc
& BD_ENET_TX_READY
) {
317 /* Ooops. All transmit buffers are full. Bail out.
318 * This should not happen, since dev->tbusy should be set.
320 printk("%s: tx queue full!.\n", dev
->name
);
325 /* Clear all of the status flags.
327 bdp
->cbd_sc
&= ~BD_ENET_TX_STATS
;
329 /* Set buffer length and buffer pointer.
331 bdp
->cbd_bufaddr
= __pa(skb
->data
);
332 bdp
->cbd_datlen
= skb
->len
;
335 * On some FEC implementations data must be aligned on
336 * 4-byte boundaries. Use bounce buffers to copy data
337 * and get it aligned. Ugh.
339 if (bdp
->cbd_bufaddr
& 0x3) {
341 index
= bdp
- fep
->tx_bd_base
;
342 memcpy(fep
->tx_bounce
[index
], (void *) bdp
->cbd_bufaddr
, bdp
->cbd_datlen
);
343 bdp
->cbd_bufaddr
= __pa(fep
->tx_bounce
[index
]);
348 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
350 fep
->stats
.tx_bytes
+= skb
->len
;
351 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
353 /* Push the data cache so the CPM does not get stale memory
356 flush_dcache_range((unsigned long)skb
->data
,
357 (unsigned long)skb
->data
+ skb
->len
);
359 spin_lock_irq(&fep
->lock
);
361 /* Send it on its way. Tell FEC its ready, interrupt when done,
362 * its the last BD of the frame, and to put the CRC on the end.
365 bdp
->cbd_sc
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
366 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
368 dev
->trans_start
= jiffies
;
370 /* Trigger transmission start */
371 fecp
->fec_x_des_active
= 0x01000000;
373 /* If this was the last BD in the ring, start at the beginning again.
375 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
) {
376 bdp
= fep
->tx_bd_base
;
381 if (bdp
== fep
->dirty_tx
) {
383 netif_stop_queue(dev
);
386 fep
->cur_tx
= (cbd_t
*)bdp
;
388 spin_unlock_irq(&fep
->lock
);
394 fec_timeout(struct net_device
*dev
)
396 struct fec_enet_private
*fep
= netdev_priv(dev
);
398 printk("%s: transmit timed out.\n", dev
->name
);
399 fep
->stats
.tx_errors
++;
400 #ifndef final_version
405 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
406 (unsigned long)fep
->cur_tx
, fep
->tx_full
? " (full)" : "",
407 (unsigned long)fep
->dirty_tx
,
408 (unsigned long)fep
->cur_rx
);
410 bdp
= fep
->tx_bd_base
;
411 printk(" tx: %u buffers\n", TX_RING_SIZE
);
412 for (i
= 0 ; i
< TX_RING_SIZE
; i
++) {
413 printk(" %08x: %04x %04x %08x\n",
417 (int) bdp
->cbd_bufaddr
);
421 bdp
= fep
->rx_bd_base
;
422 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE
);
423 for (i
= 0 ; i
< RX_RING_SIZE
; i
++) {
424 printk(" %08x: %04x %04x %08x\n",
428 (int) bdp
->cbd_bufaddr
);
433 fec_restart(dev
, fep
->full_duplex
);
434 netif_wake_queue(dev
);
437 /* The interrupt handler.
438 * This is called from the MPC core interrupt.
441 fec_enet_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
443 struct net_device
*dev
= dev_id
;
444 volatile fec_t
*fecp
;
448 fecp
= (volatile fec_t
*)dev
->base_addr
;
450 /* Get the interrupt events that caused us to be here.
452 while ((int_events
= fecp
->fec_ievent
) != 0) {
453 fecp
->fec_ievent
= int_events
;
455 /* Handle receive event in its own function.
457 if (int_events
& FEC_ENET_RXF
) {
462 /* Transmit OK, or non-fatal error. Update the buffer
463 descriptors. FEC handles all errors, we just discover
464 them as part of the transmit process.
466 if (int_events
& FEC_ENET_TXF
) {
471 if (int_events
& FEC_ENET_MII
) {
477 return IRQ_RETVAL(handled
);
482 fec_enet_tx(struct net_device
*dev
)
484 struct fec_enet_private
*fep
;
488 fep
= netdev_priv(dev
);
489 spin_lock(&fep
->lock
);
492 while ((bdp
->cbd_sc
&BD_ENET_TX_READY
) == 0) {
493 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0) break;
495 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
496 /* Check for errors. */
497 if (bdp
->cbd_sc
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
498 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
500 fep
->stats
.tx_errors
++;
501 if (bdp
->cbd_sc
& BD_ENET_TX_HB
) /* No heartbeat */
502 fep
->stats
.tx_heartbeat_errors
++;
503 if (bdp
->cbd_sc
& BD_ENET_TX_LC
) /* Late collision */
504 fep
->stats
.tx_window_errors
++;
505 if (bdp
->cbd_sc
& BD_ENET_TX_RL
) /* Retrans limit */
506 fep
->stats
.tx_aborted_errors
++;
507 if (bdp
->cbd_sc
& BD_ENET_TX_UN
) /* Underrun */
508 fep
->stats
.tx_fifo_errors
++;
509 if (bdp
->cbd_sc
& BD_ENET_TX_CSL
) /* Carrier lost */
510 fep
->stats
.tx_carrier_errors
++;
512 fep
->stats
.tx_packets
++;
515 #ifndef final_version
516 if (bdp
->cbd_sc
& BD_ENET_TX_READY
)
517 printk("HEY! Enet xmit interrupt and TX_READY.\n");
519 /* Deferred means some collisions occurred during transmit,
520 * but we eventually sent the packet OK.
522 if (bdp
->cbd_sc
& BD_ENET_TX_DEF
)
523 fep
->stats
.collisions
++;
525 /* Free the sk buffer associated with this last transmit.
527 dev_kfree_skb_any(skb
);
528 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
529 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
531 /* Update pointer to next buffer descriptor to be transmitted.
533 if (bdp
->cbd_sc
& BD_ENET_TX_WRAP
)
534 bdp
= fep
->tx_bd_base
;
538 /* Since we have freed up a buffer, the ring is no longer
543 if (netif_queue_stopped(dev
))
544 netif_wake_queue(dev
);
547 fep
->dirty_tx
= (cbd_t
*)bdp
;
548 spin_unlock(&fep
->lock
);
552 /* During a receive, the cur_rx points to the current incoming buffer.
553 * When we update through the ring, if the next incoming buffer has
554 * not been given to the system, we just set the empty indicator,
555 * effectively tossing the packet.
558 fec_enet_rx(struct net_device
*dev
)
560 struct fec_enet_private
*fep
;
561 volatile fec_t
*fecp
;
567 fep
= netdev_priv(dev
);
568 fecp
= (volatile fec_t
*)dev
->base_addr
;
570 /* First, grab all of the stats for the incoming packet.
571 * These get messed up if we get called due to a busy condition.
575 while (!(bdp
->cbd_sc
& BD_ENET_RX_EMPTY
)) {
577 #ifndef final_version
578 /* Since we have allocated space to hold a complete frame,
579 * the last indicator should be set.
581 if ((bdp
->cbd_sc
& BD_ENET_RX_LAST
) == 0)
582 printk("FEC ENET: rcv is not +last\n");
586 goto rx_processing_done
;
588 /* Check for errors. */
589 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
590 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
591 fep
->stats
.rx_errors
++;
592 if (bdp
->cbd_sc
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
593 /* Frame too long or too short. */
594 fep
->stats
.rx_length_errors
++;
596 if (bdp
->cbd_sc
& BD_ENET_RX_NO
) /* Frame alignment */
597 fep
->stats
.rx_frame_errors
++;
598 if (bdp
->cbd_sc
& BD_ENET_RX_CR
) /* CRC Error */
599 fep
->stats
.rx_crc_errors
++;
600 if (bdp
->cbd_sc
& BD_ENET_RX_OV
) /* FIFO overrun */
601 fep
->stats
.rx_crc_errors
++;
604 /* Report late collisions as a frame error.
605 * On this error, the BD is closed, but we don't know what we
606 * have in the buffer. So, just drop this frame on the floor.
608 if (bdp
->cbd_sc
& BD_ENET_RX_CL
) {
609 fep
->stats
.rx_errors
++;
610 fep
->stats
.rx_frame_errors
++;
611 goto rx_processing_done
;
614 /* Process the incoming frame.
616 fep
->stats
.rx_packets
++;
617 pkt_len
= bdp
->cbd_datlen
;
618 fep
->stats
.rx_bytes
+= pkt_len
;
619 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
621 /* This does 16 byte alignment, exactly what we need.
622 * The packet length includes FCS, but we don't want to
623 * include that when passing upstream as it messes up
624 * bridging applications.
626 skb
= dev_alloc_skb(pkt_len
-4);
629 printk("%s: Memory squeeze, dropping packet.\n", dev
->name
);
630 fep
->stats
.rx_dropped
++;
633 skb_put(skb
,pkt_len
-4); /* Make room */
634 eth_copy_and_sum(skb
,
635 (unsigned char *)__va(bdp
->cbd_bufaddr
),
637 skb
->protocol
=eth_type_trans(skb
,dev
);
642 /* Clear the status flags for this buffer.
644 bdp
->cbd_sc
&= ~BD_ENET_RX_STATS
;
646 /* Mark the buffer empty.
648 bdp
->cbd_sc
|= BD_ENET_RX_EMPTY
;
650 /* Update BD pointer to next entry.
652 if (bdp
->cbd_sc
& BD_ENET_RX_WRAP
)
653 bdp
= fep
->rx_bd_base
;
658 /* Doing this here will keep the FEC running while we process
659 * incoming frames. On a heavily loaded network, we should be
660 * able to keep up at the expense of system resources.
662 fecp
->fec_r_des_active
= 0x01000000;
664 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
665 fep
->cur_rx
= (cbd_t
*)bdp
;
668 /* Doing this here will allow us to process all frames in the
669 * ring before the FEC is allowed to put more there. On a heavily
670 * loaded network, some frames may be lost. Unfortunately, this
671 * increases the interrupt overhead since we can potentially work
672 * our way back to the interrupt return only to come right back
675 fecp
->fec_r_des_active
= 0x01000000;
681 fec_enet_mii(struct net_device
*dev
)
683 struct fec_enet_private
*fep
;
688 fep
= netdev_priv(dev
);
690 mii_reg
= ep
->fec_mii_data
;
692 if ((mip
= mii_head
) == NULL
) {
693 printk("MII and no head!\n");
697 if (mip
->mii_func
!= NULL
)
698 (*(mip
->mii_func
))(mii_reg
, dev
);
700 mii_head
= mip
->mii_next
;
701 mip
->mii_next
= mii_free
;
704 if ((mip
= mii_head
) != NULL
)
705 ep
->fec_mii_data
= mip
->mii_regval
;
709 mii_queue(struct net_device
*dev
, int regval
, void (*func
)(uint
, struct net_device
*))
711 struct fec_enet_private
*fep
;
716 /* Add PHY address to register command.
718 fep
= netdev_priv(dev
);
719 regval
|= fep
->phy_addr
<< 23;
726 if ((mip
= mii_free
) != NULL
) {
727 mii_free
= mip
->mii_next
;
728 mip
->mii_regval
= regval
;
729 mip
->mii_func
= func
;
730 mip
->mii_next
= NULL
;
732 mii_tail
->mii_next
= mip
;
736 mii_head
= mii_tail
= mip
;
737 fep
->hwp
->fec_mii_data
= regval
;
744 restore_flags(flags
);
749 static void mii_do_cmd(struct net_device
*dev
, const phy_cmd_t
*c
)
756 for(k
= 0; (c
+k
)->mii_data
!= mk_mii_end
; k
++) {
757 mii_queue(dev
, (c
+k
)->mii_data
, (c
+k
)->funct
);
761 static void mii_parse_sr(uint mii_reg
, struct net_device
*dev
)
763 struct fec_enet_private
*fep
= netdev_priv(dev
);
764 volatile uint
*s
= &(fep
->phy_status
);
767 status
= *s
& ~(PHY_STAT_LINK
| PHY_STAT_FAULT
| PHY_STAT_ANC
);
769 if (mii_reg
& 0x0004)
770 status
|= PHY_STAT_LINK
;
771 if (mii_reg
& 0x0010)
772 status
|= PHY_STAT_FAULT
;
773 if (mii_reg
& 0x0020)
774 status
|= PHY_STAT_ANC
;
779 static void mii_parse_cr(uint mii_reg
, struct net_device
*dev
)
781 struct fec_enet_private
*fep
= netdev_priv(dev
);
782 volatile uint
*s
= &(fep
->phy_status
);
785 status
= *s
& ~(PHY_CONF_ANE
| PHY_CONF_LOOP
);
787 if (mii_reg
& 0x1000)
788 status
|= PHY_CONF_ANE
;
789 if (mii_reg
& 0x4000)
790 status
|= PHY_CONF_LOOP
;
794 static void mii_parse_anar(uint mii_reg
, struct net_device
*dev
)
796 struct fec_enet_private
*fep
= netdev_priv(dev
);
797 volatile uint
*s
= &(fep
->phy_status
);
800 status
= *s
& ~(PHY_CONF_SPMASK
);
802 if (mii_reg
& 0x0020)
803 status
|= PHY_CONF_10HDX
;
804 if (mii_reg
& 0x0040)
805 status
|= PHY_CONF_10FDX
;
806 if (mii_reg
& 0x0080)
807 status
|= PHY_CONF_100HDX
;
808 if (mii_reg
& 0x00100)
809 status
|= PHY_CONF_100FDX
;
813 /* ------------------------------------------------------------------------- */
814 /* The Level one LXT970 is used by many boards */
816 #define MII_LXT970_MIRROR 16 /* Mirror register */
817 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
818 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
819 #define MII_LXT970_CONFIG 19 /* Configuration Register */
820 #define MII_LXT970_CSR 20 /* Chip Status Register */
822 static void mii_parse_lxt970_csr(uint mii_reg
, struct net_device
*dev
)
824 struct fec_enet_private
*fep
= netdev_priv(dev
);
825 volatile uint
*s
= &(fep
->phy_status
);
828 status
= *s
& ~(PHY_STAT_SPMASK
);
829 if (mii_reg
& 0x0800) {
830 if (mii_reg
& 0x1000)
831 status
|= PHY_STAT_100FDX
;
833 status
|= PHY_STAT_100HDX
;
835 if (mii_reg
& 0x1000)
836 status
|= PHY_STAT_10FDX
;
838 status
|= PHY_STAT_10HDX
;
843 static phy_cmd_t
const phy_cmd_lxt970_config
[] = {
844 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
845 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
848 static phy_cmd_t
const phy_cmd_lxt970_startup
[] = { /* enable interrupts */
849 { mk_mii_write(MII_LXT970_IER
, 0x0002), NULL
},
850 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
853 static phy_cmd_t
const phy_cmd_lxt970_ack_int
[] = {
854 /* read SR and ISR to acknowledge */
855 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
856 { mk_mii_read(MII_LXT970_ISR
), NULL
},
858 /* find out the current status */
859 { mk_mii_read(MII_LXT970_CSR
), mii_parse_lxt970_csr
},
862 static phy_cmd_t
const phy_cmd_lxt970_shutdown
[] = { /* disable interrupts */
863 { mk_mii_write(MII_LXT970_IER
, 0x0000), NULL
},
866 static phy_info_t
const phy_info_lxt970
= {
869 .config
= phy_cmd_lxt970_config
,
870 .startup
= phy_cmd_lxt970_startup
,
871 .ack_int
= phy_cmd_lxt970_ack_int
,
872 .shutdown
= phy_cmd_lxt970_shutdown
875 /* ------------------------------------------------------------------------- */
876 /* The Level one LXT971 is used on some of my custom boards */
878 /* register definitions for the 971 */
880 #define MII_LXT971_PCR 16 /* Port Control Register */
881 #define MII_LXT971_SR2 17 /* Status Register 2 */
882 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
883 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
884 #define MII_LXT971_LCR 20 /* LED Control Register */
885 #define MII_LXT971_TCR 30 /* Transmit Control Register */
888 * I had some nice ideas of running the MDIO faster...
889 * The 971 should support 8MHz and I tried it, but things acted really
890 * weird, so 2.5 MHz ought to be enough for anyone...
893 static void mii_parse_lxt971_sr2(uint mii_reg
, struct net_device
*dev
)
895 struct fec_enet_private
*fep
= netdev_priv(dev
);
896 volatile uint
*s
= &(fep
->phy_status
);
899 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_LINK
| PHY_STAT_ANC
);
901 if (mii_reg
& 0x0400) {
903 status
|= PHY_STAT_LINK
;
907 if (mii_reg
& 0x0080)
908 status
|= PHY_STAT_ANC
;
909 if (mii_reg
& 0x4000) {
910 if (mii_reg
& 0x0200)
911 status
|= PHY_STAT_100FDX
;
913 status
|= PHY_STAT_100HDX
;
915 if (mii_reg
& 0x0200)
916 status
|= PHY_STAT_10FDX
;
918 status
|= PHY_STAT_10HDX
;
920 if (mii_reg
& 0x0008)
921 status
|= PHY_STAT_FAULT
;
926 static phy_cmd_t
const phy_cmd_lxt971_config
[] = {
927 /* limit to 10MBit because my prototype board
928 * doesn't work with 100. */
929 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
930 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
931 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
934 static phy_cmd_t
const phy_cmd_lxt971_startup
[] = { /* enable interrupts */
935 { mk_mii_write(MII_LXT971_IER
, 0x00f2), NULL
},
936 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
937 { mk_mii_write(MII_LXT971_LCR
, 0xd422), NULL
}, /* LED config */
938 /* Somehow does the 971 tell me that the link is down
939 * the first read after power-up.
940 * read here to get a valid value in ack_int */
941 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
944 static phy_cmd_t
const phy_cmd_lxt971_ack_int
[] = {
945 /* acknowledge the int before reading status ! */
946 { mk_mii_read(MII_LXT971_ISR
), NULL
},
947 /* find out the current status */
948 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
949 { mk_mii_read(MII_LXT971_SR2
), mii_parse_lxt971_sr2
},
952 static phy_cmd_t
const phy_cmd_lxt971_shutdown
[] = { /* disable interrupts */
953 { mk_mii_write(MII_LXT971_IER
, 0x0000), NULL
},
956 static phy_info_t
const phy_info_lxt971
= {
959 .config
= phy_cmd_lxt971_config
,
960 .startup
= phy_cmd_lxt971_startup
,
961 .ack_int
= phy_cmd_lxt971_ack_int
,
962 .shutdown
= phy_cmd_lxt971_shutdown
965 /* ------------------------------------------------------------------------- */
966 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
968 /* register definitions */
970 #define MII_QS6612_MCR 17 /* Mode Control Register */
971 #define MII_QS6612_FTR 27 /* Factory Test Register */
972 #define MII_QS6612_MCO 28 /* Misc. Control Register */
973 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
974 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
975 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
977 static void mii_parse_qs6612_pcr(uint mii_reg
, struct net_device
*dev
)
979 struct fec_enet_private
*fep
= netdev_priv(dev
);
980 volatile uint
*s
= &(fep
->phy_status
);
983 status
= *s
& ~(PHY_STAT_SPMASK
);
985 switch((mii_reg
>> 2) & 7) {
986 case 1: status
|= PHY_STAT_10HDX
; break;
987 case 2: status
|= PHY_STAT_100HDX
; break;
988 case 5: status
|= PHY_STAT_10FDX
; break;
989 case 6: status
|= PHY_STAT_100FDX
; break;
995 static phy_cmd_t
const phy_cmd_qs6612_config
[] = {
996 /* The PHY powers up isolated on the RPX,
997 * so send a command to allow operation.
999 { mk_mii_write(MII_QS6612_PCR
, 0x0dc0), NULL
},
1001 /* parse cr and anar to get some info */
1002 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1003 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1006 static phy_cmd_t
const phy_cmd_qs6612_startup
[] = { /* enable interrupts */
1007 { mk_mii_write(MII_QS6612_IMR
, 0x003a), NULL
},
1008 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1011 static phy_cmd_t
const phy_cmd_qs6612_ack_int
[] = {
1012 /* we need to read ISR, SR and ANER to acknowledge */
1013 { mk_mii_read(MII_QS6612_ISR
), NULL
},
1014 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1015 { mk_mii_read(MII_REG_ANER
), NULL
},
1017 /* read pcr to get info */
1018 { mk_mii_read(MII_QS6612_PCR
), mii_parse_qs6612_pcr
},
1021 static phy_cmd_t
const phy_cmd_qs6612_shutdown
[] = { /* disable interrupts */
1022 { mk_mii_write(MII_QS6612_IMR
, 0x0000), NULL
},
1025 static phy_info_t
const phy_info_qs6612
= {
1028 .config
= phy_cmd_qs6612_config
,
1029 .startup
= phy_cmd_qs6612_startup
,
1030 .ack_int
= phy_cmd_qs6612_ack_int
,
1031 .shutdown
= phy_cmd_qs6612_shutdown
1034 /* ------------------------------------------------------------------------- */
1035 /* AMD AM79C874 phy */
1037 /* register definitions for the 874 */
1039 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1040 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1041 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1042 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1043 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1044 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1045 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1047 static void mii_parse_am79c874_dr(uint mii_reg
, struct net_device
*dev
)
1049 struct fec_enet_private
*fep
= netdev_priv(dev
);
1050 volatile uint
*s
= &(fep
->phy_status
);
1053 status
= *s
& ~(PHY_STAT_SPMASK
| PHY_STAT_ANC
);
1055 if (mii_reg
& 0x0080)
1056 status
|= PHY_STAT_ANC
;
1057 if (mii_reg
& 0x0400)
1058 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_100FDX
: PHY_STAT_100HDX
);
1060 status
|= ((mii_reg
& 0x0800) ? PHY_STAT_10FDX
: PHY_STAT_10HDX
);
1065 static phy_cmd_t
const phy_cmd_am79c874_config
[] = {
1066 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1067 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1068 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1071 static phy_cmd_t
const phy_cmd_am79c874_startup
[] = { /* enable interrupts */
1072 { mk_mii_write(MII_AM79C874_ICSR
, 0xff00), NULL
},
1073 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1074 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1077 static phy_cmd_t
const phy_cmd_am79c874_ack_int
[] = {
1078 /* find out the current status */
1079 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1080 { mk_mii_read(MII_AM79C874_DR
), mii_parse_am79c874_dr
},
1081 /* we only need to read ISR to acknowledge */
1082 { mk_mii_read(MII_AM79C874_ICSR
), NULL
},
1085 static phy_cmd_t
const phy_cmd_am79c874_shutdown
[] = { /* disable interrupts */
1086 { mk_mii_write(MII_AM79C874_ICSR
, 0x0000), NULL
},
1089 static phy_info_t
const phy_info_am79c874
= {
1092 .config
= phy_cmd_am79c874_config
,
1093 .startup
= phy_cmd_am79c874_startup
,
1094 .ack_int
= phy_cmd_am79c874_ack_int
,
1095 .shutdown
= phy_cmd_am79c874_shutdown
1099 /* ------------------------------------------------------------------------- */
1100 /* Kendin KS8721BL phy */
1102 /* register definitions for the 8721 */
1104 #define MII_KS8721BL_RXERCR 21
1105 #define MII_KS8721BL_ICSR 22
1106 #define MII_KS8721BL_PHYCR 31
1108 static phy_cmd_t
const phy_cmd_ks8721bl_config
[] = {
1109 { mk_mii_read(MII_REG_CR
), mii_parse_cr
},
1110 { mk_mii_read(MII_REG_ANAR
), mii_parse_anar
},
1113 static phy_cmd_t
const phy_cmd_ks8721bl_startup
[] = { /* enable interrupts */
1114 { mk_mii_write(MII_KS8721BL_ICSR
, 0xff00), NULL
},
1115 { mk_mii_write(MII_REG_CR
, 0x1200), NULL
}, /* autonegotiate */
1116 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1119 static phy_cmd_t
const phy_cmd_ks8721bl_ack_int
[] = {
1120 /* find out the current status */
1121 { mk_mii_read(MII_REG_SR
), mii_parse_sr
},
1122 /* we only need to read ISR to acknowledge */
1123 { mk_mii_read(MII_KS8721BL_ICSR
), NULL
},
1126 static phy_cmd_t
const phy_cmd_ks8721bl_shutdown
[] = { /* disable interrupts */
1127 { mk_mii_write(MII_KS8721BL_ICSR
, 0x0000), NULL
},
1130 static phy_info_t
const phy_info_ks8721bl
= {
1133 .config
= phy_cmd_ks8721bl_config
,
1134 .startup
= phy_cmd_ks8721bl_startup
,
1135 .ack_int
= phy_cmd_ks8721bl_ack_int
,
1136 .shutdown
= phy_cmd_ks8721bl_shutdown
1139 /* ------------------------------------------------------------------------- */
1141 static phy_info_t
const * const phy_info
[] = {
1150 /* ------------------------------------------------------------------------- */
1152 #ifdef CONFIG_RPXCLASSIC
1154 mii_link_interrupt(void *dev_id
);
1157 mii_link_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
);
1160 #if defined(CONFIG_M5272)
1163 * Code specific to Coldfire 5272 setup.
1165 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1167 volatile unsigned long *icrp
;
1168 static const struct idesc
{
1171 irqreturn_t (*handler
)(int, void *, struct pt_regs
*);
1173 { "fec(RX)", 86, fec_enet_interrupt
},
1174 { "fec(TX)", 87, fec_enet_interrupt
},
1175 { "fec(OTHER)", 88, fec_enet_interrupt
},
1176 { "fec(MII)", 66, mii_link_interrupt
},
1180 /* Setup interrupt handlers. */
1181 for (idp
= id
; idp
->name
; idp
++) {
1182 if (request_irq(idp
->irq
, idp
->handler
, 0, idp
->name
, dev
) != 0)
1183 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, idp
->irq
);
1186 /* Unmask interrupt at ColdFire 5272 SIM */
1187 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR3
);
1189 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1190 *icrp
= (*icrp
& 0x70777777) | 0x0d000000;
1193 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1195 volatile fec_t
*fecp
;
1198 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1199 fecp
->fec_x_cntrl
= 0x00;
1202 * Set MII speed to 2.5 MHz
1203 * See 5272 manual section 11.5.8: MSCR
1205 fep
->phy_speed
= ((((MCF_CLK
/ 4) / (2500000 / 10)) + 5) / 10) * 2;
1206 fecp
->fec_mii_speed
= fep
->phy_speed
;
1208 fec_restart(dev
, 0);
1211 static void __inline__
fec_get_mac(struct net_device
*dev
)
1213 struct fec_enet_private
*fep
= netdev_priv(dev
);
1214 volatile fec_t
*fecp
;
1215 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1221 * Get MAC address from FLASH.
1222 * If it is all 1's or 0's, use the default.
1224 iap
= (unsigned char *)FEC_FLASHMAC
;
1225 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1226 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1227 iap
= fec_mac_default
;
1228 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1229 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1230 iap
= fec_mac_default
;
1232 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1233 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1237 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1239 /* Adjust MAC if using default MAC address */
1240 if (iap
== fec_mac_default
)
1241 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1244 static void __inline__
fec_enable_phy_intr(void)
1248 static void __inline__
fec_disable_phy_intr(void)
1250 volatile unsigned long *icrp
;
1251 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1252 *icrp
= (*icrp
& 0x70777777) | 0x08000000;
1255 static void __inline__
fec_phy_ack_intr(void)
1257 volatile unsigned long *icrp
;
1258 /* Acknowledge the interrupt */
1259 icrp
= (volatile unsigned long *) (MCF_MBAR
+ MCFSIM_ICR1
);
1260 *icrp
= (*icrp
& 0x77777777) | 0x08000000;
1263 static void __inline__
fec_localhw_setup(void)
1268 * Do not need to make region uncached on 5272.
1270 static void __inline__
fec_uncache(unsigned long addr
)
1274 /* ------------------------------------------------------------------------- */
1276 #elif defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
1279 * Code specific to Coldfire 5230/5231/5232/5234/5235,
1280 * the 5270/5271/5274/5275 and 5280/5282 setups.
1282 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1284 struct fec_enet_private
*fep
;
1286 static const struct idesc
{
1292 { "fec(TXFIFO)", 25 },
1293 { "fec(TXCR)", 26 },
1298 { "fec(HBERR)", 31 },
1300 { "fec(EBERR)", 33 },
1301 { "fec(BABT)", 34 },
1302 { "fec(BABR)", 35 },
1306 fep
= netdev_priv(dev
);
1307 b
= (fep
->index
) ? 128 : 64;
1309 /* Setup interrupt handlers. */
1310 for (idp
= id
; idp
->name
; idp
++) {
1311 if (request_irq(b
+idp
->irq
, fec_enet_interrupt
, 0, idp
->name
, dev
) != 0)
1312 printk("FEC: Could not allocate %s IRQ(%d)!\n", idp
->name
, b
+idp
->irq
);
1315 /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */
1317 volatile unsigned char *icrp
;
1318 volatile unsigned long *imrp
;
1321 b
= (fep
->index
) ? MCFICM_INTC1
: MCFICM_INTC0
;
1322 icrp
= (volatile unsigned char *) (MCF_IPSBAR
+ b
+
1324 for (i
= 23; (i
< 36); i
++)
1327 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1329 *imrp
&= ~0x0000000f;
1330 imrp
= (volatile unsigned long *) (MCF_IPSBAR
+ b
+
1332 *imrp
&= ~0xff800001;
1335 #if defined(CONFIG_M528x)
1336 /* Set up gpio outputs for MII lines */
1338 volatile u16
*gpio_paspar
;
1339 volatile u8
*gpio_pehlpar
;
1341 gpio_paspar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100056);
1342 gpio_pehlpar
= (volatile u16
*) (MCF_IPSBAR
+ 0x100058);
1343 *gpio_paspar
|= 0x0f00;
1344 *gpio_pehlpar
= 0xc0;
1349 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1351 volatile fec_t
*fecp
;
1354 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;
1355 fecp
->fec_x_cntrl
= 0x00;
1358 * Set MII speed to 2.5 MHz
1359 * See 5282 manual section 17.5.4.7: MSCR
1361 fep
->phy_speed
= ((((MCF_CLK
/ 2) / (2500000 / 10)) + 5) / 10) * 2;
1362 fecp
->fec_mii_speed
= fep
->phy_speed
;
1364 fec_restart(dev
, 0);
1367 static void __inline__
fec_get_mac(struct net_device
*dev
)
1369 struct fec_enet_private
*fep
= netdev_priv(dev
);
1370 volatile fec_t
*fecp
;
1371 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
1377 * Get MAC address from FLASH.
1378 * If it is all 1's or 0's, use the default.
1381 if ((iap
[0] == 0) && (iap
[1] == 0) && (iap
[2] == 0) &&
1382 (iap
[3] == 0) && (iap
[4] == 0) && (iap
[5] == 0))
1383 iap
= fec_mac_default
;
1384 if ((iap
[0] == 0xff) && (iap
[1] == 0xff) && (iap
[2] == 0xff) &&
1385 (iap
[3] == 0xff) && (iap
[4] == 0xff) && (iap
[5] == 0xff))
1386 iap
= fec_mac_default
;
1388 *((unsigned long *) &tmpaddr
[0]) = fecp
->fec_addr_low
;
1389 *((unsigned short *) &tmpaddr
[4]) = (fecp
->fec_addr_high
>> 16);
1393 memcpy(dev
->dev_addr
, iap
, ETH_ALEN
);
1395 /* Adjust MAC if using default MAC address */
1396 if (iap
== fec_mac_default
)
1397 dev
->dev_addr
[ETH_ALEN
-1] = fec_mac_default
[ETH_ALEN
-1] + fep
->index
;
1400 static void __inline__
fec_enable_phy_intr(void)
1404 static void __inline__
fec_disable_phy_intr(void)
1408 static void __inline__
fec_phy_ack_intr(void)
1412 static void __inline__
fec_localhw_setup(void)
1417 * Do not need to make region uncached on 5272.
1419 static void __inline__
fec_uncache(unsigned long addr
)
1423 /* ------------------------------------------------------------------------- */
1428 * Code specific to the MPC860T setup.
1430 static void __inline__
fec_request_intrs(struct net_device
*dev
)
1432 volatile immap_t
*immap
;
1434 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1436 if (request_8xxirq(FEC_INTERRUPT
, fec_enet_interrupt
, 0, "fec", dev
) != 0)
1437 panic("Could not allocate FEC IRQ!");
1439 #ifdef CONFIG_RPXCLASSIC
1440 /* Make Port C, bit 15 an input that causes interrupts.
1442 immap
->im_ioport
.iop_pcpar
&= ~0x0001;
1443 immap
->im_ioport
.iop_pcdir
&= ~0x0001;
1444 immap
->im_ioport
.iop_pcso
&= ~0x0001;
1445 immap
->im_ioport
.iop_pcint
|= 0x0001;
1446 cpm_install_handler(CPMVEC_PIO_PC15
, mii_link_interrupt
, dev
);
1448 /* Make LEDS reflect Link status.
1450 *((uint
*) RPX_CSR_ADDR
) &= ~BCSR2_FETHLEDMODE
;
1453 if (request_8xxirq(SIU_IRQ2
, mii_link_interrupt
, 0, "mii", dev
) != 0)
1454 panic("Could not allocate MII IRQ!");
1458 static void __inline__
fec_get_mac(struct net_device
*dev
)
1463 memcpy(dev
->dev_addr
, bd
->bi_enetaddr
, ETH_ALEN
);
1465 #ifdef CONFIG_RPXCLASSIC
1466 /* The Embedded Planet boards have only one MAC address in
1467 * the EEPROM, but can have two Ethernet ports. For the
1468 * FEC port, we create another address by setting one of
1469 * the address bits above something that would have (up to
1470 * now) been allocated.
1472 dev
->dev_adrd
[3] |= 0x80;
1476 static void __inline__
fec_set_mii(struct net_device
*dev
, struct fec_enet_private
*fep
)
1478 extern uint
_get_IMMR(void);
1479 volatile immap_t
*immap
;
1480 volatile fec_t
*fecp
;
1483 immap
= (immap_t
*)IMAP_ADDR
; /* pointer to internal registers */
1485 /* Configure all of port D for MII.
1487 immap
->im_ioport
.iop_pdpar
= 0x1fff;
1489 /* Bits moved from Rev. D onward.
1491 if ((_get_IMMR() & 0xffff) < 0x0501)
1492 immap
->im_ioport
.iop_pddir
= 0x1c58; /* Pre rev. D */
1494 immap
->im_ioport
.iop_pddir
= 0x1fff; /* Rev. D and later */
1496 /* Set MII speed to 2.5 MHz
1498 fecp
->fec_mii_speed
= fep
->phy_speed
=
1499 ((bd
->bi_busfreq
* 1000000) / 2500000) & 0x7e;
1502 static void __inline__
fec_enable_phy_intr(void)
1504 volatile fec_t
*fecp
;
1508 /* Enable MII command finished interrupt
1510 fecp
->fec_ivec
= (FEC_INTERRUPT
/2) << 29;
1513 static void __inline__
fec_disable_phy_intr(void)
1517 static void __inline__
fec_phy_ack_intr(void)
1521 static void __inline__
fec_localhw_setup(void)
1523 volatile fec_t
*fecp
;
1526 fecp
->fec_r_hash
= PKT_MAXBUF_SIZE
;
1527 /* Enable big endian and don't care about SDMA FC.
1529 fecp
->fec_fun_code
= 0x78000000;
1532 static void __inline__
fec_uncache(unsigned long addr
)
1535 pte
= va_to_pte(mem_addr
);
1536 pte_val(*pte
) |= _PAGE_NO_CACHE
;
1537 flush_tlb_page(init_mm
.mmap
, mem_addr
);
1542 /* ------------------------------------------------------------------------- */
1544 static void mii_display_status(struct net_device
*dev
)
1546 struct fec_enet_private
*fep
= netdev_priv(dev
);
1547 volatile uint
*s
= &(fep
->phy_status
);
1549 if (!fep
->link
&& !fep
->old_link
) {
1550 /* Link is still down - don't print anything */
1554 printk("%s: status: ", dev
->name
);
1557 printk("link down");
1561 switch(*s
& PHY_STAT_SPMASK
) {
1562 case PHY_STAT_100FDX
: printk(", 100MBit Full Duplex"); break;
1563 case PHY_STAT_100HDX
: printk(", 100MBit Half Duplex"); break;
1564 case PHY_STAT_10FDX
: printk(", 10MBit Full Duplex"); break;
1565 case PHY_STAT_10HDX
: printk(", 10MBit Half Duplex"); break;
1567 printk(", Unknown speed/duplex");
1570 if (*s
& PHY_STAT_ANC
)
1571 printk(", auto-negotiation complete");
1574 if (*s
& PHY_STAT_FAULT
)
1575 printk(", remote fault");
1580 static void mii_display_config(struct net_device
*dev
)
1582 struct fec_enet_private
*fep
= netdev_priv(dev
);
1583 uint status
= fep
->phy_status
;
1586 ** When we get here, phy_task is already removed from
1587 ** the workqueue. It is thus safe to allow to reuse it.
1589 fep
->mii_phy_task_queued
= 0;
1590 printk("%s: config: auto-negotiation ", dev
->name
);
1592 if (status
& PHY_CONF_ANE
)
1597 if (status
& PHY_CONF_100FDX
)
1599 if (status
& PHY_CONF_100HDX
)
1601 if (status
& PHY_CONF_10FDX
)
1603 if (status
& PHY_CONF_10HDX
)
1605 if (!(status
& PHY_CONF_SPMASK
))
1606 printk(", No speed/duplex selected?");
1608 if (status
& PHY_CONF_LOOP
)
1609 printk(", loopback enabled");
1613 fep
->sequence_done
= 1;
1616 static void mii_relink(struct net_device
*dev
)
1618 struct fec_enet_private
*fep
= netdev_priv(dev
);
1622 ** When we get here, phy_task is already removed from
1623 ** the workqueue. It is thus safe to allow to reuse it.
1625 fep
->mii_phy_task_queued
= 0;
1626 fep
->link
= (fep
->phy_status
& PHY_STAT_LINK
) ? 1 : 0;
1627 mii_display_status(dev
);
1628 fep
->old_link
= fep
->link
;
1633 & (PHY_STAT_100FDX
| PHY_STAT_10FDX
))
1635 fec_restart(dev
, duplex
);
1641 enable_irq(fep
->mii_irq
);
1646 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1647 static void mii_queue_relink(uint mii_reg
, struct net_device
*dev
)
1649 struct fec_enet_private
*fep
= netdev_priv(dev
);
1652 ** We cannot queue phy_task twice in the workqueue. It
1653 ** would cause an endless loop in the workqueue.
1654 ** Fortunately, if the last mii_relink entry has not yet been
1655 ** executed now, it will do the job for the current interrupt,
1656 ** which is just what we want.
1658 if (fep
->mii_phy_task_queued
)
1661 fep
->mii_phy_task_queued
= 1;
1662 INIT_WORK(&fep
->phy_task
, (void*)mii_relink
, dev
);
1663 schedule_work(&fep
->phy_task
);
1666 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1667 static void mii_queue_config(uint mii_reg
, struct net_device
*dev
)
1669 struct fec_enet_private
*fep
= netdev_priv(dev
);
1671 if (fep
->mii_phy_task_queued
)
1674 fep
->mii_phy_task_queued
= 1;
1675 INIT_WORK(&fep
->phy_task
, (void*)mii_display_config
, dev
);
1676 schedule_work(&fep
->phy_task
);
1679 phy_cmd_t
const phy_cmd_relink
[] = {
1680 { mk_mii_read(MII_REG_CR
), mii_queue_relink
},
1683 phy_cmd_t
const phy_cmd_config
[] = {
1684 { mk_mii_read(MII_REG_CR
), mii_queue_config
},
1688 /* Read remainder of PHY ID.
1691 mii_discover_phy3(uint mii_reg
, struct net_device
*dev
)
1693 struct fec_enet_private
*fep
;
1696 fep
= netdev_priv(dev
);
1697 fep
->phy_id
|= (mii_reg
& 0xffff);
1698 printk("fec: PHY @ 0x%x, ID 0x%08x", fep
->phy_addr
, fep
->phy_id
);
1700 for(i
= 0; phy_info
[i
]; i
++) {
1701 if(phy_info
[i
]->id
== (fep
->phy_id
>> 4))
1706 printk(" -- %s\n", phy_info
[i
]->name
);
1708 printk(" -- unknown PHY!\n");
1710 fep
->phy
= phy_info
[i
];
1711 fep
->phy_id_done
= 1;
1714 /* Scan all of the MII PHY addresses looking for someone to respond
1715 * with a valid ID. This usually happens quickly.
1718 mii_discover_phy(uint mii_reg
, struct net_device
*dev
)
1720 struct fec_enet_private
*fep
;
1721 volatile fec_t
*fecp
;
1724 fep
= netdev_priv(dev
);
1727 if (fep
->phy_addr
< 32) {
1728 if ((phytype
= (mii_reg
& 0xffff)) != 0xffff && phytype
!= 0) {
1730 /* Got first part of ID, now get remainder.
1732 fep
->phy_id
= phytype
<< 16;
1733 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR2
),
1738 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
),
1742 printk("FEC: No PHY device found.\n");
1743 /* Disable external MII interface */
1744 fecp
->fec_mii_speed
= fep
->phy_speed
= 0;
1745 fec_disable_phy_intr();
1749 /* This interrupt occurs when the PHY detects a link change.
1751 #ifdef CONFIG_RPXCLASSIC
1753 mii_link_interrupt(void *dev_id
)
1756 mii_link_interrupt(int irq
, void * dev_id
, struct pt_regs
* regs
)
1759 struct net_device
*dev
= dev_id
;
1760 struct fec_enet_private
*fep
= netdev_priv(dev
);
1765 disable_irq(fep
->mii_irq
); /* disable now, enable later */
1768 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1769 mii_do_cmd(dev
, phy_cmd_relink
); /* restart and display status */
1775 fec_enet_open(struct net_device
*dev
)
1777 struct fec_enet_private
*fep
= netdev_priv(dev
);
1779 /* I should reset the ring buffers here, but I don't yet know
1780 * a simple way to do that.
1782 fec_set_mac_address(dev
);
1784 fep
->sequence_done
= 0;
1788 mii_do_cmd(dev
, fep
->phy
->ack_int
);
1789 mii_do_cmd(dev
, fep
->phy
->config
);
1790 mii_do_cmd(dev
, phy_cmd_config
); /* display configuration */
1792 /* FIXME: use netif_carrier_{on,off} ; this polls
1793 * until link is up which is wrong... could be
1794 * 30 seconds or more we are trapped in here. -jgarzik
1796 while(!fep
->sequence_done
)
1799 mii_do_cmd(dev
, fep
->phy
->startup
);
1801 /* Set the initial link state to true. A lot of hardware
1802 * based on this device does not implement a PHY interrupt,
1803 * so we are never notified of link change.
1807 fep
->link
= 1; /* lets just try it and see */
1808 /* no phy, go full duplex, it's most likely a hub chip */
1809 fec_restart(dev
, 1);
1812 netif_start_queue(dev
);
1814 return 0; /* Success */
1818 fec_enet_close(struct net_device
*dev
)
1820 struct fec_enet_private
*fep
= netdev_priv(dev
);
1822 /* Don't know what to do yet.
1825 netif_stop_queue(dev
);
1831 static struct net_device_stats
*fec_enet_get_stats(struct net_device
*dev
)
1833 struct fec_enet_private
*fep
= netdev_priv(dev
);
1838 /* Set or clear the multicast filter for this adaptor.
1839 * Skeleton taken from sunlance driver.
1840 * The CPM Ethernet implementation allows Multicast as well as individual
1841 * MAC address filtering. Some of the drivers check to make sure it is
1842 * a group multicast address, and discard those that are not. I guess I
1843 * will do the same for now, but just remove the test if you want
1844 * individual filtering as well (do the upper net layers want or support
1845 * this kind of feature?).
1848 #define HASH_BITS 6 /* #bits in hash */
1849 #define CRC32_POLY 0xEDB88320
1851 static void set_multicast_list(struct net_device
*dev
)
1853 struct fec_enet_private
*fep
;
1855 struct dev_mc_list
*dmi
;
1856 unsigned int i
, j
, bit
, data
, crc
;
1859 fep
= netdev_priv(dev
);
1862 if (dev
->flags
&IFF_PROMISC
) {
1863 /* Log any net taps. */
1864 printk("%s: Promiscuous mode enabled.\n", dev
->name
);
1865 ep
->fec_r_cntrl
|= 0x0008;
1868 ep
->fec_r_cntrl
&= ~0x0008;
1870 if (dev
->flags
& IFF_ALLMULTI
) {
1871 /* Catch all multicast addresses, so set the
1872 * filter to all 1's.
1874 ep
->fec_hash_table_high
= 0xffffffff;
1875 ep
->fec_hash_table_low
= 0xffffffff;
1877 /* Clear filter and add the addresses in hash register.
1879 ep
->fec_hash_table_high
= 0;
1880 ep
->fec_hash_table_low
= 0;
1884 for (j
= 0; j
< dev
->mc_count
; j
++, dmi
= dmi
->next
)
1886 /* Only support group multicast for now.
1888 if (!(dmi
->dmi_addr
[0] & 1))
1891 /* calculate crc32 value of mac address
1895 for (i
= 0; i
< dmi
->dmi_addrlen
; i
++)
1897 data
= dmi
->dmi_addr
[i
];
1898 for (bit
= 0; bit
< 8; bit
++, data
>>= 1)
1901 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1905 /* only upper 6 bits (HASH_BITS) are used
1906 which point to specific bit in he hash registers
1908 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1911 ep
->fec_hash_table_high
|= 1 << (hash
- 32);
1913 ep
->fec_hash_table_low
|= 1 << hash
;
1919 /* Set a MAC change in hardware.
1922 fec_set_mac_address(struct net_device
*dev
)
1924 volatile fec_t
*fecp
;
1926 fecp
= ((struct fec_enet_private
*)netdev_priv(dev
))->hwp
;
1928 /* Set station address. */
1929 fecp
->fec_addr_low
= dev
->dev_addr
[3] | (dev
->dev_addr
[2] << 8) |
1930 (dev
->dev_addr
[1] << 16) | (dev
->dev_addr
[0] << 24);
1931 fecp
->fec_addr_high
= (dev
->dev_addr
[5] << 16) |
1932 (dev
->dev_addr
[4] << 24);
1936 /* Initialize the FEC Ethernet on 860T (or ColdFire 5272).
1939 * XXX: We need to clean up on failure exits here.
1941 int __init
fec_enet_init(struct net_device
*dev
)
1943 struct fec_enet_private
*fep
= netdev_priv(dev
);
1944 unsigned long mem_addr
;
1945 volatile cbd_t
*bdp
;
1947 volatile fec_t
*fecp
;
1949 static int index
= 0;
1951 /* Only allow us to be probed once. */
1952 if (index
>= FEC_MAX_PORTS
)
1955 /* Create an Ethernet device instance.
1957 fecp
= (volatile fec_t
*) fec_hw
[index
];
1962 /* Whack a reset. We should wait for this.
1964 fecp
->fec_ecntrl
= 1;
1967 /* Clear and enable interrupts */
1968 fecp
->fec_ievent
= 0xffc00000;
1969 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
1970 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
1971 fecp
->fec_hash_table_high
= 0;
1972 fecp
->fec_hash_table_low
= 0;
1973 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
1974 fecp
->fec_ecntrl
= 2;
1975 fecp
->fec_r_des_active
= 0x01000000;
1977 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1978 * this needs some work to get unique addresses.
1980 * This is our default MAC address unless the user changes
1981 * it via eth_mac_addr (our dev->set_mac_addr handler).
1985 /* Allocate memory for buffer descriptors.
1987 if (((RX_RING_SIZE
+ TX_RING_SIZE
) * sizeof(cbd_t
)) > PAGE_SIZE
) {
1988 printk("FEC init error. Need more space.\n");
1989 printk("FEC initialization failed.\n");
1992 mem_addr
= __get_free_page(GFP_KERNEL
);
1993 cbd_base
= (cbd_t
*)mem_addr
;
1994 /* XXX: missing check for allocation failure */
1996 fec_uncache(mem_addr
);
1998 /* Set receive and transmit descriptor base.
2000 fep
->rx_bd_base
= cbd_base
;
2001 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
2003 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2004 fep
->cur_rx
= fep
->rx_bd_base
;
2006 fep
->skb_cur
= fep
->skb_dirty
= 0;
2008 /* Initialize the receive buffer descriptors.
2010 bdp
= fep
->rx_bd_base
;
2011 for (i
=0; i
<FEC_ENET_RX_PAGES
; i
++) {
2015 mem_addr
= __get_free_page(GFP_KERNEL
);
2016 /* XXX: missing check for allocation failure */
2018 fec_uncache(mem_addr
);
2020 /* Initialize the BD for every fragment in the page.
2022 for (j
=0; j
<FEC_ENET_RX_FRPPG
; j
++) {
2023 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2024 bdp
->cbd_bufaddr
= __pa(mem_addr
);
2025 mem_addr
+= FEC_ENET_RX_FRSIZE
;
2030 /* Set the last buffer to wrap.
2033 bdp
->cbd_sc
|= BD_SC_WRAP
;
2035 /* ...and the same for transmmit.
2037 bdp
= fep
->tx_bd_base
;
2038 for (i
=0, j
=FEC_ENET_TX_FRPPG
; i
<TX_RING_SIZE
; i
++) {
2039 if (j
>= FEC_ENET_TX_FRPPG
) {
2040 mem_addr
= __get_free_page(GFP_KERNEL
);
2043 mem_addr
+= FEC_ENET_TX_FRSIZE
;
2046 fep
->tx_bounce
[i
] = (unsigned char *) mem_addr
;
2048 /* Initialize the BD for every fragment in the page.
2051 bdp
->cbd_bufaddr
= 0;
2055 /* Set the last buffer to wrap.
2058 bdp
->cbd_sc
|= BD_SC_WRAP
;
2060 /* Set receive and transmit descriptor base.
2062 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2063 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2065 /* Install our interrupt handlers. This varies depending on
2068 fec_request_intrs(dev
);
2070 dev
->base_addr
= (unsigned long)fecp
;
2072 /* The FEC Ethernet specific entries in the device structure. */
2073 dev
->open
= fec_enet_open
;
2074 dev
->hard_start_xmit
= fec_enet_start_xmit
;
2075 dev
->tx_timeout
= fec_timeout
;
2076 dev
->watchdog_timeo
= TX_TIMEOUT
;
2077 dev
->stop
= fec_enet_close
;
2078 dev
->get_stats
= fec_enet_get_stats
;
2079 dev
->set_multicast_list
= set_multicast_list
;
2081 for (i
=0; i
<NMII
-1; i
++)
2082 mii_cmds
[i
].mii_next
= &mii_cmds
[i
+1];
2083 mii_free
= mii_cmds
;
2085 /* setup MII interface */
2086 fec_set_mii(dev
, fep
);
2088 /* Queue up command to detect the PHY and initialize the
2089 * remainder of the interface.
2091 fep
->phy_id_done
= 0;
2093 mii_queue(dev
, mk_mii_read(MII_REG_PHYIR1
), mii_discover_phy
);
2099 /* This function is called to start or restart the FEC during a link
2100 * change. This only happens when switching between half and full
2104 fec_restart(struct net_device
*dev
, int duplex
)
2106 struct fec_enet_private
*fep
;
2107 volatile cbd_t
*bdp
;
2108 volatile fec_t
*fecp
;
2111 fep
= netdev_priv(dev
);
2114 /* Whack a reset. We should wait for this.
2116 fecp
->fec_ecntrl
= 1;
2119 /* Enable interrupts we wish to service.
2121 fecp
->fec_imask
= (FEC_ENET_TXF
| FEC_ENET_TXB
|
2122 FEC_ENET_RXF
| FEC_ENET_RXB
| FEC_ENET_MII
);
2124 /* Clear any outstanding interrupt.
2126 fecp
->fec_ievent
= 0xffc00000;
2127 fec_enable_phy_intr();
2129 /* Set station address.
2131 fec_set_mac_address(dev
);
2133 /* Reset all multicast.
2135 fecp
->fec_hash_table_high
= 0;
2136 fecp
->fec_hash_table_low
= 0;
2138 /* Set maximum receive buffer size.
2140 fecp
->fec_r_buff_size
= PKT_MAXBLR_SIZE
;
2142 fec_localhw_setup();
2144 /* Set receive and transmit descriptor base.
2146 fecp
->fec_r_des_start
= __pa((uint
)(fep
->rx_bd_base
));
2147 fecp
->fec_x_des_start
= __pa((uint
)(fep
->tx_bd_base
));
2149 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
2150 fep
->cur_rx
= fep
->rx_bd_base
;
2152 /* Reset SKB transmit buffers.
2154 fep
->skb_cur
= fep
->skb_dirty
= 0;
2155 for (i
=0; i
<=TX_RING_MOD_MASK
; i
++) {
2156 if (fep
->tx_skbuff
[i
] != NULL
) {
2157 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
2158 fep
->tx_skbuff
[i
] = NULL
;
2162 /* Initialize the receive buffer descriptors.
2164 bdp
= fep
->rx_bd_base
;
2165 for (i
=0; i
<RX_RING_SIZE
; i
++) {
2167 /* Initialize the BD for every fragment in the page.
2169 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
2173 /* Set the last buffer to wrap.
2176 bdp
->cbd_sc
|= BD_SC_WRAP
;
2178 /* ...and the same for transmmit.
2180 bdp
= fep
->tx_bd_base
;
2181 for (i
=0; i
<TX_RING_SIZE
; i
++) {
2183 /* Initialize the BD for every fragment in the page.
2186 bdp
->cbd_bufaddr
= 0;
2190 /* Set the last buffer to wrap.
2193 bdp
->cbd_sc
|= BD_SC_WRAP
;
2198 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x04;/* MII enable */
2199 fecp
->fec_x_cntrl
= 0x04; /* FD enable */
2202 /* MII enable|No Rcv on Xmit */
2203 fecp
->fec_r_cntrl
= OPT_FRAME_SIZE
| 0x06;
2204 fecp
->fec_x_cntrl
= 0x00;
2206 fep
->full_duplex
= duplex
;
2210 fecp
->fec_mii_speed
= fep
->phy_speed
;
2212 /* And last, enable the transmit and receive processing.
2214 fecp
->fec_ecntrl
= 2;
2215 fecp
->fec_r_des_active
= 0x01000000;
2219 fec_stop(struct net_device
*dev
)
2221 volatile fec_t
*fecp
;
2222 struct fec_enet_private
*fep
;
2224 fep
= netdev_priv(dev
);
2227 fecp
->fec_x_cntrl
= 0x01; /* Graceful transmit stop */
2229 while(!(fecp
->fec_ievent
& FEC_ENET_GRA
));
2231 /* Whack a reset. We should wait for this.
2233 fecp
->fec_ecntrl
= 1;
2236 /* Clear outstanding MII command interrupts.
2238 fecp
->fec_ievent
= FEC_ENET_MII
;
2239 fec_enable_phy_intr();
2241 fecp
->fec_imask
= FEC_ENET_MII
;
2242 fecp
->fec_mii_speed
= fep
->phy_speed
;
2245 static int __init
fec_enet_module_init(void)
2247 struct net_device
*dev
;
2250 printk("FEC ENET Version 0.2\n");
2252 for (i
= 0; (i
< FEC_MAX_PORTS
); i
++) {
2253 dev
= alloc_etherdev(sizeof(struct fec_enet_private
));
2256 err
= fec_enet_init(dev
);
2261 if (register_netdev(dev
) != 0) {
2262 /* XXX: missing cleanup here */
2267 printk("%s: ethernet ", dev
->name
);
2268 for (j
= 0; (j
< 5); j
++)
2269 printk("%02x:", dev
->dev_addr
[j
]);
2270 printk("%02x\n", dev
->dev_addr
[5]);
2275 module_init(fec_enet_module_init
);
2277 MODULE_LICENSE("GPL");