[PATCH] i386: add memory clobbers to syscall macros
[linux/fpc-iii.git] / drivers / net / sungem_phy.c
blobd3ddb41d6e5c7c361c7e141034693166619983d0
1 /*
2 * PHY drivers for the sungem ethernet driver.
3 *
4 * This file could be shared with other drivers.
5 *
6 * (c) 2002, Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * TODO:
9 * - Implement WOL
10 * - Add support for PHYs that provide an IRQ line
11 * - Eventually moved the entire polling state machine in
12 * there (out of the eth driver), so that it can easily be
13 * skipped on PHYs that implement it in hardware.
14 * - On LXT971 & BCM5201, Apple uses some chip specific regs
15 * to read the link status. Figure out why and if it makes
16 * sense to do the same (magic aneg ?)
17 * - Apple has some additional power management code for some
18 * Broadcom PHYs that they "hide" from the OpenSource version
19 * of darwin, still need to reverse engineer that
22 #include <linux/config.h>
24 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/types.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/delay.h>
35 #ifdef CONFIG_PPC_PMAC
36 #include <asm/prom.h>
37 #endif
39 #include "sungem_phy.h"
41 /* Link modes of the BCM5400 PHY */
42 static int phy_BCM5400_link_table[8][3] = {
43 { 0, 0, 0 }, /* No link */
44 { 0, 0, 0 }, /* 10BT Half Duplex */
45 { 1, 0, 0 }, /* 10BT Full Duplex */
46 { 0, 1, 0 }, /* 100BT Half Duplex */
47 { 0, 1, 0 }, /* 100BT Half Duplex */
48 { 1, 1, 0 }, /* 100BT Full Duplex*/
49 { 1, 0, 1 }, /* 1000BT */
50 { 1, 0, 1 }, /* 1000BT */
53 static inline int __phy_read(struct mii_phy* phy, int id, int reg)
55 return phy->mdio_read(phy->dev, id, reg);
58 static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
60 phy->mdio_write(phy->dev, id, reg, val);
63 static inline int phy_read(struct mii_phy* phy, int reg)
65 return phy->mdio_read(phy->dev, phy->mii_id, reg);
68 static inline void phy_write(struct mii_phy* phy, int reg, int val)
70 phy->mdio_write(phy->dev, phy->mii_id, reg, val);
73 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
75 u16 val;
76 int limit = 10000;
78 val = __phy_read(phy, phy_id, MII_BMCR);
79 val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
80 val |= BMCR_RESET;
81 __phy_write(phy, phy_id, MII_BMCR, val);
83 udelay(100);
85 while (limit--) {
86 val = __phy_read(phy, phy_id, MII_BMCR);
87 if ((val & BMCR_RESET) == 0)
88 break;
89 udelay(10);
91 if ((val & BMCR_ISOLATE) && limit > 0)
92 __phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
94 return (limit <= 0);
97 static int bcm5201_init(struct mii_phy* phy)
99 u16 data;
101 data = phy_read(phy, MII_BCM5201_MULTIPHY);
102 data &= ~MII_BCM5201_MULTIPHY_SUPERISOLATE;
103 phy_write(phy, MII_BCM5201_MULTIPHY, data);
105 phy_write(phy, MII_BCM5201_INTERRUPT, 0);
107 return 0;
110 static int bcm5201_suspend(struct mii_phy* phy)
112 phy_write(phy, MII_BCM5201_INTERRUPT, 0);
113 phy_write(phy, MII_BCM5201_MULTIPHY, MII_BCM5201_MULTIPHY_SUPERISOLATE);
115 return 0;
118 static int bcm5221_init(struct mii_phy* phy)
120 u16 data;
122 data = phy_read(phy, MII_BCM5221_TEST);
123 phy_write(phy, MII_BCM5221_TEST,
124 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
126 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_STAT2);
127 phy_write(phy, MII_BCM5221_SHDOW_AUX_STAT2,
128 data | MII_BCM5221_SHDOW_AUX_STAT2_APD);
130 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
131 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
132 data | MII_BCM5221_SHDOW_AUX_MODE4_CLKLOPWR);
134 data = phy_read(phy, MII_BCM5221_TEST);
135 phy_write(phy, MII_BCM5221_TEST,
136 data & ~MII_BCM5221_TEST_ENABLE_SHADOWS);
138 return 0;
141 static int bcm5221_suspend(struct mii_phy* phy)
143 u16 data;
145 data = phy_read(phy, MII_BCM5221_TEST);
146 phy_write(phy, MII_BCM5221_TEST,
147 data | MII_BCM5221_TEST_ENABLE_SHADOWS);
149 data = phy_read(phy, MII_BCM5221_SHDOW_AUX_MODE4);
150 phy_write(phy, MII_BCM5221_SHDOW_AUX_MODE4,
151 data | MII_BCM5221_SHDOW_AUX_MODE4_IDDQMODE);
153 return 0;
156 static int bcm5400_init(struct mii_phy* phy)
158 u16 data;
160 /* Configure for gigabit full duplex */
161 data = phy_read(phy, MII_BCM5400_AUXCONTROL);
162 data |= MII_BCM5400_AUXCONTROL_PWR10BASET;
163 phy_write(phy, MII_BCM5400_AUXCONTROL, data);
165 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
166 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
167 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
169 udelay(100);
171 /* Reset and configure cascaded 10/100 PHY */
172 (void)reset_one_mii_phy(phy, 0x1f);
174 data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
175 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
176 __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
178 data = phy_read(phy, MII_BCM5400_AUXCONTROL);
179 data &= ~MII_BCM5400_AUXCONTROL_PWR10BASET;
180 phy_write(phy, MII_BCM5400_AUXCONTROL, data);
182 return 0;
185 static int bcm5400_suspend(struct mii_phy* phy)
187 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
188 phy_write(phy, MII_BMCR, BMCR_PDOWN);
189 #endif
190 return 0;
193 static int bcm5401_init(struct mii_phy* phy)
195 u16 data;
196 int rev;
198 rev = phy_read(phy, MII_PHYSID2) & 0x000f;
199 if (rev == 0 || rev == 3) {
200 /* Some revisions of 5401 appear to need this
201 * initialisation sequence to disable, according
202 * to OF, "tap power management"
204 * WARNING ! OF and Darwin don't agree on the
205 * register addresses. OF seem to interpret the
206 * register numbers below as decimal
208 * Note: This should (and does) match tg3_init_5401phy_dsp
209 * in the tg3.c driver. -DaveM
211 phy_write(phy, 0x18, 0x0c20);
212 phy_write(phy, 0x17, 0x0012);
213 phy_write(phy, 0x15, 0x1804);
214 phy_write(phy, 0x17, 0x0013);
215 phy_write(phy, 0x15, 0x1204);
216 phy_write(phy, 0x17, 0x8006);
217 phy_write(phy, 0x15, 0x0132);
218 phy_write(phy, 0x17, 0x8006);
219 phy_write(phy, 0x15, 0x0232);
220 phy_write(phy, 0x17, 0x201f);
221 phy_write(phy, 0x15, 0x0a20);
224 /* Configure for gigabit full duplex */
225 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
226 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
227 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
229 udelay(10);
231 /* Reset and configure cascaded 10/100 PHY */
232 (void)reset_one_mii_phy(phy, 0x1f);
234 data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
235 data |= MII_BCM5201_MULTIPHY_SERIALMODE;
236 __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
238 return 0;
241 static int bcm5401_suspend(struct mii_phy* phy)
243 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
244 phy_write(phy, MII_BMCR, BMCR_PDOWN);
245 #endif
246 return 0;
249 static int bcm5411_init(struct mii_phy* phy)
251 u16 data;
253 /* Here's some more Apple black magic to setup
254 * some voltage stuffs.
256 phy_write(phy, 0x1c, 0x8c23);
257 phy_write(phy, 0x1c, 0x8ca3);
258 phy_write(phy, 0x1c, 0x8c23);
260 /* Here, Apple seems to want to reset it, do
261 * it as well
263 phy_write(phy, MII_BMCR, BMCR_RESET);
264 phy_write(phy, MII_BMCR, 0x1340);
266 data = phy_read(phy, MII_BCM5400_GB_CONTROL);
267 data |= MII_BCM5400_GB_CONTROL_FULLDUPLEXCAP;
268 phy_write(phy, MII_BCM5400_GB_CONTROL, data);
270 udelay(10);
272 /* Reset and configure cascaded 10/100 PHY */
273 (void)reset_one_mii_phy(phy, 0x1f);
275 return 0;
278 static int bcm5411_suspend(struct mii_phy* phy)
280 phy_write(phy, MII_BMCR, BMCR_PDOWN);
282 return 0;
285 static int bcm5421_init(struct mii_phy* phy)
287 u16 data;
288 unsigned int id;
290 id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
292 /* Revision 0 of 5421 needs some fixups */
293 if (id == 0x002060e0) {
294 /* This is borrowed from MacOS
296 phy_write(phy, 0x18, 0x1007);
297 data = phy_read(phy, 0x18);
298 phy_write(phy, 0x18, data | 0x0400);
299 phy_write(phy, 0x18, 0x0007);
300 data = phy_read(phy, 0x18);
301 phy_write(phy, 0x18, data | 0x0800);
302 phy_write(phy, 0x17, 0x000a);
303 data = phy_read(phy, 0x15);
304 phy_write(phy, 0x15, data | 0x0200);
307 /* Pick up some init code from OF for K2 version */
308 if ((id & 0xfffffff0) == 0x002062e0) {
309 phy_write(phy, 4, 0x01e1);
310 phy_write(phy, 9, 0x0300);
313 /* Check if we can enable automatic low power */
314 #ifdef CONFIG_PPC_PMAC
315 if (phy->platform_data) {
316 struct device_node *np = of_get_parent(phy->platform_data);
317 int can_low_power = 1;
318 if (np == NULL || get_property(np, "no-autolowpower", NULL))
319 can_low_power = 0;
320 if (can_low_power) {
321 /* Enable automatic low-power */
322 phy_write(phy, 0x1c, 0x9002);
323 phy_write(phy, 0x1c, 0xa821);
324 phy_write(phy, 0x1c, 0x941d);
327 #endif /* CONFIG_PPC_PMAC */
329 return 0;
332 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
334 u16 ctl, adv;
336 phy->autoneg = 1;
337 phy->speed = SPEED_10;
338 phy->duplex = DUPLEX_HALF;
339 phy->pause = 0;
340 phy->advertising = advertise;
342 /* Setup standard advertise */
343 adv = phy_read(phy, MII_ADVERTISE);
344 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
345 if (advertise & ADVERTISED_10baseT_Half)
346 adv |= ADVERTISE_10HALF;
347 if (advertise & ADVERTISED_10baseT_Full)
348 adv |= ADVERTISE_10FULL;
349 if (advertise & ADVERTISED_100baseT_Half)
350 adv |= ADVERTISE_100HALF;
351 if (advertise & ADVERTISED_100baseT_Full)
352 adv |= ADVERTISE_100FULL;
353 phy_write(phy, MII_ADVERTISE, adv);
355 /* Setup 1000BT advertise */
356 adv = phy_read(phy, MII_1000BASETCONTROL);
357 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP|MII_1000BASETCONTROL_HALFDUPLEXCAP);
358 if (advertise & SUPPORTED_1000baseT_Half)
359 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
360 if (advertise & SUPPORTED_1000baseT_Full)
361 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
362 phy_write(phy, MII_1000BASETCONTROL, adv);
364 /* Start/Restart aneg */
365 ctl = phy_read(phy, MII_BMCR);
366 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
367 phy_write(phy, MII_BMCR, ctl);
369 return 0;
372 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
374 u16 ctl;
376 phy->autoneg = 0;
377 phy->speed = speed;
378 phy->duplex = fd;
379 phy->pause = 0;
381 ctl = phy_read(phy, MII_BMCR);
382 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
384 /* First reset the PHY */
385 phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
387 /* Select speed & duplex */
388 switch(speed) {
389 case SPEED_10:
390 break;
391 case SPEED_100:
392 ctl |= BMCR_SPEED100;
393 break;
394 case SPEED_1000:
395 ctl |= BMCR_SPD2;
397 if (fd == DUPLEX_FULL)
398 ctl |= BMCR_FULLDPLX;
400 // XXX Should we set the sungem to GII now on 1000BT ?
402 phy_write(phy, MII_BMCR, ctl);
404 return 0;
407 static int bcm54xx_read_link(struct mii_phy *phy)
409 int link_mode;
410 u16 val;
412 if (phy->autoneg) {
413 val = phy_read(phy, MII_BCM5400_AUXSTATUS);
414 link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
415 MII_BCM5400_AUXSTATUS_LINKMODE_SHIFT);
416 phy->duplex = phy_BCM5400_link_table[link_mode][0] ? DUPLEX_FULL : DUPLEX_HALF;
417 phy->speed = phy_BCM5400_link_table[link_mode][2] ?
418 SPEED_1000 :
419 (phy_BCM5400_link_table[link_mode][1] ? SPEED_100 : SPEED_10);
420 val = phy_read(phy, MII_LPA);
421 phy->pause = ((val & LPA_PAUSE) != 0);
423 /* On non-aneg, we assume what we put in BMCR is the speed,
424 * though magic-aneg shouldn't prevent this case from occurring
427 return 0;
430 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
432 u16 ctl, adv;
434 phy->autoneg = 1;
435 phy->speed = SPEED_10;
436 phy->duplex = DUPLEX_HALF;
437 phy->pause = 0;
438 phy->advertising = advertise;
440 /* Setup standard advertise */
441 adv = phy_read(phy, MII_ADVERTISE);
442 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
443 if (advertise & ADVERTISED_10baseT_Half)
444 adv |= ADVERTISE_10HALF;
445 if (advertise & ADVERTISED_10baseT_Full)
446 adv |= ADVERTISE_10FULL;
447 if (advertise & ADVERTISED_100baseT_Half)
448 adv |= ADVERTISE_100HALF;
449 if (advertise & ADVERTISED_100baseT_Full)
450 adv |= ADVERTISE_100FULL;
451 phy_write(phy, MII_ADVERTISE, adv);
453 /* Setup 1000BT advertise & enable crossover detect
454 * XXX How do we advertise 1000BT ? Darwin source is
455 * confusing here, they read from specific control and
456 * write to control... Someone has specs for those
457 * beasts ?
459 adv = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
460 adv |= MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX;
461 adv &= ~(MII_1000BASETCONTROL_FULLDUPLEXCAP |
462 MII_1000BASETCONTROL_HALFDUPLEXCAP);
463 if (advertise & SUPPORTED_1000baseT_Half)
464 adv |= MII_1000BASETCONTROL_HALFDUPLEXCAP;
465 if (advertise & SUPPORTED_1000baseT_Full)
466 adv |= MII_1000BASETCONTROL_FULLDUPLEXCAP;
467 phy_write(phy, MII_1000BASETCONTROL, adv);
469 /* Start/Restart aneg */
470 ctl = phy_read(phy, MII_BMCR);
471 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
472 phy_write(phy, MII_BMCR, ctl);
474 return 0;
477 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
479 u16 ctl, ctl2;
481 phy->autoneg = 0;
482 phy->speed = speed;
483 phy->duplex = fd;
484 phy->pause = 0;
486 ctl = phy_read(phy, MII_BMCR);
487 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_SPD2|BMCR_ANENABLE);
488 ctl |= BMCR_RESET;
490 /* Select speed & duplex */
491 switch(speed) {
492 case SPEED_10:
493 break;
494 case SPEED_100:
495 ctl |= BMCR_SPEED100;
496 break;
497 /* I'm not sure about the one below, again, Darwin source is
498 * quite confusing and I lack chip specs
500 case SPEED_1000:
501 ctl |= BMCR_SPD2;
503 if (fd == DUPLEX_FULL)
504 ctl |= BMCR_FULLDPLX;
506 /* Disable crossover. Again, the way Apple does it is strange,
507 * though I don't assume they are wrong ;)
509 ctl2 = phy_read(phy, MII_M1011_PHY_SPEC_CONTROL);
510 ctl2 &= ~(MII_M1011_PHY_SPEC_CONTROL_MANUAL_MDIX |
511 MII_M1011_PHY_SPEC_CONTROL_AUTO_MDIX |
512 MII_1000BASETCONTROL_FULLDUPLEXCAP |
513 MII_1000BASETCONTROL_HALFDUPLEXCAP);
514 if (speed == SPEED_1000)
515 ctl2 |= (fd == DUPLEX_FULL) ?
516 MII_1000BASETCONTROL_FULLDUPLEXCAP :
517 MII_1000BASETCONTROL_HALFDUPLEXCAP;
518 phy_write(phy, MII_1000BASETCONTROL, ctl2);
520 // XXX Should we set the sungem to GII now on 1000BT ?
522 phy_write(phy, MII_BMCR, ctl);
524 return 0;
527 static int marvell_read_link(struct mii_phy *phy)
529 u16 status;
531 if (phy->autoneg) {
532 status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
533 if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
534 return -EAGAIN;
535 if (status & MII_M1011_PHY_SPEC_STATUS_1000)
536 phy->speed = SPEED_1000;
537 else if (status & MII_M1011_PHY_SPEC_STATUS_100)
538 phy->speed = SPEED_100;
539 else
540 phy->speed = SPEED_10;
541 if (status & MII_M1011_PHY_SPEC_STATUS_FULLDUPLEX)
542 phy->duplex = DUPLEX_FULL;
543 else
544 phy->duplex = DUPLEX_HALF;
545 phy->pause = 0; /* XXX Check against spec ! */
547 /* On non-aneg, we assume what we put in BMCR is the speed,
548 * though magic-aneg shouldn't prevent this case from occurring
551 return 0;
554 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
556 u16 ctl, adv;
558 phy->autoneg = 1;
559 phy->speed = SPEED_10;
560 phy->duplex = DUPLEX_HALF;
561 phy->pause = 0;
562 phy->advertising = advertise;
564 /* Setup standard advertise */
565 adv = phy_read(phy, MII_ADVERTISE);
566 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
567 if (advertise & ADVERTISED_10baseT_Half)
568 adv |= ADVERTISE_10HALF;
569 if (advertise & ADVERTISED_10baseT_Full)
570 adv |= ADVERTISE_10FULL;
571 if (advertise & ADVERTISED_100baseT_Half)
572 adv |= ADVERTISE_100HALF;
573 if (advertise & ADVERTISED_100baseT_Full)
574 adv |= ADVERTISE_100FULL;
575 phy_write(phy, MII_ADVERTISE, adv);
577 /* Start/Restart aneg */
578 ctl = phy_read(phy, MII_BMCR);
579 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
580 phy_write(phy, MII_BMCR, ctl);
582 return 0;
585 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
587 u16 ctl;
589 phy->autoneg = 0;
590 phy->speed = speed;
591 phy->duplex = fd;
592 phy->pause = 0;
594 ctl = phy_read(phy, MII_BMCR);
595 ctl &= ~(BMCR_FULLDPLX|BMCR_SPEED100|BMCR_ANENABLE);
597 /* First reset the PHY */
598 phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
600 /* Select speed & duplex */
601 switch(speed) {
602 case SPEED_10:
603 break;
604 case SPEED_100:
605 ctl |= BMCR_SPEED100;
606 break;
607 case SPEED_1000:
608 default:
609 return -EINVAL;
611 if (fd == DUPLEX_FULL)
612 ctl |= BMCR_FULLDPLX;
613 phy_write(phy, MII_BMCR, ctl);
615 return 0;
618 static int genmii_poll_link(struct mii_phy *phy)
620 u16 status;
622 (void)phy_read(phy, MII_BMSR);
623 status = phy_read(phy, MII_BMSR);
624 if ((status & BMSR_LSTATUS) == 0)
625 return 0;
626 if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
627 return 0;
628 return 1;
631 static int genmii_read_link(struct mii_phy *phy)
633 u16 lpa;
635 if (phy->autoneg) {
636 lpa = phy_read(phy, MII_LPA);
638 if (lpa & (LPA_10FULL | LPA_100FULL))
639 phy->duplex = DUPLEX_FULL;
640 else
641 phy->duplex = DUPLEX_HALF;
642 if (lpa & (LPA_100FULL | LPA_100HALF))
643 phy->speed = SPEED_100;
644 else
645 phy->speed = SPEED_10;
646 phy->pause = 0;
648 /* On non-aneg, we assume what we put in BMCR is the speed,
649 * though magic-aneg shouldn't prevent this case from occurring
652 return 0;
656 #define MII_BASIC_FEATURES (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
657 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
658 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII)
659 #define MII_GBIT_FEATURES (MII_BASIC_FEATURES | \
660 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
662 /* Broadcom BCM 5201 */
663 static struct mii_phy_ops bcm5201_phy_ops = {
664 .init = bcm5201_init,
665 .suspend = bcm5201_suspend,
666 .setup_aneg = genmii_setup_aneg,
667 .setup_forced = genmii_setup_forced,
668 .poll_link = genmii_poll_link,
669 .read_link = genmii_read_link,
672 static struct mii_phy_def bcm5201_phy_def = {
673 .phy_id = 0x00406210,
674 .phy_id_mask = 0xfffffff0,
675 .name = "BCM5201",
676 .features = MII_BASIC_FEATURES,
677 .magic_aneg = 1,
678 .ops = &bcm5201_phy_ops
681 /* Broadcom BCM 5221 */
682 static struct mii_phy_ops bcm5221_phy_ops = {
683 .suspend = bcm5221_suspend,
684 .init = bcm5221_init,
685 .setup_aneg = genmii_setup_aneg,
686 .setup_forced = genmii_setup_forced,
687 .poll_link = genmii_poll_link,
688 .read_link = genmii_read_link,
691 static struct mii_phy_def bcm5221_phy_def = {
692 .phy_id = 0x004061e0,
693 .phy_id_mask = 0xfffffff0,
694 .name = "BCM5221",
695 .features = MII_BASIC_FEATURES,
696 .magic_aneg = 1,
697 .ops = &bcm5221_phy_ops
700 /* Broadcom BCM 5400 */
701 static struct mii_phy_ops bcm5400_phy_ops = {
702 .init = bcm5400_init,
703 .suspend = bcm5400_suspend,
704 .setup_aneg = bcm54xx_setup_aneg,
705 .setup_forced = bcm54xx_setup_forced,
706 .poll_link = genmii_poll_link,
707 .read_link = bcm54xx_read_link,
710 static struct mii_phy_def bcm5400_phy_def = {
711 .phy_id = 0x00206040,
712 .phy_id_mask = 0xfffffff0,
713 .name = "BCM5400",
714 .features = MII_GBIT_FEATURES,
715 .magic_aneg = 1,
716 .ops = &bcm5400_phy_ops
719 /* Broadcom BCM 5401 */
720 static struct mii_phy_ops bcm5401_phy_ops = {
721 .init = bcm5401_init,
722 .suspend = bcm5401_suspend,
723 .setup_aneg = bcm54xx_setup_aneg,
724 .setup_forced = bcm54xx_setup_forced,
725 .poll_link = genmii_poll_link,
726 .read_link = bcm54xx_read_link,
729 static struct mii_phy_def bcm5401_phy_def = {
730 .phy_id = 0x00206050,
731 .phy_id_mask = 0xfffffff0,
732 .name = "BCM5401",
733 .features = MII_GBIT_FEATURES,
734 .magic_aneg = 1,
735 .ops = &bcm5401_phy_ops
738 /* Broadcom BCM 5411 */
739 static struct mii_phy_ops bcm5411_phy_ops = {
740 .init = bcm5411_init,
741 .suspend = bcm5411_suspend,
742 .setup_aneg = bcm54xx_setup_aneg,
743 .setup_forced = bcm54xx_setup_forced,
744 .poll_link = genmii_poll_link,
745 .read_link = bcm54xx_read_link,
748 static struct mii_phy_def bcm5411_phy_def = {
749 .phy_id = 0x00206070,
750 .phy_id_mask = 0xfffffff0,
751 .name = "BCM5411",
752 .features = MII_GBIT_FEATURES,
753 .magic_aneg = 1,
754 .ops = &bcm5411_phy_ops
757 /* Broadcom BCM 5421 */
758 static struct mii_phy_ops bcm5421_phy_ops = {
759 .init = bcm5421_init,
760 .suspend = bcm5411_suspend,
761 .setup_aneg = bcm54xx_setup_aneg,
762 .setup_forced = bcm54xx_setup_forced,
763 .poll_link = genmii_poll_link,
764 .read_link = bcm54xx_read_link,
767 static struct mii_phy_def bcm5421_phy_def = {
768 .phy_id = 0x002060e0,
769 .phy_id_mask = 0xfffffff0,
770 .name = "BCM5421",
771 .features = MII_GBIT_FEATURES,
772 .magic_aneg = 1,
773 .ops = &bcm5421_phy_ops
776 /* Broadcom BCM 5421 built-in K2 */
777 static struct mii_phy_ops bcm5421k2_phy_ops = {
778 .init = bcm5421_init,
779 .suspend = bcm5411_suspend,
780 .setup_aneg = bcm54xx_setup_aneg,
781 .setup_forced = bcm54xx_setup_forced,
782 .poll_link = genmii_poll_link,
783 .read_link = bcm54xx_read_link,
786 static struct mii_phy_def bcm5421k2_phy_def = {
787 .phy_id = 0x002062e0,
788 .phy_id_mask = 0xfffffff0,
789 .name = "BCM5421-K2",
790 .features = MII_GBIT_FEATURES,
791 .magic_aneg = 1,
792 .ops = &bcm5421k2_phy_ops
795 /* Broadcom BCM 5462 built-in Vesta */
796 static struct mii_phy_ops bcm5462V_phy_ops = {
797 .init = bcm5421_init,
798 .suspend = bcm5411_suspend,
799 .setup_aneg = bcm54xx_setup_aneg,
800 .setup_forced = bcm54xx_setup_forced,
801 .poll_link = genmii_poll_link,
802 .read_link = bcm54xx_read_link,
805 static struct mii_phy_def bcm5462V_phy_def = {
806 .phy_id = 0x002060d0,
807 .phy_id_mask = 0xfffffff0,
808 .name = "BCM5462-Vesta",
809 .features = MII_GBIT_FEATURES,
810 .magic_aneg = 1,
811 .ops = &bcm5462V_phy_ops
814 /* Marvell 88E1101 (Apple seem to deal with 2 different revs,
815 * I masked out the 8 last bits to get both, but some specs
816 * would be useful here) --BenH.
818 static struct mii_phy_ops marvell_phy_ops = {
819 .setup_aneg = marvell_setup_aneg,
820 .setup_forced = marvell_setup_forced,
821 .poll_link = genmii_poll_link,
822 .read_link = marvell_read_link
825 static struct mii_phy_def marvell_phy_def = {
826 .phy_id = 0x01410c00,
827 .phy_id_mask = 0xffffff00,
828 .name = "Marvell 88E1101",
829 .features = MII_GBIT_FEATURES,
830 .magic_aneg = 1,
831 .ops = &marvell_phy_ops
834 /* Generic implementation for most 10/100 PHYs */
835 static struct mii_phy_ops generic_phy_ops = {
836 .setup_aneg = genmii_setup_aneg,
837 .setup_forced = genmii_setup_forced,
838 .poll_link = genmii_poll_link,
839 .read_link = genmii_read_link
842 static struct mii_phy_def genmii_phy_def = {
843 .phy_id = 0x00000000,
844 .phy_id_mask = 0x00000000,
845 .name = "Generic MII",
846 .features = MII_BASIC_FEATURES,
847 .magic_aneg = 0,
848 .ops = &generic_phy_ops
851 static struct mii_phy_def* mii_phy_table[] = {
852 &bcm5201_phy_def,
853 &bcm5221_phy_def,
854 &bcm5400_phy_def,
855 &bcm5401_phy_def,
856 &bcm5411_phy_def,
857 &bcm5421_phy_def,
858 &bcm5421k2_phy_def,
859 &bcm5462V_phy_def,
860 &marvell_phy_def,
861 &genmii_phy_def,
862 NULL
865 int mii_phy_probe(struct mii_phy *phy, int mii_id)
867 int rc;
868 u32 id;
869 struct mii_phy_def* def;
870 int i;
872 /* We do not reset the mii_phy structure as the driver
873 * may re-probe the PHY regulary
875 phy->mii_id = mii_id;
877 /* Take PHY out of isloate mode and reset it. */
878 rc = reset_one_mii_phy(phy, mii_id);
879 if (rc)
880 goto fail;
882 /* Read ID and find matching entry */
883 id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
884 printk(KERN_DEBUG "PHY ID: %x, addr: %x\n", id, mii_id);
885 for (i=0; (def = mii_phy_table[i]) != NULL; i++)
886 if ((id & def->phy_id_mask) == def->phy_id)
887 break;
888 /* Should never be NULL (we have a generic entry), but... */
889 if (def == NULL)
890 goto fail;
892 phy->def = def;
894 return 0;
895 fail:
896 phy->speed = 0;
897 phy->duplex = 0;
898 phy->pause = 0;
899 phy->advertising = 0;
900 return -ENODEV;
903 EXPORT_SYMBOL(mii_phy_probe);
904 MODULE_LICENSE("GPL");