Merge tag 'for-5.11-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux/fpc-iii.git] / security / commoncap.c
blobbacc1111d871bc257c5f86bbf206430f64cb8d79
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Common capabilities, needed by capability.o.
3 */
5 #include <linux/capability.h>
6 #include <linux/audit.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/lsm_hooks.h>
10 #include <linux/file.h>
11 #include <linux/mm.h>
12 #include <linux/mman.h>
13 #include <linux/pagemap.h>
14 #include <linux/swap.h>
15 #include <linux/skbuff.h>
16 #include <linux/netlink.h>
17 #include <linux/ptrace.h>
18 #include <linux/xattr.h>
19 #include <linux/hugetlb.h>
20 #include <linux/mount.h>
21 #include <linux/sched.h>
22 #include <linux/prctl.h>
23 #include <linux/securebits.h>
24 #include <linux/user_namespace.h>
25 #include <linux/binfmts.h>
26 #include <linux/personality.h>
29 * If a non-root user executes a setuid-root binary in
30 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
31 * However if fE is also set, then the intent is for only
32 * the file capabilities to be applied, and the setuid-root
33 * bit is left on either to change the uid (plausible) or
34 * to get full privilege on a kernel without file capabilities
35 * support. So in that case we do not raise capabilities.
37 * Warn if that happens, once per boot.
39 static void warn_setuid_and_fcaps_mixed(const char *fname)
41 static int warned;
42 if (!warned) {
43 printk(KERN_INFO "warning: `%s' has both setuid-root and"
44 " effective capabilities. Therefore not raising all"
45 " capabilities.\n", fname);
46 warned = 1;
50 /**
51 * cap_capable - Determine whether a task has a particular effective capability
52 * @cred: The credentials to use
53 * @ns: The user namespace in which we need the capability
54 * @cap: The capability to check for
55 * @opts: Bitmask of options defined in include/linux/security.h
57 * Determine whether the nominated task has the specified capability amongst
58 * its effective set, returning 0 if it does, -ve if it does not.
60 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
61 * and has_capability() functions. That is, it has the reverse semantics:
62 * cap_has_capability() returns 0 when a task has a capability, but the
63 * kernel's capable() and has_capability() returns 1 for this case.
65 int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
66 int cap, unsigned int opts)
68 struct user_namespace *ns = targ_ns;
70 /* See if cred has the capability in the target user namespace
71 * by examining the target user namespace and all of the target
72 * user namespace's parents.
74 for (;;) {
75 /* Do we have the necessary capabilities? */
76 if (ns == cred->user_ns)
77 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
80 * If we're already at a lower level than we're looking for,
81 * we're done searching.
83 if (ns->level <= cred->user_ns->level)
84 return -EPERM;
86 /*
87 * The owner of the user namespace in the parent of the
88 * user namespace has all caps.
90 if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
91 return 0;
94 * If you have a capability in a parent user ns, then you have
95 * it over all children user namespaces as well.
97 ns = ns->parent;
100 /* We never get here */
104 * cap_settime - Determine whether the current process may set the system clock
105 * @ts: The time to set
106 * @tz: The timezone to set
108 * Determine whether the current process may set the system clock and timezone
109 * information, returning 0 if permission granted, -ve if denied.
111 int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
113 if (!capable(CAP_SYS_TIME))
114 return -EPERM;
115 return 0;
119 * cap_ptrace_access_check - Determine whether the current process may access
120 * another
121 * @child: The process to be accessed
122 * @mode: The mode of attachment.
124 * If we are in the same or an ancestor user_ns and have all the target
125 * task's capabilities, then ptrace access is allowed.
126 * If we have the ptrace capability to the target user_ns, then ptrace
127 * access is allowed.
128 * Else denied.
130 * Determine whether a process may access another, returning 0 if permission
131 * granted, -ve if denied.
133 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
135 int ret = 0;
136 const struct cred *cred, *child_cred;
137 const kernel_cap_t *caller_caps;
139 rcu_read_lock();
140 cred = current_cred();
141 child_cred = __task_cred(child);
142 if (mode & PTRACE_MODE_FSCREDS)
143 caller_caps = &cred->cap_effective;
144 else
145 caller_caps = &cred->cap_permitted;
146 if (cred->user_ns == child_cred->user_ns &&
147 cap_issubset(child_cred->cap_permitted, *caller_caps))
148 goto out;
149 if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
150 goto out;
151 ret = -EPERM;
152 out:
153 rcu_read_unlock();
154 return ret;
158 * cap_ptrace_traceme - Determine whether another process may trace the current
159 * @parent: The task proposed to be the tracer
161 * If parent is in the same or an ancestor user_ns and has all current's
162 * capabilities, then ptrace access is allowed.
163 * If parent has the ptrace capability to current's user_ns, then ptrace
164 * access is allowed.
165 * Else denied.
167 * Determine whether the nominated task is permitted to trace the current
168 * process, returning 0 if permission is granted, -ve if denied.
170 int cap_ptrace_traceme(struct task_struct *parent)
172 int ret = 0;
173 const struct cred *cred, *child_cred;
175 rcu_read_lock();
176 cred = __task_cred(parent);
177 child_cred = current_cred();
178 if (cred->user_ns == child_cred->user_ns &&
179 cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
180 goto out;
181 if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
182 goto out;
183 ret = -EPERM;
184 out:
185 rcu_read_unlock();
186 return ret;
190 * cap_capget - Retrieve a task's capability sets
191 * @target: The task from which to retrieve the capability sets
192 * @effective: The place to record the effective set
193 * @inheritable: The place to record the inheritable set
194 * @permitted: The place to record the permitted set
196 * This function retrieves the capabilities of the nominated task and returns
197 * them to the caller.
199 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
200 kernel_cap_t *inheritable, kernel_cap_t *permitted)
202 const struct cred *cred;
204 /* Derived from kernel/capability.c:sys_capget. */
205 rcu_read_lock();
206 cred = __task_cred(target);
207 *effective = cred->cap_effective;
208 *inheritable = cred->cap_inheritable;
209 *permitted = cred->cap_permitted;
210 rcu_read_unlock();
211 return 0;
215 * Determine whether the inheritable capabilities are limited to the old
216 * permitted set. Returns 1 if they are limited, 0 if they are not.
218 static inline int cap_inh_is_capped(void)
220 /* they are so limited unless the current task has the CAP_SETPCAP
221 * capability
223 if (cap_capable(current_cred(), current_cred()->user_ns,
224 CAP_SETPCAP, CAP_OPT_NONE) == 0)
225 return 0;
226 return 1;
230 * cap_capset - Validate and apply proposed changes to current's capabilities
231 * @new: The proposed new credentials; alterations should be made here
232 * @old: The current task's current credentials
233 * @effective: A pointer to the proposed new effective capabilities set
234 * @inheritable: A pointer to the proposed new inheritable capabilities set
235 * @permitted: A pointer to the proposed new permitted capabilities set
237 * This function validates and applies a proposed mass change to the current
238 * process's capability sets. The changes are made to the proposed new
239 * credentials, and assuming no error, will be committed by the caller of LSM.
241 int cap_capset(struct cred *new,
242 const struct cred *old,
243 const kernel_cap_t *effective,
244 const kernel_cap_t *inheritable,
245 const kernel_cap_t *permitted)
247 if (cap_inh_is_capped() &&
248 !cap_issubset(*inheritable,
249 cap_combine(old->cap_inheritable,
250 old->cap_permitted)))
251 /* incapable of using this inheritable set */
252 return -EPERM;
254 if (!cap_issubset(*inheritable,
255 cap_combine(old->cap_inheritable,
256 old->cap_bset)))
257 /* no new pI capabilities outside bounding set */
258 return -EPERM;
260 /* verify restrictions on target's new Permitted set */
261 if (!cap_issubset(*permitted, old->cap_permitted))
262 return -EPERM;
264 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
265 if (!cap_issubset(*effective, *permitted))
266 return -EPERM;
268 new->cap_effective = *effective;
269 new->cap_inheritable = *inheritable;
270 new->cap_permitted = *permitted;
273 * Mask off ambient bits that are no longer both permitted and
274 * inheritable.
276 new->cap_ambient = cap_intersect(new->cap_ambient,
277 cap_intersect(*permitted,
278 *inheritable));
279 if (WARN_ON(!cap_ambient_invariant_ok(new)))
280 return -EINVAL;
281 return 0;
285 * cap_inode_need_killpriv - Determine if inode change affects privileges
286 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
288 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
289 * affects the security markings on that inode, and if it is, should
290 * inode_killpriv() be invoked or the change rejected.
292 * Returns 1 if security.capability has a value, meaning inode_killpriv()
293 * is required, 0 otherwise, meaning inode_killpriv() is not required.
295 int cap_inode_need_killpriv(struct dentry *dentry)
297 struct inode *inode = d_backing_inode(dentry);
298 int error;
300 error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
301 return error > 0;
305 * cap_inode_killpriv - Erase the security markings on an inode
306 * @dentry: The inode/dentry to alter
308 * Erase the privilege-enhancing security markings on an inode.
310 * Returns 0 if successful, -ve on error.
312 int cap_inode_killpriv(struct dentry *dentry)
314 int error;
316 error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
317 if (error == -EOPNOTSUPP)
318 error = 0;
319 return error;
322 static bool rootid_owns_currentns(kuid_t kroot)
324 struct user_namespace *ns;
326 if (!uid_valid(kroot))
327 return false;
329 for (ns = current_user_ns(); ; ns = ns->parent) {
330 if (from_kuid(ns, kroot) == 0)
331 return true;
332 if (ns == &init_user_ns)
333 break;
336 return false;
339 static __u32 sansflags(__u32 m)
341 return m & ~VFS_CAP_FLAGS_EFFECTIVE;
344 static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
346 if (size != XATTR_CAPS_SZ_2)
347 return false;
348 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
351 static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
353 if (size != XATTR_CAPS_SZ_3)
354 return false;
355 return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
359 * getsecurity: We are called for security.* before any attempt to read the
360 * xattr from the inode itself.
362 * This gives us a chance to read the on-disk value and convert it. If we
363 * return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
365 * Note we are not called by vfs_getxattr_alloc(), but that is only called
366 * by the integrity subsystem, which really wants the unconverted values -
367 * so that's good.
369 int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
370 bool alloc)
372 int size, ret;
373 kuid_t kroot;
374 uid_t root, mappedroot;
375 char *tmpbuf = NULL;
376 struct vfs_cap_data *cap;
377 struct vfs_ns_cap_data *nscap;
378 struct dentry *dentry;
379 struct user_namespace *fs_ns;
381 if (strcmp(name, "capability") != 0)
382 return -EOPNOTSUPP;
384 dentry = d_find_any_alias(inode);
385 if (!dentry)
386 return -EINVAL;
388 size = sizeof(struct vfs_ns_cap_data);
389 ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
390 &tmpbuf, size, GFP_NOFS);
391 dput(dentry);
393 if (ret < 0)
394 return ret;
396 fs_ns = inode->i_sb->s_user_ns;
397 cap = (struct vfs_cap_data *) tmpbuf;
398 if (is_v2header((size_t) ret, cap)) {
399 /* If this is sizeof(vfs_cap_data) then we're ok with the
400 * on-disk value, so return that. */
401 if (alloc)
402 *buffer = tmpbuf;
403 else
404 kfree(tmpbuf);
405 return ret;
406 } else if (!is_v3header((size_t) ret, cap)) {
407 kfree(tmpbuf);
408 return -EINVAL;
411 nscap = (struct vfs_ns_cap_data *) tmpbuf;
412 root = le32_to_cpu(nscap->rootid);
413 kroot = make_kuid(fs_ns, root);
415 /* If the root kuid maps to a valid uid in current ns, then return
416 * this as a nscap. */
417 mappedroot = from_kuid(current_user_ns(), kroot);
418 if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
419 if (alloc) {
420 *buffer = tmpbuf;
421 nscap->rootid = cpu_to_le32(mappedroot);
422 } else
423 kfree(tmpbuf);
424 return size;
427 if (!rootid_owns_currentns(kroot)) {
428 kfree(tmpbuf);
429 return -EOPNOTSUPP;
432 /* This comes from a parent namespace. Return as a v2 capability */
433 size = sizeof(struct vfs_cap_data);
434 if (alloc) {
435 *buffer = kmalloc(size, GFP_ATOMIC);
436 if (*buffer) {
437 struct vfs_cap_data *cap = *buffer;
438 __le32 nsmagic, magic;
439 magic = VFS_CAP_REVISION_2;
440 nsmagic = le32_to_cpu(nscap->magic_etc);
441 if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
442 magic |= VFS_CAP_FLAGS_EFFECTIVE;
443 memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
444 cap->magic_etc = cpu_to_le32(magic);
445 } else {
446 size = -ENOMEM;
449 kfree(tmpbuf);
450 return size;
453 static kuid_t rootid_from_xattr(const void *value, size_t size,
454 struct user_namespace *task_ns)
456 const struct vfs_ns_cap_data *nscap = value;
457 uid_t rootid = 0;
459 if (size == XATTR_CAPS_SZ_3)
460 rootid = le32_to_cpu(nscap->rootid);
462 return make_kuid(task_ns, rootid);
465 static bool validheader(size_t size, const struct vfs_cap_data *cap)
467 return is_v2header(size, cap) || is_v3header(size, cap);
471 * User requested a write of security.capability. If needed, update the
472 * xattr to change from v2 to v3, or to fixup the v3 rootid.
474 * If all is ok, we return the new size, on error return < 0.
476 int cap_convert_nscap(struct dentry *dentry, const void **ivalue, size_t size)
478 struct vfs_ns_cap_data *nscap;
479 uid_t nsrootid;
480 const struct vfs_cap_data *cap = *ivalue;
481 __u32 magic, nsmagic;
482 struct inode *inode = d_backing_inode(dentry);
483 struct user_namespace *task_ns = current_user_ns(),
484 *fs_ns = inode->i_sb->s_user_ns;
485 kuid_t rootid;
486 size_t newsize;
488 if (!*ivalue)
489 return -EINVAL;
490 if (!validheader(size, cap))
491 return -EINVAL;
492 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
493 return -EPERM;
494 if (size == XATTR_CAPS_SZ_2)
495 if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
496 /* user is privileged, just write the v2 */
497 return size;
499 rootid = rootid_from_xattr(*ivalue, size, task_ns);
500 if (!uid_valid(rootid))
501 return -EINVAL;
503 nsrootid = from_kuid(fs_ns, rootid);
504 if (nsrootid == -1)
505 return -EINVAL;
507 newsize = sizeof(struct vfs_ns_cap_data);
508 nscap = kmalloc(newsize, GFP_ATOMIC);
509 if (!nscap)
510 return -ENOMEM;
511 nscap->rootid = cpu_to_le32(nsrootid);
512 nsmagic = VFS_CAP_REVISION_3;
513 magic = le32_to_cpu(cap->magic_etc);
514 if (magic & VFS_CAP_FLAGS_EFFECTIVE)
515 nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
516 nscap->magic_etc = cpu_to_le32(nsmagic);
517 memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
519 *ivalue = nscap;
520 return newsize;
524 * Calculate the new process capability sets from the capability sets attached
525 * to a file.
527 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
528 struct linux_binprm *bprm,
529 bool *effective,
530 bool *has_fcap)
532 struct cred *new = bprm->cred;
533 unsigned i;
534 int ret = 0;
536 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
537 *effective = true;
539 if (caps->magic_etc & VFS_CAP_REVISION_MASK)
540 *has_fcap = true;
542 CAP_FOR_EACH_U32(i) {
543 __u32 permitted = caps->permitted.cap[i];
544 __u32 inheritable = caps->inheritable.cap[i];
547 * pP' = (X & fP) | (pI & fI)
548 * The addition of pA' is handled later.
550 new->cap_permitted.cap[i] =
551 (new->cap_bset.cap[i] & permitted) |
552 (new->cap_inheritable.cap[i] & inheritable);
554 if (permitted & ~new->cap_permitted.cap[i])
555 /* insufficient to execute correctly */
556 ret = -EPERM;
560 * For legacy apps, with no internal support for recognizing they
561 * do not have enough capabilities, we return an error if they are
562 * missing some "forced" (aka file-permitted) capabilities.
564 return *effective ? ret : 0;
568 * Extract the on-exec-apply capability sets for an executable file.
570 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
572 struct inode *inode = d_backing_inode(dentry);
573 __u32 magic_etc;
574 unsigned tocopy, i;
575 int size;
576 struct vfs_ns_cap_data data, *nscaps = &data;
577 struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
578 kuid_t rootkuid;
579 struct user_namespace *fs_ns;
581 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
583 if (!inode)
584 return -ENODATA;
586 fs_ns = inode->i_sb->s_user_ns;
587 size = __vfs_getxattr((struct dentry *)dentry, inode,
588 XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
589 if (size == -ENODATA || size == -EOPNOTSUPP)
590 /* no data, that's ok */
591 return -ENODATA;
593 if (size < 0)
594 return size;
596 if (size < sizeof(magic_etc))
597 return -EINVAL;
599 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
601 rootkuid = make_kuid(fs_ns, 0);
602 switch (magic_etc & VFS_CAP_REVISION_MASK) {
603 case VFS_CAP_REVISION_1:
604 if (size != XATTR_CAPS_SZ_1)
605 return -EINVAL;
606 tocopy = VFS_CAP_U32_1;
607 break;
608 case VFS_CAP_REVISION_2:
609 if (size != XATTR_CAPS_SZ_2)
610 return -EINVAL;
611 tocopy = VFS_CAP_U32_2;
612 break;
613 case VFS_CAP_REVISION_3:
614 if (size != XATTR_CAPS_SZ_3)
615 return -EINVAL;
616 tocopy = VFS_CAP_U32_3;
617 rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
618 break;
620 default:
621 return -EINVAL;
623 /* Limit the caps to the mounter of the filesystem
624 * or the more limited uid specified in the xattr.
626 if (!rootid_owns_currentns(rootkuid))
627 return -ENODATA;
629 CAP_FOR_EACH_U32(i) {
630 if (i >= tocopy)
631 break;
632 cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
633 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
636 cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
637 cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
639 cpu_caps->rootid = rootkuid;
641 return 0;
645 * Attempt to get the on-exec apply capability sets for an executable file from
646 * its xattrs and, if present, apply them to the proposed credentials being
647 * constructed by execve().
649 static int get_file_caps(struct linux_binprm *bprm, struct file *file,
650 bool *effective, bool *has_fcap)
652 int rc = 0;
653 struct cpu_vfs_cap_data vcaps;
655 cap_clear(bprm->cred->cap_permitted);
657 if (!file_caps_enabled)
658 return 0;
660 if (!mnt_may_suid(file->f_path.mnt))
661 return 0;
664 * This check is redundant with mnt_may_suid() but is kept to make
665 * explicit that capability bits are limited to s_user_ns and its
666 * descendants.
668 if (!current_in_userns(file->f_path.mnt->mnt_sb->s_user_ns))
669 return 0;
671 rc = get_vfs_caps_from_disk(file->f_path.dentry, &vcaps);
672 if (rc < 0) {
673 if (rc == -EINVAL)
674 printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
675 bprm->filename);
676 else if (rc == -ENODATA)
677 rc = 0;
678 goto out;
681 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
683 out:
684 if (rc)
685 cap_clear(bprm->cred->cap_permitted);
687 return rc;
690 static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
692 static inline bool __is_real(kuid_t uid, struct cred *cred)
693 { return uid_eq(cred->uid, uid); }
695 static inline bool __is_eff(kuid_t uid, struct cred *cred)
696 { return uid_eq(cred->euid, uid); }
698 static inline bool __is_suid(kuid_t uid, struct cred *cred)
699 { return !__is_real(uid, cred) && __is_eff(uid, cred); }
702 * handle_privileged_root - Handle case of privileged root
703 * @bprm: The execution parameters, including the proposed creds
704 * @has_fcap: Are any file capabilities set?
705 * @effective: Do we have effective root privilege?
706 * @root_uid: This namespace' root UID WRT initial USER namespace
708 * Handle the case where root is privileged and hasn't been neutered by
709 * SECURE_NOROOT. If file capabilities are set, they won't be combined with
710 * set UID root and nothing is changed. If we are root, cap_permitted is
711 * updated. If we have become set UID root, the effective bit is set.
713 static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
714 bool *effective, kuid_t root_uid)
716 const struct cred *old = current_cred();
717 struct cred *new = bprm->cred;
719 if (!root_privileged())
720 return;
722 * If the legacy file capability is set, then don't set privs
723 * for a setuid root binary run by a non-root user. Do set it
724 * for a root user just to cause least surprise to an admin.
726 if (has_fcap && __is_suid(root_uid, new)) {
727 warn_setuid_and_fcaps_mixed(bprm->filename);
728 return;
731 * To support inheritance of root-permissions and suid-root
732 * executables under compatibility mode, we override the
733 * capability sets for the file.
735 if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
736 /* pP' = (cap_bset & ~0) | (pI & ~0) */
737 new->cap_permitted = cap_combine(old->cap_bset,
738 old->cap_inheritable);
741 * If only the real uid is 0, we do not set the effective bit.
743 if (__is_eff(root_uid, new))
744 *effective = true;
747 #define __cap_gained(field, target, source) \
748 !cap_issubset(target->cap_##field, source->cap_##field)
749 #define __cap_grew(target, source, cred) \
750 !cap_issubset(cred->cap_##target, cred->cap_##source)
751 #define __cap_full(field, cred) \
752 cap_issubset(CAP_FULL_SET, cred->cap_##field)
754 static inline bool __is_setuid(struct cred *new, const struct cred *old)
755 { return !uid_eq(new->euid, old->uid); }
757 static inline bool __is_setgid(struct cred *new, const struct cred *old)
758 { return !gid_eq(new->egid, old->gid); }
761 * 1) Audit candidate if current->cap_effective is set
763 * We do not bother to audit if 3 things are true:
764 * 1) cap_effective has all caps
765 * 2) we became root *OR* are were already root
766 * 3) root is supposed to have all caps (SECURE_NOROOT)
767 * Since this is just a normal root execing a process.
769 * Number 1 above might fail if you don't have a full bset, but I think
770 * that is interesting information to audit.
772 * A number of other conditions require logging:
773 * 2) something prevented setuid root getting all caps
774 * 3) non-setuid root gets fcaps
775 * 4) non-setuid root gets ambient
777 static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
778 kuid_t root, bool has_fcap)
780 bool ret = false;
782 if ((__cap_grew(effective, ambient, new) &&
783 !(__cap_full(effective, new) &&
784 (__is_eff(root, new) || __is_real(root, new)) &&
785 root_privileged())) ||
786 (root_privileged() &&
787 __is_suid(root, new) &&
788 !__cap_full(effective, new)) ||
789 (!__is_setuid(new, old) &&
790 ((has_fcap &&
791 __cap_gained(permitted, new, old)) ||
792 __cap_gained(ambient, new, old))))
794 ret = true;
796 return ret;
800 * cap_bprm_creds_from_file - Set up the proposed credentials for execve().
801 * @bprm: The execution parameters, including the proposed creds
802 * @file: The file to pull the credentials from
804 * Set up the proposed credentials for a new execution context being
805 * constructed by execve(). The proposed creds in @bprm->cred is altered,
806 * which won't take effect immediately. Returns 0 if successful, -ve on error.
808 int cap_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
810 /* Process setpcap binaries and capabilities for uid 0 */
811 const struct cred *old = current_cred();
812 struct cred *new = bprm->cred;
813 bool effective = false, has_fcap = false, is_setid;
814 int ret;
815 kuid_t root_uid;
817 if (WARN_ON(!cap_ambient_invariant_ok(old)))
818 return -EPERM;
820 ret = get_file_caps(bprm, file, &effective, &has_fcap);
821 if (ret < 0)
822 return ret;
824 root_uid = make_kuid(new->user_ns, 0);
826 handle_privileged_root(bprm, has_fcap, &effective, root_uid);
828 /* if we have fs caps, clear dangerous personality flags */
829 if (__cap_gained(permitted, new, old))
830 bprm->per_clear |= PER_CLEAR_ON_SETID;
832 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
833 * credentials unless they have the appropriate permit.
835 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
837 is_setid = __is_setuid(new, old) || __is_setgid(new, old);
839 if ((is_setid || __cap_gained(permitted, new, old)) &&
840 ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
841 !ptracer_capable(current, new->user_ns))) {
842 /* downgrade; they get no more than they had, and maybe less */
843 if (!ns_capable(new->user_ns, CAP_SETUID) ||
844 (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
845 new->euid = new->uid;
846 new->egid = new->gid;
848 new->cap_permitted = cap_intersect(new->cap_permitted,
849 old->cap_permitted);
852 new->suid = new->fsuid = new->euid;
853 new->sgid = new->fsgid = new->egid;
855 /* File caps or setid cancels ambient. */
856 if (has_fcap || is_setid)
857 cap_clear(new->cap_ambient);
860 * Now that we've computed pA', update pP' to give:
861 * pP' = (X & fP) | (pI & fI) | pA'
863 new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
866 * Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
867 * this is the same as pE' = (fE ? pP' : 0) | pA'.
869 if (effective)
870 new->cap_effective = new->cap_permitted;
871 else
872 new->cap_effective = new->cap_ambient;
874 if (WARN_ON(!cap_ambient_invariant_ok(new)))
875 return -EPERM;
877 if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
878 ret = audit_log_bprm_fcaps(bprm, new, old);
879 if (ret < 0)
880 return ret;
883 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
885 if (WARN_ON(!cap_ambient_invariant_ok(new)))
886 return -EPERM;
888 /* Check for privilege-elevated exec. */
889 if (is_setid ||
890 (!__is_real(root_uid, new) &&
891 (effective ||
892 __cap_grew(permitted, ambient, new))))
893 bprm->secureexec = 1;
895 return 0;
899 * cap_inode_setxattr - Determine whether an xattr may be altered
900 * @dentry: The inode/dentry being altered
901 * @name: The name of the xattr to be changed
902 * @value: The value that the xattr will be changed to
903 * @size: The size of value
904 * @flags: The replacement flag
906 * Determine whether an xattr may be altered or set on an inode, returning 0 if
907 * permission is granted, -ve if denied.
909 * This is used to make sure security xattrs don't get updated or set by those
910 * who aren't privileged to do so.
912 int cap_inode_setxattr(struct dentry *dentry, const char *name,
913 const void *value, size_t size, int flags)
915 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
917 /* Ignore non-security xattrs */
918 if (strncmp(name, XATTR_SECURITY_PREFIX,
919 XATTR_SECURITY_PREFIX_LEN) != 0)
920 return 0;
923 * For XATTR_NAME_CAPS the check will be done in
924 * cap_convert_nscap(), called by setxattr()
926 if (strcmp(name, XATTR_NAME_CAPS) == 0)
927 return 0;
929 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
930 return -EPERM;
931 return 0;
935 * cap_inode_removexattr - Determine whether an xattr may be removed
936 * @dentry: The inode/dentry being altered
937 * @name: The name of the xattr to be changed
939 * Determine whether an xattr may be removed from an inode, returning 0 if
940 * permission is granted, -ve if denied.
942 * This is used to make sure security xattrs don't get removed by those who
943 * aren't privileged to remove them.
945 int cap_inode_removexattr(struct dentry *dentry, const char *name)
947 struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
949 /* Ignore non-security xattrs */
950 if (strncmp(name, XATTR_SECURITY_PREFIX,
951 XATTR_SECURITY_PREFIX_LEN) != 0)
952 return 0;
954 if (strcmp(name, XATTR_NAME_CAPS) == 0) {
955 /* security.capability gets namespaced */
956 struct inode *inode = d_backing_inode(dentry);
957 if (!inode)
958 return -EINVAL;
959 if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
960 return -EPERM;
961 return 0;
964 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
965 return -EPERM;
966 return 0;
970 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
971 * a process after a call to setuid, setreuid, or setresuid.
973 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
974 * {r,e,s}uid != 0, the permitted and effective capabilities are
975 * cleared.
977 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
978 * capabilities of the process are cleared.
980 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
981 * capabilities are set to the permitted capabilities.
983 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
984 * never happen.
986 * -astor
988 * cevans - New behaviour, Oct '99
989 * A process may, via prctl(), elect to keep its capabilities when it
990 * calls setuid() and switches away from uid==0. Both permitted and
991 * effective sets will be retained.
992 * Without this change, it was impossible for a daemon to drop only some
993 * of its privilege. The call to setuid(!=0) would drop all privileges!
994 * Keeping uid 0 is not an option because uid 0 owns too many vital
995 * files..
996 * Thanks to Olaf Kirch and Peter Benie for spotting this.
998 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
1000 kuid_t root_uid = make_kuid(old->user_ns, 0);
1002 if ((uid_eq(old->uid, root_uid) ||
1003 uid_eq(old->euid, root_uid) ||
1004 uid_eq(old->suid, root_uid)) &&
1005 (!uid_eq(new->uid, root_uid) &&
1006 !uid_eq(new->euid, root_uid) &&
1007 !uid_eq(new->suid, root_uid))) {
1008 if (!issecure(SECURE_KEEP_CAPS)) {
1009 cap_clear(new->cap_permitted);
1010 cap_clear(new->cap_effective);
1014 * Pre-ambient programs expect setresuid to nonroot followed
1015 * by exec to drop capabilities. We should make sure that
1016 * this remains the case.
1018 cap_clear(new->cap_ambient);
1020 if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
1021 cap_clear(new->cap_effective);
1022 if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
1023 new->cap_effective = new->cap_permitted;
1027 * cap_task_fix_setuid - Fix up the results of setuid() call
1028 * @new: The proposed credentials
1029 * @old: The current task's current credentials
1030 * @flags: Indications of what has changed
1032 * Fix up the results of setuid() call before the credential changes are
1033 * actually applied, returning 0 to grant the changes, -ve to deny them.
1035 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
1037 switch (flags) {
1038 case LSM_SETID_RE:
1039 case LSM_SETID_ID:
1040 case LSM_SETID_RES:
1041 /* juggle the capabilities to follow [RES]UID changes unless
1042 * otherwise suppressed */
1043 if (!issecure(SECURE_NO_SETUID_FIXUP))
1044 cap_emulate_setxuid(new, old);
1045 break;
1047 case LSM_SETID_FS:
1048 /* juggle the capabilties to follow FSUID changes, unless
1049 * otherwise suppressed
1051 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
1052 * if not, we might be a bit too harsh here.
1054 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
1055 kuid_t root_uid = make_kuid(old->user_ns, 0);
1056 if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
1057 new->cap_effective =
1058 cap_drop_fs_set(new->cap_effective);
1060 if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
1061 new->cap_effective =
1062 cap_raise_fs_set(new->cap_effective,
1063 new->cap_permitted);
1065 break;
1067 default:
1068 return -EINVAL;
1071 return 0;
1075 * Rationale: code calling task_setscheduler, task_setioprio, and
1076 * task_setnice, assumes that
1077 * . if capable(cap_sys_nice), then those actions should be allowed
1078 * . if not capable(cap_sys_nice), but acting on your own processes,
1079 * then those actions should be allowed
1080 * This is insufficient now since you can call code without suid, but
1081 * yet with increased caps.
1082 * So we check for increased caps on the target process.
1084 static int cap_safe_nice(struct task_struct *p)
1086 int is_subset, ret = 0;
1088 rcu_read_lock();
1089 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
1090 current_cred()->cap_permitted);
1091 if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
1092 ret = -EPERM;
1093 rcu_read_unlock();
1095 return ret;
1099 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
1100 * @p: The task to affect
1102 * Detemine if the requested scheduler policy change is permitted for the
1103 * specified task, returning 0 if permission is granted, -ve if denied.
1105 int cap_task_setscheduler(struct task_struct *p)
1107 return cap_safe_nice(p);
1111 * cap_task_ioprio - Detemine if I/O priority change is permitted
1112 * @p: The task to affect
1113 * @ioprio: The I/O priority to set
1115 * Detemine if the requested I/O priority change is permitted for the specified
1116 * task, returning 0 if permission is granted, -ve if denied.
1118 int cap_task_setioprio(struct task_struct *p, int ioprio)
1120 return cap_safe_nice(p);
1124 * cap_task_ioprio - Detemine if task priority change is permitted
1125 * @p: The task to affect
1126 * @nice: The nice value to set
1128 * Detemine if the requested task priority change is permitted for the
1129 * specified task, returning 0 if permission is granted, -ve if denied.
1131 int cap_task_setnice(struct task_struct *p, int nice)
1133 return cap_safe_nice(p);
1137 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
1138 * the current task's bounding set. Returns 0 on success, -ve on error.
1140 static int cap_prctl_drop(unsigned long cap)
1142 struct cred *new;
1144 if (!ns_capable(current_user_ns(), CAP_SETPCAP))
1145 return -EPERM;
1146 if (!cap_valid(cap))
1147 return -EINVAL;
1149 new = prepare_creds();
1150 if (!new)
1151 return -ENOMEM;
1152 cap_lower(new->cap_bset, cap);
1153 return commit_creds(new);
1157 * cap_task_prctl - Implement process control functions for this security module
1158 * @option: The process control function requested
1159 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
1161 * Allow process control functions (sys_prctl()) to alter capabilities; may
1162 * also deny access to other functions not otherwise implemented here.
1164 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
1165 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
1166 * modules will consider performing the function.
1168 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1169 unsigned long arg4, unsigned long arg5)
1171 const struct cred *old = current_cred();
1172 struct cred *new;
1174 switch (option) {
1175 case PR_CAPBSET_READ:
1176 if (!cap_valid(arg2))
1177 return -EINVAL;
1178 return !!cap_raised(old->cap_bset, arg2);
1180 case PR_CAPBSET_DROP:
1181 return cap_prctl_drop(arg2);
1184 * The next four prctl's remain to assist with transitioning a
1185 * system from legacy UID=0 based privilege (when filesystem
1186 * capabilities are not in use) to a system using filesystem
1187 * capabilities only - as the POSIX.1e draft intended.
1189 * Note:
1191 * PR_SET_SECUREBITS =
1192 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
1193 * | issecure_mask(SECURE_NOROOT)
1194 * | issecure_mask(SECURE_NOROOT_LOCKED)
1195 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
1196 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
1198 * will ensure that the current process and all of its
1199 * children will be locked into a pure
1200 * capability-based-privilege environment.
1202 case PR_SET_SECUREBITS:
1203 if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
1204 & (old->securebits ^ arg2)) /*[1]*/
1205 || ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
1206 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
1207 || (cap_capable(current_cred(),
1208 current_cred()->user_ns,
1209 CAP_SETPCAP,
1210 CAP_OPT_NONE) != 0) /*[4]*/
1212 * [1] no changing of bits that are locked
1213 * [2] no unlocking of locks
1214 * [3] no setting of unsupported bits
1215 * [4] doing anything requires privilege (go read about
1216 * the "sendmail capabilities bug")
1219 /* cannot change a locked bit */
1220 return -EPERM;
1222 new = prepare_creds();
1223 if (!new)
1224 return -ENOMEM;
1225 new->securebits = arg2;
1226 return commit_creds(new);
1228 case PR_GET_SECUREBITS:
1229 return old->securebits;
1231 case PR_GET_KEEPCAPS:
1232 return !!issecure(SECURE_KEEP_CAPS);
1234 case PR_SET_KEEPCAPS:
1235 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
1236 return -EINVAL;
1237 if (issecure(SECURE_KEEP_CAPS_LOCKED))
1238 return -EPERM;
1240 new = prepare_creds();
1241 if (!new)
1242 return -ENOMEM;
1243 if (arg2)
1244 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
1245 else
1246 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
1247 return commit_creds(new);
1249 case PR_CAP_AMBIENT:
1250 if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
1251 if (arg3 | arg4 | arg5)
1252 return -EINVAL;
1254 new = prepare_creds();
1255 if (!new)
1256 return -ENOMEM;
1257 cap_clear(new->cap_ambient);
1258 return commit_creds(new);
1261 if (((!cap_valid(arg3)) | arg4 | arg5))
1262 return -EINVAL;
1264 if (arg2 == PR_CAP_AMBIENT_IS_SET) {
1265 return !!cap_raised(current_cred()->cap_ambient, arg3);
1266 } else if (arg2 != PR_CAP_AMBIENT_RAISE &&
1267 arg2 != PR_CAP_AMBIENT_LOWER) {
1268 return -EINVAL;
1269 } else {
1270 if (arg2 == PR_CAP_AMBIENT_RAISE &&
1271 (!cap_raised(current_cred()->cap_permitted, arg3) ||
1272 !cap_raised(current_cred()->cap_inheritable,
1273 arg3) ||
1274 issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
1275 return -EPERM;
1277 new = prepare_creds();
1278 if (!new)
1279 return -ENOMEM;
1280 if (arg2 == PR_CAP_AMBIENT_RAISE)
1281 cap_raise(new->cap_ambient, arg3);
1282 else
1283 cap_lower(new->cap_ambient, arg3);
1284 return commit_creds(new);
1287 default:
1288 /* No functionality available - continue with default */
1289 return -ENOSYS;
1294 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
1295 * @mm: The VM space in which the new mapping is to be made
1296 * @pages: The size of the mapping
1298 * Determine whether the allocation of a new virtual mapping by the current
1299 * task is permitted, returning 1 if permission is granted, 0 if not.
1301 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
1303 int cap_sys_admin = 0;
1305 if (cap_capable(current_cred(), &init_user_ns,
1306 CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
1307 cap_sys_admin = 1;
1309 return cap_sys_admin;
1313 * cap_mmap_addr - check if able to map given addr
1314 * @addr: address attempting to be mapped
1316 * If the process is attempting to map memory below dac_mmap_min_addr they need
1317 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
1318 * capability security module. Returns 0 if this mapping should be allowed
1319 * -EPERM if not.
1321 int cap_mmap_addr(unsigned long addr)
1323 int ret = 0;
1325 if (addr < dac_mmap_min_addr) {
1326 ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
1327 CAP_OPT_NONE);
1328 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
1329 if (ret == 0)
1330 current->flags |= PF_SUPERPRIV;
1332 return ret;
1335 int cap_mmap_file(struct file *file, unsigned long reqprot,
1336 unsigned long prot, unsigned long flags)
1338 return 0;
1341 #ifdef CONFIG_SECURITY
1343 static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
1344 LSM_HOOK_INIT(capable, cap_capable),
1345 LSM_HOOK_INIT(settime, cap_settime),
1346 LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
1347 LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
1348 LSM_HOOK_INIT(capget, cap_capget),
1349 LSM_HOOK_INIT(capset, cap_capset),
1350 LSM_HOOK_INIT(bprm_creds_from_file, cap_bprm_creds_from_file),
1351 LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
1352 LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
1353 LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
1354 LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
1355 LSM_HOOK_INIT(mmap_file, cap_mmap_file),
1356 LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
1357 LSM_HOOK_INIT(task_prctl, cap_task_prctl),
1358 LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
1359 LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
1360 LSM_HOOK_INIT(task_setnice, cap_task_setnice),
1361 LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
1364 static int __init capability_init(void)
1366 security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
1367 "capability");
1368 return 0;
1371 DEFINE_LSM(capability) = {
1372 .name = "capability",
1373 .order = LSM_ORDER_FIRST,
1374 .init = capability_init,
1377 #endif /* CONFIG_SECURITY */