4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
65 #include <trace/events/task.h>
68 #include <trace/events/sched.h>
70 int suid_dumpable
= 0;
72 static LIST_HEAD(formats
);
73 static DEFINE_RWLOCK(binfmt_lock
);
75 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
78 if (WARN_ON(!fmt
->load_binary
))
80 write_lock(&binfmt_lock
);
81 insert
? list_add(&fmt
->lh
, &formats
) :
82 list_add_tail(&fmt
->lh
, &formats
);
83 write_unlock(&binfmt_lock
);
86 EXPORT_SYMBOL(__register_binfmt
);
88 void unregister_binfmt(struct linux_binfmt
* fmt
)
90 write_lock(&binfmt_lock
);
92 write_unlock(&binfmt_lock
);
95 EXPORT_SYMBOL(unregister_binfmt
);
97 static inline void put_binfmt(struct linux_binfmt
* fmt
)
99 module_put(fmt
->module
);
102 bool path_noexec(const struct path
*path
)
104 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
105 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
110 * Note that a shared library must be both readable and executable due to
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
117 struct linux_binfmt
*fmt
;
119 struct filename
*tmp
= getname(library
);
120 int error
= PTR_ERR(tmp
);
121 static const struct open_flags uselib_flags
= {
122 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
123 .acc_mode
= MAY_READ
| MAY_EXEC
| MAY_OPEN
,
124 .intent
= LOOKUP_OPEN
,
125 .lookup_flags
= LOOKUP_FOLLOW
,
131 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
133 error
= PTR_ERR(file
);
138 if (!S_ISREG(file_inode(file
)->i_mode
))
142 if (path_noexec(&file
->f_path
))
149 read_lock(&binfmt_lock
);
150 list_for_each_entry(fmt
, &formats
, lh
) {
151 if (!fmt
->load_shlib
)
153 if (!try_module_get(fmt
->module
))
155 read_unlock(&binfmt_lock
);
156 error
= fmt
->load_shlib(file
);
157 read_lock(&binfmt_lock
);
159 if (error
!= -ENOEXEC
)
162 read_unlock(&binfmt_lock
);
168 #endif /* #ifdef CONFIG_USELIB */
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
179 struct mm_struct
*mm
= current
->mm
;
180 long diff
= (long)(pages
- bprm
->vma_pages
);
185 bprm
->vma_pages
= pages
;
186 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
189 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
195 #ifdef CONFIG_STACK_GROWSUP
197 ret
= expand_downwards(bprm
->vma
, pos
);
202 ret
= get_user_pages(current
, bprm
->mm
, pos
,
203 1, write
, 1, &page
, NULL
);
208 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
209 unsigned long ptr_size
, limit
;
212 * Since the stack will hold pointers to the strings, we
213 * must account for them as well.
215 * The size calculation is the entire vma while each arg page is
216 * built, so each time we get here it's calculating how far it
217 * is currently (rather than each call being just the newly
218 * added size from the arg page). As a result, we need to
219 * always add the entire size of the pointers, so that on the
220 * last call to get_arg_page() we'll actually have the entire
223 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
224 if (ptr_size
> ULONG_MAX
- size
)
228 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
231 * We've historically supported up to 32 pages (ARG_MAX)
232 * of argument strings even with small stacks
238 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
239 * (whichever is smaller) for the argv+env strings.
241 * - the remaining binfmt code will not run out of stack space,
242 * - the program will have a reasonable amount of stack left
245 limit
= _STK_LIM
/ 4 * 3;
246 limit
= min(limit
, rlimit(RLIMIT_STACK
) / 4);
258 static void put_arg_page(struct page
*page
)
263 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
267 static void free_arg_pages(struct linux_binprm
*bprm
)
271 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
274 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
277 static int __bprm_mm_init(struct linux_binprm
*bprm
)
280 struct vm_area_struct
*vma
= NULL
;
281 struct mm_struct
*mm
= bprm
->mm
;
283 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
287 down_write(&mm
->mmap_sem
);
291 * Place the stack at the largest stack address the architecture
292 * supports. Later, we'll move this to an appropriate place. We don't
293 * use STACK_TOP because that can depend on attributes which aren't
296 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
297 vma
->vm_end
= STACK_TOP_MAX
;
298 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
299 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
300 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
301 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
303 err
= insert_vm_struct(mm
, vma
);
307 mm
->stack_vm
= mm
->total_vm
= 1;
308 arch_bprm_mm_init(mm
, vma
);
309 up_write(&mm
->mmap_sem
);
310 bprm
->p
= vma
->vm_end
- sizeof(void *);
313 up_write(&mm
->mmap_sem
);
315 kmem_cache_free(vm_area_cachep
, vma
);
319 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
321 return len
<= MAX_ARG_STRLEN
;
326 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
330 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
335 page
= bprm
->page
[pos
/ PAGE_SIZE
];
336 if (!page
&& write
) {
337 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
340 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
346 static void put_arg_page(struct page
*page
)
350 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
353 __free_page(bprm
->page
[i
]);
354 bprm
->page
[i
] = NULL
;
358 static void free_arg_pages(struct linux_binprm
*bprm
)
362 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
363 free_arg_page(bprm
, i
);
366 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
371 static int __bprm_mm_init(struct linux_binprm
*bprm
)
373 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
377 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
379 return len
<= bprm
->p
;
382 #endif /* CONFIG_MMU */
385 * Create a new mm_struct and populate it with a temporary stack
386 * vm_area_struct. We don't have enough context at this point to set the stack
387 * flags, permissions, and offset, so we use temporary values. We'll update
388 * them later in setup_arg_pages().
390 static int bprm_mm_init(struct linux_binprm
*bprm
)
393 struct mm_struct
*mm
= NULL
;
395 bprm
->mm
= mm
= mm_alloc();
400 err
= __bprm_mm_init(bprm
);
415 struct user_arg_ptr
{
420 const char __user
*const __user
*native
;
422 const compat_uptr_t __user
*compat
;
427 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
429 const char __user
*native
;
432 if (unlikely(argv
.is_compat
)) {
433 compat_uptr_t compat
;
435 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
436 return ERR_PTR(-EFAULT
);
438 return compat_ptr(compat
);
442 if (get_user(native
, argv
.ptr
.native
+ nr
))
443 return ERR_PTR(-EFAULT
);
449 * count() counts the number of strings in array ARGV.
451 static int count(struct user_arg_ptr argv
, int max
)
455 if (argv
.ptr
.native
!= NULL
) {
457 const char __user
*p
= get_user_arg_ptr(argv
, i
);
469 if (fatal_signal_pending(current
))
470 return -ERESTARTNOHAND
;
478 * 'copy_strings()' copies argument/environment strings from the old
479 * processes's memory to the new process's stack. The call to get_user_pages()
480 * ensures the destination page is created and not swapped out.
482 static int copy_strings(int argc
, struct user_arg_ptr argv
,
483 struct linux_binprm
*bprm
)
485 struct page
*kmapped_page
= NULL
;
487 unsigned long kpos
= 0;
491 const char __user
*str
;
496 str
= get_user_arg_ptr(argv
, argc
);
500 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
505 if (!valid_arg_len(bprm
, len
))
508 /* We're going to work our way backwords. */
514 int offset
, bytes_to_copy
;
516 if (fatal_signal_pending(current
)) {
517 ret
= -ERESTARTNOHAND
;
522 offset
= pos
% PAGE_SIZE
;
526 bytes_to_copy
= offset
;
527 if (bytes_to_copy
> len
)
530 offset
-= bytes_to_copy
;
531 pos
-= bytes_to_copy
;
532 str
-= bytes_to_copy
;
533 len
-= bytes_to_copy
;
535 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
538 page
= get_arg_page(bprm
, pos
, 1);
545 flush_kernel_dcache_page(kmapped_page
);
546 kunmap(kmapped_page
);
547 put_arg_page(kmapped_page
);
550 kaddr
= kmap(kmapped_page
);
551 kpos
= pos
& PAGE_MASK
;
552 flush_arg_page(bprm
, kpos
, kmapped_page
);
554 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
563 flush_kernel_dcache_page(kmapped_page
);
564 kunmap(kmapped_page
);
565 put_arg_page(kmapped_page
);
571 * Like copy_strings, but get argv and its values from kernel memory.
573 int copy_strings_kernel(int argc
, const char *const *__argv
,
574 struct linux_binprm
*bprm
)
577 mm_segment_t oldfs
= get_fs();
578 struct user_arg_ptr argv
= {
579 .ptr
.native
= (const char __user
*const __user
*)__argv
,
583 r
= copy_strings(argc
, argv
, bprm
);
588 EXPORT_SYMBOL(copy_strings_kernel
);
593 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
594 * the binfmt code determines where the new stack should reside, we shift it to
595 * its final location. The process proceeds as follows:
597 * 1) Use shift to calculate the new vma endpoints.
598 * 2) Extend vma to cover both the old and new ranges. This ensures the
599 * arguments passed to subsequent functions are consistent.
600 * 3) Move vma's page tables to the new range.
601 * 4) Free up any cleared pgd range.
602 * 5) Shrink the vma to cover only the new range.
604 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
606 struct mm_struct
*mm
= vma
->vm_mm
;
607 unsigned long old_start
= vma
->vm_start
;
608 unsigned long old_end
= vma
->vm_end
;
609 unsigned long length
= old_end
- old_start
;
610 unsigned long new_start
= old_start
- shift
;
611 unsigned long new_end
= old_end
- shift
;
612 struct mmu_gather tlb
;
614 BUG_ON(new_start
> new_end
);
617 * ensure there are no vmas between where we want to go
620 if (vma
!= find_vma(mm
, new_start
))
624 * cover the whole range: [new_start, old_end)
626 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
630 * move the page tables downwards, on failure we rely on
631 * process cleanup to remove whatever mess we made.
633 if (length
!= move_page_tables(vma
, old_start
,
634 vma
, new_start
, length
, false))
638 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
639 if (new_end
> old_start
) {
641 * when the old and new regions overlap clear from new_end.
643 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
644 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
647 * otherwise, clean from old_start; this is done to not touch
648 * the address space in [new_end, old_start) some architectures
649 * have constraints on va-space that make this illegal (IA64) -
650 * for the others its just a little faster.
652 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
653 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
655 tlb_finish_mmu(&tlb
, old_start
, old_end
);
658 * Shrink the vma to just the new range. Always succeeds.
660 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
666 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
667 * the stack is optionally relocated, and some extra space is added.
669 int setup_arg_pages(struct linux_binprm
*bprm
,
670 unsigned long stack_top
,
671 int executable_stack
)
674 unsigned long stack_shift
;
675 struct mm_struct
*mm
= current
->mm
;
676 struct vm_area_struct
*vma
= bprm
->vma
;
677 struct vm_area_struct
*prev
= NULL
;
678 unsigned long vm_flags
;
679 unsigned long stack_base
;
680 unsigned long stack_size
;
681 unsigned long stack_expand
;
682 unsigned long rlim_stack
;
684 #ifdef CONFIG_STACK_GROWSUP
685 /* Limit stack size */
686 stack_base
= rlimit_max(RLIMIT_STACK
);
687 if (stack_base
> STACK_SIZE_MAX
)
688 stack_base
= STACK_SIZE_MAX
;
690 /* Add space for stack randomization. */
691 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
693 /* Make sure we didn't let the argument array grow too large. */
694 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
697 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
699 stack_shift
= vma
->vm_start
- stack_base
;
700 mm
->arg_start
= bprm
->p
- stack_shift
;
701 bprm
->p
= vma
->vm_end
- stack_shift
;
703 stack_top
= arch_align_stack(stack_top
);
704 stack_top
= PAGE_ALIGN(stack_top
);
706 if (unlikely(stack_top
< mmap_min_addr
) ||
707 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
710 stack_shift
= vma
->vm_end
- stack_top
;
712 bprm
->p
-= stack_shift
;
713 mm
->arg_start
= bprm
->p
;
717 bprm
->loader
-= stack_shift
;
718 bprm
->exec
-= stack_shift
;
720 down_write(&mm
->mmap_sem
);
721 vm_flags
= VM_STACK_FLAGS
;
724 * Adjust stack execute permissions; explicitly enable for
725 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
726 * (arch default) otherwise.
728 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
730 else if (executable_stack
== EXSTACK_DISABLE_X
)
731 vm_flags
&= ~VM_EXEC
;
732 vm_flags
|= mm
->def_flags
;
733 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
735 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
741 /* Move stack pages down in memory. */
743 ret
= shift_arg_pages(vma
, stack_shift
);
748 /* mprotect_fixup is overkill to remove the temporary stack flags */
749 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
751 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
752 stack_size
= vma
->vm_end
- vma
->vm_start
;
754 * Align this down to a page boundary as expand_stack
757 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
758 #ifdef CONFIG_STACK_GROWSUP
759 if (stack_size
+ stack_expand
> rlim_stack
)
760 stack_base
= vma
->vm_start
+ rlim_stack
;
762 stack_base
= vma
->vm_end
+ stack_expand
;
764 if (stack_size
+ stack_expand
> rlim_stack
)
765 stack_base
= vma
->vm_end
- rlim_stack
;
767 stack_base
= vma
->vm_start
- stack_expand
;
769 current
->mm
->start_stack
= bprm
->p
;
770 ret
= expand_stack(vma
, stack_base
);
775 up_write(&mm
->mmap_sem
);
778 EXPORT_SYMBOL(setup_arg_pages
);
780 #endif /* CONFIG_MMU */
782 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
786 struct open_flags open_exec_flags
= {
787 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
788 .acc_mode
= MAY_EXEC
| MAY_OPEN
,
789 .intent
= LOOKUP_OPEN
,
790 .lookup_flags
= LOOKUP_FOLLOW
,
793 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
794 return ERR_PTR(-EINVAL
);
795 if (flags
& AT_SYMLINK_NOFOLLOW
)
796 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
797 if (flags
& AT_EMPTY_PATH
)
798 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
800 file
= do_filp_open(fd
, name
, &open_exec_flags
);
805 if (!S_ISREG(file_inode(file
)->i_mode
))
808 if (path_noexec(&file
->f_path
))
811 err
= deny_write_access(file
);
815 if (name
->name
[0] != '\0')
826 struct file
*open_exec(const char *name
)
828 struct filename
*filename
= getname_kernel(name
);
829 struct file
*f
= ERR_CAST(filename
);
831 if (!IS_ERR(filename
)) {
832 f
= do_open_execat(AT_FDCWD
, filename
, 0);
837 EXPORT_SYMBOL(open_exec
);
839 int kernel_read(struct file
*file
, loff_t offset
,
840 char *addr
, unsigned long count
)
848 /* The cast to a user pointer is valid due to the set_fs() */
849 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
854 EXPORT_SYMBOL(kernel_read
);
856 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
858 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
860 flush_icache_range(addr
, addr
+ len
);
863 EXPORT_SYMBOL(read_code
);
865 static int exec_mmap(struct mm_struct
*mm
)
867 struct task_struct
*tsk
;
868 struct mm_struct
*old_mm
, *active_mm
;
870 /* Notify parent that we're no longer interested in the old VM */
872 old_mm
= current
->mm
;
873 mm_release(tsk
, old_mm
);
878 * Make sure that if there is a core dump in progress
879 * for the old mm, we get out and die instead of going
880 * through with the exec. We must hold mmap_sem around
881 * checking core_state and changing tsk->mm.
883 down_read(&old_mm
->mmap_sem
);
884 if (unlikely(old_mm
->core_state
)) {
885 up_read(&old_mm
->mmap_sem
);
890 active_mm
= tsk
->active_mm
;
893 activate_mm(active_mm
, mm
);
894 tsk
->mm
->vmacache_seqnum
= 0;
898 up_read(&old_mm
->mmap_sem
);
899 BUG_ON(active_mm
!= old_mm
);
900 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
901 mm_update_next_owner(old_mm
);
910 * This function makes sure the current process has its own signal table,
911 * so that flush_signal_handlers can later reset the handlers without
912 * disturbing other processes. (Other processes might share the signal
913 * table via the CLONE_SIGHAND option to clone().)
915 static int de_thread(struct task_struct
*tsk
)
917 struct signal_struct
*sig
= tsk
->signal
;
918 struct sighand_struct
*oldsighand
= tsk
->sighand
;
919 spinlock_t
*lock
= &oldsighand
->siglock
;
921 if (thread_group_empty(tsk
))
922 goto no_thread_group
;
925 * Kill all other threads in the thread group.
928 if (signal_group_exit(sig
)) {
930 * Another group action in progress, just
931 * return so that the signal is processed.
933 spin_unlock_irq(lock
);
937 sig
->group_exit_task
= tsk
;
938 sig
->notify_count
= zap_other_threads(tsk
);
939 if (!thread_group_leader(tsk
))
942 while (sig
->notify_count
) {
943 __set_current_state(TASK_KILLABLE
);
944 spin_unlock_irq(lock
);
946 if (unlikely(__fatal_signal_pending(tsk
)))
950 spin_unlock_irq(lock
);
953 * At this point all other threads have exited, all we have to
954 * do is to wait for the thread group leader to become inactive,
955 * and to assume its PID:
957 if (!thread_group_leader(tsk
)) {
958 struct task_struct
*leader
= tsk
->group_leader
;
961 threadgroup_change_begin(tsk
);
962 write_lock_irq(&tasklist_lock
);
964 * Do this under tasklist_lock to ensure that
965 * exit_notify() can't miss ->group_exit_task
967 sig
->notify_count
= -1;
968 if (likely(leader
->exit_state
))
970 __set_current_state(TASK_KILLABLE
);
971 write_unlock_irq(&tasklist_lock
);
972 threadgroup_change_end(tsk
);
974 if (unlikely(__fatal_signal_pending(tsk
)))
979 * The only record we have of the real-time age of a
980 * process, regardless of execs it's done, is start_time.
981 * All the past CPU time is accumulated in signal_struct
982 * from sister threads now dead. But in this non-leader
983 * exec, nothing survives from the original leader thread,
984 * whose birth marks the true age of this process now.
985 * When we take on its identity by switching to its PID, we
986 * also take its birthdate (always earlier than our own).
988 tsk
->start_time
= leader
->start_time
;
989 tsk
->real_start_time
= leader
->real_start_time
;
991 BUG_ON(!same_thread_group(leader
, tsk
));
992 BUG_ON(has_group_leader_pid(tsk
));
994 * An exec() starts a new thread group with the
995 * TGID of the previous thread group. Rehash the
996 * two threads with a switched PID, and release
997 * the former thread group leader:
1000 /* Become a process group leader with the old leader's pid.
1001 * The old leader becomes a thread of the this thread group.
1002 * Note: The old leader also uses this pid until release_task
1003 * is called. Odd but simple and correct.
1005 tsk
->pid
= leader
->pid
;
1006 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
1007 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1008 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1010 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1011 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1013 tsk
->group_leader
= tsk
;
1014 leader
->group_leader
= tsk
;
1016 tsk
->exit_signal
= SIGCHLD
;
1017 leader
->exit_signal
= -1;
1019 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1020 leader
->exit_state
= EXIT_DEAD
;
1023 * We are going to release_task()->ptrace_unlink() silently,
1024 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1025 * the tracer wont't block again waiting for this thread.
1027 if (unlikely(leader
->ptrace
))
1028 __wake_up_parent(leader
, leader
->parent
);
1029 write_unlock_irq(&tasklist_lock
);
1030 threadgroup_change_end(tsk
);
1032 release_task(leader
);
1035 sig
->group_exit_task
= NULL
;
1036 sig
->notify_count
= 0;
1039 /* we have changed execution domain */
1040 tsk
->exit_signal
= SIGCHLD
;
1043 flush_itimer_signals();
1045 if (atomic_read(&oldsighand
->count
) != 1) {
1046 struct sighand_struct
*newsighand
;
1048 * This ->sighand is shared with the CLONE_SIGHAND
1049 * but not CLONE_THREAD task, switch to the new one.
1051 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1055 atomic_set(&newsighand
->count
, 1);
1056 memcpy(newsighand
->action
, oldsighand
->action
,
1057 sizeof(newsighand
->action
));
1059 write_lock_irq(&tasklist_lock
);
1060 spin_lock(&oldsighand
->siglock
);
1061 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1062 spin_unlock(&oldsighand
->siglock
);
1063 write_unlock_irq(&tasklist_lock
);
1065 __cleanup_sighand(oldsighand
);
1068 BUG_ON(!thread_group_leader(tsk
));
1072 /* protects against exit_notify() and __exit_signal() */
1073 read_lock(&tasklist_lock
);
1074 sig
->group_exit_task
= NULL
;
1075 sig
->notify_count
= 0;
1076 read_unlock(&tasklist_lock
);
1080 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1082 /* buf must be at least sizeof(tsk->comm) in size */
1084 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1088 EXPORT_SYMBOL_GPL(get_task_comm
);
1091 * These functions flushes out all traces of the currently running executable
1092 * so that a new one can be started
1095 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1098 trace_task_rename(tsk
, buf
);
1099 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1101 perf_event_comm(tsk
, exec
);
1104 int flush_old_exec(struct linux_binprm
* bprm
)
1109 * Make sure we have a private signal table and that
1110 * we are unassociated from the previous thread group.
1112 retval
= de_thread(current
);
1117 * Must be called _before_ exec_mmap() as bprm->mm is
1118 * not visibile until then. This also enables the update
1121 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1124 * Release all of the old mmap stuff
1126 acct_arg_size(bprm
, 0);
1127 retval
= exec_mmap(bprm
->mm
);
1131 bprm
->mm
= NULL
; /* We're using it now */
1134 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1135 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1137 current
->personality
&= ~bprm
->per_clear
;
1140 * We have to apply CLOEXEC before we change whether the process is
1141 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1142 * trying to access the should-be-closed file descriptors of a process
1143 * undergoing exec(2).
1145 do_close_on_exec(current
->files
);
1151 EXPORT_SYMBOL(flush_old_exec
);
1153 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1155 struct inode
*inode
= file_inode(file
);
1156 if (inode_permission(inode
, MAY_READ
) < 0) {
1157 struct user_namespace
*old
, *user_ns
;
1158 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1160 /* Ensure mm->user_ns contains the executable */
1161 user_ns
= old
= bprm
->mm
->user_ns
;
1162 while ((user_ns
!= &init_user_ns
) &&
1163 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1164 user_ns
= user_ns
->parent
;
1166 if (old
!= user_ns
) {
1167 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1172 EXPORT_SYMBOL(would_dump
);
1174 void setup_new_exec(struct linux_binprm
* bprm
)
1176 arch_pick_mmap_layout(current
->mm
);
1178 /* This is the point of no return */
1179 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1181 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1182 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1184 set_dumpable(current
->mm
, suid_dumpable
);
1187 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1189 /* Set the new mm task size. We have to do that late because it may
1190 * depend on TIF_32BIT which is only updated in flush_thread() on
1191 * some architectures like powerpc
1193 current
->mm
->task_size
= TASK_SIZE
;
1195 /* install the new credentials */
1196 if (!uid_eq(bprm
->cred
->uid
, current_euid()) ||
1197 !gid_eq(bprm
->cred
->gid
, current_egid())) {
1198 current
->pdeath_signal
= 0;
1200 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1201 set_dumpable(current
->mm
, suid_dumpable
);
1204 /* An exec changes our domain. We are no longer part of the thread
1206 current
->self_exec_id
++;
1207 flush_signal_handlers(current
, 0);
1209 EXPORT_SYMBOL(setup_new_exec
);
1212 * Prepare credentials and lock ->cred_guard_mutex.
1213 * install_exec_creds() commits the new creds and drops the lock.
1214 * Or, if exec fails before, free_bprm() should release ->cred and
1217 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1219 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1220 return -ERESTARTNOINTR
;
1222 bprm
->cred
= prepare_exec_creds();
1223 if (likely(bprm
->cred
))
1226 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1230 static void free_bprm(struct linux_binprm
*bprm
)
1232 free_arg_pages(bprm
);
1234 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1235 abort_creds(bprm
->cred
);
1238 allow_write_access(bprm
->file
);
1241 /* If a binfmt changed the interp, free it. */
1242 if (bprm
->interp
!= bprm
->filename
)
1243 kfree(bprm
->interp
);
1247 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1249 /* If a binfmt changed the interp, free it first. */
1250 if (bprm
->interp
!= bprm
->filename
)
1251 kfree(bprm
->interp
);
1252 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1257 EXPORT_SYMBOL(bprm_change_interp
);
1260 * install the new credentials for this executable
1262 void install_exec_creds(struct linux_binprm
*bprm
)
1264 security_bprm_committing_creds(bprm
);
1266 commit_creds(bprm
->cred
);
1270 * Disable monitoring for regular users
1271 * when executing setuid binaries. Must
1272 * wait until new credentials are committed
1273 * by commit_creds() above
1275 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1276 perf_event_exit_task(current
);
1278 * cred_guard_mutex must be held at least to this point to prevent
1279 * ptrace_attach() from altering our determination of the task's
1280 * credentials; any time after this it may be unlocked.
1282 security_bprm_committed_creds(bprm
);
1283 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1285 EXPORT_SYMBOL(install_exec_creds
);
1288 * determine how safe it is to execute the proposed program
1289 * - the caller must hold ->cred_guard_mutex to protect against
1290 * PTRACE_ATTACH or seccomp thread-sync
1292 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1294 struct task_struct
*p
= current
, *t
;
1298 if (ptracer_capable(p
, current_user_ns()))
1299 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1301 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1305 * This isn't strictly necessary, but it makes it harder for LSMs to
1308 if (task_no_new_privs(current
))
1309 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1313 spin_lock(&p
->fs
->lock
);
1315 while_each_thread(p
, t
) {
1321 if (p
->fs
->users
> n_fs
)
1322 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1325 spin_unlock(&p
->fs
->lock
);
1328 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1330 struct inode
*inode
;
1335 /* clear any previous set[ug]id data from a previous binary */
1336 bprm
->cred
->euid
= current_euid();
1337 bprm
->cred
->egid
= current_egid();
1339 if (bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)
1342 if (task_no_new_privs(current
))
1345 inode
= file_inode(bprm
->file
);
1346 mode
= READ_ONCE(inode
->i_mode
);
1347 if (!(mode
& (S_ISUID
|S_ISGID
)))
1350 /* Be careful if suid/sgid is set */
1351 mutex_lock(&inode
->i_mutex
);
1353 /* reload atomically mode/uid/gid now that lock held */
1354 mode
= inode
->i_mode
;
1357 mutex_unlock(&inode
->i_mutex
);
1359 /* We ignore suid/sgid if there are no mappings for them in the ns */
1360 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1361 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1364 if (mode
& S_ISUID
) {
1365 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1366 bprm
->cred
->euid
= uid
;
1369 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1370 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1371 bprm
->cred
->egid
= gid
;
1376 * Fill the binprm structure from the inode.
1377 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1379 * This may be called multiple times for binary chains (scripts for example).
1381 int prepare_binprm(struct linux_binprm
*bprm
)
1385 bprm_fill_uid(bprm
);
1387 /* fill in binprm security blob */
1388 retval
= security_bprm_set_creds(bprm
);
1391 bprm
->cred_prepared
= 1;
1393 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1394 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1397 EXPORT_SYMBOL(prepare_binprm
);
1400 * Arguments are '\0' separated strings found at the location bprm->p
1401 * points to; chop off the first by relocating brpm->p to right after
1402 * the first '\0' encountered.
1404 int remove_arg_zero(struct linux_binprm
*bprm
)
1407 unsigned long offset
;
1415 offset
= bprm
->p
& ~PAGE_MASK
;
1416 page
= get_arg_page(bprm
, bprm
->p
, 0);
1421 kaddr
= kmap_atomic(page
);
1423 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1424 offset
++, bprm
->p
++)
1427 kunmap_atomic(kaddr
);
1430 if (offset
== PAGE_SIZE
)
1431 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1432 } while (offset
== PAGE_SIZE
);
1441 EXPORT_SYMBOL(remove_arg_zero
);
1443 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1445 * cycle the list of binary formats handler, until one recognizes the image
1447 int search_binary_handler(struct linux_binprm
*bprm
)
1449 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1450 struct linux_binfmt
*fmt
;
1453 /* This allows 4 levels of binfmt rewrites before failing hard. */
1454 if (bprm
->recursion_depth
> 5)
1457 retval
= security_bprm_check(bprm
);
1463 read_lock(&binfmt_lock
);
1464 list_for_each_entry(fmt
, &formats
, lh
) {
1465 if (!try_module_get(fmt
->module
))
1467 read_unlock(&binfmt_lock
);
1468 bprm
->recursion_depth
++;
1469 retval
= fmt
->load_binary(bprm
);
1470 read_lock(&binfmt_lock
);
1472 bprm
->recursion_depth
--;
1473 if (retval
< 0 && !bprm
->mm
) {
1474 /* we got to flush_old_exec() and failed after it */
1475 read_unlock(&binfmt_lock
);
1476 force_sigsegv(SIGSEGV
, current
);
1479 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1480 read_unlock(&binfmt_lock
);
1484 read_unlock(&binfmt_lock
);
1487 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1488 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1490 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1498 EXPORT_SYMBOL(search_binary_handler
);
1500 static int exec_binprm(struct linux_binprm
*bprm
)
1502 pid_t old_pid
, old_vpid
;
1505 /* Need to fetch pid before load_binary changes it */
1506 old_pid
= current
->pid
;
1508 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1511 ret
= search_binary_handler(bprm
);
1514 trace_sched_process_exec(current
, old_pid
, bprm
);
1515 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1516 proc_exec_connector(current
);
1523 * sys_execve() executes a new program.
1525 static int do_execveat_common(int fd
, struct filename
*filename
,
1526 struct user_arg_ptr argv
,
1527 struct user_arg_ptr envp
,
1530 char *pathbuf
= NULL
;
1531 struct linux_binprm
*bprm
;
1533 struct files_struct
*displaced
;
1536 if (IS_ERR(filename
))
1537 return PTR_ERR(filename
);
1540 * We move the actual failure in case of RLIMIT_NPROC excess from
1541 * set*uid() to execve() because too many poorly written programs
1542 * don't check setuid() return code. Here we additionally recheck
1543 * whether NPROC limit is still exceeded.
1545 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1546 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1551 /* We're below the limit (still or again), so we don't want to make
1552 * further execve() calls fail. */
1553 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1555 retval
= unshare_files(&displaced
);
1560 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1564 retval
= prepare_bprm_creds(bprm
);
1568 check_unsafe_exec(bprm
);
1569 current
->in_execve
= 1;
1571 file
= do_open_execat(fd
, filename
, flags
);
1572 retval
= PTR_ERR(file
);
1579 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1580 bprm
->filename
= filename
->name
;
1582 if (filename
->name
[0] == '\0')
1583 pathbuf
= kasprintf(GFP_TEMPORARY
, "/dev/fd/%d", fd
);
1585 pathbuf
= kasprintf(GFP_TEMPORARY
, "/dev/fd/%d/%s",
1586 fd
, filename
->name
);
1592 * Record that a name derived from an O_CLOEXEC fd will be
1593 * inaccessible after exec. Relies on having exclusive access to
1594 * current->files (due to unshare_files above).
1596 if (close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1597 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1598 bprm
->filename
= pathbuf
;
1600 bprm
->interp
= bprm
->filename
;
1602 retval
= bprm_mm_init(bprm
);
1606 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1607 if ((retval
= bprm
->argc
) < 0)
1610 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1611 if ((retval
= bprm
->envc
) < 0)
1614 retval
= prepare_binprm(bprm
);
1618 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1622 bprm
->exec
= bprm
->p
;
1623 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1627 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1631 would_dump(bprm
, bprm
->file
);
1633 retval
= exec_binprm(bprm
);
1637 /* execve succeeded */
1638 current
->fs
->in_exec
= 0;
1639 current
->in_execve
= 0;
1640 acct_update_integrals(current
);
1641 task_numa_free(current
);
1646 put_files_struct(displaced
);
1651 acct_arg_size(bprm
, 0);
1656 current
->fs
->in_exec
= 0;
1657 current
->in_execve
= 0;
1665 reset_files_struct(displaced
);
1671 int do_execve(struct filename
*filename
,
1672 const char __user
*const __user
*__argv
,
1673 const char __user
*const __user
*__envp
)
1675 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1676 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1677 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1680 int do_execveat(int fd
, struct filename
*filename
,
1681 const char __user
*const __user
*__argv
,
1682 const char __user
*const __user
*__envp
,
1685 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1686 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1688 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1691 #ifdef CONFIG_COMPAT
1692 static int compat_do_execve(struct filename
*filename
,
1693 const compat_uptr_t __user
*__argv
,
1694 const compat_uptr_t __user
*__envp
)
1696 struct user_arg_ptr argv
= {
1698 .ptr
.compat
= __argv
,
1700 struct user_arg_ptr envp
= {
1702 .ptr
.compat
= __envp
,
1704 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1707 static int compat_do_execveat(int fd
, struct filename
*filename
,
1708 const compat_uptr_t __user
*__argv
,
1709 const compat_uptr_t __user
*__envp
,
1712 struct user_arg_ptr argv
= {
1714 .ptr
.compat
= __argv
,
1716 struct user_arg_ptr envp
= {
1718 .ptr
.compat
= __envp
,
1720 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1724 void set_binfmt(struct linux_binfmt
*new)
1726 struct mm_struct
*mm
= current
->mm
;
1729 module_put(mm
->binfmt
->module
);
1733 __module_get(new->module
);
1735 EXPORT_SYMBOL(set_binfmt
);
1738 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1740 void set_dumpable(struct mm_struct
*mm
, int value
)
1742 unsigned long old
, new;
1744 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1748 old
= ACCESS_ONCE(mm
->flags
);
1749 new = (old
& ~MMF_DUMPABLE_MASK
) | value
;
1750 } while (cmpxchg(&mm
->flags
, old
, new) != old
);
1753 SYSCALL_DEFINE3(execve
,
1754 const char __user
*, filename
,
1755 const char __user
*const __user
*, argv
,
1756 const char __user
*const __user
*, envp
)
1758 return do_execve(getname(filename
), argv
, envp
);
1761 SYSCALL_DEFINE5(execveat
,
1762 int, fd
, const char __user
*, filename
,
1763 const char __user
*const __user
*, argv
,
1764 const char __user
*const __user
*, envp
,
1767 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1769 return do_execveat(fd
,
1770 getname_flags(filename
, lookup_flags
, NULL
),
1774 #ifdef CONFIG_COMPAT
1775 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1776 const compat_uptr_t __user
*, argv
,
1777 const compat_uptr_t __user
*, envp
)
1779 return compat_do_execve(getname(filename
), argv
, envp
);
1782 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
1783 const char __user
*, filename
,
1784 const compat_uptr_t __user
*, argv
,
1785 const compat_uptr_t __user
*, envp
,
1788 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1790 return compat_do_execveat(fd
,
1791 getname_flags(filename
, lookup_flags
, NULL
),