USB: serial: option: add support for D-Link DWM-157 C1
[linux/fpc-iii.git] / fs / kernfs / dir.c
blob91e004518237f78b0e48b58ca1a233b0dc15c75d
1 /*
2 * fs/kernfs/dir.c - kernfs directory implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
9 */
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
19 #include "kernfs-internal.h"
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
50 char *p = buf + buflen;
51 int len;
53 *--p = '\0';
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
68 return p;
71 /**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
81 * This function can be called from any context.
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
85 unsigned long flags;
86 int ret;
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
94 /**
95 * kernfs_path_len - determine the length of the full path of a given node
96 * @kn: kernfs_node of interest
98 * The returned length doesn't include the space for the terminating '\0'.
100 size_t kernfs_path_len(struct kernfs_node *kn)
102 size_t len = 0;
103 unsigned long flags;
105 spin_lock_irqsave(&kernfs_rename_lock, flags);
107 do {
108 len += strlen(kn->name) + 1;
109 kn = kn->parent;
110 } while (kn && kn->parent);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
114 return len;
118 * kernfs_path - build full path of a given node
119 * @kn: kernfs_node of interest
120 * @buf: buffer to copy @kn's name into
121 * @buflen: size of @buf
123 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
124 * path is built from the end of @buf so the returned pointer usually
125 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
126 * and %NULL is returned.
128 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
130 unsigned long flags;
131 char *p;
133 spin_lock_irqsave(&kernfs_rename_lock, flags);
134 p = kernfs_path_locked(kn, buf, buflen);
135 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 return p;
138 EXPORT_SYMBOL_GPL(kernfs_path);
141 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142 * @kn: kernfs_node of interest
144 * This function can be called from any context.
146 void pr_cont_kernfs_name(struct kernfs_node *kn)
148 unsigned long flags;
150 spin_lock_irqsave(&kernfs_rename_lock, flags);
152 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 pr_cont("%s", kernfs_pr_cont_buf);
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
159 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160 * @kn: kernfs_node of interest
162 * This function can be called from any context.
164 void pr_cont_kernfs_path(struct kernfs_node *kn)
166 unsigned long flags;
167 char *p;
169 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 sizeof(kernfs_pr_cont_buf));
173 if (p)
174 pr_cont("%s", p);
175 else
176 pr_cont("<name too long>");
178 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
182 * kernfs_get_parent - determine the parent node and pin it
183 * @kn: kernfs_node of interest
185 * Determines @kn's parent, pins and returns it. This function can be
186 * called from any context.
188 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
190 struct kernfs_node *parent;
191 unsigned long flags;
193 spin_lock_irqsave(&kernfs_rename_lock, flags);
194 parent = kn->parent;
195 kernfs_get(parent);
196 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
198 return parent;
202 * kernfs_name_hash
203 * @name: Null terminated string to hash
204 * @ns: Namespace tag to hash
206 * Returns 31 bit hash of ns + name (so it fits in an off_t )
208 static unsigned int kernfs_name_hash(const char *name, const void *ns)
210 unsigned long hash = init_name_hash();
211 unsigned int len = strlen(name);
212 while (len--)
213 hash = partial_name_hash(*name++, hash);
214 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 hash &= 0x7fffffffU;
216 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
217 if (hash < 2)
218 hash += 2;
219 if (hash >= INT_MAX)
220 hash = INT_MAX - 1;
221 return hash;
224 static int kernfs_name_compare(unsigned int hash, const char *name,
225 const void *ns, const struct kernfs_node *kn)
227 if (hash < kn->hash)
228 return -1;
229 if (hash > kn->hash)
230 return 1;
231 if (ns < kn->ns)
232 return -1;
233 if (ns > kn->ns)
234 return 1;
235 return strcmp(name, kn->name);
238 static int kernfs_sd_compare(const struct kernfs_node *left,
239 const struct kernfs_node *right)
241 return kernfs_name_compare(left->hash, left->name, left->ns, right);
245 * kernfs_link_sibling - link kernfs_node into sibling rbtree
246 * @kn: kernfs_node of interest
248 * Link @kn into its sibling rbtree which starts from
249 * @kn->parent->dir.children.
251 * Locking:
252 * mutex_lock(kernfs_mutex)
254 * RETURNS:
255 * 0 on susccess -EEXIST on failure.
257 static int kernfs_link_sibling(struct kernfs_node *kn)
259 struct rb_node **node = &kn->parent->dir.children.rb_node;
260 struct rb_node *parent = NULL;
262 while (*node) {
263 struct kernfs_node *pos;
264 int result;
266 pos = rb_to_kn(*node);
267 parent = *node;
268 result = kernfs_sd_compare(kn, pos);
269 if (result < 0)
270 node = &pos->rb.rb_left;
271 else if (result > 0)
272 node = &pos->rb.rb_right;
273 else
274 return -EEXIST;
277 /* add new node and rebalance the tree */
278 rb_link_node(&kn->rb, parent, node);
279 rb_insert_color(&kn->rb, &kn->parent->dir.children);
281 /* successfully added, account subdir number */
282 if (kernfs_type(kn) == KERNFS_DIR)
283 kn->parent->dir.subdirs++;
285 return 0;
289 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
290 * @kn: kernfs_node of interest
292 * Try to unlink @kn from its sibling rbtree which starts from
293 * kn->parent->dir.children. Returns %true if @kn was actually
294 * removed, %false if @kn wasn't on the rbtree.
296 * Locking:
297 * mutex_lock(kernfs_mutex)
299 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
301 if (RB_EMPTY_NODE(&kn->rb))
302 return false;
304 if (kernfs_type(kn) == KERNFS_DIR)
305 kn->parent->dir.subdirs--;
307 rb_erase(&kn->rb, &kn->parent->dir.children);
308 RB_CLEAR_NODE(&kn->rb);
309 return true;
313 * kernfs_get_active - get an active reference to kernfs_node
314 * @kn: kernfs_node to get an active reference to
316 * Get an active reference of @kn. This function is noop if @kn
317 * is NULL.
319 * RETURNS:
320 * Pointer to @kn on success, NULL on failure.
322 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
324 if (unlikely(!kn))
325 return NULL;
327 if (!atomic_inc_unless_negative(&kn->active))
328 return NULL;
330 if (kernfs_lockdep(kn))
331 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 return kn;
336 * kernfs_put_active - put an active reference to kernfs_node
337 * @kn: kernfs_node to put an active reference to
339 * Put an active reference to @kn. This function is noop if @kn
340 * is NULL.
342 void kernfs_put_active(struct kernfs_node *kn)
344 struct kernfs_root *root = kernfs_root(kn);
345 int v;
347 if (unlikely(!kn))
348 return;
350 if (kernfs_lockdep(kn))
351 rwsem_release(&kn->dep_map, 1, _RET_IP_);
352 v = atomic_dec_return(&kn->active);
353 if (likely(v != KN_DEACTIVATED_BIAS))
354 return;
356 wake_up_all(&root->deactivate_waitq);
360 * kernfs_drain - drain kernfs_node
361 * @kn: kernfs_node to drain
363 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
364 * removers may invoke this function concurrently on @kn and all will
365 * return after draining is complete.
367 static void kernfs_drain(struct kernfs_node *kn)
368 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
370 struct kernfs_root *root = kernfs_root(kn);
372 lockdep_assert_held(&kernfs_mutex);
373 WARN_ON_ONCE(kernfs_active(kn));
375 mutex_unlock(&kernfs_mutex);
377 if (kernfs_lockdep(kn)) {
378 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 lock_contended(&kn->dep_map, _RET_IP_);
383 /* but everyone should wait for draining */
384 wait_event(root->deactivate_waitq,
385 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
387 if (kernfs_lockdep(kn)) {
388 lock_acquired(&kn->dep_map, _RET_IP_);
389 rwsem_release(&kn->dep_map, 1, _RET_IP_);
392 kernfs_unmap_bin_file(kn);
394 mutex_lock(&kernfs_mutex);
398 * kernfs_get - get a reference count on a kernfs_node
399 * @kn: the target kernfs_node
401 void kernfs_get(struct kernfs_node *kn)
403 if (kn) {
404 WARN_ON(!atomic_read(&kn->count));
405 atomic_inc(&kn->count);
408 EXPORT_SYMBOL_GPL(kernfs_get);
411 * kernfs_put - put a reference count on a kernfs_node
412 * @kn: the target kernfs_node
414 * Put a reference count of @kn and destroy it if it reached zero.
416 void kernfs_put(struct kernfs_node *kn)
418 struct kernfs_node *parent;
419 struct kernfs_root *root;
421 if (!kn || !atomic_dec_and_test(&kn->count))
422 return;
423 root = kernfs_root(kn);
424 repeat:
426 * Moving/renaming is always done while holding reference.
427 * kn->parent won't change beneath us.
429 parent = kn->parent;
431 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
435 if (kernfs_type(kn) == KERNFS_LINK)
436 kernfs_put(kn->symlink.target_kn);
438 kfree_const(kn->name);
440 if (kn->iattr) {
441 if (kn->iattr->ia_secdata)
442 security_release_secctx(kn->iattr->ia_secdata,
443 kn->iattr->ia_secdata_len);
444 simple_xattrs_free(&kn->iattr->xattrs);
446 kfree(kn->iattr);
447 ida_simple_remove(&root->ino_ida, kn->ino);
448 kmem_cache_free(kernfs_node_cache, kn);
450 kn = parent;
451 if (kn) {
452 if (atomic_dec_and_test(&kn->count))
453 goto repeat;
454 } else {
455 /* just released the root kn, free @root too */
456 ida_destroy(&root->ino_ida);
457 kfree(root);
460 EXPORT_SYMBOL_GPL(kernfs_put);
462 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
464 struct kernfs_node *kn;
466 if (flags & LOOKUP_RCU)
467 return -ECHILD;
469 /* Always perform fresh lookup for negatives */
470 if (d_really_is_negative(dentry))
471 goto out_bad_unlocked;
473 kn = dentry->d_fsdata;
474 mutex_lock(&kernfs_mutex);
476 /* The kernfs node has been deactivated */
477 if (!kernfs_active(kn))
478 goto out_bad;
480 /* The kernfs node has been moved? */
481 if (dentry->d_parent->d_fsdata != kn->parent)
482 goto out_bad;
484 /* The kernfs node has been renamed */
485 if (strcmp(dentry->d_name.name, kn->name) != 0)
486 goto out_bad;
488 /* The kernfs node has been moved to a different namespace */
489 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
490 kernfs_info(dentry->d_sb)->ns != kn->ns)
491 goto out_bad;
493 mutex_unlock(&kernfs_mutex);
494 return 1;
495 out_bad:
496 mutex_unlock(&kernfs_mutex);
497 out_bad_unlocked:
498 return 0;
501 static void kernfs_dop_release(struct dentry *dentry)
503 kernfs_put(dentry->d_fsdata);
506 const struct dentry_operations kernfs_dops = {
507 .d_revalidate = kernfs_dop_revalidate,
508 .d_release = kernfs_dop_release,
512 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513 * @dentry: the dentry in question
515 * Return the kernfs_node associated with @dentry. If @dentry is not a
516 * kernfs one, %NULL is returned.
518 * While the returned kernfs_node will stay accessible as long as @dentry
519 * is accessible, the returned node can be in any state and the caller is
520 * fully responsible for determining what's accessible.
522 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
524 if (dentry->d_sb->s_op == &kernfs_sops)
525 return dentry->d_fsdata;
526 return NULL;
529 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 const char *name, umode_t mode,
531 unsigned flags)
533 struct kernfs_node *kn;
534 int ret;
536 name = kstrdup_const(name, GFP_KERNEL);
537 if (!name)
538 return NULL;
540 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
541 if (!kn)
542 goto err_out1;
545 * If the ino of the sysfs entry created for a kmem cache gets
546 * allocated from an ida layer, which is accounted to the memcg that
547 * owns the cache, the memcg will get pinned forever. So do not account
548 * ino ida allocations.
550 ret = ida_simple_get(&root->ino_ida, 1, 0,
551 GFP_KERNEL | __GFP_NOACCOUNT);
552 if (ret < 0)
553 goto err_out2;
554 kn->ino = ret;
556 atomic_set(&kn->count, 1);
557 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
558 RB_CLEAR_NODE(&kn->rb);
560 kn->name = name;
561 kn->mode = mode;
562 kn->flags = flags;
564 return kn;
566 err_out2:
567 kmem_cache_free(kernfs_node_cache, kn);
568 err_out1:
569 kfree_const(name);
570 return NULL;
573 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
574 const char *name, umode_t mode,
575 unsigned flags)
577 struct kernfs_node *kn;
579 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
580 if (kn) {
581 kernfs_get(parent);
582 kn->parent = parent;
584 return kn;
588 * kernfs_add_one - add kernfs_node to parent without warning
589 * @kn: kernfs_node to be added
591 * The caller must already have initialized @kn->parent. This
592 * function increments nlink of the parent's inode if @kn is a
593 * directory and link into the children list of the parent.
595 * RETURNS:
596 * 0 on success, -EEXIST if entry with the given name already
597 * exists.
599 int kernfs_add_one(struct kernfs_node *kn)
601 struct kernfs_node *parent = kn->parent;
602 struct kernfs_iattrs *ps_iattr;
603 bool has_ns;
604 int ret;
606 mutex_lock(&kernfs_mutex);
608 ret = -EINVAL;
609 has_ns = kernfs_ns_enabled(parent);
610 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
611 has_ns ? "required" : "invalid", parent->name, kn->name))
612 goto out_unlock;
614 if (kernfs_type(parent) != KERNFS_DIR)
615 goto out_unlock;
617 ret = -ENOENT;
618 if (parent->flags & KERNFS_EMPTY_DIR)
619 goto out_unlock;
621 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
622 goto out_unlock;
624 kn->hash = kernfs_name_hash(kn->name, kn->ns);
626 ret = kernfs_link_sibling(kn);
627 if (ret)
628 goto out_unlock;
630 /* Update timestamps on the parent */
631 ps_iattr = parent->iattr;
632 if (ps_iattr) {
633 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
634 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
637 mutex_unlock(&kernfs_mutex);
640 * Activate the new node unless CREATE_DEACTIVATED is requested.
641 * If not activated here, the kernfs user is responsible for
642 * activating the node with kernfs_activate(). A node which hasn't
643 * been activated is not visible to userland and its removal won't
644 * trigger deactivation.
646 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
647 kernfs_activate(kn);
648 return 0;
650 out_unlock:
651 mutex_unlock(&kernfs_mutex);
652 return ret;
656 * kernfs_find_ns - find kernfs_node with the given name
657 * @parent: kernfs_node to search under
658 * @name: name to look for
659 * @ns: the namespace tag to use
661 * Look for kernfs_node with name @name under @parent. Returns pointer to
662 * the found kernfs_node on success, %NULL on failure.
664 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
665 const unsigned char *name,
666 const void *ns)
668 struct rb_node *node = parent->dir.children.rb_node;
669 bool has_ns = kernfs_ns_enabled(parent);
670 unsigned int hash;
672 lockdep_assert_held(&kernfs_mutex);
674 if (has_ns != (bool)ns) {
675 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
676 has_ns ? "required" : "invalid", parent->name, name);
677 return NULL;
680 hash = kernfs_name_hash(name, ns);
681 while (node) {
682 struct kernfs_node *kn;
683 int result;
685 kn = rb_to_kn(node);
686 result = kernfs_name_compare(hash, name, ns, kn);
687 if (result < 0)
688 node = node->rb_left;
689 else if (result > 0)
690 node = node->rb_right;
691 else
692 return kn;
694 return NULL;
698 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
699 * @parent: kernfs_node to search under
700 * @name: name to look for
701 * @ns: the namespace tag to use
703 * Look for kernfs_node with name @name under @parent and get a reference
704 * if found. This function may sleep and returns pointer to the found
705 * kernfs_node on success, %NULL on failure.
707 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
708 const char *name, const void *ns)
710 struct kernfs_node *kn;
712 mutex_lock(&kernfs_mutex);
713 kn = kernfs_find_ns(parent, name, ns);
714 kernfs_get(kn);
715 mutex_unlock(&kernfs_mutex);
717 return kn;
719 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
722 * kernfs_create_root - create a new kernfs hierarchy
723 * @scops: optional syscall operations for the hierarchy
724 * @flags: KERNFS_ROOT_* flags
725 * @priv: opaque data associated with the new directory
727 * Returns the root of the new hierarchy on success, ERR_PTR() value on
728 * failure.
730 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
731 unsigned int flags, void *priv)
733 struct kernfs_root *root;
734 struct kernfs_node *kn;
736 root = kzalloc(sizeof(*root), GFP_KERNEL);
737 if (!root)
738 return ERR_PTR(-ENOMEM);
740 ida_init(&root->ino_ida);
741 INIT_LIST_HEAD(&root->supers);
743 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
744 KERNFS_DIR);
745 if (!kn) {
746 ida_destroy(&root->ino_ida);
747 kfree(root);
748 return ERR_PTR(-ENOMEM);
751 kn->priv = priv;
752 kn->dir.root = root;
754 root->syscall_ops = scops;
755 root->flags = flags;
756 root->kn = kn;
757 init_waitqueue_head(&root->deactivate_waitq);
759 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
760 kernfs_activate(kn);
762 return root;
766 * kernfs_destroy_root - destroy a kernfs hierarchy
767 * @root: root of the hierarchy to destroy
769 * Destroy the hierarchy anchored at @root by removing all existing
770 * directories and destroying @root.
772 void kernfs_destroy_root(struct kernfs_root *root)
774 kernfs_remove(root->kn); /* will also free @root */
778 * kernfs_create_dir_ns - create a directory
779 * @parent: parent in which to create a new directory
780 * @name: name of the new directory
781 * @mode: mode of the new directory
782 * @priv: opaque data associated with the new directory
783 * @ns: optional namespace tag of the directory
785 * Returns the created node on success, ERR_PTR() value on failure.
787 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
788 const char *name, umode_t mode,
789 void *priv, const void *ns)
791 struct kernfs_node *kn;
792 int rc;
794 /* allocate */
795 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
796 if (!kn)
797 return ERR_PTR(-ENOMEM);
799 kn->dir.root = parent->dir.root;
800 kn->ns = ns;
801 kn->priv = priv;
803 /* link in */
804 rc = kernfs_add_one(kn);
805 if (!rc)
806 return kn;
808 kernfs_put(kn);
809 return ERR_PTR(rc);
813 * kernfs_create_empty_dir - create an always empty directory
814 * @parent: parent in which to create a new directory
815 * @name: name of the new directory
817 * Returns the created node on success, ERR_PTR() value on failure.
819 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
820 const char *name)
822 struct kernfs_node *kn;
823 int rc;
825 /* allocate */
826 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
827 if (!kn)
828 return ERR_PTR(-ENOMEM);
830 kn->flags |= KERNFS_EMPTY_DIR;
831 kn->dir.root = parent->dir.root;
832 kn->ns = NULL;
833 kn->priv = NULL;
835 /* link in */
836 rc = kernfs_add_one(kn);
837 if (!rc)
838 return kn;
840 kernfs_put(kn);
841 return ERR_PTR(rc);
844 static struct dentry *kernfs_iop_lookup(struct inode *dir,
845 struct dentry *dentry,
846 unsigned int flags)
848 struct dentry *ret;
849 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
850 struct kernfs_node *kn;
851 struct inode *inode;
852 const void *ns = NULL;
854 mutex_lock(&kernfs_mutex);
856 if (kernfs_ns_enabled(parent))
857 ns = kernfs_info(dir->i_sb)->ns;
859 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
861 /* no such entry */
862 if (!kn || !kernfs_active(kn)) {
863 ret = NULL;
864 goto out_unlock;
866 kernfs_get(kn);
867 dentry->d_fsdata = kn;
869 /* attach dentry and inode */
870 inode = kernfs_get_inode(dir->i_sb, kn);
871 if (!inode) {
872 ret = ERR_PTR(-ENOMEM);
873 goto out_unlock;
876 /* instantiate and hash dentry */
877 ret = d_splice_alias(inode, dentry);
878 out_unlock:
879 mutex_unlock(&kernfs_mutex);
880 return ret;
883 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
884 umode_t mode)
886 struct kernfs_node *parent = dir->i_private;
887 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
888 int ret;
890 if (!scops || !scops->mkdir)
891 return -EPERM;
893 if (!kernfs_get_active(parent))
894 return -ENODEV;
896 ret = scops->mkdir(parent, dentry->d_name.name, mode);
898 kernfs_put_active(parent);
899 return ret;
902 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
904 struct kernfs_node *kn = dentry->d_fsdata;
905 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
906 int ret;
908 if (!scops || !scops->rmdir)
909 return -EPERM;
911 if (!kernfs_get_active(kn))
912 return -ENODEV;
914 ret = scops->rmdir(kn);
916 kernfs_put_active(kn);
917 return ret;
920 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
921 struct inode *new_dir, struct dentry *new_dentry)
923 struct kernfs_node *kn = old_dentry->d_fsdata;
924 struct kernfs_node *new_parent = new_dir->i_private;
925 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
926 int ret;
928 if (!scops || !scops->rename)
929 return -EPERM;
931 if (!kernfs_get_active(kn))
932 return -ENODEV;
934 if (!kernfs_get_active(new_parent)) {
935 kernfs_put_active(kn);
936 return -ENODEV;
939 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
941 kernfs_put_active(new_parent);
942 kernfs_put_active(kn);
943 return ret;
946 const struct inode_operations kernfs_dir_iops = {
947 .lookup = kernfs_iop_lookup,
948 .permission = kernfs_iop_permission,
949 .setattr = kernfs_iop_setattr,
950 .getattr = kernfs_iop_getattr,
951 .setxattr = kernfs_iop_setxattr,
952 .removexattr = kernfs_iop_removexattr,
953 .getxattr = kernfs_iop_getxattr,
954 .listxattr = kernfs_iop_listxattr,
956 .mkdir = kernfs_iop_mkdir,
957 .rmdir = kernfs_iop_rmdir,
958 .rename = kernfs_iop_rename,
961 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
963 struct kernfs_node *last;
965 while (true) {
966 struct rb_node *rbn;
968 last = pos;
970 if (kernfs_type(pos) != KERNFS_DIR)
971 break;
973 rbn = rb_first(&pos->dir.children);
974 if (!rbn)
975 break;
977 pos = rb_to_kn(rbn);
980 return last;
984 * kernfs_next_descendant_post - find the next descendant for post-order walk
985 * @pos: the current position (%NULL to initiate traversal)
986 * @root: kernfs_node whose descendants to walk
988 * Find the next descendant to visit for post-order traversal of @root's
989 * descendants. @root is included in the iteration and the last node to be
990 * visited.
992 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
993 struct kernfs_node *root)
995 struct rb_node *rbn;
997 lockdep_assert_held(&kernfs_mutex);
999 /* if first iteration, visit leftmost descendant which may be root */
1000 if (!pos)
1001 return kernfs_leftmost_descendant(root);
1003 /* if we visited @root, we're done */
1004 if (pos == root)
1005 return NULL;
1007 /* if there's an unvisited sibling, visit its leftmost descendant */
1008 rbn = rb_next(&pos->rb);
1009 if (rbn)
1010 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1012 /* no sibling left, visit parent */
1013 return pos->parent;
1017 * kernfs_activate - activate a node which started deactivated
1018 * @kn: kernfs_node whose subtree is to be activated
1020 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1021 * needs to be explicitly activated. A node which hasn't been activated
1022 * isn't visible to userland and deactivation is skipped during its
1023 * removal. This is useful to construct atomic init sequences where
1024 * creation of multiple nodes should either succeed or fail atomically.
1026 * The caller is responsible for ensuring that this function is not called
1027 * after kernfs_remove*() is invoked on @kn.
1029 void kernfs_activate(struct kernfs_node *kn)
1031 struct kernfs_node *pos;
1033 mutex_lock(&kernfs_mutex);
1035 pos = NULL;
1036 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1037 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1038 continue;
1040 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1041 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1043 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1044 pos->flags |= KERNFS_ACTIVATED;
1047 mutex_unlock(&kernfs_mutex);
1050 static void __kernfs_remove(struct kernfs_node *kn)
1052 struct kernfs_node *pos;
1054 lockdep_assert_held(&kernfs_mutex);
1057 * Short-circuit if non-root @kn has already finished removal.
1058 * This is for kernfs_remove_self() which plays with active ref
1059 * after removal.
1061 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1062 return;
1064 pr_debug("kernfs %s: removing\n", kn->name);
1066 /* prevent any new usage under @kn by deactivating all nodes */
1067 pos = NULL;
1068 while ((pos = kernfs_next_descendant_post(pos, kn)))
1069 if (kernfs_active(pos))
1070 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1072 /* deactivate and unlink the subtree node-by-node */
1073 do {
1074 pos = kernfs_leftmost_descendant(kn);
1077 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1078 * base ref could have been put by someone else by the time
1079 * the function returns. Make sure it doesn't go away
1080 * underneath us.
1082 kernfs_get(pos);
1085 * Drain iff @kn was activated. This avoids draining and
1086 * its lockdep annotations for nodes which have never been
1087 * activated and allows embedding kernfs_remove() in create
1088 * error paths without worrying about draining.
1090 if (kn->flags & KERNFS_ACTIVATED)
1091 kernfs_drain(pos);
1092 else
1093 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1096 * kernfs_unlink_sibling() succeeds once per node. Use it
1097 * to decide who's responsible for cleanups.
1099 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1100 struct kernfs_iattrs *ps_iattr =
1101 pos->parent ? pos->parent->iattr : NULL;
1103 /* update timestamps on the parent */
1104 if (ps_iattr) {
1105 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1106 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1109 kernfs_put(pos);
1112 kernfs_put(pos);
1113 } while (pos != kn);
1117 * kernfs_remove - remove a kernfs_node recursively
1118 * @kn: the kernfs_node to remove
1120 * Remove @kn along with all its subdirectories and files.
1122 void kernfs_remove(struct kernfs_node *kn)
1124 mutex_lock(&kernfs_mutex);
1125 __kernfs_remove(kn);
1126 mutex_unlock(&kernfs_mutex);
1130 * kernfs_break_active_protection - break out of active protection
1131 * @kn: the self kernfs_node
1133 * The caller must be running off of a kernfs operation which is invoked
1134 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1135 * this function must also be matched with an invocation of
1136 * kernfs_unbreak_active_protection().
1138 * This function releases the active reference of @kn the caller is
1139 * holding. Once this function is called, @kn may be removed at any point
1140 * and the caller is solely responsible for ensuring that the objects it
1141 * dereferences are accessible.
1143 void kernfs_break_active_protection(struct kernfs_node *kn)
1146 * Take out ourself out of the active ref dependency chain. If
1147 * we're called without an active ref, lockdep will complain.
1149 kernfs_put_active(kn);
1153 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1154 * @kn: the self kernfs_node
1156 * If kernfs_break_active_protection() was called, this function must be
1157 * invoked before finishing the kernfs operation. Note that while this
1158 * function restores the active reference, it doesn't and can't actually
1159 * restore the active protection - @kn may already or be in the process of
1160 * being removed. Once kernfs_break_active_protection() is invoked, that
1161 * protection is irreversibly gone for the kernfs operation instance.
1163 * While this function may be called at any point after
1164 * kernfs_break_active_protection() is invoked, its most useful location
1165 * would be right before the enclosing kernfs operation returns.
1167 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1170 * @kn->active could be in any state; however, the increment we do
1171 * here will be undone as soon as the enclosing kernfs operation
1172 * finishes and this temporary bump can't break anything. If @kn
1173 * is alive, nothing changes. If @kn is being deactivated, the
1174 * soon-to-follow put will either finish deactivation or restore
1175 * deactivated state. If @kn is already removed, the temporary
1176 * bump is guaranteed to be gone before @kn is released.
1178 atomic_inc(&kn->active);
1179 if (kernfs_lockdep(kn))
1180 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1184 * kernfs_remove_self - remove a kernfs_node from its own method
1185 * @kn: the self kernfs_node to remove
1187 * The caller must be running off of a kernfs operation which is invoked
1188 * with an active reference - e.g. one of kernfs_ops. This can be used to
1189 * implement a file operation which deletes itself.
1191 * For example, the "delete" file for a sysfs device directory can be
1192 * implemented by invoking kernfs_remove_self() on the "delete" file
1193 * itself. This function breaks the circular dependency of trying to
1194 * deactivate self while holding an active ref itself. It isn't necessary
1195 * to modify the usual removal path to use kernfs_remove_self(). The
1196 * "delete" implementation can simply invoke kernfs_remove_self() on self
1197 * before proceeding with the usual removal path. kernfs will ignore later
1198 * kernfs_remove() on self.
1200 * kernfs_remove_self() can be called multiple times concurrently on the
1201 * same kernfs_node. Only the first one actually performs removal and
1202 * returns %true. All others will wait until the kernfs operation which
1203 * won self-removal finishes and return %false. Note that the losers wait
1204 * for the completion of not only the winning kernfs_remove_self() but also
1205 * the whole kernfs_ops which won the arbitration. This can be used to
1206 * guarantee, for example, all concurrent writes to a "delete" file to
1207 * finish only after the whole operation is complete.
1209 bool kernfs_remove_self(struct kernfs_node *kn)
1211 bool ret;
1213 mutex_lock(&kernfs_mutex);
1214 kernfs_break_active_protection(kn);
1217 * SUICIDAL is used to arbitrate among competing invocations. Only
1218 * the first one will actually perform removal. When the removal
1219 * is complete, SUICIDED is set and the active ref is restored
1220 * while holding kernfs_mutex. The ones which lost arbitration
1221 * waits for SUICDED && drained which can happen only after the
1222 * enclosing kernfs operation which executed the winning instance
1223 * of kernfs_remove_self() finished.
1225 if (!(kn->flags & KERNFS_SUICIDAL)) {
1226 kn->flags |= KERNFS_SUICIDAL;
1227 __kernfs_remove(kn);
1228 kn->flags |= KERNFS_SUICIDED;
1229 ret = true;
1230 } else {
1231 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1232 DEFINE_WAIT(wait);
1234 while (true) {
1235 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1237 if ((kn->flags & KERNFS_SUICIDED) &&
1238 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1239 break;
1241 mutex_unlock(&kernfs_mutex);
1242 schedule();
1243 mutex_lock(&kernfs_mutex);
1245 finish_wait(waitq, &wait);
1246 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1247 ret = false;
1251 * This must be done while holding kernfs_mutex; otherwise, waiting
1252 * for SUICIDED && deactivated could finish prematurely.
1254 kernfs_unbreak_active_protection(kn);
1256 mutex_unlock(&kernfs_mutex);
1257 return ret;
1261 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1262 * @parent: parent of the target
1263 * @name: name of the kernfs_node to remove
1264 * @ns: namespace tag of the kernfs_node to remove
1266 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1267 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1269 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1270 const void *ns)
1272 struct kernfs_node *kn;
1274 if (!parent) {
1275 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1276 name);
1277 return -ENOENT;
1280 mutex_lock(&kernfs_mutex);
1282 kn = kernfs_find_ns(parent, name, ns);
1283 if (kn)
1284 __kernfs_remove(kn);
1286 mutex_unlock(&kernfs_mutex);
1288 if (kn)
1289 return 0;
1290 else
1291 return -ENOENT;
1295 * kernfs_rename_ns - move and rename a kernfs_node
1296 * @kn: target node
1297 * @new_parent: new parent to put @sd under
1298 * @new_name: new name
1299 * @new_ns: new namespace tag
1301 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1302 const char *new_name, const void *new_ns)
1304 struct kernfs_node *old_parent;
1305 const char *old_name = NULL;
1306 int error;
1308 /* can't move or rename root */
1309 if (!kn->parent)
1310 return -EINVAL;
1312 mutex_lock(&kernfs_mutex);
1314 error = -ENOENT;
1315 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1316 (new_parent->flags & KERNFS_EMPTY_DIR))
1317 goto out;
1319 error = 0;
1320 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1321 (strcmp(kn->name, new_name) == 0))
1322 goto out; /* nothing to rename */
1324 error = -EEXIST;
1325 if (kernfs_find_ns(new_parent, new_name, new_ns))
1326 goto out;
1328 /* rename kernfs_node */
1329 if (strcmp(kn->name, new_name) != 0) {
1330 error = -ENOMEM;
1331 new_name = kstrdup_const(new_name, GFP_KERNEL);
1332 if (!new_name)
1333 goto out;
1334 } else {
1335 new_name = NULL;
1339 * Move to the appropriate place in the appropriate directories rbtree.
1341 kernfs_unlink_sibling(kn);
1342 kernfs_get(new_parent);
1344 /* rename_lock protects ->parent and ->name accessors */
1345 spin_lock_irq(&kernfs_rename_lock);
1347 old_parent = kn->parent;
1348 kn->parent = new_parent;
1350 kn->ns = new_ns;
1351 if (new_name) {
1352 old_name = kn->name;
1353 kn->name = new_name;
1356 spin_unlock_irq(&kernfs_rename_lock);
1358 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1359 kernfs_link_sibling(kn);
1361 kernfs_put(old_parent);
1362 kfree_const(old_name);
1364 error = 0;
1365 out:
1366 mutex_unlock(&kernfs_mutex);
1367 return error;
1370 /* Relationship between s_mode and the DT_xxx types */
1371 static inline unsigned char dt_type(struct kernfs_node *kn)
1373 return (kn->mode >> 12) & 15;
1376 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1378 kernfs_put(filp->private_data);
1379 return 0;
1382 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1383 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1385 if (pos) {
1386 int valid = kernfs_active(pos) &&
1387 pos->parent == parent && hash == pos->hash;
1388 kernfs_put(pos);
1389 if (!valid)
1390 pos = NULL;
1392 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1393 struct rb_node *node = parent->dir.children.rb_node;
1394 while (node) {
1395 pos = rb_to_kn(node);
1397 if (hash < pos->hash)
1398 node = node->rb_left;
1399 else if (hash > pos->hash)
1400 node = node->rb_right;
1401 else
1402 break;
1405 /* Skip over entries which are dying/dead or in the wrong namespace */
1406 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1407 struct rb_node *node = rb_next(&pos->rb);
1408 if (!node)
1409 pos = NULL;
1410 else
1411 pos = rb_to_kn(node);
1413 return pos;
1416 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1417 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1419 pos = kernfs_dir_pos(ns, parent, ino, pos);
1420 if (pos) {
1421 do {
1422 struct rb_node *node = rb_next(&pos->rb);
1423 if (!node)
1424 pos = NULL;
1425 else
1426 pos = rb_to_kn(node);
1427 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1429 return pos;
1432 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1434 struct dentry *dentry = file->f_path.dentry;
1435 struct kernfs_node *parent = dentry->d_fsdata;
1436 struct kernfs_node *pos = file->private_data;
1437 const void *ns = NULL;
1439 if (!dir_emit_dots(file, ctx))
1440 return 0;
1441 mutex_lock(&kernfs_mutex);
1443 if (kernfs_ns_enabled(parent))
1444 ns = kernfs_info(dentry->d_sb)->ns;
1446 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1447 pos;
1448 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1449 const char *name = pos->name;
1450 unsigned int type = dt_type(pos);
1451 int len = strlen(name);
1452 ino_t ino = pos->ino;
1454 ctx->pos = pos->hash;
1455 file->private_data = pos;
1456 kernfs_get(pos);
1458 mutex_unlock(&kernfs_mutex);
1459 if (!dir_emit(ctx, name, len, ino, type))
1460 return 0;
1461 mutex_lock(&kernfs_mutex);
1463 mutex_unlock(&kernfs_mutex);
1464 file->private_data = NULL;
1465 ctx->pos = INT_MAX;
1466 return 0;
1469 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1470 int whence)
1472 struct inode *inode = file_inode(file);
1473 loff_t ret;
1475 mutex_lock(&inode->i_mutex);
1476 ret = generic_file_llseek(file, offset, whence);
1477 mutex_unlock(&inode->i_mutex);
1479 return ret;
1482 const struct file_operations kernfs_dir_fops = {
1483 .read = generic_read_dir,
1484 .iterate = kernfs_fop_readdir,
1485 .release = kernfs_dir_fop_release,
1486 .llseek = kernfs_dir_fop_llseek,