4 * Core kernel scheduler code and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
10 #include <linux/nospec.h>
12 #include <linux/kcov.h>
14 #include <asm/switch_to.h>
17 #include "../workqueue_internal.h"
18 #include "../smpboot.h"
22 #define CREATE_TRACE_POINTS
23 #include <trace/events/sched.h>
25 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
27 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
29 * Debugging: various feature bits
31 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
32 * sysctl_sched_features, defined in sched.h, to allow constants propagation
33 * at compile time and compiler optimization based on features default.
35 #define SCHED_FEAT(name, enabled) \
36 (1UL << __SCHED_FEAT_##name) * enabled |
37 const_debug
unsigned int sysctl_sched_features
=
44 * Number of tasks to iterate in a single balance run.
45 * Limited because this is done with IRQs disabled.
47 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
50 * period over which we measure -rt task CPU usage in us.
53 unsigned int sysctl_sched_rt_period
= 1000000;
55 __read_mostly
int scheduler_running
;
58 * part of the period that we allow rt tasks to run in us.
61 int sysctl_sched_rt_runtime
= 950000;
64 * __task_rq_lock - lock the rq @p resides on.
66 struct rq
*__task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
71 lockdep_assert_held(&p
->pi_lock
);
75 raw_spin_lock(&rq
->lock
);
76 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
80 raw_spin_unlock(&rq
->lock
);
82 while (unlikely(task_on_rq_migrating(p
)))
88 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
90 struct rq
*task_rq_lock(struct task_struct
*p
, struct rq_flags
*rf
)
91 __acquires(p
->pi_lock
)
97 raw_spin_lock_irqsave(&p
->pi_lock
, rf
->flags
);
99 raw_spin_lock(&rq
->lock
);
101 * move_queued_task() task_rq_lock()
104 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
105 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
106 * [S] ->cpu = new_cpu [L] task_rq()
110 * If we observe the old CPU in task_rq_lock, the acquire of
111 * the old rq->lock will fully serialize against the stores.
113 * If we observe the new CPU in task_rq_lock, the acquire will
114 * pair with the WMB to ensure we must then also see migrating.
116 if (likely(rq
== task_rq(p
) && !task_on_rq_migrating(p
))) {
120 raw_spin_unlock(&rq
->lock
);
121 raw_spin_unlock_irqrestore(&p
->pi_lock
, rf
->flags
);
123 while (unlikely(task_on_rq_migrating(p
)))
129 * RQ-clock updating methods:
132 static void update_rq_clock_task(struct rq
*rq
, s64 delta
)
135 * In theory, the compile should just see 0 here, and optimize out the call
136 * to sched_rt_avg_update. But I don't trust it...
138 s64 __maybe_unused steal
= 0, irq_delta
= 0;
140 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
141 irq_delta
= irq_time_read(cpu_of(rq
)) - rq
->prev_irq_time
;
144 * Since irq_time is only updated on {soft,}irq_exit, we might run into
145 * this case when a previous update_rq_clock() happened inside a
148 * When this happens, we stop ->clock_task and only update the
149 * prev_irq_time stamp to account for the part that fit, so that a next
150 * update will consume the rest. This ensures ->clock_task is
153 * It does however cause some slight miss-attribution of {soft,}irq
154 * time, a more accurate solution would be to update the irq_time using
155 * the current rq->clock timestamp, except that would require using
158 if (irq_delta
> delta
)
161 rq
->prev_irq_time
+= irq_delta
;
164 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
165 if (static_key_false((¶virt_steal_rq_enabled
))) {
166 steal
= paravirt_steal_clock(cpu_of(rq
));
167 steal
-= rq
->prev_steal_time_rq
;
169 if (unlikely(steal
> delta
))
172 rq
->prev_steal_time_rq
+= steal
;
177 rq
->clock_task
+= delta
;
179 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
180 if ((irq_delta
+ steal
) && sched_feat(NONTASK_CAPACITY
))
181 update_irq_load_avg(rq
, irq_delta
+ steal
);
185 void update_rq_clock(struct rq
*rq
)
189 lockdep_assert_held(&rq
->lock
);
191 if (rq
->clock_update_flags
& RQCF_ACT_SKIP
)
194 #ifdef CONFIG_SCHED_DEBUG
195 if (sched_feat(WARN_DOUBLE_CLOCK
))
196 SCHED_WARN_ON(rq
->clock_update_flags
& RQCF_UPDATED
);
197 rq
->clock_update_flags
|= RQCF_UPDATED
;
200 delta
= sched_clock_cpu(cpu_of(rq
)) - rq
->clock
;
204 update_rq_clock_task(rq
, delta
);
208 #ifdef CONFIG_SCHED_HRTICK
210 * Use HR-timers to deliver accurate preemption points.
213 static void hrtick_clear(struct rq
*rq
)
215 if (hrtimer_active(&rq
->hrtick_timer
))
216 hrtimer_cancel(&rq
->hrtick_timer
);
220 * High-resolution timer tick.
221 * Runs from hardirq context with interrupts disabled.
223 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
225 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
228 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
232 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
235 return HRTIMER_NORESTART
;
240 static void __hrtick_restart(struct rq
*rq
)
242 struct hrtimer
*timer
= &rq
->hrtick_timer
;
244 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
248 * called from hardirq (IPI) context
250 static void __hrtick_start(void *arg
)
256 __hrtick_restart(rq
);
257 rq
->hrtick_csd_pending
= 0;
262 * Called to set the hrtick timer state.
264 * called with rq->lock held and irqs disabled
266 void hrtick_start(struct rq
*rq
, u64 delay
)
268 struct hrtimer
*timer
= &rq
->hrtick_timer
;
273 * Don't schedule slices shorter than 10000ns, that just
274 * doesn't make sense and can cause timer DoS.
276 delta
= max_t(s64
, delay
, 10000LL);
277 time
= ktime_add_ns(timer
->base
->get_time(), delta
);
279 hrtimer_set_expires(timer
, time
);
281 if (rq
== this_rq()) {
282 __hrtick_restart(rq
);
283 } else if (!rq
->hrtick_csd_pending
) {
284 smp_call_function_single_async(cpu_of(rq
), &rq
->hrtick_csd
);
285 rq
->hrtick_csd_pending
= 1;
291 * Called to set the hrtick timer state.
293 * called with rq->lock held and irqs disabled
295 void hrtick_start(struct rq
*rq
, u64 delay
)
298 * Don't schedule slices shorter than 10000ns, that just
299 * doesn't make sense. Rely on vruntime for fairness.
301 delay
= max_t(u64
, delay
, 10000LL);
302 hrtimer_start(&rq
->hrtick_timer
, ns_to_ktime(delay
),
303 HRTIMER_MODE_REL_PINNED
);
305 #endif /* CONFIG_SMP */
307 static void hrtick_rq_init(struct rq
*rq
)
310 rq
->hrtick_csd_pending
= 0;
312 rq
->hrtick_csd
.flags
= 0;
313 rq
->hrtick_csd
.func
= __hrtick_start
;
314 rq
->hrtick_csd
.info
= rq
;
317 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
318 rq
->hrtick_timer
.function
= hrtick
;
320 #else /* CONFIG_SCHED_HRTICK */
321 static inline void hrtick_clear(struct rq
*rq
)
325 static inline void hrtick_rq_init(struct rq
*rq
)
328 #endif /* CONFIG_SCHED_HRTICK */
331 * cmpxchg based fetch_or, macro so it works for different integer types
333 #define fetch_or(ptr, mask) \
335 typeof(ptr) _ptr = (ptr); \
336 typeof(mask) _mask = (mask); \
337 typeof(*_ptr) _old, _val = *_ptr; \
340 _old = cmpxchg(_ptr, _val, _val | _mask); \
348 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
350 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
351 * this avoids any races wrt polling state changes and thereby avoids
354 static bool set_nr_and_not_polling(struct task_struct
*p
)
356 struct thread_info
*ti
= task_thread_info(p
);
357 return !(fetch_or(&ti
->flags
, _TIF_NEED_RESCHED
) & _TIF_POLLING_NRFLAG
);
361 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
363 * If this returns true, then the idle task promises to call
364 * sched_ttwu_pending() and reschedule soon.
366 static bool set_nr_if_polling(struct task_struct
*p
)
368 struct thread_info
*ti
= task_thread_info(p
);
369 typeof(ti
->flags
) old
, val
= READ_ONCE(ti
->flags
);
372 if (!(val
& _TIF_POLLING_NRFLAG
))
374 if (val
& _TIF_NEED_RESCHED
)
376 old
= cmpxchg(&ti
->flags
, val
, val
| _TIF_NEED_RESCHED
);
385 static bool set_nr_and_not_polling(struct task_struct
*p
)
387 set_tsk_need_resched(p
);
392 static bool set_nr_if_polling(struct task_struct
*p
)
399 void wake_q_add(struct wake_q_head
*head
, struct task_struct
*task
)
401 struct wake_q_node
*node
= &task
->wake_q
;
404 * Atomically grab the task, if ->wake_q is !nil already it means
405 * its already queued (either by us or someone else) and will get the
406 * wakeup due to that.
408 * This cmpxchg() executes a full barrier, which pairs with the full
409 * barrier executed by the wakeup in wake_up_q().
411 if (cmpxchg(&node
->next
, NULL
, WAKE_Q_TAIL
))
414 get_task_struct(task
);
417 * The head is context local, there can be no concurrency.
420 head
->lastp
= &node
->next
;
423 void wake_up_q(struct wake_q_head
*head
)
425 struct wake_q_node
*node
= head
->first
;
427 while (node
!= WAKE_Q_TAIL
) {
428 struct task_struct
*task
;
430 task
= container_of(node
, struct task_struct
, wake_q
);
432 /* Task can safely be re-inserted now: */
434 task
->wake_q
.next
= NULL
;
437 * wake_up_process() executes a full barrier, which pairs with
438 * the queueing in wake_q_add() so as not to miss wakeups.
440 wake_up_process(task
);
441 put_task_struct(task
);
446 * resched_curr - mark rq's current task 'to be rescheduled now'.
448 * On UP this means the setting of the need_resched flag, on SMP it
449 * might also involve a cross-CPU call to trigger the scheduler on
452 void resched_curr(struct rq
*rq
)
454 struct task_struct
*curr
= rq
->curr
;
457 lockdep_assert_held(&rq
->lock
);
459 if (test_tsk_need_resched(curr
))
464 if (cpu
== smp_processor_id()) {
465 set_tsk_need_resched(curr
);
466 set_preempt_need_resched();
470 if (set_nr_and_not_polling(curr
))
471 smp_send_reschedule(cpu
);
473 trace_sched_wake_idle_without_ipi(cpu
);
476 void resched_cpu(int cpu
)
478 struct rq
*rq
= cpu_rq(cpu
);
481 raw_spin_lock_irqsave(&rq
->lock
, flags
);
482 if (cpu_online(cpu
) || cpu
== smp_processor_id())
484 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
488 #ifdef CONFIG_NO_HZ_COMMON
490 * In the semi idle case, use the nearest busy CPU for migrating timers
491 * from an idle CPU. This is good for power-savings.
493 * We don't do similar optimization for completely idle system, as
494 * selecting an idle CPU will add more delays to the timers than intended
495 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
497 int get_nohz_timer_target(void)
499 int i
, cpu
= smp_processor_id();
500 struct sched_domain
*sd
;
502 if (!idle_cpu(cpu
) && housekeeping_cpu(cpu
, HK_FLAG_TIMER
))
506 for_each_domain(cpu
, sd
) {
507 for_each_cpu(i
, sched_domain_span(sd
)) {
511 if (!idle_cpu(i
) && housekeeping_cpu(i
, HK_FLAG_TIMER
)) {
518 if (!housekeeping_cpu(cpu
, HK_FLAG_TIMER
))
519 cpu
= housekeeping_any_cpu(HK_FLAG_TIMER
);
526 * When add_timer_on() enqueues a timer into the timer wheel of an
527 * idle CPU then this timer might expire before the next timer event
528 * which is scheduled to wake up that CPU. In case of a completely
529 * idle system the next event might even be infinite time into the
530 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
531 * leaves the inner idle loop so the newly added timer is taken into
532 * account when the CPU goes back to idle and evaluates the timer
533 * wheel for the next timer event.
535 static void wake_up_idle_cpu(int cpu
)
537 struct rq
*rq
= cpu_rq(cpu
);
539 if (cpu
== smp_processor_id())
542 if (set_nr_and_not_polling(rq
->idle
))
543 smp_send_reschedule(cpu
);
545 trace_sched_wake_idle_without_ipi(cpu
);
548 static bool wake_up_full_nohz_cpu(int cpu
)
551 * We just need the target to call irq_exit() and re-evaluate
552 * the next tick. The nohz full kick at least implies that.
553 * If needed we can still optimize that later with an
556 if (cpu_is_offline(cpu
))
557 return true; /* Don't try to wake offline CPUs. */
558 if (tick_nohz_full_cpu(cpu
)) {
559 if (cpu
!= smp_processor_id() ||
560 tick_nohz_tick_stopped())
561 tick_nohz_full_kick_cpu(cpu
);
569 * Wake up the specified CPU. If the CPU is going offline, it is the
570 * caller's responsibility to deal with the lost wakeup, for example,
571 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
573 void wake_up_nohz_cpu(int cpu
)
575 if (!wake_up_full_nohz_cpu(cpu
))
576 wake_up_idle_cpu(cpu
);
579 static inline bool got_nohz_idle_kick(void)
581 int cpu
= smp_processor_id();
583 if (!(atomic_read(nohz_flags(cpu
)) & NOHZ_KICK_MASK
))
586 if (idle_cpu(cpu
) && !need_resched())
590 * We can't run Idle Load Balance on this CPU for this time so we
591 * cancel it and clear NOHZ_BALANCE_KICK
593 atomic_andnot(NOHZ_KICK_MASK
, nohz_flags(cpu
));
597 #else /* CONFIG_NO_HZ_COMMON */
599 static inline bool got_nohz_idle_kick(void)
604 #endif /* CONFIG_NO_HZ_COMMON */
606 #ifdef CONFIG_NO_HZ_FULL
607 bool sched_can_stop_tick(struct rq
*rq
)
611 /* Deadline tasks, even if single, need the tick */
612 if (rq
->dl
.dl_nr_running
)
616 * If there are more than one RR tasks, we need the tick to effect the
617 * actual RR behaviour.
619 if (rq
->rt
.rr_nr_running
) {
620 if (rq
->rt
.rr_nr_running
== 1)
627 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
628 * forced preemption between FIFO tasks.
630 fifo_nr_running
= rq
->rt
.rt_nr_running
- rq
->rt
.rr_nr_running
;
635 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
636 * if there's more than one we need the tick for involuntary
639 if (rq
->nr_running
> 1)
644 #endif /* CONFIG_NO_HZ_FULL */
645 #endif /* CONFIG_SMP */
647 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
653 * Caller must hold rcu_lock or sufficient equivalent.
655 int walk_tg_tree_from(struct task_group
*from
,
656 tg_visitor down
, tg_visitor up
, void *data
)
658 struct task_group
*parent
, *child
;
664 ret
= (*down
)(parent
, data
);
667 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
674 ret
= (*up
)(parent
, data
);
675 if (ret
|| parent
== from
)
679 parent
= parent
->parent
;
686 int tg_nop(struct task_group
*tg
, void *data
)
692 static void set_load_weight(struct task_struct
*p
, bool update_load
)
694 int prio
= p
->static_prio
- MAX_RT_PRIO
;
695 struct load_weight
*load
= &p
->se
.load
;
698 * SCHED_IDLE tasks get minimal weight:
700 if (idle_policy(p
->policy
)) {
701 load
->weight
= scale_load(WEIGHT_IDLEPRIO
);
702 load
->inv_weight
= WMULT_IDLEPRIO
;
703 p
->se
.runnable_weight
= load
->weight
;
708 * SCHED_OTHER tasks have to update their load when changing their
711 if (update_load
&& p
->sched_class
== &fair_sched_class
) {
712 reweight_task(p
, prio
);
714 load
->weight
= scale_load(sched_prio_to_weight
[prio
]);
715 load
->inv_weight
= sched_prio_to_wmult
[prio
];
716 p
->se
.runnable_weight
= load
->weight
;
720 static inline void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
722 if (!(flags
& ENQUEUE_NOCLOCK
))
725 if (!(flags
& ENQUEUE_RESTORE
)) {
726 sched_info_queued(rq
, p
);
727 psi_enqueue(p
, flags
& ENQUEUE_WAKEUP
);
730 p
->sched_class
->enqueue_task(rq
, p
, flags
);
733 static inline void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
735 if (!(flags
& DEQUEUE_NOCLOCK
))
738 if (!(flags
& DEQUEUE_SAVE
)) {
739 sched_info_dequeued(rq
, p
);
740 psi_dequeue(p
, flags
& DEQUEUE_SLEEP
);
743 p
->sched_class
->dequeue_task(rq
, p
, flags
);
746 void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
748 if (task_contributes_to_load(p
))
749 rq
->nr_uninterruptible
--;
751 enqueue_task(rq
, p
, flags
);
754 void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
756 if (task_contributes_to_load(p
))
757 rq
->nr_uninterruptible
++;
759 dequeue_task(rq
, p
, flags
);
763 * __normal_prio - return the priority that is based on the static prio
765 static inline int __normal_prio(struct task_struct
*p
)
767 return p
->static_prio
;
771 * Calculate the expected normal priority: i.e. priority
772 * without taking RT-inheritance into account. Might be
773 * boosted by interactivity modifiers. Changes upon fork,
774 * setprio syscalls, and whenever the interactivity
775 * estimator recalculates.
777 static inline int normal_prio(struct task_struct
*p
)
781 if (task_has_dl_policy(p
))
782 prio
= MAX_DL_PRIO
-1;
783 else if (task_has_rt_policy(p
))
784 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
786 prio
= __normal_prio(p
);
791 * Calculate the current priority, i.e. the priority
792 * taken into account by the scheduler. This value might
793 * be boosted by RT tasks, or might be boosted by
794 * interactivity modifiers. Will be RT if the task got
795 * RT-boosted. If not then it returns p->normal_prio.
797 static int effective_prio(struct task_struct
*p
)
799 p
->normal_prio
= normal_prio(p
);
801 * If we are RT tasks or we were boosted to RT priority,
802 * keep the priority unchanged. Otherwise, update priority
803 * to the normal priority:
805 if (!rt_prio(p
->prio
))
806 return p
->normal_prio
;
811 * task_curr - is this task currently executing on a CPU?
812 * @p: the task in question.
814 * Return: 1 if the task is currently executing. 0 otherwise.
816 inline int task_curr(const struct task_struct
*p
)
818 return cpu_curr(task_cpu(p
)) == p
;
822 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
823 * use the balance_callback list if you want balancing.
825 * this means any call to check_class_changed() must be followed by a call to
826 * balance_callback().
828 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
829 const struct sched_class
*prev_class
,
832 if (prev_class
!= p
->sched_class
) {
833 if (prev_class
->switched_from
)
834 prev_class
->switched_from(rq
, p
);
836 p
->sched_class
->switched_to(rq
, p
);
837 } else if (oldprio
!= p
->prio
|| dl_task(p
))
838 p
->sched_class
->prio_changed(rq
, p
, oldprio
);
841 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
843 const struct sched_class
*class;
845 if (p
->sched_class
== rq
->curr
->sched_class
) {
846 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
848 for_each_class(class) {
849 if (class == rq
->curr
->sched_class
)
851 if (class == p
->sched_class
) {
859 * A queue event has occurred, and we're going to schedule. In
860 * this case, we can save a useless back to back clock update.
862 if (task_on_rq_queued(rq
->curr
) && test_tsk_need_resched(rq
->curr
))
863 rq_clock_skip_update(rq
);
868 static inline bool is_per_cpu_kthread(struct task_struct
*p
)
870 if (!(p
->flags
& PF_KTHREAD
))
873 if (p
->nr_cpus_allowed
!= 1)
880 * Per-CPU kthreads are allowed to run on !actie && online CPUs, see
881 * __set_cpus_allowed_ptr() and select_fallback_rq().
883 static inline bool is_cpu_allowed(struct task_struct
*p
, int cpu
)
885 if (!cpumask_test_cpu(cpu
, &p
->cpus_allowed
))
888 if (is_per_cpu_kthread(p
))
889 return cpu_online(cpu
);
891 return cpu_active(cpu
);
895 * This is how migration works:
897 * 1) we invoke migration_cpu_stop() on the target CPU using
899 * 2) stopper starts to run (implicitly forcing the migrated thread
901 * 3) it checks whether the migrated task is still in the wrong runqueue.
902 * 4) if it's in the wrong runqueue then the migration thread removes
903 * it and puts it into the right queue.
904 * 5) stopper completes and stop_one_cpu() returns and the migration
909 * move_queued_task - move a queued task to new rq.
911 * Returns (locked) new rq. Old rq's lock is released.
913 static struct rq
*move_queued_task(struct rq
*rq
, struct rq_flags
*rf
,
914 struct task_struct
*p
, int new_cpu
)
916 lockdep_assert_held(&rq
->lock
);
918 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
919 dequeue_task(rq
, p
, DEQUEUE_NOCLOCK
);
920 set_task_cpu(p
, new_cpu
);
923 rq
= cpu_rq(new_cpu
);
926 BUG_ON(task_cpu(p
) != new_cpu
);
927 enqueue_task(rq
, p
, 0);
928 p
->on_rq
= TASK_ON_RQ_QUEUED
;
929 check_preempt_curr(rq
, p
, 0);
934 struct migration_arg
{
935 struct task_struct
*task
;
940 * Move (not current) task off this CPU, onto the destination CPU. We're doing
941 * this because either it can't run here any more (set_cpus_allowed()
942 * away from this CPU, or CPU going down), or because we're
943 * attempting to rebalance this task on exec (sched_exec).
945 * So we race with normal scheduler movements, but that's OK, as long
946 * as the task is no longer on this CPU.
948 static struct rq
*__migrate_task(struct rq
*rq
, struct rq_flags
*rf
,
949 struct task_struct
*p
, int dest_cpu
)
951 /* Affinity changed (again). */
952 if (!is_cpu_allowed(p
, dest_cpu
))
956 rq
= move_queued_task(rq
, rf
, p
, dest_cpu
);
962 * migration_cpu_stop - this will be executed by a highprio stopper thread
963 * and performs thread migration by bumping thread off CPU then
964 * 'pushing' onto another runqueue.
966 static int migration_cpu_stop(void *data
)
968 struct migration_arg
*arg
= data
;
969 struct task_struct
*p
= arg
->task
;
970 struct rq
*rq
= this_rq();
974 * The original target CPU might have gone down and we might
975 * be on another CPU but it doesn't matter.
979 * We need to explicitly wake pending tasks before running
980 * __migrate_task() such that we will not miss enforcing cpus_allowed
981 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
983 sched_ttwu_pending();
985 raw_spin_lock(&p
->pi_lock
);
988 * If task_rq(p) != rq, it cannot be migrated here, because we're
989 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
990 * we're holding p->pi_lock.
992 if (task_rq(p
) == rq
) {
993 if (task_on_rq_queued(p
))
994 rq
= __migrate_task(rq
, &rf
, p
, arg
->dest_cpu
);
996 p
->wake_cpu
= arg
->dest_cpu
;
999 raw_spin_unlock(&p
->pi_lock
);
1006 * sched_class::set_cpus_allowed must do the below, but is not required to
1007 * actually call this function.
1009 void set_cpus_allowed_common(struct task_struct
*p
, const struct cpumask
*new_mask
)
1011 cpumask_copy(&p
->cpus_allowed
, new_mask
);
1012 p
->nr_cpus_allowed
= cpumask_weight(new_mask
);
1015 void do_set_cpus_allowed(struct task_struct
*p
, const struct cpumask
*new_mask
)
1017 struct rq
*rq
= task_rq(p
);
1018 bool queued
, running
;
1020 lockdep_assert_held(&p
->pi_lock
);
1022 queued
= task_on_rq_queued(p
);
1023 running
= task_current(rq
, p
);
1027 * Because __kthread_bind() calls this on blocked tasks without
1030 lockdep_assert_held(&rq
->lock
);
1031 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
1034 put_prev_task(rq
, p
);
1036 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
1039 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
1041 set_curr_task(rq
, p
);
1045 * Change a given task's CPU affinity. Migrate the thread to a
1046 * proper CPU and schedule it away if the CPU it's executing on
1047 * is removed from the allowed bitmask.
1049 * NOTE: the caller must have a valid reference to the task, the
1050 * task must not exit() & deallocate itself prematurely. The
1051 * call is not atomic; no spinlocks may be held.
1053 static int __set_cpus_allowed_ptr(struct task_struct
*p
,
1054 const struct cpumask
*new_mask
, bool check
)
1056 const struct cpumask
*cpu_valid_mask
= cpu_active_mask
;
1057 unsigned int dest_cpu
;
1062 rq
= task_rq_lock(p
, &rf
);
1063 update_rq_clock(rq
);
1065 if (p
->flags
& PF_KTHREAD
) {
1067 * Kernel threads are allowed on online && !active CPUs
1069 cpu_valid_mask
= cpu_online_mask
;
1073 * Must re-check here, to close a race against __kthread_bind(),
1074 * sched_setaffinity() is not guaranteed to observe the flag.
1076 if (check
&& (p
->flags
& PF_NO_SETAFFINITY
)) {
1081 if (cpumask_equal(&p
->cpus_allowed
, new_mask
))
1084 if (!cpumask_intersects(new_mask
, cpu_valid_mask
)) {
1089 do_set_cpus_allowed(p
, new_mask
);
1091 if (p
->flags
& PF_KTHREAD
) {
1093 * For kernel threads that do indeed end up on online &&
1094 * !active we want to ensure they are strict per-CPU threads.
1096 WARN_ON(cpumask_intersects(new_mask
, cpu_online_mask
) &&
1097 !cpumask_intersects(new_mask
, cpu_active_mask
) &&
1098 p
->nr_cpus_allowed
!= 1);
1101 /* Can the task run on the task's current CPU? If so, we're done */
1102 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
1105 dest_cpu
= cpumask_any_and(cpu_valid_mask
, new_mask
);
1106 if (task_running(rq
, p
) || p
->state
== TASK_WAKING
) {
1107 struct migration_arg arg
= { p
, dest_cpu
};
1108 /* Need help from migration thread: drop lock and wait. */
1109 task_rq_unlock(rq
, p
, &rf
);
1110 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
1111 tlb_migrate_finish(p
->mm
);
1113 } else if (task_on_rq_queued(p
)) {
1115 * OK, since we're going to drop the lock immediately
1116 * afterwards anyway.
1118 rq
= move_queued_task(rq
, &rf
, p
, dest_cpu
);
1121 task_rq_unlock(rq
, p
, &rf
);
1126 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
1128 return __set_cpus_allowed_ptr(p
, new_mask
, false);
1130 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
1132 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
1134 #ifdef CONFIG_SCHED_DEBUG
1136 * We should never call set_task_cpu() on a blocked task,
1137 * ttwu() will sort out the placement.
1139 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
1143 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1144 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1145 * time relying on p->on_rq.
1147 WARN_ON_ONCE(p
->state
== TASK_RUNNING
&&
1148 p
->sched_class
== &fair_sched_class
&&
1149 (p
->on_rq
&& !task_on_rq_migrating(p
)));
1151 #ifdef CONFIG_LOCKDEP
1153 * The caller should hold either p->pi_lock or rq->lock, when changing
1154 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1156 * sched_move_task() holds both and thus holding either pins the cgroup,
1159 * Furthermore, all task_rq users should acquire both locks, see
1162 WARN_ON_ONCE(debug_locks
&& !(lockdep_is_held(&p
->pi_lock
) ||
1163 lockdep_is_held(&task_rq(p
)->lock
)));
1166 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
1168 WARN_ON_ONCE(!cpu_online(new_cpu
));
1171 trace_sched_migrate_task(p
, new_cpu
);
1173 if (task_cpu(p
) != new_cpu
) {
1174 if (p
->sched_class
->migrate_task_rq
)
1175 p
->sched_class
->migrate_task_rq(p
, new_cpu
);
1176 p
->se
.nr_migrations
++;
1178 perf_event_task_migrate(p
);
1181 __set_task_cpu(p
, new_cpu
);
1184 #ifdef CONFIG_NUMA_BALANCING
1185 static void __migrate_swap_task(struct task_struct
*p
, int cpu
)
1187 if (task_on_rq_queued(p
)) {
1188 struct rq
*src_rq
, *dst_rq
;
1189 struct rq_flags srf
, drf
;
1191 src_rq
= task_rq(p
);
1192 dst_rq
= cpu_rq(cpu
);
1194 rq_pin_lock(src_rq
, &srf
);
1195 rq_pin_lock(dst_rq
, &drf
);
1197 p
->on_rq
= TASK_ON_RQ_MIGRATING
;
1198 deactivate_task(src_rq
, p
, 0);
1199 set_task_cpu(p
, cpu
);
1200 activate_task(dst_rq
, p
, 0);
1201 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1202 check_preempt_curr(dst_rq
, p
, 0);
1204 rq_unpin_lock(dst_rq
, &drf
);
1205 rq_unpin_lock(src_rq
, &srf
);
1209 * Task isn't running anymore; make it appear like we migrated
1210 * it before it went to sleep. This means on wakeup we make the
1211 * previous CPU our target instead of where it really is.
1217 struct migration_swap_arg
{
1218 struct task_struct
*src_task
, *dst_task
;
1219 int src_cpu
, dst_cpu
;
1222 static int migrate_swap_stop(void *data
)
1224 struct migration_swap_arg
*arg
= data
;
1225 struct rq
*src_rq
, *dst_rq
;
1228 if (!cpu_active(arg
->src_cpu
) || !cpu_active(arg
->dst_cpu
))
1231 src_rq
= cpu_rq(arg
->src_cpu
);
1232 dst_rq
= cpu_rq(arg
->dst_cpu
);
1234 double_raw_lock(&arg
->src_task
->pi_lock
,
1235 &arg
->dst_task
->pi_lock
);
1236 double_rq_lock(src_rq
, dst_rq
);
1238 if (task_cpu(arg
->dst_task
) != arg
->dst_cpu
)
1241 if (task_cpu(arg
->src_task
) != arg
->src_cpu
)
1244 if (!cpumask_test_cpu(arg
->dst_cpu
, &arg
->src_task
->cpus_allowed
))
1247 if (!cpumask_test_cpu(arg
->src_cpu
, &arg
->dst_task
->cpus_allowed
))
1250 __migrate_swap_task(arg
->src_task
, arg
->dst_cpu
);
1251 __migrate_swap_task(arg
->dst_task
, arg
->src_cpu
);
1256 double_rq_unlock(src_rq
, dst_rq
);
1257 raw_spin_unlock(&arg
->dst_task
->pi_lock
);
1258 raw_spin_unlock(&arg
->src_task
->pi_lock
);
1264 * Cross migrate two tasks
1266 int migrate_swap(struct task_struct
*cur
, struct task_struct
*p
,
1267 int target_cpu
, int curr_cpu
)
1269 struct migration_swap_arg arg
;
1272 arg
= (struct migration_swap_arg
){
1274 .src_cpu
= curr_cpu
,
1276 .dst_cpu
= target_cpu
,
1279 if (arg
.src_cpu
== arg
.dst_cpu
)
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1286 if (!cpu_active(arg
.src_cpu
) || !cpu_active(arg
.dst_cpu
))
1289 if (!cpumask_test_cpu(arg
.dst_cpu
, &arg
.src_task
->cpus_allowed
))
1292 if (!cpumask_test_cpu(arg
.src_cpu
, &arg
.dst_task
->cpus_allowed
))
1295 trace_sched_swap_numa(cur
, arg
.src_cpu
, p
, arg
.dst_cpu
);
1296 ret
= stop_two_cpus(arg
.dst_cpu
, arg
.src_cpu
, migrate_swap_stop
, &arg
);
1301 #endif /* CONFIG_NUMA_BALANCING */
1304 * wait_task_inactive - wait for a thread to unschedule.
1306 * If @match_state is nonzero, it's the @p->state value just checked and
1307 * not expected to change. If it changes, i.e. @p might have woken up,
1308 * then return zero. When we succeed in waiting for @p to be off its CPU,
1309 * we return a positive number (its total switch count). If a second call
1310 * a short while later returns the same number, the caller can be sure that
1311 * @p has remained unscheduled the whole time.
1313 * The caller must ensure that the task *will* unschedule sometime soon,
1314 * else this function might spin for a *long* time. This function can't
1315 * be called with interrupts off, or it may introduce deadlock with
1316 * smp_call_function() if an IPI is sent by the same process we are
1317 * waiting to become inactive.
1319 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
1321 int running
, queued
;
1328 * We do the initial early heuristics without holding
1329 * any task-queue locks at all. We'll only try to get
1330 * the runqueue lock when things look like they will
1336 * If the task is actively running on another CPU
1337 * still, just relax and busy-wait without holding
1340 * NOTE! Since we don't hold any locks, it's not
1341 * even sure that "rq" stays as the right runqueue!
1342 * But we don't care, since "task_running()" will
1343 * return false if the runqueue has changed and p
1344 * is actually now running somewhere else!
1346 while (task_running(rq
, p
)) {
1347 if (match_state
&& unlikely(p
->state
!= match_state
))
1353 * Ok, time to look more closely! We need the rq
1354 * lock now, to be *sure*. If we're wrong, we'll
1355 * just go back and repeat.
1357 rq
= task_rq_lock(p
, &rf
);
1358 trace_sched_wait_task(p
);
1359 running
= task_running(rq
, p
);
1360 queued
= task_on_rq_queued(p
);
1362 if (!match_state
|| p
->state
== match_state
)
1363 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
1364 task_rq_unlock(rq
, p
, &rf
);
1367 * If it changed from the expected state, bail out now.
1369 if (unlikely(!ncsw
))
1373 * Was it really running after all now that we
1374 * checked with the proper locks actually held?
1376 * Oops. Go back and try again..
1378 if (unlikely(running
)) {
1384 * It's not enough that it's not actively running,
1385 * it must be off the runqueue _entirely_, and not
1388 * So if it was still runnable (but just not actively
1389 * running right now), it's preempted, and we should
1390 * yield - it could be a while.
1392 if (unlikely(queued
)) {
1393 ktime_t to
= NSEC_PER_SEC
/ HZ
;
1395 set_current_state(TASK_UNINTERRUPTIBLE
);
1396 schedule_hrtimeout(&to
, HRTIMER_MODE_REL
);
1401 * Ahh, all good. It wasn't running, and it wasn't
1402 * runnable, which means that it will never become
1403 * running in the future either. We're all done!
1412 * kick_process - kick a running thread to enter/exit the kernel
1413 * @p: the to-be-kicked thread
1415 * Cause a process which is running on another CPU to enter
1416 * kernel-mode, without any delay. (to get signals handled.)
1418 * NOTE: this function doesn't have to take the runqueue lock,
1419 * because all it wants to ensure is that the remote task enters
1420 * the kernel. If the IPI races and the task has been migrated
1421 * to another CPU then no harm is done and the purpose has been
1424 void kick_process(struct task_struct
*p
)
1430 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1431 smp_send_reschedule(cpu
);
1434 EXPORT_SYMBOL_GPL(kick_process
);
1437 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
1439 * A few notes on cpu_active vs cpu_online:
1441 * - cpu_active must be a subset of cpu_online
1443 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
1444 * see __set_cpus_allowed_ptr(). At this point the newly online
1445 * CPU isn't yet part of the sched domains, and balancing will not
1448 * - on CPU-down we clear cpu_active() to mask the sched domains and
1449 * avoid the load balancer to place new tasks on the to be removed
1450 * CPU. Existing tasks will remain running there and will be taken
1453 * This means that fallback selection must not select !active CPUs.
1454 * And can assume that any active CPU must be online. Conversely
1455 * select_task_rq() below may allow selection of !active CPUs in order
1456 * to satisfy the above rules.
1458 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
1460 int nid
= cpu_to_node(cpu
);
1461 const struct cpumask
*nodemask
= NULL
;
1462 enum { cpuset
, possible
, fail
} state
= cpuset
;
1466 * If the node that the CPU is on has been offlined, cpu_to_node()
1467 * will return -1. There is no CPU on the node, and we should
1468 * select the CPU on the other node.
1471 nodemask
= cpumask_of_node(nid
);
1473 /* Look for allowed, online CPU in same node. */
1474 for_each_cpu(dest_cpu
, nodemask
) {
1475 if (!cpu_active(dest_cpu
))
1477 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
1483 /* Any allowed, online CPU? */
1484 for_each_cpu(dest_cpu
, &p
->cpus_allowed
) {
1485 if (!is_cpu_allowed(p
, dest_cpu
))
1491 /* No more Mr. Nice Guy. */
1494 if (IS_ENABLED(CONFIG_CPUSETS
)) {
1495 cpuset_cpus_allowed_fallback(p
);
1501 do_set_cpus_allowed(p
, cpu_possible_mask
);
1512 if (state
!= cpuset
) {
1514 * Don't tell them about moving exiting tasks or
1515 * kernel threads (both mm NULL), since they never
1518 if (p
->mm
&& printk_ratelimit()) {
1519 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
1520 task_pid_nr(p
), p
->comm
, cpu
);
1528 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
1531 int select_task_rq(struct task_struct
*p
, int cpu
, int sd_flags
, int wake_flags
)
1533 lockdep_assert_held(&p
->pi_lock
);
1535 if (p
->nr_cpus_allowed
> 1)
1536 cpu
= p
->sched_class
->select_task_rq(p
, cpu
, sd_flags
, wake_flags
);
1538 cpu
= cpumask_any(&p
->cpus_allowed
);
1541 * In order not to call set_task_cpu() on a blocking task we need
1542 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1545 * Since this is common to all placement strategies, this lives here.
1547 * [ this allows ->select_task() to simply return task_cpu(p) and
1548 * not worry about this generic constraint ]
1550 if (unlikely(!is_cpu_allowed(p
, cpu
)))
1551 cpu
= select_fallback_rq(task_cpu(p
), p
);
1556 static void update_avg(u64
*avg
, u64 sample
)
1558 s64 diff
= sample
- *avg
;
1562 void sched_set_stop_task(int cpu
, struct task_struct
*stop
)
1564 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1565 struct task_struct
*old_stop
= cpu_rq(cpu
)->stop
;
1569 * Make it appear like a SCHED_FIFO task, its something
1570 * userspace knows about and won't get confused about.
1572 * Also, it will make PI more or less work without too
1573 * much confusion -- but then, stop work should not
1574 * rely on PI working anyway.
1576 sched_setscheduler_nocheck(stop
, SCHED_FIFO
, ¶m
);
1578 stop
->sched_class
= &stop_sched_class
;
1581 cpu_rq(cpu
)->stop
= stop
;
1585 * Reset it back to a normal scheduling class so that
1586 * it can die in pieces.
1588 old_stop
->sched_class
= &rt_sched_class
;
1594 static inline int __set_cpus_allowed_ptr(struct task_struct
*p
,
1595 const struct cpumask
*new_mask
, bool check
)
1597 return set_cpus_allowed_ptr(p
, new_mask
);
1600 #endif /* CONFIG_SMP */
1603 ttwu_stat(struct task_struct
*p
, int cpu
, int wake_flags
)
1607 if (!schedstat_enabled())
1613 if (cpu
== rq
->cpu
) {
1614 __schedstat_inc(rq
->ttwu_local
);
1615 __schedstat_inc(p
->se
.statistics
.nr_wakeups_local
);
1617 struct sched_domain
*sd
;
1619 __schedstat_inc(p
->se
.statistics
.nr_wakeups_remote
);
1621 for_each_domain(rq
->cpu
, sd
) {
1622 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
1623 __schedstat_inc(sd
->ttwu_wake_remote
);
1630 if (wake_flags
& WF_MIGRATED
)
1631 __schedstat_inc(p
->se
.statistics
.nr_wakeups_migrate
);
1632 #endif /* CONFIG_SMP */
1634 __schedstat_inc(rq
->ttwu_count
);
1635 __schedstat_inc(p
->se
.statistics
.nr_wakeups
);
1637 if (wake_flags
& WF_SYNC
)
1638 __schedstat_inc(p
->se
.statistics
.nr_wakeups_sync
);
1641 static inline void ttwu_activate(struct rq
*rq
, struct task_struct
*p
, int en_flags
)
1643 activate_task(rq
, p
, en_flags
);
1644 p
->on_rq
= TASK_ON_RQ_QUEUED
;
1646 /* If a worker is waking up, notify the workqueue: */
1647 if (p
->flags
& PF_WQ_WORKER
)
1648 wq_worker_waking_up(p
, cpu_of(rq
));
1652 * Mark the task runnable and perform wakeup-preemption.
1654 static void ttwu_do_wakeup(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1655 struct rq_flags
*rf
)
1657 check_preempt_curr(rq
, p
, wake_flags
);
1658 p
->state
= TASK_RUNNING
;
1659 trace_sched_wakeup(p
);
1662 if (p
->sched_class
->task_woken
) {
1664 * Our task @p is fully woken up and running; so its safe to
1665 * drop the rq->lock, hereafter rq is only used for statistics.
1667 rq_unpin_lock(rq
, rf
);
1668 p
->sched_class
->task_woken(rq
, p
);
1669 rq_repin_lock(rq
, rf
);
1672 if (rq
->idle_stamp
) {
1673 u64 delta
= rq_clock(rq
) - rq
->idle_stamp
;
1674 u64 max
= 2*rq
->max_idle_balance_cost
;
1676 update_avg(&rq
->avg_idle
, delta
);
1678 if (rq
->avg_idle
> max
)
1687 ttwu_do_activate(struct rq
*rq
, struct task_struct
*p
, int wake_flags
,
1688 struct rq_flags
*rf
)
1690 int en_flags
= ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
;
1692 lockdep_assert_held(&rq
->lock
);
1695 if (p
->sched_contributes_to_load
)
1696 rq
->nr_uninterruptible
--;
1698 if (wake_flags
& WF_MIGRATED
)
1699 en_flags
|= ENQUEUE_MIGRATED
;
1702 ttwu_activate(rq
, p
, en_flags
);
1703 ttwu_do_wakeup(rq
, p
, wake_flags
, rf
);
1707 * Called in case the task @p isn't fully descheduled from its runqueue,
1708 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1709 * since all we need to do is flip p->state to TASK_RUNNING, since
1710 * the task is still ->on_rq.
1712 static int ttwu_remote(struct task_struct
*p
, int wake_flags
)
1718 rq
= __task_rq_lock(p
, &rf
);
1719 if (task_on_rq_queued(p
)) {
1720 /* check_preempt_curr() may use rq clock */
1721 update_rq_clock(rq
);
1722 ttwu_do_wakeup(rq
, p
, wake_flags
, &rf
);
1725 __task_rq_unlock(rq
, &rf
);
1731 void sched_ttwu_pending(void)
1733 struct rq
*rq
= this_rq();
1734 struct llist_node
*llist
= llist_del_all(&rq
->wake_list
);
1735 struct task_struct
*p
, *t
;
1741 rq_lock_irqsave(rq
, &rf
);
1742 update_rq_clock(rq
);
1744 llist_for_each_entry_safe(p
, t
, llist
, wake_entry
)
1745 ttwu_do_activate(rq
, p
, p
->sched_remote_wakeup
? WF_MIGRATED
: 0, &rf
);
1747 rq_unlock_irqrestore(rq
, &rf
);
1750 void scheduler_ipi(void)
1753 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1754 * TIF_NEED_RESCHED remotely (for the first time) will also send
1757 preempt_fold_need_resched();
1759 if (llist_empty(&this_rq()->wake_list
) && !got_nohz_idle_kick())
1763 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1764 * traditionally all their work was done from the interrupt return
1765 * path. Now that we actually do some work, we need to make sure
1768 * Some archs already do call them, luckily irq_enter/exit nest
1771 * Arguably we should visit all archs and update all handlers,
1772 * however a fair share of IPIs are still resched only so this would
1773 * somewhat pessimize the simple resched case.
1776 sched_ttwu_pending();
1779 * Check if someone kicked us for doing the nohz idle load balance.
1781 if (unlikely(got_nohz_idle_kick())) {
1782 this_rq()->idle_balance
= 1;
1783 raise_softirq_irqoff(SCHED_SOFTIRQ
);
1788 static void ttwu_queue_remote(struct task_struct
*p
, int cpu
, int wake_flags
)
1790 struct rq
*rq
= cpu_rq(cpu
);
1792 p
->sched_remote_wakeup
= !!(wake_flags
& WF_MIGRATED
);
1794 if (llist_add(&p
->wake_entry
, &cpu_rq(cpu
)->wake_list
)) {
1795 if (!set_nr_if_polling(rq
->idle
))
1796 smp_send_reschedule(cpu
);
1798 trace_sched_wake_idle_without_ipi(cpu
);
1802 void wake_up_if_idle(int cpu
)
1804 struct rq
*rq
= cpu_rq(cpu
);
1809 if (!is_idle_task(rcu_dereference(rq
->curr
)))
1812 if (set_nr_if_polling(rq
->idle
)) {
1813 trace_sched_wake_idle_without_ipi(cpu
);
1815 rq_lock_irqsave(rq
, &rf
);
1816 if (is_idle_task(rq
->curr
))
1817 smp_send_reschedule(cpu
);
1818 /* Else CPU is not idle, do nothing here: */
1819 rq_unlock_irqrestore(rq
, &rf
);
1826 bool cpus_share_cache(int this_cpu
, int that_cpu
)
1828 return per_cpu(sd_llc_id
, this_cpu
) == per_cpu(sd_llc_id
, that_cpu
);
1830 #endif /* CONFIG_SMP */
1832 static void ttwu_queue(struct task_struct
*p
, int cpu
, int wake_flags
)
1834 struct rq
*rq
= cpu_rq(cpu
);
1837 #if defined(CONFIG_SMP)
1838 if (sched_feat(TTWU_QUEUE
) && !cpus_share_cache(smp_processor_id(), cpu
)) {
1839 sched_clock_cpu(cpu
); /* Sync clocks across CPUs */
1840 ttwu_queue_remote(p
, cpu
, wake_flags
);
1846 update_rq_clock(rq
);
1847 ttwu_do_activate(rq
, p
, wake_flags
, &rf
);
1852 * Notes on Program-Order guarantees on SMP systems.
1856 * The basic program-order guarantee on SMP systems is that when a task [t]
1857 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
1858 * execution on its new CPU [c1].
1860 * For migration (of runnable tasks) this is provided by the following means:
1862 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1863 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1864 * rq(c1)->lock (if not at the same time, then in that order).
1865 * C) LOCK of the rq(c1)->lock scheduling in task
1867 * Release/acquire chaining guarantees that B happens after A and C after B.
1868 * Note: the CPU doing B need not be c0 or c1
1877 * UNLOCK rq(0)->lock
1879 * LOCK rq(0)->lock // orders against CPU0
1881 * UNLOCK rq(0)->lock
1885 * UNLOCK rq(1)->lock
1887 * LOCK rq(1)->lock // orders against CPU2
1890 * UNLOCK rq(1)->lock
1893 * BLOCKING -- aka. SLEEP + WAKEUP
1895 * For blocking we (obviously) need to provide the same guarantee as for
1896 * migration. However the means are completely different as there is no lock
1897 * chain to provide order. Instead we do:
1899 * 1) smp_store_release(X->on_cpu, 0)
1900 * 2) smp_cond_load_acquire(!X->on_cpu)
1904 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1906 * LOCK rq(0)->lock LOCK X->pi_lock
1909 * smp_store_release(X->on_cpu, 0);
1911 * smp_cond_load_acquire(&X->on_cpu, !VAL);
1917 * X->state = RUNNING
1918 * UNLOCK rq(2)->lock
1920 * LOCK rq(2)->lock // orders against CPU1
1923 * UNLOCK rq(2)->lock
1926 * UNLOCK rq(0)->lock
1929 * However, for wakeups there is a second guarantee we must provide, namely we
1930 * must ensure that CONDITION=1 done by the caller can not be reordered with
1931 * accesses to the task state; see try_to_wake_up() and set_current_state().
1935 * try_to_wake_up - wake up a thread
1936 * @p: the thread to be awakened
1937 * @state: the mask of task states that can be woken
1938 * @wake_flags: wake modifier flags (WF_*)
1940 * If (@state & @p->state) @p->state = TASK_RUNNING.
1942 * If the task was not queued/runnable, also place it back on a runqueue.
1944 * Atomic against schedule() which would dequeue a task, also see
1945 * set_current_state().
1947 * This function executes a full memory barrier before accessing the task
1948 * state; see set_current_state().
1950 * Return: %true if @p->state changes (an actual wakeup was done),
1954 try_to_wake_up(struct task_struct
*p
, unsigned int state
, int wake_flags
)
1956 unsigned long flags
;
1957 int cpu
, success
= 0;
1960 * If we are going to wake up a thread waiting for CONDITION we
1961 * need to ensure that CONDITION=1 done by the caller can not be
1962 * reordered with p->state check below. This pairs with mb() in
1963 * set_current_state() the waiting thread does.
1965 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
1966 smp_mb__after_spinlock();
1967 if (!(p
->state
& state
))
1970 trace_sched_waking(p
);
1972 /* We're going to change ->state: */
1977 * Ensure we load p->on_rq _after_ p->state, otherwise it would
1978 * be possible to, falsely, observe p->on_rq == 0 and get stuck
1979 * in smp_cond_load_acquire() below.
1981 * sched_ttwu_pending() try_to_wake_up()
1982 * STORE p->on_rq = 1 LOAD p->state
1985 * __schedule() (switch to task 'p')
1986 * LOCK rq->lock smp_rmb();
1987 * smp_mb__after_spinlock();
1991 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
1993 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
1994 * __schedule(). See the comment for smp_mb__after_spinlock().
1997 if (p
->on_rq
&& ttwu_remote(p
, wake_flags
))
2002 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
2003 * possible to, falsely, observe p->on_cpu == 0.
2005 * One must be running (->on_cpu == 1) in order to remove oneself
2006 * from the runqueue.
2008 * __schedule() (switch to task 'p') try_to_wake_up()
2009 * STORE p->on_cpu = 1 LOAD p->on_rq
2012 * __schedule() (put 'p' to sleep)
2013 * LOCK rq->lock smp_rmb();
2014 * smp_mb__after_spinlock();
2015 * STORE p->on_rq = 0 LOAD p->on_cpu
2017 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
2018 * __schedule(). See the comment for smp_mb__after_spinlock().
2023 * If the owning (remote) CPU is still in the middle of schedule() with
2024 * this task as prev, wait until its done referencing the task.
2026 * Pairs with the smp_store_release() in finish_task().
2028 * This ensures that tasks getting woken will be fully ordered against
2029 * their previous state and preserve Program Order.
2031 smp_cond_load_acquire(&p
->on_cpu
, !VAL
);
2033 p
->sched_contributes_to_load
= !!task_contributes_to_load(p
);
2034 p
->state
= TASK_WAKING
;
2037 delayacct_blkio_end(p
);
2038 atomic_dec(&task_rq(p
)->nr_iowait
);
2041 cpu
= select_task_rq(p
, p
->wake_cpu
, SD_BALANCE_WAKE
, wake_flags
);
2042 if (task_cpu(p
) != cpu
) {
2043 wake_flags
|= WF_MIGRATED
;
2044 psi_ttwu_dequeue(p
);
2045 set_task_cpu(p
, cpu
);
2048 #else /* CONFIG_SMP */
2051 delayacct_blkio_end(p
);
2052 atomic_dec(&task_rq(p
)->nr_iowait
);
2055 #endif /* CONFIG_SMP */
2057 ttwu_queue(p
, cpu
, wake_flags
);
2059 ttwu_stat(p
, cpu
, wake_flags
);
2061 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2067 * try_to_wake_up_local - try to wake up a local task with rq lock held
2068 * @p: the thread to be awakened
2069 * @rf: request-queue flags for pinning
2071 * Put @p on the run-queue if it's not already there. The caller must
2072 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2075 static void try_to_wake_up_local(struct task_struct
*p
, struct rq_flags
*rf
)
2077 struct rq
*rq
= task_rq(p
);
2079 if (WARN_ON_ONCE(rq
!= this_rq()) ||
2080 WARN_ON_ONCE(p
== current
))
2083 lockdep_assert_held(&rq
->lock
);
2085 if (!raw_spin_trylock(&p
->pi_lock
)) {
2087 * This is OK, because current is on_cpu, which avoids it being
2088 * picked for load-balance and preemption/IRQs are still
2089 * disabled avoiding further scheduler activity on it and we've
2090 * not yet picked a replacement task.
2093 raw_spin_lock(&p
->pi_lock
);
2097 if (!(p
->state
& TASK_NORMAL
))
2100 trace_sched_waking(p
);
2102 if (!task_on_rq_queued(p
)) {
2104 delayacct_blkio_end(p
);
2105 atomic_dec(&rq
->nr_iowait
);
2107 ttwu_activate(rq
, p
, ENQUEUE_WAKEUP
| ENQUEUE_NOCLOCK
);
2110 ttwu_do_wakeup(rq
, p
, 0, rf
);
2111 ttwu_stat(p
, smp_processor_id(), 0);
2113 raw_spin_unlock(&p
->pi_lock
);
2117 * wake_up_process - Wake up a specific process
2118 * @p: The process to be woken up.
2120 * Attempt to wake up the nominated process and move it to the set of runnable
2123 * Return: 1 if the process was woken up, 0 if it was already running.
2125 * This function executes a full memory barrier before accessing the task state.
2127 int wake_up_process(struct task_struct
*p
)
2129 return try_to_wake_up(p
, TASK_NORMAL
, 0);
2131 EXPORT_SYMBOL(wake_up_process
);
2133 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2135 return try_to_wake_up(p
, state
, 0);
2139 * Perform scheduler related setup for a newly forked process p.
2140 * p is forked by current.
2142 * __sched_fork() is basic setup used by init_idle() too:
2144 static void __sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2149 p
->se
.exec_start
= 0;
2150 p
->se
.sum_exec_runtime
= 0;
2151 p
->se
.prev_sum_exec_runtime
= 0;
2152 p
->se
.nr_migrations
= 0;
2154 INIT_LIST_HEAD(&p
->se
.group_node
);
2156 #ifdef CONFIG_FAIR_GROUP_SCHED
2157 p
->se
.cfs_rq
= NULL
;
2160 #ifdef CONFIG_SCHEDSTATS
2161 /* Even if schedstat is disabled, there should not be garbage */
2162 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2165 RB_CLEAR_NODE(&p
->dl
.rb_node
);
2166 init_dl_task_timer(&p
->dl
);
2167 init_dl_inactive_task_timer(&p
->dl
);
2168 __dl_clear_params(p
);
2170 INIT_LIST_HEAD(&p
->rt
.run_list
);
2172 p
->rt
.time_slice
= sched_rr_timeslice
;
2176 #ifdef CONFIG_PREEMPT_NOTIFIERS
2177 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2180 init_numa_balancing(clone_flags
, p
);
2183 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing
);
2185 #ifdef CONFIG_NUMA_BALANCING
2187 void set_numabalancing_state(bool enabled
)
2190 static_branch_enable(&sched_numa_balancing
);
2192 static_branch_disable(&sched_numa_balancing
);
2195 #ifdef CONFIG_PROC_SYSCTL
2196 int sysctl_numa_balancing(struct ctl_table
*table
, int write
,
2197 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2201 int state
= static_branch_likely(&sched_numa_balancing
);
2203 if (write
&& !capable(CAP_SYS_ADMIN
))
2208 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2212 set_numabalancing_state(state
);
2218 #ifdef CONFIG_SCHEDSTATS
2220 DEFINE_STATIC_KEY_FALSE(sched_schedstats
);
2221 static bool __initdata __sched_schedstats
= false;
2223 static void set_schedstats(bool enabled
)
2226 static_branch_enable(&sched_schedstats
);
2228 static_branch_disable(&sched_schedstats
);
2231 void force_schedstat_enabled(void)
2233 if (!schedstat_enabled()) {
2234 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2235 static_branch_enable(&sched_schedstats
);
2239 static int __init
setup_schedstats(char *str
)
2246 * This code is called before jump labels have been set up, so we can't
2247 * change the static branch directly just yet. Instead set a temporary
2248 * variable so init_schedstats() can do it later.
2250 if (!strcmp(str
, "enable")) {
2251 __sched_schedstats
= true;
2253 } else if (!strcmp(str
, "disable")) {
2254 __sched_schedstats
= false;
2259 pr_warn("Unable to parse schedstats=\n");
2263 __setup("schedstats=", setup_schedstats
);
2265 static void __init
init_schedstats(void)
2267 set_schedstats(__sched_schedstats
);
2270 #ifdef CONFIG_PROC_SYSCTL
2271 int sysctl_schedstats(struct ctl_table
*table
, int write
,
2272 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2276 int state
= static_branch_likely(&sched_schedstats
);
2278 if (write
&& !capable(CAP_SYS_ADMIN
))
2283 err
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2287 set_schedstats(state
);
2290 #endif /* CONFIG_PROC_SYSCTL */
2291 #else /* !CONFIG_SCHEDSTATS */
2292 static inline void init_schedstats(void) {}
2293 #endif /* CONFIG_SCHEDSTATS */
2296 * fork()/clone()-time setup:
2298 int sched_fork(unsigned long clone_flags
, struct task_struct
*p
)
2300 unsigned long flags
;
2302 __sched_fork(clone_flags
, p
);
2304 * We mark the process as NEW here. This guarantees that
2305 * nobody will actually run it, and a signal or other external
2306 * event cannot wake it up and insert it on the runqueue either.
2308 p
->state
= TASK_NEW
;
2311 * Make sure we do not leak PI boosting priority to the child.
2313 p
->prio
= current
->normal_prio
;
2316 * Revert to default priority/policy on fork if requested.
2318 if (unlikely(p
->sched_reset_on_fork
)) {
2319 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
2320 p
->policy
= SCHED_NORMAL
;
2321 p
->static_prio
= NICE_TO_PRIO(0);
2323 } else if (PRIO_TO_NICE(p
->static_prio
) < 0)
2324 p
->static_prio
= NICE_TO_PRIO(0);
2326 p
->prio
= p
->normal_prio
= __normal_prio(p
);
2327 set_load_weight(p
, false);
2330 * We don't need the reset flag anymore after the fork. It has
2331 * fulfilled its duty:
2333 p
->sched_reset_on_fork
= 0;
2336 if (dl_prio(p
->prio
))
2338 else if (rt_prio(p
->prio
))
2339 p
->sched_class
= &rt_sched_class
;
2341 p
->sched_class
= &fair_sched_class
;
2343 init_entity_runnable_average(&p
->se
);
2346 * The child is not yet in the pid-hash so no cgroup attach races,
2347 * and the cgroup is pinned to this child due to cgroup_fork()
2348 * is ran before sched_fork().
2350 * Silence PROVE_RCU.
2352 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2354 * We're setting the CPU for the first time, we don't migrate,
2355 * so use __set_task_cpu().
2357 __set_task_cpu(p
, smp_processor_id());
2358 if (p
->sched_class
->task_fork
)
2359 p
->sched_class
->task_fork(p
);
2360 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2362 #ifdef CONFIG_SCHED_INFO
2363 if (likely(sched_info_on()))
2364 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2366 #if defined(CONFIG_SMP)
2369 init_task_preempt_count(p
);
2371 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2372 RB_CLEAR_NODE(&p
->pushable_dl_tasks
);
2377 unsigned long to_ratio(u64 period
, u64 runtime
)
2379 if (runtime
== RUNTIME_INF
)
2383 * Doing this here saves a lot of checks in all
2384 * the calling paths, and returning zero seems
2385 * safe for them anyway.
2390 return div64_u64(runtime
<< BW_SHIFT
, period
);
2394 * wake_up_new_task - wake up a newly created task for the first time.
2396 * This function will do some initial scheduler statistics housekeeping
2397 * that must be done for every newly created context, then puts the task
2398 * on the runqueue and wakes it.
2400 void wake_up_new_task(struct task_struct
*p
)
2405 raw_spin_lock_irqsave(&p
->pi_lock
, rf
.flags
);
2406 p
->state
= TASK_RUNNING
;
2409 * Fork balancing, do it here and not earlier because:
2410 * - cpus_allowed can change in the fork path
2411 * - any previously selected CPU might disappear through hotplug
2413 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
2414 * as we're not fully set-up yet.
2416 p
->recent_used_cpu
= task_cpu(p
);
2417 __set_task_cpu(p
, select_task_rq(p
, task_cpu(p
), SD_BALANCE_FORK
, 0));
2419 rq
= __task_rq_lock(p
, &rf
);
2420 update_rq_clock(rq
);
2421 post_init_entity_util_avg(&p
->se
);
2423 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
2424 p
->on_rq
= TASK_ON_RQ_QUEUED
;
2425 trace_sched_wakeup_new(p
);
2426 check_preempt_curr(rq
, p
, WF_FORK
);
2428 if (p
->sched_class
->task_woken
) {
2430 * Nothing relies on rq->lock after this, so its fine to
2433 rq_unpin_lock(rq
, &rf
);
2434 p
->sched_class
->task_woken(rq
, p
);
2435 rq_repin_lock(rq
, &rf
);
2438 task_rq_unlock(rq
, p
, &rf
);
2441 #ifdef CONFIG_PREEMPT_NOTIFIERS
2443 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key
);
2445 void preempt_notifier_inc(void)
2447 static_branch_inc(&preempt_notifier_key
);
2449 EXPORT_SYMBOL_GPL(preempt_notifier_inc
);
2451 void preempt_notifier_dec(void)
2453 static_branch_dec(&preempt_notifier_key
);
2455 EXPORT_SYMBOL_GPL(preempt_notifier_dec
);
2458 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2459 * @notifier: notifier struct to register
2461 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2463 if (!static_branch_unlikely(&preempt_notifier_key
))
2464 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2466 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2468 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2471 * preempt_notifier_unregister - no longer interested in preemption notifications
2472 * @notifier: notifier struct to unregister
2474 * This is *not* safe to call from within a preemption notifier.
2476 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2478 hlist_del(¬ifier
->link
);
2480 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2482 static void __fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2484 struct preempt_notifier
*notifier
;
2486 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2487 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2490 static __always_inline
void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2492 if (static_branch_unlikely(&preempt_notifier_key
))
2493 __fire_sched_in_preempt_notifiers(curr
);
2497 __fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2498 struct task_struct
*next
)
2500 struct preempt_notifier
*notifier
;
2502 hlist_for_each_entry(notifier
, &curr
->preempt_notifiers
, link
)
2503 notifier
->ops
->sched_out(notifier
, next
);
2506 static __always_inline
void
2507 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2508 struct task_struct
*next
)
2510 if (static_branch_unlikely(&preempt_notifier_key
))
2511 __fire_sched_out_preempt_notifiers(curr
, next
);
2514 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2516 static inline void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2521 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2522 struct task_struct
*next
)
2526 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2528 static inline void prepare_task(struct task_struct
*next
)
2532 * Claim the task as running, we do this before switching to it
2533 * such that any running task will have this set.
2539 static inline void finish_task(struct task_struct
*prev
)
2543 * After ->on_cpu is cleared, the task can be moved to a different CPU.
2544 * We must ensure this doesn't happen until the switch is completely
2547 * In particular, the load of prev->state in finish_task_switch() must
2548 * happen before this.
2550 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
2552 smp_store_release(&prev
->on_cpu
, 0);
2557 prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
, struct rq_flags
*rf
)
2560 * Since the runqueue lock will be released by the next
2561 * task (which is an invalid locking op but in the case
2562 * of the scheduler it's an obvious special-case), so we
2563 * do an early lockdep release here:
2565 rq_unpin_lock(rq
, rf
);
2566 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2567 #ifdef CONFIG_DEBUG_SPINLOCK
2568 /* this is a valid case when another task releases the spinlock */
2569 rq
->lock
.owner
= next
;
2573 static inline void finish_lock_switch(struct rq
*rq
)
2576 * If we are tracking spinlock dependencies then we have to
2577 * fix up the runqueue lock - which gets 'carried over' from
2578 * prev into current:
2580 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
2581 raw_spin_unlock_irq(&rq
->lock
);
2585 * NOP if the arch has not defined these:
2588 #ifndef prepare_arch_switch
2589 # define prepare_arch_switch(next) do { } while (0)
2592 #ifndef finish_arch_post_lock_switch
2593 # define finish_arch_post_lock_switch() do { } while (0)
2597 * prepare_task_switch - prepare to switch tasks
2598 * @rq: the runqueue preparing to switch
2599 * @prev: the current task that is being switched out
2600 * @next: the task we are going to switch to.
2602 * This is called with the rq lock held and interrupts off. It must
2603 * be paired with a subsequent finish_task_switch after the context
2606 * prepare_task_switch sets up locking and calls architecture specific
2610 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2611 struct task_struct
*next
)
2613 kcov_prepare_switch(prev
);
2614 sched_info_switch(rq
, prev
, next
);
2615 perf_event_task_sched_out(prev
, next
);
2617 fire_sched_out_preempt_notifiers(prev
, next
);
2619 prepare_arch_switch(next
);
2623 * finish_task_switch - clean up after a task-switch
2624 * @prev: the thread we just switched away from.
2626 * finish_task_switch must be called after the context switch, paired
2627 * with a prepare_task_switch call before the context switch.
2628 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2629 * and do any other architecture-specific cleanup actions.
2631 * Note that we may have delayed dropping an mm in context_switch(). If
2632 * so, we finish that here outside of the runqueue lock. (Doing it
2633 * with the lock held can cause deadlocks; see schedule() for
2636 * The context switch have flipped the stack from under us and restored the
2637 * local variables which were saved when this task called schedule() in the
2638 * past. prev == current is still correct but we need to recalculate this_rq
2639 * because prev may have moved to another CPU.
2641 static struct rq
*finish_task_switch(struct task_struct
*prev
)
2642 __releases(rq
->lock
)
2644 struct rq
*rq
= this_rq();
2645 struct mm_struct
*mm
= rq
->prev_mm
;
2649 * The previous task will have left us with a preempt_count of 2
2650 * because it left us after:
2653 * preempt_disable(); // 1
2655 * raw_spin_lock_irq(&rq->lock) // 2
2657 * Also, see FORK_PREEMPT_COUNT.
2659 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET
,
2660 "corrupted preempt_count: %s/%d/0x%x\n",
2661 current
->comm
, current
->pid
, preempt_count()))
2662 preempt_count_set(FORK_PREEMPT_COUNT
);
2667 * A task struct has one reference for the use as "current".
2668 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2669 * schedule one last time. The schedule call will never return, and
2670 * the scheduled task must drop that reference.
2672 * We must observe prev->state before clearing prev->on_cpu (in
2673 * finish_task), otherwise a concurrent wakeup can get prev
2674 * running on another CPU and we could rave with its RUNNING -> DEAD
2675 * transition, resulting in a double drop.
2677 prev_state
= prev
->state
;
2678 vtime_task_switch(prev
);
2679 perf_event_task_sched_in(prev
, current
);
2681 finish_lock_switch(rq
);
2682 finish_arch_post_lock_switch();
2683 kcov_finish_switch(current
);
2685 fire_sched_in_preempt_notifiers(current
);
2687 * When switching through a kernel thread, the loop in
2688 * membarrier_{private,global}_expedited() may have observed that
2689 * kernel thread and not issued an IPI. It is therefore possible to
2690 * schedule between user->kernel->user threads without passing though
2691 * switch_mm(). Membarrier requires a barrier after storing to
2692 * rq->curr, before returning to userspace, so provide them here:
2694 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
2695 * provided by mmdrop(),
2696 * - a sync_core for SYNC_CORE.
2699 membarrier_mm_sync_core_before_usermode(mm
);
2702 if (unlikely(prev_state
== TASK_DEAD
)) {
2703 if (prev
->sched_class
->task_dead
)
2704 prev
->sched_class
->task_dead(prev
);
2707 * Remove function-return probe instances associated with this
2708 * task and put them back on the free list.
2710 kprobe_flush_task(prev
);
2712 /* Task is done with its stack. */
2713 put_task_stack(prev
);
2715 put_task_struct(prev
);
2718 tick_nohz_task_switch();
2724 /* rq->lock is NOT held, but preemption is disabled */
2725 static void __balance_callback(struct rq
*rq
)
2727 struct callback_head
*head
, *next
;
2728 void (*func
)(struct rq
*rq
);
2729 unsigned long flags
;
2731 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2732 head
= rq
->balance_callback
;
2733 rq
->balance_callback
= NULL
;
2735 func
= (void (*)(struct rq
*))head
->func
;
2742 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2745 static inline void balance_callback(struct rq
*rq
)
2747 if (unlikely(rq
->balance_callback
))
2748 __balance_callback(rq
);
2753 static inline void balance_callback(struct rq
*rq
)
2760 * schedule_tail - first thing a freshly forked thread must call.
2761 * @prev: the thread we just switched away from.
2763 asmlinkage __visible
void schedule_tail(struct task_struct
*prev
)
2764 __releases(rq
->lock
)
2769 * New tasks start with FORK_PREEMPT_COUNT, see there and
2770 * finish_task_switch() for details.
2772 * finish_task_switch() will drop rq->lock() and lower preempt_count
2773 * and the preempt_enable() will end up enabling preemption (on
2774 * PREEMPT_COUNT kernels).
2777 rq
= finish_task_switch(prev
);
2778 balance_callback(rq
);
2781 if (current
->set_child_tid
)
2782 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2784 calculate_sigpending();
2788 * context_switch - switch to the new MM and the new thread's register state.
2790 static __always_inline
struct rq
*
2791 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2792 struct task_struct
*next
, struct rq_flags
*rf
)
2794 struct mm_struct
*mm
, *oldmm
;
2796 prepare_task_switch(rq
, prev
, next
);
2799 oldmm
= prev
->active_mm
;
2801 * For paravirt, this is coupled with an exit in switch_to to
2802 * combine the page table reload and the switch backend into
2805 arch_start_context_switch(prev
);
2808 * If mm is non-NULL, we pass through switch_mm(). If mm is
2809 * NULL, we will pass through mmdrop() in finish_task_switch().
2810 * Both of these contain the full memory barrier required by
2811 * membarrier after storing to rq->curr, before returning to
2815 next
->active_mm
= oldmm
;
2817 enter_lazy_tlb(oldmm
, next
);
2819 switch_mm_irqs_off(oldmm
, mm
, next
);
2822 prev
->active_mm
= NULL
;
2823 rq
->prev_mm
= oldmm
;
2826 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
2828 prepare_lock_switch(rq
, next
, rf
);
2830 /* Here we just switch the register state and the stack. */
2831 switch_to(prev
, next
, prev
);
2834 return finish_task_switch(prev
);
2838 * nr_running and nr_context_switches:
2840 * externally visible scheduler statistics: current number of runnable
2841 * threads, total number of context switches performed since bootup.
2843 unsigned long nr_running(void)
2845 unsigned long i
, sum
= 0;
2847 for_each_online_cpu(i
)
2848 sum
+= cpu_rq(i
)->nr_running
;
2854 * Check if only the current task is running on the CPU.
2856 * Caution: this function does not check that the caller has disabled
2857 * preemption, thus the result might have a time-of-check-to-time-of-use
2858 * race. The caller is responsible to use it correctly, for example:
2860 * - from a non-preemptable section (of course)
2862 * - from a thread that is bound to a single CPU
2864 * - in a loop with very short iterations (e.g. a polling loop)
2866 bool single_task_running(void)
2868 return raw_rq()->nr_running
== 1;
2870 EXPORT_SYMBOL(single_task_running
);
2872 unsigned long long nr_context_switches(void)
2875 unsigned long long sum
= 0;
2877 for_each_possible_cpu(i
)
2878 sum
+= cpu_rq(i
)->nr_switches
;
2884 * Consumers of these two interfaces, like for example the cpuidle menu
2885 * governor, are using nonsensical data. Preferring shallow idle state selection
2886 * for a CPU that has IO-wait which might not even end up running the task when
2887 * it does become runnable.
2890 unsigned long nr_iowait_cpu(int cpu
)
2892 return atomic_read(&cpu_rq(cpu
)->nr_iowait
);
2896 * IO-wait accounting, and how its mostly bollocks (on SMP).
2898 * The idea behind IO-wait account is to account the idle time that we could
2899 * have spend running if it were not for IO. That is, if we were to improve the
2900 * storage performance, we'd have a proportional reduction in IO-wait time.
2902 * This all works nicely on UP, where, when a task blocks on IO, we account
2903 * idle time as IO-wait, because if the storage were faster, it could've been
2904 * running and we'd not be idle.
2906 * This has been extended to SMP, by doing the same for each CPU. This however
2909 * Imagine for instance the case where two tasks block on one CPU, only the one
2910 * CPU will have IO-wait accounted, while the other has regular idle. Even
2911 * though, if the storage were faster, both could've ran at the same time,
2912 * utilising both CPUs.
2914 * This means, that when looking globally, the current IO-wait accounting on
2915 * SMP is a lower bound, by reason of under accounting.
2917 * Worse, since the numbers are provided per CPU, they are sometimes
2918 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
2919 * associated with any one particular CPU, it can wake to another CPU than it
2920 * blocked on. This means the per CPU IO-wait number is meaningless.
2922 * Task CPU affinities can make all that even more 'interesting'.
2925 unsigned long nr_iowait(void)
2927 unsigned long i
, sum
= 0;
2929 for_each_possible_cpu(i
)
2930 sum
+= nr_iowait_cpu(i
);
2938 * sched_exec - execve() is a valuable balancing opportunity, because at
2939 * this point the task has the smallest effective memory and cache footprint.
2941 void sched_exec(void)
2943 struct task_struct
*p
= current
;
2944 unsigned long flags
;
2947 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
2948 dest_cpu
= p
->sched_class
->select_task_rq(p
, task_cpu(p
), SD_BALANCE_EXEC
, 0);
2949 if (dest_cpu
== smp_processor_id())
2952 if (likely(cpu_active(dest_cpu
))) {
2953 struct migration_arg arg
= { p
, dest_cpu
};
2955 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2956 stop_one_cpu(task_cpu(p
), migration_cpu_stop
, &arg
);
2960 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
2965 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2966 DEFINE_PER_CPU(struct kernel_cpustat
, kernel_cpustat
);
2968 EXPORT_PER_CPU_SYMBOL(kstat
);
2969 EXPORT_PER_CPU_SYMBOL(kernel_cpustat
);
2972 * The function fair_sched_class.update_curr accesses the struct curr
2973 * and its field curr->exec_start; when called from task_sched_runtime(),
2974 * we observe a high rate of cache misses in practice.
2975 * Prefetching this data results in improved performance.
2977 static inline void prefetch_curr_exec_start(struct task_struct
*p
)
2979 #ifdef CONFIG_FAIR_GROUP_SCHED
2980 struct sched_entity
*curr
= (&p
->se
)->cfs_rq
->curr
;
2982 struct sched_entity
*curr
= (&task_rq(p
)->cfs
)->curr
;
2985 prefetch(&curr
->exec_start
);
2989 * Return accounted runtime for the task.
2990 * In case the task is currently running, return the runtime plus current's
2991 * pending runtime that have not been accounted yet.
2993 unsigned long long task_sched_runtime(struct task_struct
*p
)
2999 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
3001 * 64-bit doesn't need locks to atomically read a 64-bit value.
3002 * So we have a optimization chance when the task's delta_exec is 0.
3003 * Reading ->on_cpu is racy, but this is ok.
3005 * If we race with it leaving CPU, we'll take a lock. So we're correct.
3006 * If we race with it entering CPU, unaccounted time is 0. This is
3007 * indistinguishable from the read occurring a few cycles earlier.
3008 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
3009 * been accounted, so we're correct here as well.
3011 if (!p
->on_cpu
|| !task_on_rq_queued(p
))
3012 return p
->se
.sum_exec_runtime
;
3015 rq
= task_rq_lock(p
, &rf
);
3017 * Must be ->curr _and_ ->on_rq. If dequeued, we would
3018 * project cycles that may never be accounted to this
3019 * thread, breaking clock_gettime().
3021 if (task_current(rq
, p
) && task_on_rq_queued(p
)) {
3022 prefetch_curr_exec_start(p
);
3023 update_rq_clock(rq
);
3024 p
->sched_class
->update_curr(rq
);
3026 ns
= p
->se
.sum_exec_runtime
;
3027 task_rq_unlock(rq
, p
, &rf
);
3033 * This function gets called by the timer code, with HZ frequency.
3034 * We call it with interrupts disabled.
3036 void scheduler_tick(void)
3038 int cpu
= smp_processor_id();
3039 struct rq
*rq
= cpu_rq(cpu
);
3040 struct task_struct
*curr
= rq
->curr
;
3047 update_rq_clock(rq
);
3048 curr
->sched_class
->task_tick(rq
, curr
, 0);
3049 cpu_load_update_active(rq
);
3050 calc_global_load_tick(rq
);
3055 perf_event_task_tick();
3058 rq
->idle_balance
= idle_cpu(cpu
);
3059 trigger_load_balance(rq
);
3063 #ifdef CONFIG_NO_HZ_FULL
3067 struct delayed_work work
;
3070 static struct tick_work __percpu
*tick_work_cpu
;
3072 static void sched_tick_remote(struct work_struct
*work
)
3074 struct delayed_work
*dwork
= to_delayed_work(work
);
3075 struct tick_work
*twork
= container_of(dwork
, struct tick_work
, work
);
3076 int cpu
= twork
->cpu
;
3077 struct rq
*rq
= cpu_rq(cpu
);
3078 struct task_struct
*curr
;
3083 * Handle the tick only if it appears the remote CPU is running in full
3084 * dynticks mode. The check is racy by nature, but missing a tick or
3085 * having one too much is no big deal because the scheduler tick updates
3086 * statistics and checks timeslices in a time-independent way, regardless
3087 * of when exactly it is running.
3089 if (idle_cpu(cpu
) || !tick_nohz_tick_stopped_cpu(cpu
))
3092 rq_lock_irq(rq
, &rf
);
3094 if (is_idle_task(curr
))
3097 update_rq_clock(rq
);
3098 delta
= rq_clock_task(rq
) - curr
->se
.exec_start
;
3101 * Make sure the next tick runs within a reasonable
3104 WARN_ON_ONCE(delta
> (u64
)NSEC_PER_SEC
* 3);
3105 curr
->sched_class
->task_tick(rq
, curr
, 0);
3108 rq_unlock_irq(rq
, &rf
);
3112 * Run the remote tick once per second (1Hz). This arbitrary
3113 * frequency is large enough to avoid overload but short enough
3114 * to keep scheduler internal stats reasonably up to date.
3116 queue_delayed_work(system_unbound_wq
, dwork
, HZ
);
3119 static void sched_tick_start(int cpu
)
3121 struct tick_work
*twork
;
3123 if (housekeeping_cpu(cpu
, HK_FLAG_TICK
))
3126 WARN_ON_ONCE(!tick_work_cpu
);
3128 twork
= per_cpu_ptr(tick_work_cpu
, cpu
);
3130 INIT_DELAYED_WORK(&twork
->work
, sched_tick_remote
);
3131 queue_delayed_work(system_unbound_wq
, &twork
->work
, HZ
);
3134 #ifdef CONFIG_HOTPLUG_CPU
3135 static void sched_tick_stop(int cpu
)
3137 struct tick_work
*twork
;
3139 if (housekeeping_cpu(cpu
, HK_FLAG_TICK
))
3142 WARN_ON_ONCE(!tick_work_cpu
);
3144 twork
= per_cpu_ptr(tick_work_cpu
, cpu
);
3145 cancel_delayed_work_sync(&twork
->work
);
3147 #endif /* CONFIG_HOTPLUG_CPU */
3149 int __init
sched_tick_offload_init(void)
3151 tick_work_cpu
= alloc_percpu(struct tick_work
);
3152 BUG_ON(!tick_work_cpu
);
3157 #else /* !CONFIG_NO_HZ_FULL */
3158 static inline void sched_tick_start(int cpu
) { }
3159 static inline void sched_tick_stop(int cpu
) { }
3162 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3163 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
3165 * If the value passed in is equal to the current preempt count
3166 * then we just disabled preemption. Start timing the latency.
3168 static inline void preempt_latency_start(int val
)
3170 if (preempt_count() == val
) {
3171 unsigned long ip
= get_lock_parent_ip();
3172 #ifdef CONFIG_DEBUG_PREEMPT
3173 current
->preempt_disable_ip
= ip
;
3175 trace_preempt_off(CALLER_ADDR0
, ip
);
3179 void preempt_count_add(int val
)
3181 #ifdef CONFIG_DEBUG_PREEMPT
3185 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3188 __preempt_count_add(val
);
3189 #ifdef CONFIG_DEBUG_PREEMPT
3191 * Spinlock count overflowing soon?
3193 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3196 preempt_latency_start(val
);
3198 EXPORT_SYMBOL(preempt_count_add
);
3199 NOKPROBE_SYMBOL(preempt_count_add
);
3202 * If the value passed in equals to the current preempt count
3203 * then we just enabled preemption. Stop timing the latency.
3205 static inline void preempt_latency_stop(int val
)
3207 if (preempt_count() == val
)
3208 trace_preempt_on(CALLER_ADDR0
, get_lock_parent_ip());
3211 void preempt_count_sub(int val
)
3213 #ifdef CONFIG_DEBUG_PREEMPT
3217 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3220 * Is the spinlock portion underflowing?
3222 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3223 !(preempt_count() & PREEMPT_MASK
)))
3227 preempt_latency_stop(val
);
3228 __preempt_count_sub(val
);
3230 EXPORT_SYMBOL(preempt_count_sub
);
3231 NOKPROBE_SYMBOL(preempt_count_sub
);
3234 static inline void preempt_latency_start(int val
) { }
3235 static inline void preempt_latency_stop(int val
) { }
3238 static inline unsigned long get_preempt_disable_ip(struct task_struct
*p
)
3240 #ifdef CONFIG_DEBUG_PREEMPT
3241 return p
->preempt_disable_ip
;
3248 * Print scheduling while atomic bug:
3250 static noinline
void __schedule_bug(struct task_struct
*prev
)
3252 /* Save this before calling printk(), since that will clobber it */
3253 unsigned long preempt_disable_ip
= get_preempt_disable_ip(current
);
3255 if (oops_in_progress
)
3258 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3259 prev
->comm
, prev
->pid
, preempt_count());
3261 debug_show_held_locks(prev
);
3263 if (irqs_disabled())
3264 print_irqtrace_events(prev
);
3265 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
3266 && in_atomic_preempt_off()) {
3267 pr_err("Preemption disabled at:");
3268 print_ip_sym(preempt_disable_ip
);
3272 panic("scheduling while atomic\n");
3275 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
3279 * Various schedule()-time debugging checks and statistics:
3281 static inline void schedule_debug(struct task_struct
*prev
)
3283 #ifdef CONFIG_SCHED_STACK_END_CHECK
3284 if (task_stack_end_corrupted(prev
))
3285 panic("corrupted stack end detected inside scheduler\n");
3288 if (unlikely(in_atomic_preempt_off())) {
3289 __schedule_bug(prev
);
3290 preempt_count_set(PREEMPT_DISABLED
);
3294 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3296 schedstat_inc(this_rq()->sched_count
);
3300 * Pick up the highest-prio task:
3302 static inline struct task_struct
*
3303 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
3305 const struct sched_class
*class;
3306 struct task_struct
*p
;
3309 * Optimization: we know that if all tasks are in the fair class we can
3310 * call that function directly, but only if the @prev task wasn't of a
3311 * higher scheduling class, because otherwise those loose the
3312 * opportunity to pull in more work from other CPUs.
3314 if (likely((prev
->sched_class
== &idle_sched_class
||
3315 prev
->sched_class
== &fair_sched_class
) &&
3316 rq
->nr_running
== rq
->cfs
.h_nr_running
)) {
3318 p
= fair_sched_class
.pick_next_task(rq
, prev
, rf
);
3319 if (unlikely(p
== RETRY_TASK
))
3322 /* Assumes fair_sched_class->next == idle_sched_class */
3324 p
= idle_sched_class
.pick_next_task(rq
, prev
, rf
);
3330 for_each_class(class) {
3331 p
= class->pick_next_task(rq
, prev
, rf
);
3333 if (unlikely(p
== RETRY_TASK
))
3339 /* The idle class should always have a runnable task: */
3344 * __schedule() is the main scheduler function.
3346 * The main means of driving the scheduler and thus entering this function are:
3348 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3350 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3351 * paths. For example, see arch/x86/entry_64.S.
3353 * To drive preemption between tasks, the scheduler sets the flag in timer
3354 * interrupt handler scheduler_tick().
3356 * 3. Wakeups don't really cause entry into schedule(). They add a
3357 * task to the run-queue and that's it.
3359 * Now, if the new task added to the run-queue preempts the current
3360 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3361 * called on the nearest possible occasion:
3363 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3365 * - in syscall or exception context, at the next outmost
3366 * preempt_enable(). (this might be as soon as the wake_up()'s
3369 * - in IRQ context, return from interrupt-handler to
3370 * preemptible context
3372 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3375 * - cond_resched() call
3376 * - explicit schedule() call
3377 * - return from syscall or exception to user-space
3378 * - return from interrupt-handler to user-space
3380 * WARNING: must be called with preemption disabled!
3382 static void __sched notrace
__schedule(bool preempt
)
3384 struct task_struct
*prev
, *next
;
3385 unsigned long *switch_count
;
3390 cpu
= smp_processor_id();
3394 schedule_debug(prev
);
3396 if (sched_feat(HRTICK
))
3399 local_irq_disable();
3400 rcu_note_context_switch(preempt
);
3403 * Make sure that signal_pending_state()->signal_pending() below
3404 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3405 * done by the caller to avoid the race with signal_wake_up().
3407 * The membarrier system call requires a full memory barrier
3408 * after coming from user-space, before storing to rq->curr.
3411 smp_mb__after_spinlock();
3413 /* Promote REQ to ACT */
3414 rq
->clock_update_flags
<<= 1;
3415 update_rq_clock(rq
);
3417 switch_count
= &prev
->nivcsw
;
3418 if (!preempt
&& prev
->state
) {
3419 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3420 prev
->state
= TASK_RUNNING
;
3422 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
| DEQUEUE_NOCLOCK
);
3425 if (prev
->in_iowait
) {
3426 atomic_inc(&rq
->nr_iowait
);
3427 delayacct_blkio_start();
3431 * If a worker went to sleep, notify and ask workqueue
3432 * whether it wants to wake up a task to maintain
3435 if (prev
->flags
& PF_WQ_WORKER
) {
3436 struct task_struct
*to_wakeup
;
3438 to_wakeup
= wq_worker_sleeping(prev
);
3440 try_to_wake_up_local(to_wakeup
, &rf
);
3443 switch_count
= &prev
->nvcsw
;
3446 next
= pick_next_task(rq
, prev
, &rf
);
3447 clear_tsk_need_resched(prev
);
3448 clear_preempt_need_resched();
3450 if (likely(prev
!= next
)) {
3454 * The membarrier system call requires each architecture
3455 * to have a full memory barrier after updating
3456 * rq->curr, before returning to user-space.
3458 * Here are the schemes providing that barrier on the
3459 * various architectures:
3460 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
3461 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
3462 * - finish_lock_switch() for weakly-ordered
3463 * architectures where spin_unlock is a full barrier,
3464 * - switch_to() for arm64 (weakly-ordered, spin_unlock
3465 * is a RELEASE barrier),
3469 trace_sched_switch(preempt
, prev
, next
);
3471 /* Also unlocks the rq: */
3472 rq
= context_switch(rq
, prev
, next
, &rf
);
3474 rq
->clock_update_flags
&= ~(RQCF_ACT_SKIP
|RQCF_REQ_SKIP
);
3475 rq_unlock_irq(rq
, &rf
);
3478 balance_callback(rq
);
3481 void __noreturn
do_task_dead(void)
3483 /* Causes final put_task_struct in finish_task_switch(): */
3484 set_special_state(TASK_DEAD
);
3486 /* Tell freezer to ignore us: */
3487 current
->flags
|= PF_NOFREEZE
;
3492 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
3497 static inline void sched_submit_work(struct task_struct
*tsk
)
3499 if (!tsk
->state
|| tsk_is_pi_blocked(tsk
))
3502 * If we are going to sleep and we have plugged IO queued,
3503 * make sure to submit it to avoid deadlocks.
3505 if (blk_needs_flush_plug(tsk
))
3506 blk_schedule_flush_plug(tsk
);
3509 asmlinkage __visible
void __sched
schedule(void)
3511 struct task_struct
*tsk
= current
;
3513 sched_submit_work(tsk
);
3517 sched_preempt_enable_no_resched();
3518 } while (need_resched());
3520 EXPORT_SYMBOL(schedule
);
3523 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
3524 * state (have scheduled out non-voluntarily) by making sure that all
3525 * tasks have either left the run queue or have gone into user space.
3526 * As idle tasks do not do either, they must not ever be preempted
3527 * (schedule out non-voluntarily).
3529 * schedule_idle() is similar to schedule_preempt_disable() except that it
3530 * never enables preemption because it does not call sched_submit_work().
3532 void __sched
schedule_idle(void)
3535 * As this skips calling sched_submit_work(), which the idle task does
3536 * regardless because that function is a nop when the task is in a
3537 * TASK_RUNNING state, make sure this isn't used someplace that the
3538 * current task can be in any other state. Note, idle is always in the
3539 * TASK_RUNNING state.
3541 WARN_ON_ONCE(current
->state
);
3544 } while (need_resched());
3547 #ifdef CONFIG_CONTEXT_TRACKING
3548 asmlinkage __visible
void __sched
schedule_user(void)
3551 * If we come here after a random call to set_need_resched(),
3552 * or we have been woken up remotely but the IPI has not yet arrived,
3553 * we haven't yet exited the RCU idle mode. Do it here manually until
3554 * we find a better solution.
3556 * NB: There are buggy callers of this function. Ideally we
3557 * should warn if prev_state != CONTEXT_USER, but that will trigger
3558 * too frequently to make sense yet.
3560 enum ctx_state prev_state
= exception_enter();
3562 exception_exit(prev_state
);
3567 * schedule_preempt_disabled - called with preemption disabled
3569 * Returns with preemption disabled. Note: preempt_count must be 1
3571 void __sched
schedule_preempt_disabled(void)
3573 sched_preempt_enable_no_resched();
3578 static void __sched notrace
preempt_schedule_common(void)
3582 * Because the function tracer can trace preempt_count_sub()
3583 * and it also uses preempt_enable/disable_notrace(), if
3584 * NEED_RESCHED is set, the preempt_enable_notrace() called
3585 * by the function tracer will call this function again and
3586 * cause infinite recursion.
3588 * Preemption must be disabled here before the function
3589 * tracer can trace. Break up preempt_disable() into two
3590 * calls. One to disable preemption without fear of being
3591 * traced. The other to still record the preemption latency,
3592 * which can also be traced by the function tracer.
3594 preempt_disable_notrace();
3595 preempt_latency_start(1);
3597 preempt_latency_stop(1);
3598 preempt_enable_no_resched_notrace();
3601 * Check again in case we missed a preemption opportunity
3602 * between schedule and now.
3604 } while (need_resched());
3607 #ifdef CONFIG_PREEMPT
3609 * this is the entry point to schedule() from in-kernel preemption
3610 * off of preempt_enable. Kernel preemptions off return from interrupt
3611 * occur there and call schedule directly.
3613 asmlinkage __visible
void __sched notrace
preempt_schedule(void)
3616 * If there is a non-zero preempt_count or interrupts are disabled,
3617 * we do not want to preempt the current task. Just return..
3619 if (likely(!preemptible()))
3622 preempt_schedule_common();
3624 NOKPROBE_SYMBOL(preempt_schedule
);
3625 EXPORT_SYMBOL(preempt_schedule
);
3628 * preempt_schedule_notrace - preempt_schedule called by tracing
3630 * The tracing infrastructure uses preempt_enable_notrace to prevent
3631 * recursion and tracing preempt enabling caused by the tracing
3632 * infrastructure itself. But as tracing can happen in areas coming
3633 * from userspace or just about to enter userspace, a preempt enable
3634 * can occur before user_exit() is called. This will cause the scheduler
3635 * to be called when the system is still in usermode.
3637 * To prevent this, the preempt_enable_notrace will use this function
3638 * instead of preempt_schedule() to exit user context if needed before
3639 * calling the scheduler.
3641 asmlinkage __visible
void __sched notrace
preempt_schedule_notrace(void)
3643 enum ctx_state prev_ctx
;
3645 if (likely(!preemptible()))
3650 * Because the function tracer can trace preempt_count_sub()
3651 * and it also uses preempt_enable/disable_notrace(), if
3652 * NEED_RESCHED is set, the preempt_enable_notrace() called
3653 * by the function tracer will call this function again and
3654 * cause infinite recursion.
3656 * Preemption must be disabled here before the function
3657 * tracer can trace. Break up preempt_disable() into two
3658 * calls. One to disable preemption without fear of being
3659 * traced. The other to still record the preemption latency,
3660 * which can also be traced by the function tracer.
3662 preempt_disable_notrace();
3663 preempt_latency_start(1);
3665 * Needs preempt disabled in case user_exit() is traced
3666 * and the tracer calls preempt_enable_notrace() causing
3667 * an infinite recursion.
3669 prev_ctx
= exception_enter();
3671 exception_exit(prev_ctx
);
3673 preempt_latency_stop(1);
3674 preempt_enable_no_resched_notrace();
3675 } while (need_resched());
3677 EXPORT_SYMBOL_GPL(preempt_schedule_notrace
);
3679 #endif /* CONFIG_PREEMPT */
3682 * this is the entry point to schedule() from kernel preemption
3683 * off of irq context.
3684 * Note, that this is called and return with irqs disabled. This will
3685 * protect us against recursive calling from irq.
3687 asmlinkage __visible
void __sched
preempt_schedule_irq(void)
3689 enum ctx_state prev_state
;
3691 /* Catch callers which need to be fixed */
3692 BUG_ON(preempt_count() || !irqs_disabled());
3694 prev_state
= exception_enter();
3700 local_irq_disable();
3701 sched_preempt_enable_no_resched();
3702 } while (need_resched());
3704 exception_exit(prev_state
);
3707 int default_wake_function(wait_queue_entry_t
*curr
, unsigned mode
, int wake_flags
,
3710 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3712 EXPORT_SYMBOL(default_wake_function
);
3714 #ifdef CONFIG_RT_MUTEXES
3716 static inline int __rt_effective_prio(struct task_struct
*pi_task
, int prio
)
3719 prio
= min(prio
, pi_task
->prio
);
3724 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3726 struct task_struct
*pi_task
= rt_mutex_get_top_task(p
);
3728 return __rt_effective_prio(pi_task
, prio
);
3732 * rt_mutex_setprio - set the current priority of a task
3734 * @pi_task: donor task
3736 * This function changes the 'effective' priority of a task. It does
3737 * not touch ->normal_prio like __setscheduler().
3739 * Used by the rt_mutex code to implement priority inheritance
3740 * logic. Call site only calls if the priority of the task changed.
3742 void rt_mutex_setprio(struct task_struct
*p
, struct task_struct
*pi_task
)
3744 int prio
, oldprio
, queued
, running
, queue_flag
=
3745 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
3746 const struct sched_class
*prev_class
;
3750 /* XXX used to be waiter->prio, not waiter->task->prio */
3751 prio
= __rt_effective_prio(pi_task
, p
->normal_prio
);
3754 * If nothing changed; bail early.
3756 if (p
->pi_top_task
== pi_task
&& prio
== p
->prio
&& !dl_prio(prio
))
3759 rq
= __task_rq_lock(p
, &rf
);
3760 update_rq_clock(rq
);
3762 * Set under pi_lock && rq->lock, such that the value can be used under
3765 * Note that there is loads of tricky to make this pointer cache work
3766 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
3767 * ensure a task is de-boosted (pi_task is set to NULL) before the
3768 * task is allowed to run again (and can exit). This ensures the pointer
3769 * points to a blocked task -- which guaratees the task is present.
3771 p
->pi_top_task
= pi_task
;
3774 * For FIFO/RR we only need to set prio, if that matches we're done.
3776 if (prio
== p
->prio
&& !dl_prio(prio
))
3780 * Idle task boosting is a nono in general. There is one
3781 * exception, when PREEMPT_RT and NOHZ is active:
3783 * The idle task calls get_next_timer_interrupt() and holds
3784 * the timer wheel base->lock on the CPU and another CPU wants
3785 * to access the timer (probably to cancel it). We can safely
3786 * ignore the boosting request, as the idle CPU runs this code
3787 * with interrupts disabled and will complete the lock
3788 * protected section without being interrupted. So there is no
3789 * real need to boost.
3791 if (unlikely(p
== rq
->idle
)) {
3792 WARN_ON(p
!= rq
->curr
);
3793 WARN_ON(p
->pi_blocked_on
);
3797 trace_sched_pi_setprio(p
, pi_task
);
3800 if (oldprio
== prio
)
3801 queue_flag
&= ~DEQUEUE_MOVE
;
3803 prev_class
= p
->sched_class
;
3804 queued
= task_on_rq_queued(p
);
3805 running
= task_current(rq
, p
);
3807 dequeue_task(rq
, p
, queue_flag
);
3809 put_prev_task(rq
, p
);
3812 * Boosting condition are:
3813 * 1. -rt task is running and holds mutex A
3814 * --> -dl task blocks on mutex A
3816 * 2. -dl task is running and holds mutex A
3817 * --> -dl task blocks on mutex A and could preempt the
3820 if (dl_prio(prio
)) {
3821 if (!dl_prio(p
->normal_prio
) ||
3822 (pi_task
&& dl_entity_preempt(&pi_task
->dl
, &p
->dl
))) {
3823 p
->dl
.dl_boosted
= 1;
3824 queue_flag
|= ENQUEUE_REPLENISH
;
3826 p
->dl
.dl_boosted
= 0;
3827 p
->sched_class
= &dl_sched_class
;
3828 } else if (rt_prio(prio
)) {
3829 if (dl_prio(oldprio
))
3830 p
->dl
.dl_boosted
= 0;
3832 queue_flag
|= ENQUEUE_HEAD
;
3833 p
->sched_class
= &rt_sched_class
;
3835 if (dl_prio(oldprio
))
3836 p
->dl
.dl_boosted
= 0;
3837 if (rt_prio(oldprio
))
3839 p
->sched_class
= &fair_sched_class
;
3845 enqueue_task(rq
, p
, queue_flag
);
3847 set_curr_task(rq
, p
);
3849 check_class_changed(rq
, p
, prev_class
, oldprio
);
3851 /* Avoid rq from going away on us: */
3853 __task_rq_unlock(rq
, &rf
);
3855 balance_callback(rq
);
3859 static inline int rt_effective_prio(struct task_struct
*p
, int prio
)
3865 void set_user_nice(struct task_struct
*p
, long nice
)
3867 bool queued
, running
;
3868 int old_prio
, delta
;
3872 if (task_nice(p
) == nice
|| nice
< MIN_NICE
|| nice
> MAX_NICE
)
3875 * We have to be careful, if called from sys_setpriority(),
3876 * the task might be in the middle of scheduling on another CPU.
3878 rq
= task_rq_lock(p
, &rf
);
3879 update_rq_clock(rq
);
3882 * The RT priorities are set via sched_setscheduler(), but we still
3883 * allow the 'normal' nice value to be set - but as expected
3884 * it wont have any effect on scheduling until the task is
3885 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
3887 if (task_has_dl_policy(p
) || task_has_rt_policy(p
)) {
3888 p
->static_prio
= NICE_TO_PRIO(nice
);
3891 queued
= task_on_rq_queued(p
);
3892 running
= task_current(rq
, p
);
3894 dequeue_task(rq
, p
, DEQUEUE_SAVE
| DEQUEUE_NOCLOCK
);
3896 put_prev_task(rq
, p
);
3898 p
->static_prio
= NICE_TO_PRIO(nice
);
3899 set_load_weight(p
, true);
3901 p
->prio
= effective_prio(p
);
3902 delta
= p
->prio
- old_prio
;
3905 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
3907 * If the task increased its priority or is running and
3908 * lowered its priority, then reschedule its CPU:
3910 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3914 set_curr_task(rq
, p
);
3916 task_rq_unlock(rq
, p
, &rf
);
3918 EXPORT_SYMBOL(set_user_nice
);
3921 * can_nice - check if a task can reduce its nice value
3925 int can_nice(const struct task_struct
*p
, const int nice
)
3927 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
3928 int nice_rlim
= nice_to_rlimit(nice
);
3930 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
3931 capable(CAP_SYS_NICE
));
3934 #ifdef __ARCH_WANT_SYS_NICE
3937 * sys_nice - change the priority of the current process.
3938 * @increment: priority increment
3940 * sys_setpriority is a more generic, but much slower function that
3941 * does similar things.
3943 SYSCALL_DEFINE1(nice
, int, increment
)
3948 * Setpriority might change our priority at the same moment.
3949 * We don't have to worry. Conceptually one call occurs first
3950 * and we have a single winner.
3952 increment
= clamp(increment
, -NICE_WIDTH
, NICE_WIDTH
);
3953 nice
= task_nice(current
) + increment
;
3955 nice
= clamp_val(nice
, MIN_NICE
, MAX_NICE
);
3956 if (increment
< 0 && !can_nice(current
, nice
))
3959 retval
= security_task_setnice(current
, nice
);
3963 set_user_nice(current
, nice
);
3970 * task_prio - return the priority value of a given task.
3971 * @p: the task in question.
3973 * Return: The priority value as seen by users in /proc.
3974 * RT tasks are offset by -200. Normal tasks are centered
3975 * around 0, value goes from -16 to +15.
3977 int task_prio(const struct task_struct
*p
)
3979 return p
->prio
- MAX_RT_PRIO
;
3983 * idle_cpu - is a given CPU idle currently?
3984 * @cpu: the processor in question.
3986 * Return: 1 if the CPU is currently idle. 0 otherwise.
3988 int idle_cpu(int cpu
)
3990 struct rq
*rq
= cpu_rq(cpu
);
3992 if (rq
->curr
!= rq
->idle
)
3999 if (!llist_empty(&rq
->wake_list
))
4007 * available_idle_cpu - is a given CPU idle for enqueuing work.
4008 * @cpu: the CPU in question.
4010 * Return: 1 if the CPU is currently idle. 0 otherwise.
4012 int available_idle_cpu(int cpu
)
4017 if (vcpu_is_preempted(cpu
))
4024 * idle_task - return the idle task for a given CPU.
4025 * @cpu: the processor in question.
4027 * Return: The idle task for the CPU @cpu.
4029 struct task_struct
*idle_task(int cpu
)
4031 return cpu_rq(cpu
)->idle
;
4035 * find_process_by_pid - find a process with a matching PID value.
4036 * @pid: the pid in question.
4038 * The task of @pid, if found. %NULL otherwise.
4040 static struct task_struct
*find_process_by_pid(pid_t pid
)
4042 return pid
? find_task_by_vpid(pid
) : current
;
4046 * sched_setparam() passes in -1 for its policy, to let the functions
4047 * it calls know not to change it.
4049 #define SETPARAM_POLICY -1
4051 static void __setscheduler_params(struct task_struct
*p
,
4052 const struct sched_attr
*attr
)
4054 int policy
= attr
->sched_policy
;
4056 if (policy
== SETPARAM_POLICY
)
4061 if (dl_policy(policy
))
4062 __setparam_dl(p
, attr
);
4063 else if (fair_policy(policy
))
4064 p
->static_prio
= NICE_TO_PRIO(attr
->sched_nice
);
4067 * __sched_setscheduler() ensures attr->sched_priority == 0 when
4068 * !rt_policy. Always setting this ensures that things like
4069 * getparam()/getattr() don't report silly values for !rt tasks.
4071 p
->rt_priority
= attr
->sched_priority
;
4072 p
->normal_prio
= normal_prio(p
);
4073 set_load_weight(p
, true);
4076 /* Actually do priority change: must hold pi & rq lock. */
4077 static void __setscheduler(struct rq
*rq
, struct task_struct
*p
,
4078 const struct sched_attr
*attr
, bool keep_boost
)
4080 __setscheduler_params(p
, attr
);
4083 * Keep a potential priority boosting if called from
4084 * sched_setscheduler().
4086 p
->prio
= normal_prio(p
);
4088 p
->prio
= rt_effective_prio(p
, p
->prio
);
4090 if (dl_prio(p
->prio
))
4091 p
->sched_class
= &dl_sched_class
;
4092 else if (rt_prio(p
->prio
))
4093 p
->sched_class
= &rt_sched_class
;
4095 p
->sched_class
= &fair_sched_class
;
4099 * Check the target process has a UID that matches the current process's:
4101 static bool check_same_owner(struct task_struct
*p
)
4103 const struct cred
*cred
= current_cred(), *pcred
;
4107 pcred
= __task_cred(p
);
4108 match
= (uid_eq(cred
->euid
, pcred
->euid
) ||
4109 uid_eq(cred
->euid
, pcred
->uid
));
4114 static int __sched_setscheduler(struct task_struct
*p
,
4115 const struct sched_attr
*attr
,
4118 int newprio
= dl_policy(attr
->sched_policy
) ? MAX_DL_PRIO
- 1 :
4119 MAX_RT_PRIO
- 1 - attr
->sched_priority
;
4120 int retval
, oldprio
, oldpolicy
= -1, queued
, running
;
4121 int new_effective_prio
, policy
= attr
->sched_policy
;
4122 const struct sched_class
*prev_class
;
4125 int queue_flags
= DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
4128 /* The pi code expects interrupts enabled */
4129 BUG_ON(pi
&& in_interrupt());
4131 /* Double check policy once rq lock held: */
4133 reset_on_fork
= p
->sched_reset_on_fork
;
4134 policy
= oldpolicy
= p
->policy
;
4136 reset_on_fork
= !!(attr
->sched_flags
& SCHED_FLAG_RESET_ON_FORK
);
4138 if (!valid_policy(policy
))
4142 if (attr
->sched_flags
& ~(SCHED_FLAG_ALL
| SCHED_FLAG_SUGOV
))
4146 * Valid priorities for SCHED_FIFO and SCHED_RR are
4147 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4148 * SCHED_BATCH and SCHED_IDLE is 0.
4150 if ((p
->mm
&& attr
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4151 (!p
->mm
&& attr
->sched_priority
> MAX_RT_PRIO
-1))
4153 if ((dl_policy(policy
) && !__checkparam_dl(attr
)) ||
4154 (rt_policy(policy
) != (attr
->sched_priority
!= 0)))
4158 * Allow unprivileged RT tasks to decrease priority:
4160 if (user
&& !capable(CAP_SYS_NICE
)) {
4161 if (fair_policy(policy
)) {
4162 if (attr
->sched_nice
< task_nice(p
) &&
4163 !can_nice(p
, attr
->sched_nice
))
4167 if (rt_policy(policy
)) {
4168 unsigned long rlim_rtprio
=
4169 task_rlimit(p
, RLIMIT_RTPRIO
);
4171 /* Can't set/change the rt policy: */
4172 if (policy
!= p
->policy
&& !rlim_rtprio
)
4175 /* Can't increase priority: */
4176 if (attr
->sched_priority
> p
->rt_priority
&&
4177 attr
->sched_priority
> rlim_rtprio
)
4182 * Can't set/change SCHED_DEADLINE policy at all for now
4183 * (safest behavior); in the future we would like to allow
4184 * unprivileged DL tasks to increase their relative deadline
4185 * or reduce their runtime (both ways reducing utilization)
4187 if (dl_policy(policy
))
4191 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4192 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4194 if (idle_policy(p
->policy
) && !idle_policy(policy
)) {
4195 if (!can_nice(p
, task_nice(p
)))
4199 /* Can't change other user's priorities: */
4200 if (!check_same_owner(p
))
4203 /* Normal users shall not reset the sched_reset_on_fork flag: */
4204 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4209 if (attr
->sched_flags
& SCHED_FLAG_SUGOV
)
4212 retval
= security_task_setscheduler(p
);
4218 * Make sure no PI-waiters arrive (or leave) while we are
4219 * changing the priority of the task:
4221 * To be able to change p->policy safely, the appropriate
4222 * runqueue lock must be held.
4224 rq
= task_rq_lock(p
, &rf
);
4225 update_rq_clock(rq
);
4228 * Changing the policy of the stop threads its a very bad idea:
4230 if (p
== rq
->stop
) {
4231 task_rq_unlock(rq
, p
, &rf
);
4236 * If not changing anything there's no need to proceed further,
4237 * but store a possible modification of reset_on_fork.
4239 if (unlikely(policy
== p
->policy
)) {
4240 if (fair_policy(policy
) && attr
->sched_nice
!= task_nice(p
))
4242 if (rt_policy(policy
) && attr
->sched_priority
!= p
->rt_priority
)
4244 if (dl_policy(policy
) && dl_param_changed(p
, attr
))
4247 p
->sched_reset_on_fork
= reset_on_fork
;
4248 task_rq_unlock(rq
, p
, &rf
);
4254 #ifdef CONFIG_RT_GROUP_SCHED
4256 * Do not allow realtime tasks into groups that have no runtime
4259 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4260 task_group(p
)->rt_bandwidth
.rt_runtime
== 0 &&
4261 !task_group_is_autogroup(task_group(p
))) {
4262 task_rq_unlock(rq
, p
, &rf
);
4267 if (dl_bandwidth_enabled() && dl_policy(policy
) &&
4268 !(attr
->sched_flags
& SCHED_FLAG_SUGOV
)) {
4269 cpumask_t
*span
= rq
->rd
->span
;
4272 * Don't allow tasks with an affinity mask smaller than
4273 * the entire root_domain to become SCHED_DEADLINE. We
4274 * will also fail if there's no bandwidth available.
4276 if (!cpumask_subset(span
, &p
->cpus_allowed
) ||
4277 rq
->rd
->dl_bw
.bw
== 0) {
4278 task_rq_unlock(rq
, p
, &rf
);
4285 /* Re-check policy now with rq lock held: */
4286 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4287 policy
= oldpolicy
= -1;
4288 task_rq_unlock(rq
, p
, &rf
);
4293 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4294 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4297 if ((dl_policy(policy
) || dl_task(p
)) && sched_dl_overflow(p
, policy
, attr
)) {
4298 task_rq_unlock(rq
, p
, &rf
);
4302 p
->sched_reset_on_fork
= reset_on_fork
;
4307 * Take priority boosted tasks into account. If the new
4308 * effective priority is unchanged, we just store the new
4309 * normal parameters and do not touch the scheduler class and
4310 * the runqueue. This will be done when the task deboost
4313 new_effective_prio
= rt_effective_prio(p
, newprio
);
4314 if (new_effective_prio
== oldprio
)
4315 queue_flags
&= ~DEQUEUE_MOVE
;
4318 queued
= task_on_rq_queued(p
);
4319 running
= task_current(rq
, p
);
4321 dequeue_task(rq
, p
, queue_flags
);
4323 put_prev_task(rq
, p
);
4325 prev_class
= p
->sched_class
;
4326 __setscheduler(rq
, p
, attr
, pi
);
4330 * We enqueue to tail when the priority of a task is
4331 * increased (user space view).
4333 if (oldprio
< p
->prio
)
4334 queue_flags
|= ENQUEUE_HEAD
;
4336 enqueue_task(rq
, p
, queue_flags
);
4339 set_curr_task(rq
, p
);
4341 check_class_changed(rq
, p
, prev_class
, oldprio
);
4343 /* Avoid rq from going away on us: */
4345 task_rq_unlock(rq
, p
, &rf
);
4348 rt_mutex_adjust_pi(p
);
4350 /* Run balance callbacks after we've adjusted the PI chain: */
4351 balance_callback(rq
);
4357 static int _sched_setscheduler(struct task_struct
*p
, int policy
,
4358 const struct sched_param
*param
, bool check
)
4360 struct sched_attr attr
= {
4361 .sched_policy
= policy
,
4362 .sched_priority
= param
->sched_priority
,
4363 .sched_nice
= PRIO_TO_NICE(p
->static_prio
),
4366 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4367 if ((policy
!= SETPARAM_POLICY
) && (policy
& SCHED_RESET_ON_FORK
)) {
4368 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4369 policy
&= ~SCHED_RESET_ON_FORK
;
4370 attr
.sched_policy
= policy
;
4373 return __sched_setscheduler(p
, &attr
, check
, true);
4376 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4377 * @p: the task in question.
4378 * @policy: new policy.
4379 * @param: structure containing the new RT priority.
4381 * Return: 0 on success. An error code otherwise.
4383 * NOTE that the task may be already dead.
4385 int sched_setscheduler(struct task_struct
*p
, int policy
,
4386 const struct sched_param
*param
)
4388 return _sched_setscheduler(p
, policy
, param
, true);
4390 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4392 int sched_setattr(struct task_struct
*p
, const struct sched_attr
*attr
)
4394 return __sched_setscheduler(p
, attr
, true, true);
4396 EXPORT_SYMBOL_GPL(sched_setattr
);
4398 int sched_setattr_nocheck(struct task_struct
*p
, const struct sched_attr
*attr
)
4400 return __sched_setscheduler(p
, attr
, false, true);
4404 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4405 * @p: the task in question.
4406 * @policy: new policy.
4407 * @param: structure containing the new RT priority.
4409 * Just like sched_setscheduler, only don't bother checking if the
4410 * current context has permission. For example, this is needed in
4411 * stop_machine(): we create temporary high priority worker threads,
4412 * but our caller might not have that capability.
4414 * Return: 0 on success. An error code otherwise.
4416 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4417 const struct sched_param
*param
)
4419 return _sched_setscheduler(p
, policy
, param
, false);
4421 EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck
);
4424 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4426 struct sched_param lparam
;
4427 struct task_struct
*p
;
4430 if (!param
|| pid
< 0)
4432 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4437 p
= find_process_by_pid(pid
);
4439 retval
= sched_setscheduler(p
, policy
, &lparam
);
4446 * Mimics kernel/events/core.c perf_copy_attr().
4448 static int sched_copy_attr(struct sched_attr __user
*uattr
, struct sched_attr
*attr
)
4453 if (!access_ok(VERIFY_WRITE
, uattr
, SCHED_ATTR_SIZE_VER0
))
4456 /* Zero the full structure, so that a short copy will be nice: */
4457 memset(attr
, 0, sizeof(*attr
));
4459 ret
= get_user(size
, &uattr
->size
);
4463 /* Bail out on silly large: */
4464 if (size
> PAGE_SIZE
)
4467 /* ABI compatibility quirk: */
4469 size
= SCHED_ATTR_SIZE_VER0
;
4471 if (size
< SCHED_ATTR_SIZE_VER0
)
4475 * If we're handed a bigger struct than we know of,
4476 * ensure all the unknown bits are 0 - i.e. new
4477 * user-space does not rely on any kernel feature
4478 * extensions we dont know about yet.
4480 if (size
> sizeof(*attr
)) {
4481 unsigned char __user
*addr
;
4482 unsigned char __user
*end
;
4485 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4486 end
= (void __user
*)uattr
+ size
;
4488 for (; addr
< end
; addr
++) {
4489 ret
= get_user(val
, addr
);
4495 size
= sizeof(*attr
);
4498 ret
= copy_from_user(attr
, uattr
, size
);
4503 * XXX: Do we want to be lenient like existing syscalls; or do we want
4504 * to be strict and return an error on out-of-bounds values?
4506 attr
->sched_nice
= clamp(attr
->sched_nice
, MIN_NICE
, MAX_NICE
);
4511 put_user(sizeof(*attr
), &uattr
->size
);
4516 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4517 * @pid: the pid in question.
4518 * @policy: new policy.
4519 * @param: structure containing the new RT priority.
4521 * Return: 0 on success. An error code otherwise.
4523 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
, struct sched_param __user
*, param
)
4528 return do_sched_setscheduler(pid
, policy
, param
);
4532 * sys_sched_setparam - set/change the RT priority of a thread
4533 * @pid: the pid in question.
4534 * @param: structure containing the new RT priority.
4536 * Return: 0 on success. An error code otherwise.
4538 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4540 return do_sched_setscheduler(pid
, SETPARAM_POLICY
, param
);
4544 * sys_sched_setattr - same as above, but with extended sched_attr
4545 * @pid: the pid in question.
4546 * @uattr: structure containing the extended parameters.
4547 * @flags: for future extension.
4549 SYSCALL_DEFINE3(sched_setattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4550 unsigned int, flags
)
4552 struct sched_attr attr
;
4553 struct task_struct
*p
;
4556 if (!uattr
|| pid
< 0 || flags
)
4559 retval
= sched_copy_attr(uattr
, &attr
);
4563 if ((int)attr
.sched_policy
< 0)
4568 p
= find_process_by_pid(pid
);
4570 retval
= sched_setattr(p
, &attr
);
4577 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4578 * @pid: the pid in question.
4580 * Return: On success, the policy of the thread. Otherwise, a negative error
4583 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4585 struct task_struct
*p
;
4593 p
= find_process_by_pid(pid
);
4595 retval
= security_task_getscheduler(p
);
4598 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4605 * sys_sched_getparam - get the RT priority of a thread
4606 * @pid: the pid in question.
4607 * @param: structure containing the RT priority.
4609 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4612 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4614 struct sched_param lp
= { .sched_priority
= 0 };
4615 struct task_struct
*p
;
4618 if (!param
|| pid
< 0)
4622 p
= find_process_by_pid(pid
);
4627 retval
= security_task_getscheduler(p
);
4631 if (task_has_rt_policy(p
))
4632 lp
.sched_priority
= p
->rt_priority
;
4636 * This one might sleep, we cannot do it with a spinlock held ...
4638 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4647 static int sched_read_attr(struct sched_attr __user
*uattr
,
4648 struct sched_attr
*attr
,
4653 if (!access_ok(VERIFY_WRITE
, uattr
, usize
))
4657 * If we're handed a smaller struct than we know of,
4658 * ensure all the unknown bits are 0 - i.e. old
4659 * user-space does not get uncomplete information.
4661 if (usize
< sizeof(*attr
)) {
4662 unsigned char *addr
;
4665 addr
= (void *)attr
+ usize
;
4666 end
= (void *)attr
+ sizeof(*attr
);
4668 for (; addr
< end
; addr
++) {
4676 ret
= copy_to_user(uattr
, attr
, attr
->size
);
4684 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
4685 * @pid: the pid in question.
4686 * @uattr: structure containing the extended parameters.
4687 * @size: sizeof(attr) for fwd/bwd comp.
4688 * @flags: for future extension.
4690 SYSCALL_DEFINE4(sched_getattr
, pid_t
, pid
, struct sched_attr __user
*, uattr
,
4691 unsigned int, size
, unsigned int, flags
)
4693 struct sched_attr attr
= {
4694 .size
= sizeof(struct sched_attr
),
4696 struct task_struct
*p
;
4699 if (!uattr
|| pid
< 0 || size
> PAGE_SIZE
||
4700 size
< SCHED_ATTR_SIZE_VER0
|| flags
)
4704 p
= find_process_by_pid(pid
);
4709 retval
= security_task_getscheduler(p
);
4713 attr
.sched_policy
= p
->policy
;
4714 if (p
->sched_reset_on_fork
)
4715 attr
.sched_flags
|= SCHED_FLAG_RESET_ON_FORK
;
4716 if (task_has_dl_policy(p
))
4717 __getparam_dl(p
, &attr
);
4718 else if (task_has_rt_policy(p
))
4719 attr
.sched_priority
= p
->rt_priority
;
4721 attr
.sched_nice
= task_nice(p
);
4725 retval
= sched_read_attr(uattr
, &attr
, size
);
4733 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4735 cpumask_var_t cpus_allowed
, new_mask
;
4736 struct task_struct
*p
;
4741 p
= find_process_by_pid(pid
);
4747 /* Prevent p going away */
4751 if (p
->flags
& PF_NO_SETAFFINITY
) {
4755 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4759 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4761 goto out_free_cpus_allowed
;
4764 if (!check_same_owner(p
)) {
4766 if (!ns_capable(__task_cred(p
)->user_ns
, CAP_SYS_NICE
)) {
4768 goto out_free_new_mask
;
4773 retval
= security_task_setscheduler(p
);
4775 goto out_free_new_mask
;
4778 cpuset_cpus_allowed(p
, cpus_allowed
);
4779 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4782 * Since bandwidth control happens on root_domain basis,
4783 * if admission test is enabled, we only admit -deadline
4784 * tasks allowed to run on all the CPUs in the task's
4788 if (task_has_dl_policy(p
) && dl_bandwidth_enabled()) {
4790 if (!cpumask_subset(task_rq(p
)->rd
->span
, new_mask
)) {
4793 goto out_free_new_mask
;
4799 retval
= __set_cpus_allowed_ptr(p
, new_mask
, true);
4802 cpuset_cpus_allowed(p
, cpus_allowed
);
4803 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4805 * We must have raced with a concurrent cpuset
4806 * update. Just reset the cpus_allowed to the
4807 * cpuset's cpus_allowed
4809 cpumask_copy(new_mask
, cpus_allowed
);
4814 free_cpumask_var(new_mask
);
4815 out_free_cpus_allowed
:
4816 free_cpumask_var(cpus_allowed
);
4822 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4823 struct cpumask
*new_mask
)
4825 if (len
< cpumask_size())
4826 cpumask_clear(new_mask
);
4827 else if (len
> cpumask_size())
4828 len
= cpumask_size();
4830 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4834 * sys_sched_setaffinity - set the CPU affinity of a process
4835 * @pid: pid of the process
4836 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4837 * @user_mask_ptr: user-space pointer to the new CPU mask
4839 * Return: 0 on success. An error code otherwise.
4841 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4842 unsigned long __user
*, user_mask_ptr
)
4844 cpumask_var_t new_mask
;
4847 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4850 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4852 retval
= sched_setaffinity(pid
, new_mask
);
4853 free_cpumask_var(new_mask
);
4857 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4859 struct task_struct
*p
;
4860 unsigned long flags
;
4866 p
= find_process_by_pid(pid
);
4870 retval
= security_task_getscheduler(p
);
4874 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4875 cpumask_and(mask
, &p
->cpus_allowed
, cpu_active_mask
);
4876 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4885 * sys_sched_getaffinity - get the CPU affinity of a process
4886 * @pid: pid of the process
4887 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4888 * @user_mask_ptr: user-space pointer to hold the current CPU mask
4890 * Return: size of CPU mask copied to user_mask_ptr on success. An
4891 * error code otherwise.
4893 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4894 unsigned long __user
*, user_mask_ptr
)
4899 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4901 if (len
& (sizeof(unsigned long)-1))
4904 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4907 ret
= sched_getaffinity(pid
, mask
);
4909 unsigned int retlen
= min(len
, cpumask_size());
4911 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4916 free_cpumask_var(mask
);
4922 * sys_sched_yield - yield the current processor to other threads.
4924 * This function yields the current CPU to other tasks. If there are no
4925 * other threads running on this CPU then this function will return.
4929 static void do_sched_yield(void)
4934 rq
= this_rq_lock_irq(&rf
);
4936 schedstat_inc(rq
->yld_count
);
4937 current
->sched_class
->yield_task(rq
);
4940 * Since we are going to call schedule() anyway, there's
4941 * no need to preempt or enable interrupts:
4945 sched_preempt_enable_no_resched();
4950 SYSCALL_DEFINE0(sched_yield
)
4956 #ifndef CONFIG_PREEMPT
4957 int __sched
_cond_resched(void)
4959 if (should_resched(0)) {
4960 preempt_schedule_common();
4966 EXPORT_SYMBOL(_cond_resched
);
4970 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4971 * call schedule, and on return reacquire the lock.
4973 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4974 * operations here to prevent schedule() from being called twice (once via
4975 * spin_unlock(), once by hand).
4977 int __cond_resched_lock(spinlock_t
*lock
)
4979 int resched
= should_resched(PREEMPT_LOCK_OFFSET
);
4982 lockdep_assert_held(lock
);
4984 if (spin_needbreak(lock
) || resched
) {
4987 preempt_schedule_common();
4995 EXPORT_SYMBOL(__cond_resched_lock
);
4998 * yield - yield the current processor to other threads.
5000 * Do not ever use this function, there's a 99% chance you're doing it wrong.
5002 * The scheduler is at all times free to pick the calling task as the most
5003 * eligible task to run, if removing the yield() call from your code breaks
5004 * it, its already broken.
5006 * Typical broken usage is:
5011 * where one assumes that yield() will let 'the other' process run that will
5012 * make event true. If the current task is a SCHED_FIFO task that will never
5013 * happen. Never use yield() as a progress guarantee!!
5015 * If you want to use yield() to wait for something, use wait_event().
5016 * If you want to use yield() to be 'nice' for others, use cond_resched().
5017 * If you still want to use yield(), do not!
5019 void __sched
yield(void)
5021 set_current_state(TASK_RUNNING
);
5024 EXPORT_SYMBOL(yield
);
5027 * yield_to - yield the current processor to another thread in
5028 * your thread group, or accelerate that thread toward the
5029 * processor it's on.
5031 * @preempt: whether task preemption is allowed or not
5033 * It's the caller's job to ensure that the target task struct
5034 * can't go away on us before we can do any checks.
5037 * true (>0) if we indeed boosted the target task.
5038 * false (0) if we failed to boost the target.
5039 * -ESRCH if there's no task to yield to.
5041 int __sched
yield_to(struct task_struct
*p
, bool preempt
)
5043 struct task_struct
*curr
= current
;
5044 struct rq
*rq
, *p_rq
;
5045 unsigned long flags
;
5048 local_irq_save(flags
);
5054 * If we're the only runnable task on the rq and target rq also
5055 * has only one task, there's absolutely no point in yielding.
5057 if (rq
->nr_running
== 1 && p_rq
->nr_running
== 1) {
5062 double_rq_lock(rq
, p_rq
);
5063 if (task_rq(p
) != p_rq
) {
5064 double_rq_unlock(rq
, p_rq
);
5068 if (!curr
->sched_class
->yield_to_task
)
5071 if (curr
->sched_class
!= p
->sched_class
)
5074 if (task_running(p_rq
, p
) || p
->state
)
5077 yielded
= curr
->sched_class
->yield_to_task(rq
, p
, preempt
);
5079 schedstat_inc(rq
->yld_count
);
5081 * Make p's CPU reschedule; pick_next_entity takes care of
5084 if (preempt
&& rq
!= p_rq
)
5089 double_rq_unlock(rq
, p_rq
);
5091 local_irq_restore(flags
);
5098 EXPORT_SYMBOL_GPL(yield_to
);
5100 int io_schedule_prepare(void)
5102 int old_iowait
= current
->in_iowait
;
5104 current
->in_iowait
= 1;
5105 blk_schedule_flush_plug(current
);
5110 void io_schedule_finish(int token
)
5112 current
->in_iowait
= token
;
5116 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5117 * that process accounting knows that this is a task in IO wait state.
5119 long __sched
io_schedule_timeout(long timeout
)
5124 token
= io_schedule_prepare();
5125 ret
= schedule_timeout(timeout
);
5126 io_schedule_finish(token
);
5130 EXPORT_SYMBOL(io_schedule_timeout
);
5132 void io_schedule(void)
5136 token
= io_schedule_prepare();
5138 io_schedule_finish(token
);
5140 EXPORT_SYMBOL(io_schedule
);
5143 * sys_sched_get_priority_max - return maximum RT priority.
5144 * @policy: scheduling class.
5146 * Return: On success, this syscall returns the maximum
5147 * rt_priority that can be used by a given scheduling class.
5148 * On failure, a negative error code is returned.
5150 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5157 ret
= MAX_USER_RT_PRIO
-1;
5159 case SCHED_DEADLINE
:
5170 * sys_sched_get_priority_min - return minimum RT priority.
5171 * @policy: scheduling class.
5173 * Return: On success, this syscall returns the minimum
5174 * rt_priority that can be used by a given scheduling class.
5175 * On failure, a negative error code is returned.
5177 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5186 case SCHED_DEADLINE
:
5195 static int sched_rr_get_interval(pid_t pid
, struct timespec64
*t
)
5197 struct task_struct
*p
;
5198 unsigned int time_slice
;
5208 p
= find_process_by_pid(pid
);
5212 retval
= security_task_getscheduler(p
);
5216 rq
= task_rq_lock(p
, &rf
);
5218 if (p
->sched_class
->get_rr_interval
)
5219 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5220 task_rq_unlock(rq
, p
, &rf
);
5223 jiffies_to_timespec64(time_slice
, t
);
5232 * sys_sched_rr_get_interval - return the default timeslice of a process.
5233 * @pid: pid of the process.
5234 * @interval: userspace pointer to the timeslice value.
5236 * this syscall writes the default timeslice value of a given process
5237 * into the user-space timespec buffer. A value of '0' means infinity.
5239 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
5242 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5243 struct __kernel_timespec __user
*, interval
)
5245 struct timespec64 t
;
5246 int retval
= sched_rr_get_interval(pid
, &t
);
5249 retval
= put_timespec64(&t
, interval
);
5254 #ifdef CONFIG_COMPAT_32BIT_TIME
5255 COMPAT_SYSCALL_DEFINE2(sched_rr_get_interval
,
5257 struct old_timespec32 __user
*, interval
)
5259 struct timespec64 t
;
5260 int retval
= sched_rr_get_interval(pid
, &t
);
5263 retval
= put_old_timespec32(&t
, interval
);
5268 void sched_show_task(struct task_struct
*p
)
5270 unsigned long free
= 0;
5273 if (!try_get_task_stack(p
))
5276 printk(KERN_INFO
"%-15.15s %c", p
->comm
, task_state_to_char(p
));
5278 if (p
->state
== TASK_RUNNING
)
5279 printk(KERN_CONT
" running task ");
5280 #ifdef CONFIG_DEBUG_STACK_USAGE
5281 free
= stack_not_used(p
);
5286 ppid
= task_pid_nr(rcu_dereference(p
->real_parent
));
5288 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5289 task_pid_nr(p
), ppid
,
5290 (unsigned long)task_thread_info(p
)->flags
);
5292 print_worker_info(KERN_INFO
, p
);
5293 show_stack(p
, NULL
);
5296 EXPORT_SYMBOL_GPL(sched_show_task
);
5299 state_filter_match(unsigned long state_filter
, struct task_struct
*p
)
5301 /* no filter, everything matches */
5305 /* filter, but doesn't match */
5306 if (!(p
->state
& state_filter
))
5310 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
5313 if (state_filter
== TASK_UNINTERRUPTIBLE
&& p
->state
== TASK_IDLE
)
5320 void show_state_filter(unsigned long state_filter
)
5322 struct task_struct
*g
, *p
;
5324 #if BITS_PER_LONG == 32
5326 " task PC stack pid father\n");
5329 " task PC stack pid father\n");
5332 for_each_process_thread(g
, p
) {
5334 * reset the NMI-timeout, listing all files on a slow
5335 * console might take a lot of time:
5336 * Also, reset softlockup watchdogs on all CPUs, because
5337 * another CPU might be blocked waiting for us to process
5340 touch_nmi_watchdog();
5341 touch_all_softlockup_watchdogs();
5342 if (state_filter_match(state_filter
, p
))
5346 #ifdef CONFIG_SCHED_DEBUG
5348 sysrq_sched_debug_show();
5352 * Only show locks if all tasks are dumped:
5355 debug_show_all_locks();
5359 * init_idle - set up an idle thread for a given CPU
5360 * @idle: task in question
5361 * @cpu: CPU the idle task belongs to
5363 * NOTE: this function does not set the idle thread's NEED_RESCHED
5364 * flag, to make booting more robust.
5366 void init_idle(struct task_struct
*idle
, int cpu
)
5368 struct rq
*rq
= cpu_rq(cpu
);
5369 unsigned long flags
;
5371 raw_spin_lock_irqsave(&idle
->pi_lock
, flags
);
5372 raw_spin_lock(&rq
->lock
);
5374 __sched_fork(0, idle
);
5375 idle
->state
= TASK_RUNNING
;
5376 idle
->se
.exec_start
= sched_clock();
5377 idle
->flags
|= PF_IDLE
;
5379 kasan_unpoison_task_stack(idle
);
5383 * Its possible that init_idle() gets called multiple times on a task,
5384 * in that case do_set_cpus_allowed() will not do the right thing.
5386 * And since this is boot we can forgo the serialization.
5388 set_cpus_allowed_common(idle
, cpumask_of(cpu
));
5391 * We're having a chicken and egg problem, even though we are
5392 * holding rq->lock, the CPU isn't yet set to this CPU so the
5393 * lockdep check in task_group() will fail.
5395 * Similar case to sched_fork(). / Alternatively we could
5396 * use task_rq_lock() here and obtain the other rq->lock.
5401 __set_task_cpu(idle
, cpu
);
5404 rq
->curr
= rq
->idle
= idle
;
5405 idle
->on_rq
= TASK_ON_RQ_QUEUED
;
5409 raw_spin_unlock(&rq
->lock
);
5410 raw_spin_unlock_irqrestore(&idle
->pi_lock
, flags
);
5412 /* Set the preempt count _outside_ the spinlocks! */
5413 init_idle_preempt_count(idle
, cpu
);
5416 * The idle tasks have their own, simple scheduling class:
5418 idle
->sched_class
= &idle_sched_class
;
5419 ftrace_graph_init_idle_task(idle
, cpu
);
5420 vtime_init_idle(idle
, cpu
);
5422 sprintf(idle
->comm
, "%s/%d", INIT_TASK_COMM
, cpu
);
5428 int cpuset_cpumask_can_shrink(const struct cpumask
*cur
,
5429 const struct cpumask
*trial
)
5433 if (!cpumask_weight(cur
))
5436 ret
= dl_cpuset_cpumask_can_shrink(cur
, trial
);
5441 int task_can_attach(struct task_struct
*p
,
5442 const struct cpumask
*cs_cpus_allowed
)
5447 * Kthreads which disallow setaffinity shouldn't be moved
5448 * to a new cpuset; we don't want to change their CPU
5449 * affinity and isolating such threads by their set of
5450 * allowed nodes is unnecessary. Thus, cpusets are not
5451 * applicable for such threads. This prevents checking for
5452 * success of set_cpus_allowed_ptr() on all attached tasks
5453 * before cpus_allowed may be changed.
5455 if (p
->flags
& PF_NO_SETAFFINITY
) {
5460 if (dl_task(p
) && !cpumask_intersects(task_rq(p
)->rd
->span
,
5462 ret
= dl_task_can_attach(p
, cs_cpus_allowed
);
5468 bool sched_smp_initialized __read_mostly
;
5470 #ifdef CONFIG_NUMA_BALANCING
5471 /* Migrate current task p to target_cpu */
5472 int migrate_task_to(struct task_struct
*p
, int target_cpu
)
5474 struct migration_arg arg
= { p
, target_cpu
};
5475 int curr_cpu
= task_cpu(p
);
5477 if (curr_cpu
== target_cpu
)
5480 if (!cpumask_test_cpu(target_cpu
, &p
->cpus_allowed
))
5483 /* TODO: This is not properly updating schedstats */
5485 trace_sched_move_numa(p
, curr_cpu
, target_cpu
);
5486 return stop_one_cpu(curr_cpu
, migration_cpu_stop
, &arg
);
5490 * Requeue a task on a given node and accurately track the number of NUMA
5491 * tasks on the runqueues
5493 void sched_setnuma(struct task_struct
*p
, int nid
)
5495 bool queued
, running
;
5499 rq
= task_rq_lock(p
, &rf
);
5500 queued
= task_on_rq_queued(p
);
5501 running
= task_current(rq
, p
);
5504 dequeue_task(rq
, p
, DEQUEUE_SAVE
);
5506 put_prev_task(rq
, p
);
5508 p
->numa_preferred_nid
= nid
;
5511 enqueue_task(rq
, p
, ENQUEUE_RESTORE
| ENQUEUE_NOCLOCK
);
5513 set_curr_task(rq
, p
);
5514 task_rq_unlock(rq
, p
, &rf
);
5516 #endif /* CONFIG_NUMA_BALANCING */
5518 #ifdef CONFIG_HOTPLUG_CPU
5520 * Ensure that the idle task is using init_mm right before its CPU goes
5523 void idle_task_exit(void)
5525 struct mm_struct
*mm
= current
->active_mm
;
5527 BUG_ON(cpu_online(smp_processor_id()));
5529 if (mm
!= &init_mm
) {
5530 switch_mm(mm
, &init_mm
, current
);
5531 current
->active_mm
= &init_mm
;
5532 finish_arch_post_lock_switch();
5538 * Since this CPU is going 'away' for a while, fold any nr_active delta
5539 * we might have. Assumes we're called after migrate_tasks() so that the
5540 * nr_active count is stable. We need to take the teardown thread which
5541 * is calling this into account, so we hand in adjust = 1 to the load
5544 * Also see the comment "Global load-average calculations".
5546 static void calc_load_migrate(struct rq
*rq
)
5548 long delta
= calc_load_fold_active(rq
, 1);
5550 atomic_long_add(delta
, &calc_load_tasks
);
5553 static void put_prev_task_fake(struct rq
*rq
, struct task_struct
*prev
)
5557 static const struct sched_class fake_sched_class
= {
5558 .put_prev_task
= put_prev_task_fake
,
5561 static struct task_struct fake_task
= {
5563 * Avoid pull_{rt,dl}_task()
5565 .prio
= MAX_PRIO
+ 1,
5566 .sched_class
= &fake_sched_class
,
5570 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5571 * try_to_wake_up()->select_task_rq().
5573 * Called with rq->lock held even though we'er in stop_machine() and
5574 * there's no concurrency possible, we hold the required locks anyway
5575 * because of lock validation efforts.
5577 static void migrate_tasks(struct rq
*dead_rq
, struct rq_flags
*rf
)
5579 struct rq
*rq
= dead_rq
;
5580 struct task_struct
*next
, *stop
= rq
->stop
;
5581 struct rq_flags orf
= *rf
;
5585 * Fudge the rq selection such that the below task selection loop
5586 * doesn't get stuck on the currently eligible stop task.
5588 * We're currently inside stop_machine() and the rq is either stuck
5589 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5590 * either way we should never end up calling schedule() until we're
5596 * put_prev_task() and pick_next_task() sched
5597 * class method both need to have an up-to-date
5598 * value of rq->clock[_task]
5600 update_rq_clock(rq
);
5604 * There's this thread running, bail when that's the only
5607 if (rq
->nr_running
== 1)
5611 * pick_next_task() assumes pinned rq->lock:
5613 next
= pick_next_task(rq
, &fake_task
, rf
);
5615 put_prev_task(rq
, next
);
5618 * Rules for changing task_struct::cpus_allowed are holding
5619 * both pi_lock and rq->lock, such that holding either
5620 * stabilizes the mask.
5622 * Drop rq->lock is not quite as disastrous as it usually is
5623 * because !cpu_active at this point, which means load-balance
5624 * will not interfere. Also, stop-machine.
5627 raw_spin_lock(&next
->pi_lock
);
5631 * Since we're inside stop-machine, _nothing_ should have
5632 * changed the task, WARN if weird stuff happened, because in
5633 * that case the above rq->lock drop is a fail too.
5635 if (WARN_ON(task_rq(next
) != rq
|| !task_on_rq_queued(next
))) {
5636 raw_spin_unlock(&next
->pi_lock
);
5640 /* Find suitable destination for @next, with force if needed. */
5641 dest_cpu
= select_fallback_rq(dead_rq
->cpu
, next
);
5642 rq
= __migrate_task(rq
, rf
, next
, dest_cpu
);
5643 if (rq
!= dead_rq
) {
5649 raw_spin_unlock(&next
->pi_lock
);
5654 #endif /* CONFIG_HOTPLUG_CPU */
5656 void set_rq_online(struct rq
*rq
)
5659 const struct sched_class
*class;
5661 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5664 for_each_class(class) {
5665 if (class->rq_online
)
5666 class->rq_online(rq
);
5671 void set_rq_offline(struct rq
*rq
)
5674 const struct sched_class
*class;
5676 for_each_class(class) {
5677 if (class->rq_offline
)
5678 class->rq_offline(rq
);
5681 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5687 * used to mark begin/end of suspend/resume:
5689 static int num_cpus_frozen
;
5692 * Update cpusets according to cpu_active mask. If cpusets are
5693 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
5694 * around partition_sched_domains().
5696 * If we come here as part of a suspend/resume, don't touch cpusets because we
5697 * want to restore it back to its original state upon resume anyway.
5699 static void cpuset_cpu_active(void)
5701 if (cpuhp_tasks_frozen
) {
5703 * num_cpus_frozen tracks how many CPUs are involved in suspend
5704 * resume sequence. As long as this is not the last online
5705 * operation in the resume sequence, just build a single sched
5706 * domain, ignoring cpusets.
5708 partition_sched_domains(1, NULL
, NULL
);
5709 if (--num_cpus_frozen
)
5712 * This is the last CPU online operation. So fall through and
5713 * restore the original sched domains by considering the
5714 * cpuset configurations.
5716 cpuset_force_rebuild();
5718 cpuset_update_active_cpus();
5721 static int cpuset_cpu_inactive(unsigned int cpu
)
5723 if (!cpuhp_tasks_frozen
) {
5724 if (dl_cpu_busy(cpu
))
5726 cpuset_update_active_cpus();
5729 partition_sched_domains(1, NULL
, NULL
);
5734 int sched_cpu_activate(unsigned int cpu
)
5736 struct rq
*rq
= cpu_rq(cpu
);
5739 #ifdef CONFIG_SCHED_SMT
5741 * The sched_smt_present static key needs to be evaluated on every
5742 * hotplug event because at boot time SMT might be disabled when
5743 * the number of booted CPUs is limited.
5745 * If then later a sibling gets hotplugged, then the key would stay
5746 * off and SMT scheduling would never be functional.
5748 if (cpumask_weight(cpu_smt_mask(cpu
)) > 1)
5749 static_branch_enable_cpuslocked(&sched_smt_present
);
5751 set_cpu_active(cpu
, true);
5753 if (sched_smp_initialized
) {
5754 sched_domains_numa_masks_set(cpu
);
5755 cpuset_cpu_active();
5759 * Put the rq online, if not already. This happens:
5761 * 1) In the early boot process, because we build the real domains
5762 * after all CPUs have been brought up.
5764 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
5767 rq_lock_irqsave(rq
, &rf
);
5769 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5772 rq_unlock_irqrestore(rq
, &rf
);
5774 update_max_interval();
5779 int sched_cpu_deactivate(unsigned int cpu
)
5783 set_cpu_active(cpu
, false);
5785 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
5786 * users of this state to go away such that all new such users will
5789 * Do sync before park smpboot threads to take care the rcu boost case.
5791 synchronize_rcu_mult(call_rcu
, call_rcu_sched
);
5793 if (!sched_smp_initialized
)
5796 ret
= cpuset_cpu_inactive(cpu
);
5798 set_cpu_active(cpu
, true);
5801 sched_domains_numa_masks_clear(cpu
);
5805 static void sched_rq_cpu_starting(unsigned int cpu
)
5807 struct rq
*rq
= cpu_rq(cpu
);
5809 rq
->calc_load_update
= calc_load_update
;
5810 update_max_interval();
5813 int sched_cpu_starting(unsigned int cpu
)
5815 sched_rq_cpu_starting(cpu
);
5816 sched_tick_start(cpu
);
5820 #ifdef CONFIG_HOTPLUG_CPU
5821 int sched_cpu_dying(unsigned int cpu
)
5823 struct rq
*rq
= cpu_rq(cpu
);
5826 /* Handle pending wakeups and then migrate everything off */
5827 sched_ttwu_pending();
5828 sched_tick_stop(cpu
);
5830 rq_lock_irqsave(rq
, &rf
);
5832 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5835 migrate_tasks(rq
, &rf
);
5836 BUG_ON(rq
->nr_running
!= 1);
5837 rq_unlock_irqrestore(rq
, &rf
);
5839 calc_load_migrate(rq
);
5840 update_max_interval();
5841 nohz_balance_exit_idle(rq
);
5847 void __init
sched_init_smp(void)
5852 * There's no userspace yet to cause hotplug operations; hence all the
5853 * CPU masks are stable and all blatant races in the below code cannot
5856 mutex_lock(&sched_domains_mutex
);
5857 sched_init_domains(cpu_active_mask
);
5858 mutex_unlock(&sched_domains_mutex
);
5860 /* Move init over to a non-isolated CPU */
5861 if (set_cpus_allowed_ptr(current
, housekeeping_cpumask(HK_FLAG_DOMAIN
)) < 0)
5863 sched_init_granularity();
5865 init_sched_rt_class();
5866 init_sched_dl_class();
5868 sched_smp_initialized
= true;
5871 static int __init
migration_init(void)
5873 sched_rq_cpu_starting(smp_processor_id());
5876 early_initcall(migration_init
);
5879 void __init
sched_init_smp(void)
5881 sched_init_granularity();
5883 #endif /* CONFIG_SMP */
5885 int in_sched_functions(unsigned long addr
)
5887 return in_lock_functions(addr
) ||
5888 (addr
>= (unsigned long)__sched_text_start
5889 && addr
< (unsigned long)__sched_text_end
);
5892 #ifdef CONFIG_CGROUP_SCHED
5894 * Default task group.
5895 * Every task in system belongs to this group at bootup.
5897 struct task_group root_task_group
;
5898 LIST_HEAD(task_groups
);
5900 /* Cacheline aligned slab cache for task_group */
5901 static struct kmem_cache
*task_group_cache __read_mostly
;
5904 DECLARE_PER_CPU(cpumask_var_t
, load_balance_mask
);
5905 DECLARE_PER_CPU(cpumask_var_t
, select_idle_mask
);
5907 void __init
sched_init(void)
5910 unsigned long alloc_size
= 0, ptr
;
5914 #ifdef CONFIG_FAIR_GROUP_SCHED
5915 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5917 #ifdef CONFIG_RT_GROUP_SCHED
5918 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
5921 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
5923 #ifdef CONFIG_FAIR_GROUP_SCHED
5924 root_task_group
.se
= (struct sched_entity
**)ptr
;
5925 ptr
+= nr_cpu_ids
* sizeof(void **);
5927 root_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
5928 ptr
+= nr_cpu_ids
* sizeof(void **);
5930 #endif /* CONFIG_FAIR_GROUP_SCHED */
5931 #ifdef CONFIG_RT_GROUP_SCHED
5932 root_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
5933 ptr
+= nr_cpu_ids
* sizeof(void **);
5935 root_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
5936 ptr
+= nr_cpu_ids
* sizeof(void **);
5938 #endif /* CONFIG_RT_GROUP_SCHED */
5940 #ifdef CONFIG_CPUMASK_OFFSTACK
5941 for_each_possible_cpu(i
) {
5942 per_cpu(load_balance_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5943 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5944 per_cpu(select_idle_mask
, i
) = (cpumask_var_t
)kzalloc_node(
5945 cpumask_size(), GFP_KERNEL
, cpu_to_node(i
));
5947 #endif /* CONFIG_CPUMASK_OFFSTACK */
5949 init_rt_bandwidth(&def_rt_bandwidth
, global_rt_period(), global_rt_runtime());
5950 init_dl_bandwidth(&def_dl_bandwidth
, global_rt_period(), global_rt_runtime());
5953 init_defrootdomain();
5956 #ifdef CONFIG_RT_GROUP_SCHED
5957 init_rt_bandwidth(&root_task_group
.rt_bandwidth
,
5958 global_rt_period(), global_rt_runtime());
5959 #endif /* CONFIG_RT_GROUP_SCHED */
5961 #ifdef CONFIG_CGROUP_SCHED
5962 task_group_cache
= KMEM_CACHE(task_group
, 0);
5964 list_add(&root_task_group
.list
, &task_groups
);
5965 INIT_LIST_HEAD(&root_task_group
.children
);
5966 INIT_LIST_HEAD(&root_task_group
.siblings
);
5967 autogroup_init(&init_task
);
5968 #endif /* CONFIG_CGROUP_SCHED */
5970 for_each_possible_cpu(i
) {
5974 raw_spin_lock_init(&rq
->lock
);
5976 rq
->calc_load_active
= 0;
5977 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
5978 init_cfs_rq(&rq
->cfs
);
5979 init_rt_rq(&rq
->rt
);
5980 init_dl_rq(&rq
->dl
);
5981 #ifdef CONFIG_FAIR_GROUP_SCHED
5982 root_task_group
.shares
= ROOT_TASK_GROUP_LOAD
;
5983 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
5984 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
5986 * How much CPU bandwidth does root_task_group get?
5988 * In case of task-groups formed thr' the cgroup filesystem, it
5989 * gets 100% of the CPU resources in the system. This overall
5990 * system CPU resource is divided among the tasks of
5991 * root_task_group and its child task-groups in a fair manner,
5992 * based on each entity's (task or task-group's) weight
5993 * (se->load.weight).
5995 * In other words, if root_task_group has 10 tasks of weight
5996 * 1024) and two child groups A0 and A1 (of weight 1024 each),
5997 * then A0's share of the CPU resource is:
5999 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
6001 * We achieve this by letting root_task_group's tasks sit
6002 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
6004 init_cfs_bandwidth(&root_task_group
.cfs_bandwidth
);
6005 init_tg_cfs_entry(&root_task_group
, &rq
->cfs
, NULL
, i
, NULL
);
6006 #endif /* CONFIG_FAIR_GROUP_SCHED */
6008 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
6009 #ifdef CONFIG_RT_GROUP_SCHED
6010 init_tg_rt_entry(&root_task_group
, &rq
->rt
, NULL
, i
, NULL
);
6013 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6014 rq
->cpu_load
[j
] = 0;
6019 rq
->cpu_capacity
= rq
->cpu_capacity_orig
= SCHED_CAPACITY_SCALE
;
6020 rq
->balance_callback
= NULL
;
6021 rq
->active_balance
= 0;
6022 rq
->next_balance
= jiffies
;
6027 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
6028 rq
->max_idle_balance_cost
= sysctl_sched_migration_cost
;
6030 INIT_LIST_HEAD(&rq
->cfs_tasks
);
6032 rq_attach_root(rq
, &def_root_domain
);
6033 #ifdef CONFIG_NO_HZ_COMMON
6034 rq
->last_load_update_tick
= jiffies
;
6035 rq
->last_blocked_load_update_tick
= jiffies
;
6036 atomic_set(&rq
->nohz_flags
, 0);
6038 #endif /* CONFIG_SMP */
6040 atomic_set(&rq
->nr_iowait
, 0);
6043 set_load_weight(&init_task
, false);
6046 * The boot idle thread does lazy MMU switching as well:
6049 enter_lazy_tlb(&init_mm
, current
);
6052 * Make us the idle thread. Technically, schedule() should not be
6053 * called from this thread, however somewhere below it might be,
6054 * but because we are the idle thread, we just pick up running again
6055 * when this runqueue becomes "idle".
6057 init_idle(current
, smp_processor_id());
6059 calc_load_update
= jiffies
+ LOAD_FREQ
;
6062 idle_thread_set_boot_cpu();
6064 init_sched_fair_class();
6070 scheduler_running
= 1;
6073 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
6074 static inline int preempt_count_equals(int preempt_offset
)
6076 int nested
= preempt_count() + rcu_preempt_depth();
6078 return (nested
== preempt_offset
);
6081 void __might_sleep(const char *file
, int line
, int preempt_offset
)
6084 * Blocking primitives will set (and therefore destroy) current->state,
6085 * since we will exit with TASK_RUNNING make sure we enter with it,
6086 * otherwise we will destroy state.
6088 WARN_ONCE(current
->state
!= TASK_RUNNING
&& current
->task_state_change
,
6089 "do not call blocking ops when !TASK_RUNNING; "
6090 "state=%lx set at [<%p>] %pS\n",
6092 (void *)current
->task_state_change
,
6093 (void *)current
->task_state_change
);
6095 ___might_sleep(file
, line
, preempt_offset
);
6097 EXPORT_SYMBOL(__might_sleep
);
6099 void ___might_sleep(const char *file
, int line
, int preempt_offset
)
6101 /* Ratelimiting timestamp: */
6102 static unsigned long prev_jiffy
;
6104 unsigned long preempt_disable_ip
;
6106 /* WARN_ON_ONCE() by default, no rate limit required: */
6109 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled() &&
6110 !is_idle_task(current
)) ||
6111 system_state
== SYSTEM_BOOTING
|| system_state
> SYSTEM_RUNNING
||
6115 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6117 prev_jiffy
= jiffies
;
6119 /* Save this before calling printk(), since that will clobber it: */
6120 preempt_disable_ip
= get_preempt_disable_ip(current
);
6123 "BUG: sleeping function called from invalid context at %s:%d\n",
6126 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
6127 in_atomic(), irqs_disabled(),
6128 current
->pid
, current
->comm
);
6130 if (task_stack_end_corrupted(current
))
6131 printk(KERN_EMERG
"Thread overran stack, or stack corrupted\n");
6133 debug_show_held_locks(current
);
6134 if (irqs_disabled())
6135 print_irqtrace_events(current
);
6136 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT
)
6137 && !preempt_count_equals(preempt_offset
)) {
6138 pr_err("Preemption disabled at:");
6139 print_ip_sym(preempt_disable_ip
);
6143 add_taint(TAINT_WARN
, LOCKDEP_STILL_OK
);
6145 EXPORT_SYMBOL(___might_sleep
);
6148 #ifdef CONFIG_MAGIC_SYSRQ
6149 void normalize_rt_tasks(void)
6151 struct task_struct
*g
, *p
;
6152 struct sched_attr attr
= {
6153 .sched_policy
= SCHED_NORMAL
,
6156 read_lock(&tasklist_lock
);
6157 for_each_process_thread(g
, p
) {
6159 * Only normalize user tasks:
6161 if (p
->flags
& PF_KTHREAD
)
6164 p
->se
.exec_start
= 0;
6165 schedstat_set(p
->se
.statistics
.wait_start
, 0);
6166 schedstat_set(p
->se
.statistics
.sleep_start
, 0);
6167 schedstat_set(p
->se
.statistics
.block_start
, 0);
6169 if (!dl_task(p
) && !rt_task(p
)) {
6171 * Renice negative nice level userspace
6174 if (task_nice(p
) < 0)
6175 set_user_nice(p
, 0);
6179 __sched_setscheduler(p
, &attr
, false, false);
6181 read_unlock(&tasklist_lock
);
6184 #endif /* CONFIG_MAGIC_SYSRQ */
6186 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
6188 * These functions are only useful for the IA64 MCA handling, or kdb.
6190 * They can only be called when the whole system has been
6191 * stopped - every CPU needs to be quiescent, and no scheduling
6192 * activity can take place. Using them for anything else would
6193 * be a serious bug, and as a result, they aren't even visible
6194 * under any other configuration.
6198 * curr_task - return the current task for a given CPU.
6199 * @cpu: the processor in question.
6201 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6203 * Return: The current task for @cpu.
6205 struct task_struct
*curr_task(int cpu
)
6207 return cpu_curr(cpu
);
6210 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
6214 * set_curr_task - set the current task for a given CPU.
6215 * @cpu: the processor in question.
6216 * @p: the task pointer to set.
6218 * Description: This function must only be used when non-maskable interrupts
6219 * are serviced on a separate stack. It allows the architecture to switch the
6220 * notion of the current task on a CPU in a non-blocking manner. This function
6221 * must be called with all CPU's synchronized, and interrupts disabled, the
6222 * and caller must save the original value of the current task (see
6223 * curr_task() above) and restore that value before reenabling interrupts and
6224 * re-starting the system.
6226 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6228 void ia64_set_curr_task(int cpu
, struct task_struct
*p
)
6235 #ifdef CONFIG_CGROUP_SCHED
6236 /* task_group_lock serializes the addition/removal of task groups */
6237 static DEFINE_SPINLOCK(task_group_lock
);
6239 static void sched_free_group(struct task_group
*tg
)
6241 free_fair_sched_group(tg
);
6242 free_rt_sched_group(tg
);
6244 kmem_cache_free(task_group_cache
, tg
);
6247 /* allocate runqueue etc for a new task group */
6248 struct task_group
*sched_create_group(struct task_group
*parent
)
6250 struct task_group
*tg
;
6252 tg
= kmem_cache_alloc(task_group_cache
, GFP_KERNEL
| __GFP_ZERO
);
6254 return ERR_PTR(-ENOMEM
);
6256 if (!alloc_fair_sched_group(tg
, parent
))
6259 if (!alloc_rt_sched_group(tg
, parent
))
6265 sched_free_group(tg
);
6266 return ERR_PTR(-ENOMEM
);
6269 void sched_online_group(struct task_group
*tg
, struct task_group
*parent
)
6271 unsigned long flags
;
6273 spin_lock_irqsave(&task_group_lock
, flags
);
6274 list_add_rcu(&tg
->list
, &task_groups
);
6276 /* Root should already exist: */
6279 tg
->parent
= parent
;
6280 INIT_LIST_HEAD(&tg
->children
);
6281 list_add_rcu(&tg
->siblings
, &parent
->children
);
6282 spin_unlock_irqrestore(&task_group_lock
, flags
);
6284 online_fair_sched_group(tg
);
6287 /* rcu callback to free various structures associated with a task group */
6288 static void sched_free_group_rcu(struct rcu_head
*rhp
)
6290 /* Now it should be safe to free those cfs_rqs: */
6291 sched_free_group(container_of(rhp
, struct task_group
, rcu
));
6294 void sched_destroy_group(struct task_group
*tg
)
6296 /* Wait for possible concurrent references to cfs_rqs complete: */
6297 call_rcu(&tg
->rcu
, sched_free_group_rcu
);
6300 void sched_offline_group(struct task_group
*tg
)
6302 unsigned long flags
;
6304 /* End participation in shares distribution: */
6305 unregister_fair_sched_group(tg
);
6307 spin_lock_irqsave(&task_group_lock
, flags
);
6308 list_del_rcu(&tg
->list
);
6309 list_del_rcu(&tg
->siblings
);
6310 spin_unlock_irqrestore(&task_group_lock
, flags
);
6313 static void sched_change_group(struct task_struct
*tsk
, int type
)
6315 struct task_group
*tg
;
6318 * All callers are synchronized by task_rq_lock(); we do not use RCU
6319 * which is pointless here. Thus, we pass "true" to task_css_check()
6320 * to prevent lockdep warnings.
6322 tg
= container_of(task_css_check(tsk
, cpu_cgrp_id
, true),
6323 struct task_group
, css
);
6324 tg
= autogroup_task_group(tsk
, tg
);
6325 tsk
->sched_task_group
= tg
;
6327 #ifdef CONFIG_FAIR_GROUP_SCHED
6328 if (tsk
->sched_class
->task_change_group
)
6329 tsk
->sched_class
->task_change_group(tsk
, type
);
6332 set_task_rq(tsk
, task_cpu(tsk
));
6336 * Change task's runqueue when it moves between groups.
6338 * The caller of this function should have put the task in its new group by
6339 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
6342 void sched_move_task(struct task_struct
*tsk
)
6344 int queued
, running
, queue_flags
=
6345 DEQUEUE_SAVE
| DEQUEUE_MOVE
| DEQUEUE_NOCLOCK
;
6349 rq
= task_rq_lock(tsk
, &rf
);
6350 update_rq_clock(rq
);
6352 running
= task_current(rq
, tsk
);
6353 queued
= task_on_rq_queued(tsk
);
6356 dequeue_task(rq
, tsk
, queue_flags
);
6358 put_prev_task(rq
, tsk
);
6360 sched_change_group(tsk
, TASK_MOVE_GROUP
);
6363 enqueue_task(rq
, tsk
, queue_flags
);
6365 set_curr_task(rq
, tsk
);
6367 task_rq_unlock(rq
, tsk
, &rf
);
6370 static inline struct task_group
*css_tg(struct cgroup_subsys_state
*css
)
6372 return css
? container_of(css
, struct task_group
, css
) : NULL
;
6375 static struct cgroup_subsys_state
*
6376 cpu_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
6378 struct task_group
*parent
= css_tg(parent_css
);
6379 struct task_group
*tg
;
6382 /* This is early initialization for the top cgroup */
6383 return &root_task_group
.css
;
6386 tg
= sched_create_group(parent
);
6388 return ERR_PTR(-ENOMEM
);
6393 /* Expose task group only after completing cgroup initialization */
6394 static int cpu_cgroup_css_online(struct cgroup_subsys_state
*css
)
6396 struct task_group
*tg
= css_tg(css
);
6397 struct task_group
*parent
= css_tg(css
->parent
);
6400 sched_online_group(tg
, parent
);
6404 static void cpu_cgroup_css_released(struct cgroup_subsys_state
*css
)
6406 struct task_group
*tg
= css_tg(css
);
6408 sched_offline_group(tg
);
6411 static void cpu_cgroup_css_free(struct cgroup_subsys_state
*css
)
6413 struct task_group
*tg
= css_tg(css
);
6416 * Relies on the RCU grace period between css_released() and this.
6418 sched_free_group(tg
);
6422 * This is called before wake_up_new_task(), therefore we really only
6423 * have to set its group bits, all the other stuff does not apply.
6425 static void cpu_cgroup_fork(struct task_struct
*task
)
6430 rq
= task_rq_lock(task
, &rf
);
6432 update_rq_clock(rq
);
6433 sched_change_group(task
, TASK_SET_GROUP
);
6435 task_rq_unlock(rq
, task
, &rf
);
6438 static int cpu_cgroup_can_attach(struct cgroup_taskset
*tset
)
6440 struct task_struct
*task
;
6441 struct cgroup_subsys_state
*css
;
6444 cgroup_taskset_for_each(task
, css
, tset
) {
6445 #ifdef CONFIG_RT_GROUP_SCHED
6446 if (!sched_rt_can_attach(css_tg(css
), task
))
6449 /* We don't support RT-tasks being in separate groups */
6450 if (task
->sched_class
!= &fair_sched_class
)
6454 * Serialize against wake_up_new_task() such that if its
6455 * running, we're sure to observe its full state.
6457 raw_spin_lock_irq(&task
->pi_lock
);
6459 * Avoid calling sched_move_task() before wake_up_new_task()
6460 * has happened. This would lead to problems with PELT, due to
6461 * move wanting to detach+attach while we're not attached yet.
6463 if (task
->state
== TASK_NEW
)
6465 raw_spin_unlock_irq(&task
->pi_lock
);
6473 static void cpu_cgroup_attach(struct cgroup_taskset
*tset
)
6475 struct task_struct
*task
;
6476 struct cgroup_subsys_state
*css
;
6478 cgroup_taskset_for_each(task
, css
, tset
)
6479 sched_move_task(task
);
6482 #ifdef CONFIG_FAIR_GROUP_SCHED
6483 static int cpu_shares_write_u64(struct cgroup_subsys_state
*css
,
6484 struct cftype
*cftype
, u64 shareval
)
6486 return sched_group_set_shares(css_tg(css
), scale_load(shareval
));
6489 static u64
cpu_shares_read_u64(struct cgroup_subsys_state
*css
,
6492 struct task_group
*tg
= css_tg(css
);
6494 return (u64
) scale_load_down(tg
->shares
);
6497 #ifdef CONFIG_CFS_BANDWIDTH
6498 static DEFINE_MUTEX(cfs_constraints_mutex
);
6500 const u64 max_cfs_quota_period
= 1 * NSEC_PER_SEC
; /* 1s */
6501 const u64 min_cfs_quota_period
= 1 * NSEC_PER_MSEC
; /* 1ms */
6503 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
);
6505 static int tg_set_cfs_bandwidth(struct task_group
*tg
, u64 period
, u64 quota
)
6507 int i
, ret
= 0, runtime_enabled
, runtime_was_enabled
;
6508 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6510 if (tg
== &root_task_group
)
6514 * Ensure we have at some amount of bandwidth every period. This is
6515 * to prevent reaching a state of large arrears when throttled via
6516 * entity_tick() resulting in prolonged exit starvation.
6518 if (quota
< min_cfs_quota_period
|| period
< min_cfs_quota_period
)
6522 * Likewise, bound things on the otherside by preventing insane quota
6523 * periods. This also allows us to normalize in computing quota
6526 if (period
> max_cfs_quota_period
)
6530 * Prevent race between setting of cfs_rq->runtime_enabled and
6531 * unthrottle_offline_cfs_rqs().
6534 mutex_lock(&cfs_constraints_mutex
);
6535 ret
= __cfs_schedulable(tg
, period
, quota
);
6539 runtime_enabled
= quota
!= RUNTIME_INF
;
6540 runtime_was_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
6542 * If we need to toggle cfs_bandwidth_used, off->on must occur
6543 * before making related changes, and on->off must occur afterwards
6545 if (runtime_enabled
&& !runtime_was_enabled
)
6546 cfs_bandwidth_usage_inc();
6547 raw_spin_lock_irq(&cfs_b
->lock
);
6548 cfs_b
->period
= ns_to_ktime(period
);
6549 cfs_b
->quota
= quota
;
6551 __refill_cfs_bandwidth_runtime(cfs_b
);
6553 /* Restart the period timer (if active) to handle new period expiry: */
6554 if (runtime_enabled
)
6555 start_cfs_bandwidth(cfs_b
);
6557 raw_spin_unlock_irq(&cfs_b
->lock
);
6559 for_each_online_cpu(i
) {
6560 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[i
];
6561 struct rq
*rq
= cfs_rq
->rq
;
6564 rq_lock_irq(rq
, &rf
);
6565 cfs_rq
->runtime_enabled
= runtime_enabled
;
6566 cfs_rq
->runtime_remaining
= 0;
6568 if (cfs_rq
->throttled
)
6569 unthrottle_cfs_rq(cfs_rq
);
6570 rq_unlock_irq(rq
, &rf
);
6572 if (runtime_was_enabled
&& !runtime_enabled
)
6573 cfs_bandwidth_usage_dec();
6575 mutex_unlock(&cfs_constraints_mutex
);
6581 int tg_set_cfs_quota(struct task_group
*tg
, long cfs_quota_us
)
6585 period
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6586 if (cfs_quota_us
< 0)
6587 quota
= RUNTIME_INF
;
6589 quota
= (u64
)cfs_quota_us
* NSEC_PER_USEC
;
6591 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6594 long tg_get_cfs_quota(struct task_group
*tg
)
6598 if (tg
->cfs_bandwidth
.quota
== RUNTIME_INF
)
6601 quota_us
= tg
->cfs_bandwidth
.quota
;
6602 do_div(quota_us
, NSEC_PER_USEC
);
6607 int tg_set_cfs_period(struct task_group
*tg
, long cfs_period_us
)
6611 period
= (u64
)cfs_period_us
* NSEC_PER_USEC
;
6612 quota
= tg
->cfs_bandwidth
.quota
;
6614 return tg_set_cfs_bandwidth(tg
, period
, quota
);
6617 long tg_get_cfs_period(struct task_group
*tg
)
6621 cfs_period_us
= ktime_to_ns(tg
->cfs_bandwidth
.period
);
6622 do_div(cfs_period_us
, NSEC_PER_USEC
);
6624 return cfs_period_us
;
6627 static s64
cpu_cfs_quota_read_s64(struct cgroup_subsys_state
*css
,
6630 return tg_get_cfs_quota(css_tg(css
));
6633 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state
*css
,
6634 struct cftype
*cftype
, s64 cfs_quota_us
)
6636 return tg_set_cfs_quota(css_tg(css
), cfs_quota_us
);
6639 static u64
cpu_cfs_period_read_u64(struct cgroup_subsys_state
*css
,
6642 return tg_get_cfs_period(css_tg(css
));
6645 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state
*css
,
6646 struct cftype
*cftype
, u64 cfs_period_us
)
6648 return tg_set_cfs_period(css_tg(css
), cfs_period_us
);
6651 struct cfs_schedulable_data
{
6652 struct task_group
*tg
;
6657 * normalize group quota/period to be quota/max_period
6658 * note: units are usecs
6660 static u64
normalize_cfs_quota(struct task_group
*tg
,
6661 struct cfs_schedulable_data
*d
)
6669 period
= tg_get_cfs_period(tg
);
6670 quota
= tg_get_cfs_quota(tg
);
6673 /* note: these should typically be equivalent */
6674 if (quota
== RUNTIME_INF
|| quota
== -1)
6677 return to_ratio(period
, quota
);
6680 static int tg_cfs_schedulable_down(struct task_group
*tg
, void *data
)
6682 struct cfs_schedulable_data
*d
= data
;
6683 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6684 s64 quota
= 0, parent_quota
= -1;
6687 quota
= RUNTIME_INF
;
6689 struct cfs_bandwidth
*parent_b
= &tg
->parent
->cfs_bandwidth
;
6691 quota
= normalize_cfs_quota(tg
, d
);
6692 parent_quota
= parent_b
->hierarchical_quota
;
6695 * Ensure max(child_quota) <= parent_quota. On cgroup2,
6696 * always take the min. On cgroup1, only inherit when no
6699 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys
)) {
6700 quota
= min(quota
, parent_quota
);
6702 if (quota
== RUNTIME_INF
)
6703 quota
= parent_quota
;
6704 else if (parent_quota
!= RUNTIME_INF
&& quota
> parent_quota
)
6708 cfs_b
->hierarchical_quota
= quota
;
6713 static int __cfs_schedulable(struct task_group
*tg
, u64 period
, u64 quota
)
6716 struct cfs_schedulable_data data
= {
6722 if (quota
!= RUNTIME_INF
) {
6723 do_div(data
.period
, NSEC_PER_USEC
);
6724 do_div(data
.quota
, NSEC_PER_USEC
);
6728 ret
= walk_tg_tree(tg_cfs_schedulable_down
, tg_nop
, &data
);
6734 static int cpu_cfs_stat_show(struct seq_file
*sf
, void *v
)
6736 struct task_group
*tg
= css_tg(seq_css(sf
));
6737 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6739 seq_printf(sf
, "nr_periods %d\n", cfs_b
->nr_periods
);
6740 seq_printf(sf
, "nr_throttled %d\n", cfs_b
->nr_throttled
);
6741 seq_printf(sf
, "throttled_time %llu\n", cfs_b
->throttled_time
);
6743 if (schedstat_enabled() && tg
!= &root_task_group
) {
6747 for_each_possible_cpu(i
)
6748 ws
+= schedstat_val(tg
->se
[i
]->statistics
.wait_sum
);
6750 seq_printf(sf
, "wait_sum %llu\n", ws
);
6755 #endif /* CONFIG_CFS_BANDWIDTH */
6756 #endif /* CONFIG_FAIR_GROUP_SCHED */
6758 #ifdef CONFIG_RT_GROUP_SCHED
6759 static int cpu_rt_runtime_write(struct cgroup_subsys_state
*css
,
6760 struct cftype
*cft
, s64 val
)
6762 return sched_group_set_rt_runtime(css_tg(css
), val
);
6765 static s64
cpu_rt_runtime_read(struct cgroup_subsys_state
*css
,
6768 return sched_group_rt_runtime(css_tg(css
));
6771 static int cpu_rt_period_write_uint(struct cgroup_subsys_state
*css
,
6772 struct cftype
*cftype
, u64 rt_period_us
)
6774 return sched_group_set_rt_period(css_tg(css
), rt_period_us
);
6777 static u64
cpu_rt_period_read_uint(struct cgroup_subsys_state
*css
,
6780 return sched_group_rt_period(css_tg(css
));
6782 #endif /* CONFIG_RT_GROUP_SCHED */
6784 static struct cftype cpu_legacy_files
[] = {
6785 #ifdef CONFIG_FAIR_GROUP_SCHED
6788 .read_u64
= cpu_shares_read_u64
,
6789 .write_u64
= cpu_shares_write_u64
,
6792 #ifdef CONFIG_CFS_BANDWIDTH
6794 .name
= "cfs_quota_us",
6795 .read_s64
= cpu_cfs_quota_read_s64
,
6796 .write_s64
= cpu_cfs_quota_write_s64
,
6799 .name
= "cfs_period_us",
6800 .read_u64
= cpu_cfs_period_read_u64
,
6801 .write_u64
= cpu_cfs_period_write_u64
,
6805 .seq_show
= cpu_cfs_stat_show
,
6808 #ifdef CONFIG_RT_GROUP_SCHED
6810 .name
= "rt_runtime_us",
6811 .read_s64
= cpu_rt_runtime_read
,
6812 .write_s64
= cpu_rt_runtime_write
,
6815 .name
= "rt_period_us",
6816 .read_u64
= cpu_rt_period_read_uint
,
6817 .write_u64
= cpu_rt_period_write_uint
,
6823 static int cpu_extra_stat_show(struct seq_file
*sf
,
6824 struct cgroup_subsys_state
*css
)
6826 #ifdef CONFIG_CFS_BANDWIDTH
6828 struct task_group
*tg
= css_tg(css
);
6829 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6832 throttled_usec
= cfs_b
->throttled_time
;
6833 do_div(throttled_usec
, NSEC_PER_USEC
);
6835 seq_printf(sf
, "nr_periods %d\n"
6837 "throttled_usec %llu\n",
6838 cfs_b
->nr_periods
, cfs_b
->nr_throttled
,
6845 #ifdef CONFIG_FAIR_GROUP_SCHED
6846 static u64
cpu_weight_read_u64(struct cgroup_subsys_state
*css
,
6849 struct task_group
*tg
= css_tg(css
);
6850 u64 weight
= scale_load_down(tg
->shares
);
6852 return DIV_ROUND_CLOSEST_ULL(weight
* CGROUP_WEIGHT_DFL
, 1024);
6855 static int cpu_weight_write_u64(struct cgroup_subsys_state
*css
,
6856 struct cftype
*cft
, u64 weight
)
6859 * cgroup weight knobs should use the common MIN, DFL and MAX
6860 * values which are 1, 100 and 10000 respectively. While it loses
6861 * a bit of range on both ends, it maps pretty well onto the shares
6862 * value used by scheduler and the round-trip conversions preserve
6863 * the original value over the entire range.
6865 if (weight
< CGROUP_WEIGHT_MIN
|| weight
> CGROUP_WEIGHT_MAX
)
6868 weight
= DIV_ROUND_CLOSEST_ULL(weight
* 1024, CGROUP_WEIGHT_DFL
);
6870 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
6873 static s64
cpu_weight_nice_read_s64(struct cgroup_subsys_state
*css
,
6876 unsigned long weight
= scale_load_down(css_tg(css
)->shares
);
6877 int last_delta
= INT_MAX
;
6880 /* find the closest nice value to the current weight */
6881 for (prio
= 0; prio
< ARRAY_SIZE(sched_prio_to_weight
); prio
++) {
6882 delta
= abs(sched_prio_to_weight
[prio
] - weight
);
6883 if (delta
>= last_delta
)
6888 return PRIO_TO_NICE(prio
- 1 + MAX_RT_PRIO
);
6891 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state
*css
,
6892 struct cftype
*cft
, s64 nice
)
6894 unsigned long weight
;
6897 if (nice
< MIN_NICE
|| nice
> MAX_NICE
)
6900 idx
= NICE_TO_PRIO(nice
) - MAX_RT_PRIO
;
6901 idx
= array_index_nospec(idx
, 40);
6902 weight
= sched_prio_to_weight
[idx
];
6904 return sched_group_set_shares(css_tg(css
), scale_load(weight
));
6908 static void __maybe_unused
cpu_period_quota_print(struct seq_file
*sf
,
6909 long period
, long quota
)
6912 seq_puts(sf
, "max");
6914 seq_printf(sf
, "%ld", quota
);
6916 seq_printf(sf
, " %ld\n", period
);
6919 /* caller should put the current value in *@periodp before calling */
6920 static int __maybe_unused
cpu_period_quota_parse(char *buf
,
6921 u64
*periodp
, u64
*quotap
)
6923 char tok
[21]; /* U64_MAX */
6925 if (!sscanf(buf
, "%s %llu", tok
, periodp
))
6928 *periodp
*= NSEC_PER_USEC
;
6930 if (sscanf(tok
, "%llu", quotap
))
6931 *quotap
*= NSEC_PER_USEC
;
6932 else if (!strcmp(tok
, "max"))
6933 *quotap
= RUNTIME_INF
;
6940 #ifdef CONFIG_CFS_BANDWIDTH
6941 static int cpu_max_show(struct seq_file
*sf
, void *v
)
6943 struct task_group
*tg
= css_tg(seq_css(sf
));
6945 cpu_period_quota_print(sf
, tg_get_cfs_period(tg
), tg_get_cfs_quota(tg
));
6949 static ssize_t
cpu_max_write(struct kernfs_open_file
*of
,
6950 char *buf
, size_t nbytes
, loff_t off
)
6952 struct task_group
*tg
= css_tg(of_css(of
));
6953 u64 period
= tg_get_cfs_period(tg
);
6957 ret
= cpu_period_quota_parse(buf
, &period
, "a
);
6959 ret
= tg_set_cfs_bandwidth(tg
, period
, quota
);
6960 return ret
?: nbytes
;
6964 static struct cftype cpu_files
[] = {
6965 #ifdef CONFIG_FAIR_GROUP_SCHED
6968 .flags
= CFTYPE_NOT_ON_ROOT
,
6969 .read_u64
= cpu_weight_read_u64
,
6970 .write_u64
= cpu_weight_write_u64
,
6973 .name
= "weight.nice",
6974 .flags
= CFTYPE_NOT_ON_ROOT
,
6975 .read_s64
= cpu_weight_nice_read_s64
,
6976 .write_s64
= cpu_weight_nice_write_s64
,
6979 #ifdef CONFIG_CFS_BANDWIDTH
6982 .flags
= CFTYPE_NOT_ON_ROOT
,
6983 .seq_show
= cpu_max_show
,
6984 .write
= cpu_max_write
,
6990 struct cgroup_subsys cpu_cgrp_subsys
= {
6991 .css_alloc
= cpu_cgroup_css_alloc
,
6992 .css_online
= cpu_cgroup_css_online
,
6993 .css_released
= cpu_cgroup_css_released
,
6994 .css_free
= cpu_cgroup_css_free
,
6995 .css_extra_stat_show
= cpu_extra_stat_show
,
6996 .fork
= cpu_cgroup_fork
,
6997 .can_attach
= cpu_cgroup_can_attach
,
6998 .attach
= cpu_cgroup_attach
,
6999 .legacy_cftypes
= cpu_legacy_files
,
7000 .dfl_cftypes
= cpu_files
,
7005 #endif /* CONFIG_CGROUP_SCHED */
7007 void dump_cpu_task(int cpu
)
7009 pr_info("Task dump for CPU %d:\n", cpu
);
7010 sched_show_task(cpu_curr(cpu
));
7014 * Nice levels are multiplicative, with a gentle 10% change for every
7015 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
7016 * nice 1, it will get ~10% less CPU time than another CPU-bound task
7017 * that remained on nice 0.
7019 * The "10% effect" is relative and cumulative: from _any_ nice level,
7020 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
7021 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
7022 * If a task goes up by ~10% and another task goes down by ~10% then
7023 * the relative distance between them is ~25%.)
7025 const int sched_prio_to_weight
[40] = {
7026 /* -20 */ 88761, 71755, 56483, 46273, 36291,
7027 /* -15 */ 29154, 23254, 18705, 14949, 11916,
7028 /* -10 */ 9548, 7620, 6100, 4904, 3906,
7029 /* -5 */ 3121, 2501, 1991, 1586, 1277,
7030 /* 0 */ 1024, 820, 655, 526, 423,
7031 /* 5 */ 335, 272, 215, 172, 137,
7032 /* 10 */ 110, 87, 70, 56, 45,
7033 /* 15 */ 36, 29, 23, 18, 15,
7037 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
7039 * In cases where the weight does not change often, we can use the
7040 * precalculated inverse to speed up arithmetics by turning divisions
7041 * into multiplications:
7043 const u32 sched_prio_to_wmult
[40] = {
7044 /* -20 */ 48388, 59856, 76040, 92818, 118348,
7045 /* -15 */ 147320, 184698, 229616, 287308, 360437,
7046 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
7047 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
7048 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
7049 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
7050 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
7051 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
7054 #undef CREATE_TRACE_POINTS