ixgbevf: remove ndo_poll_controller
[linux/fpc-iii.git] / net / sunrpc / auth_gss / auth_gss.c
blob21c0aa0a0d1d4fde901aed91a51fc65481f72b7b
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
4 * RPCSEC_GSS client authentication.
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <linux/uaccess.h>
54 #include <linux/hashtable.h>
56 #include "../netns.h"
58 static const struct rpc_authops authgss_ops;
60 static const struct rpc_credops gss_credops;
61 static const struct rpc_credops gss_nullops;
63 #define GSS_RETRY_EXPIRED 5
64 static unsigned int gss_expired_cred_retry_delay = GSS_RETRY_EXPIRED;
66 #define GSS_KEY_EXPIRE_TIMEO 240
67 static unsigned int gss_key_expire_timeo = GSS_KEY_EXPIRE_TIMEO;
69 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
70 # define RPCDBG_FACILITY RPCDBG_AUTH
71 #endif
73 #define GSS_CRED_SLACK (RPC_MAX_AUTH_SIZE * 2)
74 /* length of a krb5 verifier (48), plus data added before arguments when
75 * using integrity (two 4-byte integers): */
76 #define GSS_VERF_SLACK 100
78 static DEFINE_HASHTABLE(gss_auth_hash_table, 4);
79 static DEFINE_SPINLOCK(gss_auth_hash_lock);
81 struct gss_pipe {
82 struct rpc_pipe_dir_object pdo;
83 struct rpc_pipe *pipe;
84 struct rpc_clnt *clnt;
85 const char *name;
86 struct kref kref;
89 struct gss_auth {
90 struct kref kref;
91 struct hlist_node hash;
92 struct rpc_auth rpc_auth;
93 struct gss_api_mech *mech;
94 enum rpc_gss_svc service;
95 struct rpc_clnt *client;
96 struct net *net;
98 * There are two upcall pipes; dentry[1], named "gssd", is used
99 * for the new text-based upcall; dentry[0] is named after the
100 * mechanism (for example, "krb5") and exists for
101 * backwards-compatibility with older gssd's.
103 struct gss_pipe *gss_pipe[2];
104 const char *target_name;
107 /* pipe_version >= 0 if and only if someone has a pipe open. */
108 static DEFINE_SPINLOCK(pipe_version_lock);
109 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
110 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
111 static void gss_put_auth(struct gss_auth *gss_auth);
113 static void gss_free_ctx(struct gss_cl_ctx *);
114 static const struct rpc_pipe_ops gss_upcall_ops_v0;
115 static const struct rpc_pipe_ops gss_upcall_ops_v1;
117 static inline struct gss_cl_ctx *
118 gss_get_ctx(struct gss_cl_ctx *ctx)
120 refcount_inc(&ctx->count);
121 return ctx;
124 static inline void
125 gss_put_ctx(struct gss_cl_ctx *ctx)
127 if (refcount_dec_and_test(&ctx->count))
128 gss_free_ctx(ctx);
131 /* gss_cred_set_ctx:
132 * called by gss_upcall_callback and gss_create_upcall in order
133 * to set the gss context. The actual exchange of an old context
134 * and a new one is protected by the pipe->lock.
136 static void
137 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
139 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
141 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
142 return;
143 gss_get_ctx(ctx);
144 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
145 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
146 smp_mb__before_atomic();
147 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
150 static const void *
151 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
153 const void *q = (const void *)((const char *)p + len);
154 if (unlikely(q > end || q < p))
155 return ERR_PTR(-EFAULT);
156 memcpy(res, p, len);
157 return q;
160 static inline const void *
161 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
163 const void *q;
164 unsigned int len;
166 p = simple_get_bytes(p, end, &len, sizeof(len));
167 if (IS_ERR(p))
168 return p;
169 q = (const void *)((const char *)p + len);
170 if (unlikely(q > end || q < p))
171 return ERR_PTR(-EFAULT);
172 dest->data = kmemdup(p, len, GFP_NOFS);
173 if (unlikely(dest->data == NULL))
174 return ERR_PTR(-ENOMEM);
175 dest->len = len;
176 return q;
179 static struct gss_cl_ctx *
180 gss_cred_get_ctx(struct rpc_cred *cred)
182 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
183 struct gss_cl_ctx *ctx = NULL;
185 rcu_read_lock();
186 ctx = rcu_dereference(gss_cred->gc_ctx);
187 if (ctx)
188 gss_get_ctx(ctx);
189 rcu_read_unlock();
190 return ctx;
193 static struct gss_cl_ctx *
194 gss_alloc_context(void)
196 struct gss_cl_ctx *ctx;
198 ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
199 if (ctx != NULL) {
200 ctx->gc_proc = RPC_GSS_PROC_DATA;
201 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
202 spin_lock_init(&ctx->gc_seq_lock);
203 refcount_set(&ctx->count,1);
205 return ctx;
208 #define GSSD_MIN_TIMEOUT (60 * 60)
209 static const void *
210 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
212 const void *q;
213 unsigned int seclen;
214 unsigned int timeout;
215 unsigned long now = jiffies;
216 u32 window_size;
217 int ret;
219 /* First unsigned int gives the remaining lifetime in seconds of the
220 * credential - e.g. the remaining TGT lifetime for Kerberos or
221 * the -t value passed to GSSD.
223 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
224 if (IS_ERR(p))
225 goto err;
226 if (timeout == 0)
227 timeout = GSSD_MIN_TIMEOUT;
228 ctx->gc_expiry = now + ((unsigned long)timeout * HZ);
229 /* Sequence number window. Determines the maximum number of
230 * simultaneous requests
232 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
233 if (IS_ERR(p))
234 goto err;
235 ctx->gc_win = window_size;
236 /* gssd signals an error by passing ctx->gc_win = 0: */
237 if (ctx->gc_win == 0) {
239 * in which case, p points to an error code. Anything other
240 * than -EKEYEXPIRED gets converted to -EACCES.
242 p = simple_get_bytes(p, end, &ret, sizeof(ret));
243 if (!IS_ERR(p))
244 p = (ret == -EKEYEXPIRED) ? ERR_PTR(-EKEYEXPIRED) :
245 ERR_PTR(-EACCES);
246 goto err;
248 /* copy the opaque wire context */
249 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
250 if (IS_ERR(p))
251 goto err;
252 /* import the opaque security context */
253 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
254 if (IS_ERR(p))
255 goto err;
256 q = (const void *)((const char *)p + seclen);
257 if (unlikely(q > end || q < p)) {
258 p = ERR_PTR(-EFAULT);
259 goto err;
261 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx, NULL, GFP_NOFS);
262 if (ret < 0) {
263 p = ERR_PTR(ret);
264 goto err;
267 /* is there any trailing data? */
268 if (q == end) {
269 p = q;
270 goto done;
273 /* pull in acceptor name (if there is one) */
274 p = simple_get_netobj(q, end, &ctx->gc_acceptor);
275 if (IS_ERR(p))
276 goto err;
277 done:
278 dprintk("RPC: %s Success. gc_expiry %lu now %lu timeout %u acceptor %.*s\n",
279 __func__, ctx->gc_expiry, now, timeout, ctx->gc_acceptor.len,
280 ctx->gc_acceptor.data);
281 return p;
282 err:
283 dprintk("RPC: %s returns error %ld\n", __func__, -PTR_ERR(p));
284 return p;
287 /* XXX: Need some documentation about why UPCALL_BUF_LEN is so small.
288 * Is user space expecting no more than UPCALL_BUF_LEN bytes?
289 * Note that there are now _two_ NI_MAXHOST sized data items
290 * being passed in this string.
292 #define UPCALL_BUF_LEN 256
294 struct gss_upcall_msg {
295 refcount_t count;
296 kuid_t uid;
297 struct rpc_pipe_msg msg;
298 struct list_head list;
299 struct gss_auth *auth;
300 struct rpc_pipe *pipe;
301 struct rpc_wait_queue rpc_waitqueue;
302 wait_queue_head_t waitqueue;
303 struct gss_cl_ctx *ctx;
304 char databuf[UPCALL_BUF_LEN];
307 static int get_pipe_version(struct net *net)
309 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
310 int ret;
312 spin_lock(&pipe_version_lock);
313 if (sn->pipe_version >= 0) {
314 atomic_inc(&sn->pipe_users);
315 ret = sn->pipe_version;
316 } else
317 ret = -EAGAIN;
318 spin_unlock(&pipe_version_lock);
319 return ret;
322 static void put_pipe_version(struct net *net)
324 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
326 if (atomic_dec_and_lock(&sn->pipe_users, &pipe_version_lock)) {
327 sn->pipe_version = -1;
328 spin_unlock(&pipe_version_lock);
332 static void
333 gss_release_msg(struct gss_upcall_msg *gss_msg)
335 struct net *net = gss_msg->auth->net;
336 if (!refcount_dec_and_test(&gss_msg->count))
337 return;
338 put_pipe_version(net);
339 BUG_ON(!list_empty(&gss_msg->list));
340 if (gss_msg->ctx != NULL)
341 gss_put_ctx(gss_msg->ctx);
342 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
343 gss_put_auth(gss_msg->auth);
344 kfree(gss_msg);
347 static struct gss_upcall_msg *
348 __gss_find_upcall(struct rpc_pipe *pipe, kuid_t uid, const struct gss_auth *auth)
350 struct gss_upcall_msg *pos;
351 list_for_each_entry(pos, &pipe->in_downcall, list) {
352 if (!uid_eq(pos->uid, uid))
353 continue;
354 if (auth && pos->auth->service != auth->service)
355 continue;
356 refcount_inc(&pos->count);
357 dprintk("RPC: %s found msg %p\n", __func__, pos);
358 return pos;
360 dprintk("RPC: %s found nothing\n", __func__);
361 return NULL;
364 /* Try to add an upcall to the pipefs queue.
365 * If an upcall owned by our uid already exists, then we return a reference
366 * to that upcall instead of adding the new upcall.
368 static inline struct gss_upcall_msg *
369 gss_add_msg(struct gss_upcall_msg *gss_msg)
371 struct rpc_pipe *pipe = gss_msg->pipe;
372 struct gss_upcall_msg *old;
374 spin_lock(&pipe->lock);
375 old = __gss_find_upcall(pipe, gss_msg->uid, gss_msg->auth);
376 if (old == NULL) {
377 refcount_inc(&gss_msg->count);
378 list_add(&gss_msg->list, &pipe->in_downcall);
379 } else
380 gss_msg = old;
381 spin_unlock(&pipe->lock);
382 return gss_msg;
385 static void
386 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
388 list_del_init(&gss_msg->list);
389 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
390 wake_up_all(&gss_msg->waitqueue);
391 refcount_dec(&gss_msg->count);
394 static void
395 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
397 struct rpc_pipe *pipe = gss_msg->pipe;
399 if (list_empty(&gss_msg->list))
400 return;
401 spin_lock(&pipe->lock);
402 if (!list_empty(&gss_msg->list))
403 __gss_unhash_msg(gss_msg);
404 spin_unlock(&pipe->lock);
407 static void
408 gss_handle_downcall_result(struct gss_cred *gss_cred, struct gss_upcall_msg *gss_msg)
410 switch (gss_msg->msg.errno) {
411 case 0:
412 if (gss_msg->ctx == NULL)
413 break;
414 clear_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
415 gss_cred_set_ctx(&gss_cred->gc_base, gss_msg->ctx);
416 break;
417 case -EKEYEXPIRED:
418 set_bit(RPCAUTH_CRED_NEGATIVE, &gss_cred->gc_base.cr_flags);
420 gss_cred->gc_upcall_timestamp = jiffies;
421 gss_cred->gc_upcall = NULL;
422 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
425 static void
426 gss_upcall_callback(struct rpc_task *task)
428 struct gss_cred *gss_cred = container_of(task->tk_rqstp->rq_cred,
429 struct gss_cred, gc_base);
430 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
431 struct rpc_pipe *pipe = gss_msg->pipe;
433 spin_lock(&pipe->lock);
434 gss_handle_downcall_result(gss_cred, gss_msg);
435 spin_unlock(&pipe->lock);
436 task->tk_status = gss_msg->msg.errno;
437 gss_release_msg(gss_msg);
440 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
442 uid_t uid = from_kuid(&init_user_ns, gss_msg->uid);
443 memcpy(gss_msg->databuf, &uid, sizeof(uid));
444 gss_msg->msg.data = gss_msg->databuf;
445 gss_msg->msg.len = sizeof(uid);
447 BUILD_BUG_ON(sizeof(uid) > sizeof(gss_msg->databuf));
450 static int gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
451 const char *service_name,
452 const char *target_name)
454 struct gss_api_mech *mech = gss_msg->auth->mech;
455 char *p = gss_msg->databuf;
456 size_t buflen = sizeof(gss_msg->databuf);
457 int len;
459 len = scnprintf(p, buflen, "mech=%s uid=%d ", mech->gm_name,
460 from_kuid(&init_user_ns, gss_msg->uid));
461 buflen -= len;
462 p += len;
463 gss_msg->msg.len = len;
466 * target= is a full service principal that names the remote
467 * identity that we are authenticating to.
469 if (target_name) {
470 len = scnprintf(p, buflen, "target=%s ", target_name);
471 buflen -= len;
472 p += len;
473 gss_msg->msg.len += len;
477 * gssd uses service= and srchost= to select a matching key from
478 * the system's keytab to use as the source principal.
480 * service= is the service name part of the source principal,
481 * or "*" (meaning choose any).
483 * srchost= is the hostname part of the source principal. When
484 * not provided, gssd uses the local hostname.
486 if (service_name) {
487 char *c = strchr(service_name, '@');
489 if (!c)
490 len = scnprintf(p, buflen, "service=%s ",
491 service_name);
492 else
493 len = scnprintf(p, buflen,
494 "service=%.*s srchost=%s ",
495 (int)(c - service_name),
496 service_name, c + 1);
497 buflen -= len;
498 p += len;
499 gss_msg->msg.len += len;
502 if (mech->gm_upcall_enctypes) {
503 len = scnprintf(p, buflen, "enctypes=%s ",
504 mech->gm_upcall_enctypes);
505 buflen -= len;
506 p += len;
507 gss_msg->msg.len += len;
509 len = scnprintf(p, buflen, "\n");
510 if (len == 0)
511 goto out_overflow;
512 gss_msg->msg.len += len;
514 gss_msg->msg.data = gss_msg->databuf;
515 return 0;
516 out_overflow:
517 WARN_ON_ONCE(1);
518 return -ENOMEM;
521 static struct gss_upcall_msg *
522 gss_alloc_msg(struct gss_auth *gss_auth,
523 kuid_t uid, const char *service_name)
525 struct gss_upcall_msg *gss_msg;
526 int vers;
527 int err = -ENOMEM;
529 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
530 if (gss_msg == NULL)
531 goto err;
532 vers = get_pipe_version(gss_auth->net);
533 err = vers;
534 if (err < 0)
535 goto err_free_msg;
536 gss_msg->pipe = gss_auth->gss_pipe[vers]->pipe;
537 INIT_LIST_HEAD(&gss_msg->list);
538 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
539 init_waitqueue_head(&gss_msg->waitqueue);
540 refcount_set(&gss_msg->count, 1);
541 gss_msg->uid = uid;
542 gss_msg->auth = gss_auth;
543 switch (vers) {
544 case 0:
545 gss_encode_v0_msg(gss_msg);
546 break;
547 default:
548 err = gss_encode_v1_msg(gss_msg, service_name, gss_auth->target_name);
549 if (err)
550 goto err_put_pipe_version;
552 kref_get(&gss_auth->kref);
553 return gss_msg;
554 err_put_pipe_version:
555 put_pipe_version(gss_auth->net);
556 err_free_msg:
557 kfree(gss_msg);
558 err:
559 return ERR_PTR(err);
562 static struct gss_upcall_msg *
563 gss_setup_upcall(struct gss_auth *gss_auth, struct rpc_cred *cred)
565 struct gss_cred *gss_cred = container_of(cred,
566 struct gss_cred, gc_base);
567 struct gss_upcall_msg *gss_new, *gss_msg;
568 kuid_t uid = cred->cr_uid;
570 gss_new = gss_alloc_msg(gss_auth, uid, gss_cred->gc_principal);
571 if (IS_ERR(gss_new))
572 return gss_new;
573 gss_msg = gss_add_msg(gss_new);
574 if (gss_msg == gss_new) {
575 int res;
576 refcount_inc(&gss_msg->count);
577 res = rpc_queue_upcall(gss_new->pipe, &gss_new->msg);
578 if (res) {
579 gss_unhash_msg(gss_new);
580 refcount_dec(&gss_msg->count);
581 gss_release_msg(gss_new);
582 gss_msg = ERR_PTR(res);
584 } else
585 gss_release_msg(gss_new);
586 return gss_msg;
589 static void warn_gssd(void)
591 dprintk("AUTH_GSS upcall failed. Please check user daemon is running.\n");
594 static inline int
595 gss_refresh_upcall(struct rpc_task *task)
597 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
598 struct gss_auth *gss_auth = container_of(cred->cr_auth,
599 struct gss_auth, rpc_auth);
600 struct gss_cred *gss_cred = container_of(cred,
601 struct gss_cred, gc_base);
602 struct gss_upcall_msg *gss_msg;
603 struct rpc_pipe *pipe;
604 int err = 0;
606 dprintk("RPC: %5u %s for uid %u\n",
607 task->tk_pid, __func__, from_kuid(&init_user_ns, cred->cr_uid));
608 gss_msg = gss_setup_upcall(gss_auth, cred);
609 if (PTR_ERR(gss_msg) == -EAGAIN) {
610 /* XXX: warning on the first, under the assumption we
611 * shouldn't normally hit this case on a refresh. */
612 warn_gssd();
613 task->tk_timeout = 15*HZ;
614 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
615 return -EAGAIN;
617 if (IS_ERR(gss_msg)) {
618 err = PTR_ERR(gss_msg);
619 goto out;
621 pipe = gss_msg->pipe;
622 spin_lock(&pipe->lock);
623 if (gss_cred->gc_upcall != NULL)
624 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
625 else if (gss_msg->ctx == NULL && gss_msg->msg.errno >= 0) {
626 task->tk_timeout = 0;
627 gss_cred->gc_upcall = gss_msg;
628 /* gss_upcall_callback will release the reference to gss_upcall_msg */
629 refcount_inc(&gss_msg->count);
630 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
631 } else {
632 gss_handle_downcall_result(gss_cred, gss_msg);
633 err = gss_msg->msg.errno;
635 spin_unlock(&pipe->lock);
636 gss_release_msg(gss_msg);
637 out:
638 dprintk("RPC: %5u %s for uid %u result %d\n",
639 task->tk_pid, __func__,
640 from_kuid(&init_user_ns, cred->cr_uid), err);
641 return err;
644 static inline int
645 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
647 struct net *net = gss_auth->net;
648 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
649 struct rpc_pipe *pipe;
650 struct rpc_cred *cred = &gss_cred->gc_base;
651 struct gss_upcall_msg *gss_msg;
652 DEFINE_WAIT(wait);
653 int err;
655 dprintk("RPC: %s for uid %u\n",
656 __func__, from_kuid(&init_user_ns, cred->cr_uid));
657 retry:
658 err = 0;
659 /* if gssd is down, just skip upcalling altogether */
660 if (!gssd_running(net)) {
661 warn_gssd();
662 return -EACCES;
664 gss_msg = gss_setup_upcall(gss_auth, cred);
665 if (PTR_ERR(gss_msg) == -EAGAIN) {
666 err = wait_event_interruptible_timeout(pipe_version_waitqueue,
667 sn->pipe_version >= 0, 15 * HZ);
668 if (sn->pipe_version < 0) {
669 warn_gssd();
670 err = -EACCES;
672 if (err < 0)
673 goto out;
674 goto retry;
676 if (IS_ERR(gss_msg)) {
677 err = PTR_ERR(gss_msg);
678 goto out;
680 pipe = gss_msg->pipe;
681 for (;;) {
682 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_KILLABLE);
683 spin_lock(&pipe->lock);
684 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
685 break;
687 spin_unlock(&pipe->lock);
688 if (fatal_signal_pending(current)) {
689 err = -ERESTARTSYS;
690 goto out_intr;
692 schedule();
694 if (gss_msg->ctx)
695 gss_cred_set_ctx(cred, gss_msg->ctx);
696 else
697 err = gss_msg->msg.errno;
698 spin_unlock(&pipe->lock);
699 out_intr:
700 finish_wait(&gss_msg->waitqueue, &wait);
701 gss_release_msg(gss_msg);
702 out:
703 dprintk("RPC: %s for uid %u result %d\n",
704 __func__, from_kuid(&init_user_ns, cred->cr_uid), err);
705 return err;
708 #define MSG_BUF_MAXSIZE 1024
710 static ssize_t
711 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
713 const void *p, *end;
714 void *buf;
715 struct gss_upcall_msg *gss_msg;
716 struct rpc_pipe *pipe = RPC_I(file_inode(filp))->pipe;
717 struct gss_cl_ctx *ctx;
718 uid_t id;
719 kuid_t uid;
720 ssize_t err = -EFBIG;
722 if (mlen > MSG_BUF_MAXSIZE)
723 goto out;
724 err = -ENOMEM;
725 buf = kmalloc(mlen, GFP_NOFS);
726 if (!buf)
727 goto out;
729 err = -EFAULT;
730 if (copy_from_user(buf, src, mlen))
731 goto err;
733 end = (const void *)((char *)buf + mlen);
734 p = simple_get_bytes(buf, end, &id, sizeof(id));
735 if (IS_ERR(p)) {
736 err = PTR_ERR(p);
737 goto err;
740 uid = make_kuid(&init_user_ns, id);
741 if (!uid_valid(uid)) {
742 err = -EINVAL;
743 goto err;
746 err = -ENOMEM;
747 ctx = gss_alloc_context();
748 if (ctx == NULL)
749 goto err;
751 err = -ENOENT;
752 /* Find a matching upcall */
753 spin_lock(&pipe->lock);
754 gss_msg = __gss_find_upcall(pipe, uid, NULL);
755 if (gss_msg == NULL) {
756 spin_unlock(&pipe->lock);
757 goto err_put_ctx;
759 list_del_init(&gss_msg->list);
760 spin_unlock(&pipe->lock);
762 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
763 if (IS_ERR(p)) {
764 err = PTR_ERR(p);
765 switch (err) {
766 case -EACCES:
767 case -EKEYEXPIRED:
768 gss_msg->msg.errno = err;
769 err = mlen;
770 break;
771 case -EFAULT:
772 case -ENOMEM:
773 case -EINVAL:
774 case -ENOSYS:
775 gss_msg->msg.errno = -EAGAIN;
776 break;
777 default:
778 printk(KERN_CRIT "%s: bad return from "
779 "gss_fill_context: %zd\n", __func__, err);
780 gss_msg->msg.errno = -EIO;
782 goto err_release_msg;
784 gss_msg->ctx = gss_get_ctx(ctx);
785 err = mlen;
787 err_release_msg:
788 spin_lock(&pipe->lock);
789 __gss_unhash_msg(gss_msg);
790 spin_unlock(&pipe->lock);
791 gss_release_msg(gss_msg);
792 err_put_ctx:
793 gss_put_ctx(ctx);
794 err:
795 kfree(buf);
796 out:
797 dprintk("RPC: %s returning %zd\n", __func__, err);
798 return err;
801 static int gss_pipe_open(struct inode *inode, int new_version)
803 struct net *net = inode->i_sb->s_fs_info;
804 struct sunrpc_net *sn = net_generic(net, sunrpc_net_id);
805 int ret = 0;
807 spin_lock(&pipe_version_lock);
808 if (sn->pipe_version < 0) {
809 /* First open of any gss pipe determines the version: */
810 sn->pipe_version = new_version;
811 rpc_wake_up(&pipe_version_rpc_waitqueue);
812 wake_up(&pipe_version_waitqueue);
813 } else if (sn->pipe_version != new_version) {
814 /* Trying to open a pipe of a different version */
815 ret = -EBUSY;
816 goto out;
818 atomic_inc(&sn->pipe_users);
819 out:
820 spin_unlock(&pipe_version_lock);
821 return ret;
825 static int gss_pipe_open_v0(struct inode *inode)
827 return gss_pipe_open(inode, 0);
830 static int gss_pipe_open_v1(struct inode *inode)
832 return gss_pipe_open(inode, 1);
835 static void
836 gss_pipe_release(struct inode *inode)
838 struct net *net = inode->i_sb->s_fs_info;
839 struct rpc_pipe *pipe = RPC_I(inode)->pipe;
840 struct gss_upcall_msg *gss_msg;
842 restart:
843 spin_lock(&pipe->lock);
844 list_for_each_entry(gss_msg, &pipe->in_downcall, list) {
846 if (!list_empty(&gss_msg->msg.list))
847 continue;
848 gss_msg->msg.errno = -EPIPE;
849 refcount_inc(&gss_msg->count);
850 __gss_unhash_msg(gss_msg);
851 spin_unlock(&pipe->lock);
852 gss_release_msg(gss_msg);
853 goto restart;
855 spin_unlock(&pipe->lock);
857 put_pipe_version(net);
860 static void
861 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
863 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
865 if (msg->errno < 0) {
866 dprintk("RPC: %s releasing msg %p\n",
867 __func__, gss_msg);
868 refcount_inc(&gss_msg->count);
869 gss_unhash_msg(gss_msg);
870 if (msg->errno == -ETIMEDOUT)
871 warn_gssd();
872 gss_release_msg(gss_msg);
874 gss_release_msg(gss_msg);
877 static void gss_pipe_dentry_destroy(struct dentry *dir,
878 struct rpc_pipe_dir_object *pdo)
880 struct gss_pipe *gss_pipe = pdo->pdo_data;
881 struct rpc_pipe *pipe = gss_pipe->pipe;
883 if (pipe->dentry != NULL) {
884 rpc_unlink(pipe->dentry);
885 pipe->dentry = NULL;
889 static int gss_pipe_dentry_create(struct dentry *dir,
890 struct rpc_pipe_dir_object *pdo)
892 struct gss_pipe *p = pdo->pdo_data;
893 struct dentry *dentry;
895 dentry = rpc_mkpipe_dentry(dir, p->name, p->clnt, p->pipe);
896 if (IS_ERR(dentry))
897 return PTR_ERR(dentry);
898 p->pipe->dentry = dentry;
899 return 0;
902 static const struct rpc_pipe_dir_object_ops gss_pipe_dir_object_ops = {
903 .create = gss_pipe_dentry_create,
904 .destroy = gss_pipe_dentry_destroy,
907 static struct gss_pipe *gss_pipe_alloc(struct rpc_clnt *clnt,
908 const char *name,
909 const struct rpc_pipe_ops *upcall_ops)
911 struct gss_pipe *p;
912 int err = -ENOMEM;
914 p = kmalloc(sizeof(*p), GFP_KERNEL);
915 if (p == NULL)
916 goto err;
917 p->pipe = rpc_mkpipe_data(upcall_ops, RPC_PIPE_WAIT_FOR_OPEN);
918 if (IS_ERR(p->pipe)) {
919 err = PTR_ERR(p->pipe);
920 goto err_free_gss_pipe;
922 p->name = name;
923 p->clnt = clnt;
924 kref_init(&p->kref);
925 rpc_init_pipe_dir_object(&p->pdo,
926 &gss_pipe_dir_object_ops,
928 return p;
929 err_free_gss_pipe:
930 kfree(p);
931 err:
932 return ERR_PTR(err);
935 struct gss_alloc_pdo {
936 struct rpc_clnt *clnt;
937 const char *name;
938 const struct rpc_pipe_ops *upcall_ops;
941 static int gss_pipe_match_pdo(struct rpc_pipe_dir_object *pdo, void *data)
943 struct gss_pipe *gss_pipe;
944 struct gss_alloc_pdo *args = data;
946 if (pdo->pdo_ops != &gss_pipe_dir_object_ops)
947 return 0;
948 gss_pipe = container_of(pdo, struct gss_pipe, pdo);
949 if (strcmp(gss_pipe->name, args->name) != 0)
950 return 0;
951 if (!kref_get_unless_zero(&gss_pipe->kref))
952 return 0;
953 return 1;
956 static struct rpc_pipe_dir_object *gss_pipe_alloc_pdo(void *data)
958 struct gss_pipe *gss_pipe;
959 struct gss_alloc_pdo *args = data;
961 gss_pipe = gss_pipe_alloc(args->clnt, args->name, args->upcall_ops);
962 if (!IS_ERR(gss_pipe))
963 return &gss_pipe->pdo;
964 return NULL;
967 static struct gss_pipe *gss_pipe_get(struct rpc_clnt *clnt,
968 const char *name,
969 const struct rpc_pipe_ops *upcall_ops)
971 struct net *net = rpc_net_ns(clnt);
972 struct rpc_pipe_dir_object *pdo;
973 struct gss_alloc_pdo args = {
974 .clnt = clnt,
975 .name = name,
976 .upcall_ops = upcall_ops,
979 pdo = rpc_find_or_alloc_pipe_dir_object(net,
980 &clnt->cl_pipedir_objects,
981 gss_pipe_match_pdo,
982 gss_pipe_alloc_pdo,
983 &args);
984 if (pdo != NULL)
985 return container_of(pdo, struct gss_pipe, pdo);
986 return ERR_PTR(-ENOMEM);
989 static void __gss_pipe_free(struct gss_pipe *p)
991 struct rpc_clnt *clnt = p->clnt;
992 struct net *net = rpc_net_ns(clnt);
994 rpc_remove_pipe_dir_object(net,
995 &clnt->cl_pipedir_objects,
996 &p->pdo);
997 rpc_destroy_pipe_data(p->pipe);
998 kfree(p);
1001 static void __gss_pipe_release(struct kref *kref)
1003 struct gss_pipe *p = container_of(kref, struct gss_pipe, kref);
1005 __gss_pipe_free(p);
1008 static void gss_pipe_free(struct gss_pipe *p)
1010 if (p != NULL)
1011 kref_put(&p->kref, __gss_pipe_release);
1015 * NOTE: we have the opportunity to use different
1016 * parameters based on the input flavor (which must be a pseudoflavor)
1018 static struct gss_auth *
1019 gss_create_new(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1021 rpc_authflavor_t flavor = args->pseudoflavor;
1022 struct gss_auth *gss_auth;
1023 struct gss_pipe *gss_pipe;
1024 struct rpc_auth * auth;
1025 int err = -ENOMEM; /* XXX? */
1027 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
1029 if (!try_module_get(THIS_MODULE))
1030 return ERR_PTR(err);
1031 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
1032 goto out_dec;
1033 INIT_HLIST_NODE(&gss_auth->hash);
1034 gss_auth->target_name = NULL;
1035 if (args->target_name) {
1036 gss_auth->target_name = kstrdup(args->target_name, GFP_KERNEL);
1037 if (gss_auth->target_name == NULL)
1038 goto err_free;
1040 gss_auth->client = clnt;
1041 gss_auth->net = get_net(rpc_net_ns(clnt));
1042 err = -EINVAL;
1043 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
1044 if (!gss_auth->mech) {
1045 dprintk("RPC: Pseudoflavor %d not found!\n", flavor);
1046 goto err_put_net;
1048 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
1049 if (gss_auth->service == 0)
1050 goto err_put_mech;
1051 if (!gssd_running(gss_auth->net))
1052 goto err_put_mech;
1053 auth = &gss_auth->rpc_auth;
1054 auth->au_cslack = GSS_CRED_SLACK >> 2;
1055 auth->au_rslack = GSS_VERF_SLACK >> 2;
1056 auth->au_flags = 0;
1057 auth->au_ops = &authgss_ops;
1058 auth->au_flavor = flavor;
1059 if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor))
1060 auth->au_flags |= RPCAUTH_AUTH_DATATOUCH;
1061 atomic_set(&auth->au_count, 1);
1062 kref_init(&gss_auth->kref);
1064 err = rpcauth_init_credcache(auth);
1065 if (err)
1066 goto err_put_mech;
1068 * Note: if we created the old pipe first, then someone who
1069 * examined the directory at the right moment might conclude
1070 * that we supported only the old pipe. So we instead create
1071 * the new pipe first.
1073 gss_pipe = gss_pipe_get(clnt, "gssd", &gss_upcall_ops_v1);
1074 if (IS_ERR(gss_pipe)) {
1075 err = PTR_ERR(gss_pipe);
1076 goto err_destroy_credcache;
1078 gss_auth->gss_pipe[1] = gss_pipe;
1080 gss_pipe = gss_pipe_get(clnt, gss_auth->mech->gm_name,
1081 &gss_upcall_ops_v0);
1082 if (IS_ERR(gss_pipe)) {
1083 err = PTR_ERR(gss_pipe);
1084 goto err_destroy_pipe_1;
1086 gss_auth->gss_pipe[0] = gss_pipe;
1088 return gss_auth;
1089 err_destroy_pipe_1:
1090 gss_pipe_free(gss_auth->gss_pipe[1]);
1091 err_destroy_credcache:
1092 rpcauth_destroy_credcache(auth);
1093 err_put_mech:
1094 gss_mech_put(gss_auth->mech);
1095 err_put_net:
1096 put_net(gss_auth->net);
1097 err_free:
1098 kfree(gss_auth->target_name);
1099 kfree(gss_auth);
1100 out_dec:
1101 module_put(THIS_MODULE);
1102 return ERR_PTR(err);
1105 static void
1106 gss_free(struct gss_auth *gss_auth)
1108 gss_pipe_free(gss_auth->gss_pipe[0]);
1109 gss_pipe_free(gss_auth->gss_pipe[1]);
1110 gss_mech_put(gss_auth->mech);
1111 put_net(gss_auth->net);
1112 kfree(gss_auth->target_name);
1114 kfree(gss_auth);
1115 module_put(THIS_MODULE);
1118 static void
1119 gss_free_callback(struct kref *kref)
1121 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
1123 gss_free(gss_auth);
1126 static void
1127 gss_put_auth(struct gss_auth *gss_auth)
1129 kref_put(&gss_auth->kref, gss_free_callback);
1132 static void
1133 gss_destroy(struct rpc_auth *auth)
1135 struct gss_auth *gss_auth = container_of(auth,
1136 struct gss_auth, rpc_auth);
1138 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
1139 auth, auth->au_flavor);
1141 if (hash_hashed(&gss_auth->hash)) {
1142 spin_lock(&gss_auth_hash_lock);
1143 hash_del(&gss_auth->hash);
1144 spin_unlock(&gss_auth_hash_lock);
1147 gss_pipe_free(gss_auth->gss_pipe[0]);
1148 gss_auth->gss_pipe[0] = NULL;
1149 gss_pipe_free(gss_auth->gss_pipe[1]);
1150 gss_auth->gss_pipe[1] = NULL;
1151 rpcauth_destroy_credcache(auth);
1153 gss_put_auth(gss_auth);
1157 * Auths may be shared between rpc clients that were cloned from a
1158 * common client with the same xprt, if they also share the flavor and
1159 * target_name.
1161 * The auth is looked up from the oldest parent sharing the same
1162 * cl_xprt, and the auth itself references only that common parent
1163 * (which is guaranteed to last as long as any of its descendants).
1165 static struct gss_auth *
1166 gss_auth_find_or_add_hashed(const struct rpc_auth_create_args *args,
1167 struct rpc_clnt *clnt,
1168 struct gss_auth *new)
1170 struct gss_auth *gss_auth;
1171 unsigned long hashval = (unsigned long)clnt;
1173 spin_lock(&gss_auth_hash_lock);
1174 hash_for_each_possible(gss_auth_hash_table,
1175 gss_auth,
1176 hash,
1177 hashval) {
1178 if (gss_auth->client != clnt)
1179 continue;
1180 if (gss_auth->rpc_auth.au_flavor != args->pseudoflavor)
1181 continue;
1182 if (gss_auth->target_name != args->target_name) {
1183 if (gss_auth->target_name == NULL)
1184 continue;
1185 if (args->target_name == NULL)
1186 continue;
1187 if (strcmp(gss_auth->target_name, args->target_name))
1188 continue;
1190 if (!atomic_inc_not_zero(&gss_auth->rpc_auth.au_count))
1191 continue;
1192 goto out;
1194 if (new)
1195 hash_add(gss_auth_hash_table, &new->hash, hashval);
1196 gss_auth = new;
1197 out:
1198 spin_unlock(&gss_auth_hash_lock);
1199 return gss_auth;
1202 static struct gss_auth *
1203 gss_create_hashed(const struct rpc_auth_create_args *args,
1204 struct rpc_clnt *clnt)
1206 struct gss_auth *gss_auth;
1207 struct gss_auth *new;
1209 gss_auth = gss_auth_find_or_add_hashed(args, clnt, NULL);
1210 if (gss_auth != NULL)
1211 goto out;
1212 new = gss_create_new(args, clnt);
1213 if (IS_ERR(new))
1214 return new;
1215 gss_auth = gss_auth_find_or_add_hashed(args, clnt, new);
1216 if (gss_auth != new)
1217 gss_destroy(&new->rpc_auth);
1218 out:
1219 return gss_auth;
1222 static struct rpc_auth *
1223 gss_create(const struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
1225 struct gss_auth *gss_auth;
1226 struct rpc_xprt_switch *xps = rcu_access_pointer(clnt->cl_xpi.xpi_xpswitch);
1228 while (clnt != clnt->cl_parent) {
1229 struct rpc_clnt *parent = clnt->cl_parent;
1230 /* Find the original parent for this transport */
1231 if (rcu_access_pointer(parent->cl_xpi.xpi_xpswitch) != xps)
1232 break;
1233 clnt = parent;
1236 gss_auth = gss_create_hashed(args, clnt);
1237 if (IS_ERR(gss_auth))
1238 return ERR_CAST(gss_auth);
1239 return &gss_auth->rpc_auth;
1243 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
1244 * to the server with the GSS control procedure field set to
1245 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
1246 * all RPCSEC_GSS state associated with that context.
1248 static int
1249 gss_destroying_context(struct rpc_cred *cred)
1251 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1252 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1253 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1254 struct rpc_task *task;
1256 if (test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
1257 return 0;
1259 ctx->gc_proc = RPC_GSS_PROC_DESTROY;
1260 cred->cr_ops = &gss_nullops;
1262 /* Take a reference to ensure the cred will be destroyed either
1263 * by the RPC call or by the put_rpccred() below */
1264 get_rpccred(cred);
1266 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
1267 if (!IS_ERR(task))
1268 rpc_put_task(task);
1270 put_rpccred(cred);
1271 return 1;
1274 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
1275 * to create a new cred or context, so they check that things have been
1276 * allocated before freeing them. */
1277 static void
1278 gss_do_free_ctx(struct gss_cl_ctx *ctx)
1280 dprintk("RPC: %s\n", __func__);
1282 gss_delete_sec_context(&ctx->gc_gss_ctx);
1283 kfree(ctx->gc_wire_ctx.data);
1284 kfree(ctx->gc_acceptor.data);
1285 kfree(ctx);
1288 static void
1289 gss_free_ctx_callback(struct rcu_head *head)
1291 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
1292 gss_do_free_ctx(ctx);
1295 static void
1296 gss_free_ctx(struct gss_cl_ctx *ctx)
1298 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
1301 static void
1302 gss_free_cred(struct gss_cred *gss_cred)
1304 dprintk("RPC: %s cred=%p\n", __func__, gss_cred);
1305 kfree(gss_cred);
1308 static void
1309 gss_free_cred_callback(struct rcu_head *head)
1311 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
1312 gss_free_cred(gss_cred);
1315 static void
1316 gss_destroy_nullcred(struct rpc_cred *cred)
1318 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1319 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
1320 struct gss_cl_ctx *ctx = rcu_dereference_protected(gss_cred->gc_ctx, 1);
1322 RCU_INIT_POINTER(gss_cred->gc_ctx, NULL);
1323 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
1324 if (ctx)
1325 gss_put_ctx(ctx);
1326 gss_put_auth(gss_auth);
1329 static void
1330 gss_destroy_cred(struct rpc_cred *cred)
1333 if (gss_destroying_context(cred))
1334 return;
1335 gss_destroy_nullcred(cred);
1338 static int
1339 gss_hash_cred(struct auth_cred *acred, unsigned int hashbits)
1341 return hash_64(from_kuid(&init_user_ns, acred->uid), hashbits);
1345 * Lookup RPCSEC_GSS cred for the current process
1347 static struct rpc_cred *
1348 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
1350 return rpcauth_lookup_credcache(auth, acred, flags, GFP_NOFS);
1353 static struct rpc_cred *
1354 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags, gfp_t gfp)
1356 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1357 struct gss_cred *cred = NULL;
1358 int err = -ENOMEM;
1360 dprintk("RPC: %s for uid %d, flavor %d\n",
1361 __func__, from_kuid(&init_user_ns, acred->uid),
1362 auth->au_flavor);
1364 if (!(cred = kzalloc(sizeof(*cred), gfp)))
1365 goto out_err;
1367 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
1369 * Note: in order to force a call to call_refresh(), we deliberately
1370 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
1372 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
1373 cred->gc_service = gss_auth->service;
1374 cred->gc_principal = NULL;
1375 if (acred->machine_cred)
1376 cred->gc_principal = acred->principal;
1377 kref_get(&gss_auth->kref);
1378 return &cred->gc_base;
1380 out_err:
1381 dprintk("RPC: %s failed with error %d\n", __func__, err);
1382 return ERR_PTR(err);
1385 static int
1386 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
1388 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
1389 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
1390 int err;
1392 do {
1393 err = gss_create_upcall(gss_auth, gss_cred);
1394 } while (err == -EAGAIN);
1395 return err;
1398 static char *
1399 gss_stringify_acceptor(struct rpc_cred *cred)
1401 char *string = NULL;
1402 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
1403 struct gss_cl_ctx *ctx;
1404 unsigned int len;
1405 struct xdr_netobj *acceptor;
1407 rcu_read_lock();
1408 ctx = rcu_dereference(gss_cred->gc_ctx);
1409 if (!ctx)
1410 goto out;
1412 len = ctx->gc_acceptor.len;
1413 rcu_read_unlock();
1415 /* no point if there's no string */
1416 if (!len)
1417 return NULL;
1418 realloc:
1419 string = kmalloc(len + 1, GFP_KERNEL);
1420 if (!string)
1421 return NULL;
1423 rcu_read_lock();
1424 ctx = rcu_dereference(gss_cred->gc_ctx);
1426 /* did the ctx disappear or was it replaced by one with no acceptor? */
1427 if (!ctx || !ctx->gc_acceptor.len) {
1428 kfree(string);
1429 string = NULL;
1430 goto out;
1433 acceptor = &ctx->gc_acceptor;
1436 * Did we find a new acceptor that's longer than the original? Allocate
1437 * a longer buffer and try again.
1439 if (len < acceptor->len) {
1440 len = acceptor->len;
1441 rcu_read_unlock();
1442 kfree(string);
1443 goto realloc;
1446 memcpy(string, acceptor->data, acceptor->len);
1447 string[acceptor->len] = '\0';
1448 out:
1449 rcu_read_unlock();
1450 return string;
1454 * Returns -EACCES if GSS context is NULL or will expire within the
1455 * timeout (miliseconds)
1457 static int
1458 gss_key_timeout(struct rpc_cred *rc)
1460 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1461 struct gss_cl_ctx *ctx;
1462 unsigned long timeout = jiffies + (gss_key_expire_timeo * HZ);
1463 int ret = 0;
1465 rcu_read_lock();
1466 ctx = rcu_dereference(gss_cred->gc_ctx);
1467 if (!ctx || time_after(timeout, ctx->gc_expiry))
1468 ret = -EACCES;
1469 rcu_read_unlock();
1471 return ret;
1474 static int
1475 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1477 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1478 struct gss_cl_ctx *ctx;
1479 int ret;
1481 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1482 goto out;
1483 /* Don't match with creds that have expired. */
1484 rcu_read_lock();
1485 ctx = rcu_dereference(gss_cred->gc_ctx);
1486 if (!ctx || time_after(jiffies, ctx->gc_expiry)) {
1487 rcu_read_unlock();
1488 return 0;
1490 rcu_read_unlock();
1491 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1492 return 0;
1493 out:
1494 if (acred->principal != NULL) {
1495 if (gss_cred->gc_principal == NULL)
1496 return 0;
1497 ret = strcmp(acred->principal, gss_cred->gc_principal) == 0;
1498 goto check_expire;
1500 if (gss_cred->gc_principal != NULL)
1501 return 0;
1502 ret = uid_eq(rc->cr_uid, acred->uid);
1504 check_expire:
1505 if (ret == 0)
1506 return ret;
1508 /* Notify acred users of GSS context expiration timeout */
1509 if (test_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags) &&
1510 (gss_key_timeout(rc) != 0)) {
1511 /* test will now be done from generic cred */
1512 test_and_clear_bit(RPC_CRED_NOTIFY_TIMEOUT, &acred->ac_flags);
1513 /* tell NFS layer that key will expire soon */
1514 set_bit(RPC_CRED_KEY_EXPIRE_SOON, &acred->ac_flags);
1516 return ret;
1520 * Marshal credentials.
1521 * Maybe we should keep a cached credential for performance reasons.
1523 static __be32 *
1524 gss_marshal(struct rpc_task *task, __be32 *p)
1526 struct rpc_rqst *req = task->tk_rqstp;
1527 struct rpc_cred *cred = req->rq_cred;
1528 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1529 gc_base);
1530 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1531 __be32 *cred_len;
1532 u32 maj_stat = 0;
1533 struct xdr_netobj mic;
1534 struct kvec iov;
1535 struct xdr_buf verf_buf;
1537 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1539 *p++ = htonl(RPC_AUTH_GSS);
1540 cred_len = p++;
1542 spin_lock(&ctx->gc_seq_lock);
1543 req->rq_seqno = ctx->gc_seq++;
1544 spin_unlock(&ctx->gc_seq_lock);
1546 *p++ = htonl((u32) RPC_GSS_VERSION);
1547 *p++ = htonl((u32) ctx->gc_proc);
1548 *p++ = htonl((u32) req->rq_seqno);
1549 *p++ = htonl((u32) gss_cred->gc_service);
1550 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1551 *cred_len = htonl((p - (cred_len + 1)) << 2);
1553 /* We compute the checksum for the verifier over the xdr-encoded bytes
1554 * starting with the xid and ending at the end of the credential: */
1555 iov.iov_base = xprt_skip_transport_header(req->rq_xprt,
1556 req->rq_snd_buf.head[0].iov_base);
1557 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1558 xdr_buf_from_iov(&iov, &verf_buf);
1560 /* set verifier flavor*/
1561 *p++ = htonl(RPC_AUTH_GSS);
1563 mic.data = (u8 *)(p + 1);
1564 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1565 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1566 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1567 } else if (maj_stat != 0) {
1568 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1569 goto out_put_ctx;
1571 p = xdr_encode_opaque(p, NULL, mic.len);
1572 gss_put_ctx(ctx);
1573 return p;
1574 out_put_ctx:
1575 gss_put_ctx(ctx);
1576 return NULL;
1579 static int gss_renew_cred(struct rpc_task *task)
1581 struct rpc_cred *oldcred = task->tk_rqstp->rq_cred;
1582 struct gss_cred *gss_cred = container_of(oldcred,
1583 struct gss_cred,
1584 gc_base);
1585 struct rpc_auth *auth = oldcred->cr_auth;
1586 struct auth_cred acred = {
1587 .uid = oldcred->cr_uid,
1588 .principal = gss_cred->gc_principal,
1589 .machine_cred = (gss_cred->gc_principal != NULL ? 1 : 0),
1591 struct rpc_cred *new;
1593 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1594 if (IS_ERR(new))
1595 return PTR_ERR(new);
1596 task->tk_rqstp->rq_cred = new;
1597 put_rpccred(oldcred);
1598 return 0;
1601 static int gss_cred_is_negative_entry(struct rpc_cred *cred)
1603 if (test_bit(RPCAUTH_CRED_NEGATIVE, &cred->cr_flags)) {
1604 unsigned long now = jiffies;
1605 unsigned long begin, expire;
1606 struct gss_cred *gss_cred;
1608 gss_cred = container_of(cred, struct gss_cred, gc_base);
1609 begin = gss_cred->gc_upcall_timestamp;
1610 expire = begin + gss_expired_cred_retry_delay * HZ;
1612 if (time_in_range_open(now, begin, expire))
1613 return 1;
1615 return 0;
1619 * Refresh credentials. XXX - finish
1621 static int
1622 gss_refresh(struct rpc_task *task)
1624 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1625 int ret = 0;
1627 if (gss_cred_is_negative_entry(cred))
1628 return -EKEYEXPIRED;
1630 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1631 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1632 ret = gss_renew_cred(task);
1633 if (ret < 0)
1634 goto out;
1635 cred = task->tk_rqstp->rq_cred;
1638 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1639 ret = gss_refresh_upcall(task);
1640 out:
1641 return ret;
1644 /* Dummy refresh routine: used only when destroying the context */
1645 static int
1646 gss_refresh_null(struct rpc_task *task)
1648 return 0;
1651 static __be32 *
1652 gss_validate(struct rpc_task *task, __be32 *p)
1654 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1655 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1656 __be32 *seq = NULL;
1657 struct kvec iov;
1658 struct xdr_buf verf_buf;
1659 struct xdr_netobj mic;
1660 u32 flav,len;
1661 u32 maj_stat;
1662 __be32 *ret = ERR_PTR(-EIO);
1664 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1666 flav = ntohl(*p++);
1667 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1668 goto out_bad;
1669 if (flav != RPC_AUTH_GSS)
1670 goto out_bad;
1671 seq = kmalloc(4, GFP_NOFS);
1672 if (!seq)
1673 goto out_bad;
1674 *seq = htonl(task->tk_rqstp->rq_seqno);
1675 iov.iov_base = seq;
1676 iov.iov_len = 4;
1677 xdr_buf_from_iov(&iov, &verf_buf);
1678 mic.data = (u8 *)p;
1679 mic.len = len;
1681 ret = ERR_PTR(-EACCES);
1682 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1683 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1684 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1685 if (maj_stat) {
1686 dprintk("RPC: %5u %s: gss_verify_mic returned error 0x%08x\n",
1687 task->tk_pid, __func__, maj_stat);
1688 goto out_bad;
1690 /* We leave it to unwrap to calculate au_rslack. For now we just
1691 * calculate the length of the verifier: */
1692 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1693 gss_put_ctx(ctx);
1694 dprintk("RPC: %5u %s: gss_verify_mic succeeded.\n",
1695 task->tk_pid, __func__);
1696 kfree(seq);
1697 return p + XDR_QUADLEN(len);
1698 out_bad:
1699 gss_put_ctx(ctx);
1700 dprintk("RPC: %5u %s failed ret %ld.\n", task->tk_pid, __func__,
1701 PTR_ERR(ret));
1702 kfree(seq);
1703 return ret;
1706 static void gss_wrap_req_encode(kxdreproc_t encode, struct rpc_rqst *rqstp,
1707 __be32 *p, void *obj)
1709 struct xdr_stream xdr;
1711 xdr_init_encode(&xdr, &rqstp->rq_snd_buf, p);
1712 encode(rqstp, &xdr, obj);
1715 static inline int
1716 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1717 kxdreproc_t encode, struct rpc_rqst *rqstp,
1718 __be32 *p, void *obj)
1720 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1721 struct xdr_buf integ_buf;
1722 __be32 *integ_len = NULL;
1723 struct xdr_netobj mic;
1724 u32 offset;
1725 __be32 *q;
1726 struct kvec *iov;
1727 u32 maj_stat = 0;
1728 int status = -EIO;
1730 integ_len = p++;
1731 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1732 *p++ = htonl(rqstp->rq_seqno);
1734 gss_wrap_req_encode(encode, rqstp, p, obj);
1736 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1737 offset, snd_buf->len - offset))
1738 return status;
1739 *integ_len = htonl(integ_buf.len);
1741 /* guess whether we're in the head or the tail: */
1742 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1743 iov = snd_buf->tail;
1744 else
1745 iov = snd_buf->head;
1746 p = iov->iov_base + iov->iov_len;
1747 mic.data = (u8 *)(p + 1);
1749 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1750 status = -EIO; /* XXX? */
1751 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1752 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1753 else if (maj_stat)
1754 return status;
1755 q = xdr_encode_opaque(p, NULL, mic.len);
1757 offset = (u8 *)q - (u8 *)p;
1758 iov->iov_len += offset;
1759 snd_buf->len += offset;
1760 return 0;
1763 static void
1764 priv_release_snd_buf(struct rpc_rqst *rqstp)
1766 int i;
1768 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1769 __free_page(rqstp->rq_enc_pages[i]);
1770 kfree(rqstp->rq_enc_pages);
1773 static int
1774 alloc_enc_pages(struct rpc_rqst *rqstp)
1776 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1777 int first, last, i;
1779 if (snd_buf->page_len == 0) {
1780 rqstp->rq_enc_pages_num = 0;
1781 return 0;
1784 first = snd_buf->page_base >> PAGE_SHIFT;
1785 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_SHIFT;
1786 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1787 rqstp->rq_enc_pages
1788 = kmalloc_array(rqstp->rq_enc_pages_num,
1789 sizeof(struct page *),
1790 GFP_NOFS);
1791 if (!rqstp->rq_enc_pages)
1792 goto out;
1793 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1794 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1795 if (rqstp->rq_enc_pages[i] == NULL)
1796 goto out_free;
1798 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1799 return 0;
1800 out_free:
1801 rqstp->rq_enc_pages_num = i;
1802 priv_release_snd_buf(rqstp);
1803 out:
1804 return -EAGAIN;
1807 static inline int
1808 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1809 kxdreproc_t encode, struct rpc_rqst *rqstp,
1810 __be32 *p, void *obj)
1812 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1813 u32 offset;
1814 u32 maj_stat;
1815 int status;
1816 __be32 *opaque_len;
1817 struct page **inpages;
1818 int first;
1819 int pad;
1820 struct kvec *iov;
1821 char *tmp;
1823 opaque_len = p++;
1824 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1825 *p++ = htonl(rqstp->rq_seqno);
1827 gss_wrap_req_encode(encode, rqstp, p, obj);
1829 status = alloc_enc_pages(rqstp);
1830 if (status)
1831 return status;
1832 first = snd_buf->page_base >> PAGE_SHIFT;
1833 inpages = snd_buf->pages + first;
1834 snd_buf->pages = rqstp->rq_enc_pages;
1835 snd_buf->page_base -= first << PAGE_SHIFT;
1837 * Give the tail its own page, in case we need extra space in the
1838 * head when wrapping:
1840 * call_allocate() allocates twice the slack space required
1841 * by the authentication flavor to rq_callsize.
1842 * For GSS, slack is GSS_CRED_SLACK.
1844 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1845 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1846 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1847 snd_buf->tail[0].iov_base = tmp;
1849 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1850 /* slack space should prevent this ever happening: */
1851 BUG_ON(snd_buf->len > snd_buf->buflen);
1852 status = -EIO;
1853 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1854 * done anyway, so it's safe to put the request on the wire: */
1855 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1856 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1857 else if (maj_stat)
1858 return status;
1860 *opaque_len = htonl(snd_buf->len - offset);
1861 /* guess whether we're in the head or the tail: */
1862 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1863 iov = snd_buf->tail;
1864 else
1865 iov = snd_buf->head;
1866 p = iov->iov_base + iov->iov_len;
1867 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1868 memset(p, 0, pad);
1869 iov->iov_len += pad;
1870 snd_buf->len += pad;
1872 return 0;
1875 static int
1876 gss_wrap_req(struct rpc_task *task,
1877 kxdreproc_t encode, void *rqstp, __be32 *p, void *obj)
1879 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1880 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1881 gc_base);
1882 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1883 int status = -EIO;
1885 dprintk("RPC: %5u %s\n", task->tk_pid, __func__);
1886 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1887 /* The spec seems a little ambiguous here, but I think that not
1888 * wrapping context destruction requests makes the most sense.
1890 gss_wrap_req_encode(encode, rqstp, p, obj);
1891 status = 0;
1892 goto out;
1894 switch (gss_cred->gc_service) {
1895 case RPC_GSS_SVC_NONE:
1896 gss_wrap_req_encode(encode, rqstp, p, obj);
1897 status = 0;
1898 break;
1899 case RPC_GSS_SVC_INTEGRITY:
1900 status = gss_wrap_req_integ(cred, ctx, encode, rqstp, p, obj);
1901 break;
1902 case RPC_GSS_SVC_PRIVACY:
1903 status = gss_wrap_req_priv(cred, ctx, encode, rqstp, p, obj);
1904 break;
1906 out:
1907 gss_put_ctx(ctx);
1908 dprintk("RPC: %5u %s returning %d\n", task->tk_pid, __func__, status);
1909 return status;
1912 static inline int
1913 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1914 struct rpc_rqst *rqstp, __be32 **p)
1916 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1917 struct xdr_buf integ_buf;
1918 struct xdr_netobj mic;
1919 u32 data_offset, mic_offset;
1920 u32 integ_len;
1921 u32 maj_stat;
1922 int status = -EIO;
1924 integ_len = ntohl(*(*p)++);
1925 if (integ_len & 3)
1926 return status;
1927 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1928 mic_offset = integ_len + data_offset;
1929 if (mic_offset > rcv_buf->len)
1930 return status;
1931 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1932 return status;
1934 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1935 mic_offset - data_offset))
1936 return status;
1938 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1939 return status;
1941 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1942 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1943 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1944 if (maj_stat != GSS_S_COMPLETE)
1945 return status;
1946 return 0;
1949 static inline int
1950 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1951 struct rpc_rqst *rqstp, __be32 **p)
1953 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1954 u32 offset;
1955 u32 opaque_len;
1956 u32 maj_stat;
1957 int status = -EIO;
1959 opaque_len = ntohl(*(*p)++);
1960 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1961 if (offset + opaque_len > rcv_buf->len)
1962 return status;
1963 /* remove padding: */
1964 rcv_buf->len = offset + opaque_len;
1966 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1967 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1968 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1969 if (maj_stat != GSS_S_COMPLETE)
1970 return status;
1971 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1972 return status;
1974 return 0;
1977 static int
1978 gss_unwrap_req_decode(kxdrdproc_t decode, struct rpc_rqst *rqstp,
1979 __be32 *p, void *obj)
1981 struct xdr_stream xdr;
1983 xdr_init_decode(&xdr, &rqstp->rq_rcv_buf, p);
1984 return decode(rqstp, &xdr, obj);
1987 static int
1988 gss_unwrap_resp(struct rpc_task *task,
1989 kxdrdproc_t decode, void *rqstp, __be32 *p, void *obj)
1991 struct rpc_cred *cred = task->tk_rqstp->rq_cred;
1992 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1993 gc_base);
1994 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1995 __be32 *savedp = p;
1996 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1997 int savedlen = head->iov_len;
1998 int status = -EIO;
2000 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
2001 goto out_decode;
2002 switch (gss_cred->gc_service) {
2003 case RPC_GSS_SVC_NONE:
2004 break;
2005 case RPC_GSS_SVC_INTEGRITY:
2006 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
2007 if (status)
2008 goto out;
2009 break;
2010 case RPC_GSS_SVC_PRIVACY:
2011 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
2012 if (status)
2013 goto out;
2014 break;
2016 /* take into account extra slack for integrity and privacy cases: */
2017 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
2018 + (savedlen - head->iov_len);
2019 out_decode:
2020 status = gss_unwrap_req_decode(decode, rqstp, p, obj);
2021 out:
2022 gss_put_ctx(ctx);
2023 dprintk("RPC: %5u %s returning %d\n",
2024 task->tk_pid, __func__, status);
2025 return status;
2028 static const struct rpc_authops authgss_ops = {
2029 .owner = THIS_MODULE,
2030 .au_flavor = RPC_AUTH_GSS,
2031 .au_name = "RPCSEC_GSS",
2032 .create = gss_create,
2033 .destroy = gss_destroy,
2034 .hash_cred = gss_hash_cred,
2035 .lookup_cred = gss_lookup_cred,
2036 .crcreate = gss_create_cred,
2037 .list_pseudoflavors = gss_mech_list_pseudoflavors,
2038 .info2flavor = gss_mech_info2flavor,
2039 .flavor2info = gss_mech_flavor2info,
2042 static const struct rpc_credops gss_credops = {
2043 .cr_name = "AUTH_GSS",
2044 .crdestroy = gss_destroy_cred,
2045 .cr_init = gss_cred_init,
2046 .crbind = rpcauth_generic_bind_cred,
2047 .crmatch = gss_match,
2048 .crmarshal = gss_marshal,
2049 .crrefresh = gss_refresh,
2050 .crvalidate = gss_validate,
2051 .crwrap_req = gss_wrap_req,
2052 .crunwrap_resp = gss_unwrap_resp,
2053 .crkey_timeout = gss_key_timeout,
2054 .crstringify_acceptor = gss_stringify_acceptor,
2057 static const struct rpc_credops gss_nullops = {
2058 .cr_name = "AUTH_GSS",
2059 .crdestroy = gss_destroy_nullcred,
2060 .crbind = rpcauth_generic_bind_cred,
2061 .crmatch = gss_match,
2062 .crmarshal = gss_marshal,
2063 .crrefresh = gss_refresh_null,
2064 .crvalidate = gss_validate,
2065 .crwrap_req = gss_wrap_req,
2066 .crunwrap_resp = gss_unwrap_resp,
2067 .crstringify_acceptor = gss_stringify_acceptor,
2070 static const struct rpc_pipe_ops gss_upcall_ops_v0 = {
2071 .upcall = rpc_pipe_generic_upcall,
2072 .downcall = gss_pipe_downcall,
2073 .destroy_msg = gss_pipe_destroy_msg,
2074 .open_pipe = gss_pipe_open_v0,
2075 .release_pipe = gss_pipe_release,
2078 static const struct rpc_pipe_ops gss_upcall_ops_v1 = {
2079 .upcall = rpc_pipe_generic_upcall,
2080 .downcall = gss_pipe_downcall,
2081 .destroy_msg = gss_pipe_destroy_msg,
2082 .open_pipe = gss_pipe_open_v1,
2083 .release_pipe = gss_pipe_release,
2086 static __net_init int rpcsec_gss_init_net(struct net *net)
2088 return gss_svc_init_net(net);
2091 static __net_exit void rpcsec_gss_exit_net(struct net *net)
2093 gss_svc_shutdown_net(net);
2096 static struct pernet_operations rpcsec_gss_net_ops = {
2097 .init = rpcsec_gss_init_net,
2098 .exit = rpcsec_gss_exit_net,
2102 * Initialize RPCSEC_GSS module
2104 static int __init init_rpcsec_gss(void)
2106 int err = 0;
2108 err = rpcauth_register(&authgss_ops);
2109 if (err)
2110 goto out;
2111 err = gss_svc_init();
2112 if (err)
2113 goto out_unregister;
2114 err = register_pernet_subsys(&rpcsec_gss_net_ops);
2115 if (err)
2116 goto out_svc_exit;
2117 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
2118 return 0;
2119 out_svc_exit:
2120 gss_svc_shutdown();
2121 out_unregister:
2122 rpcauth_unregister(&authgss_ops);
2123 out:
2124 return err;
2127 static void __exit exit_rpcsec_gss(void)
2129 unregister_pernet_subsys(&rpcsec_gss_net_ops);
2130 gss_svc_shutdown();
2131 rpcauth_unregister(&authgss_ops);
2132 rcu_barrier(); /* Wait for completion of call_rcu()'s */
2135 MODULE_ALIAS("rpc-auth-6");
2136 MODULE_LICENSE("GPL");
2137 module_param_named(expired_cred_retry_delay,
2138 gss_expired_cred_retry_delay,
2139 uint, 0644);
2140 MODULE_PARM_DESC(expired_cred_retry_delay, "Timeout (in seconds) until "
2141 "the RPC engine retries an expired credential");
2143 module_param_named(key_expire_timeo,
2144 gss_key_expire_timeo,
2145 uint, 0644);
2146 MODULE_PARM_DESC(key_expire_timeo, "Time (in seconds) at the end of a "
2147 "credential keys lifetime where the NFS layer cleans up "
2148 "prior to key expiration");
2150 module_init(init_rpcsec_gss)
2151 module_exit(exit_rpcsec_gss)