4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
25 #include <linux/iomap.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/notifier.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
51 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
52 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
53 enum rw_hint hint
, struct writeback_control
*wbc
);
55 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
57 inline void touch_buffer(struct buffer_head
*bh
)
59 trace_block_touch_buffer(bh
);
60 mark_page_accessed(bh
->b_page
);
62 EXPORT_SYMBOL(touch_buffer
);
64 void __lock_buffer(struct buffer_head
*bh
)
66 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
68 EXPORT_SYMBOL(__lock_buffer
);
70 void unlock_buffer(struct buffer_head
*bh
)
72 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
73 smp_mb__after_atomic();
74 wake_up_bit(&bh
->b_state
, BH_Lock
);
76 EXPORT_SYMBOL(unlock_buffer
);
79 * Returns if the page has dirty or writeback buffers. If all the buffers
80 * are unlocked and clean then the PageDirty information is stale. If
81 * any of the pages are locked, it is assumed they are locked for IO.
83 void buffer_check_dirty_writeback(struct page
*page
,
84 bool *dirty
, bool *writeback
)
86 struct buffer_head
*head
, *bh
;
90 BUG_ON(!PageLocked(page
));
92 if (!page_has_buffers(page
))
95 if (PageWriteback(page
))
98 head
= page_buffers(page
);
101 if (buffer_locked(bh
))
104 if (buffer_dirty(bh
))
107 bh
= bh
->b_this_page
;
108 } while (bh
!= head
);
110 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
113 * Block until a buffer comes unlocked. This doesn't stop it
114 * from becoming locked again - you have to lock it yourself
115 * if you want to preserve its state.
117 void __wait_on_buffer(struct buffer_head
* bh
)
119 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
121 EXPORT_SYMBOL(__wait_on_buffer
);
124 __clear_page_buffers(struct page
*page
)
126 ClearPagePrivate(page
);
127 set_page_private(page
, 0);
131 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
133 if (!test_bit(BH_Quiet
, &bh
->b_state
))
134 printk_ratelimited(KERN_ERR
135 "Buffer I/O error on dev %pg, logical block %llu%s\n",
136 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
140 * End-of-IO handler helper function which does not touch the bh after
142 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
143 * a race there is benign: unlock_buffer() only use the bh's address for
144 * hashing after unlocking the buffer, so it doesn't actually touch the bh
147 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
150 set_buffer_uptodate(bh
);
152 /* This happens, due to failed read-ahead attempts. */
153 clear_buffer_uptodate(bh
);
159 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
160 * unlock the buffer. This is what ll_rw_block uses too.
162 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
164 __end_buffer_read_notouch(bh
, uptodate
);
167 EXPORT_SYMBOL(end_buffer_read_sync
);
169 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
172 set_buffer_uptodate(bh
);
174 buffer_io_error(bh
, ", lost sync page write");
175 mark_buffer_write_io_error(bh
);
176 clear_buffer_uptodate(bh
);
181 EXPORT_SYMBOL(end_buffer_write_sync
);
184 * Various filesystems appear to want __find_get_block to be non-blocking.
185 * But it's the page lock which protects the buffers. To get around this,
186 * we get exclusion from try_to_free_buffers with the blockdev mapping's
189 * Hack idea: for the blockdev mapping, private_lock contention
190 * may be quite high. This code could TryLock the page, and if that
191 * succeeds, there is no need to take private_lock.
193 static struct buffer_head
*
194 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
196 struct inode
*bd_inode
= bdev
->bd_inode
;
197 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
198 struct buffer_head
*ret
= NULL
;
200 struct buffer_head
*bh
;
201 struct buffer_head
*head
;
205 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
206 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
210 spin_lock(&bd_mapping
->private_lock
);
211 if (!page_has_buffers(page
))
213 head
= page_buffers(page
);
216 if (!buffer_mapped(bh
))
218 else if (bh
->b_blocknr
== block
) {
223 bh
= bh
->b_this_page
;
224 } while (bh
!= head
);
226 /* we might be here because some of the buffers on this page are
227 * not mapped. This is due to various races between
228 * file io on the block device and getblk. It gets dealt with
229 * elsewhere, don't buffer_error if we had some unmapped buffers
232 printk("__find_get_block_slow() failed. "
233 "block=%llu, b_blocknr=%llu\n",
234 (unsigned long long)block
,
235 (unsigned long long)bh
->b_blocknr
);
236 printk("b_state=0x%08lx, b_size=%zu\n",
237 bh
->b_state
, bh
->b_size
);
238 printk("device %pg blocksize: %d\n", bdev
,
239 1 << bd_inode
->i_blkbits
);
242 spin_unlock(&bd_mapping
->private_lock
);
249 * I/O completion handler for block_read_full_page() - pages
250 * which come unlocked at the end of I/O.
252 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
255 struct buffer_head
*first
;
256 struct buffer_head
*tmp
;
258 int page_uptodate
= 1;
260 BUG_ON(!buffer_async_read(bh
));
264 set_buffer_uptodate(bh
);
266 clear_buffer_uptodate(bh
);
267 buffer_io_error(bh
, ", async page read");
272 * Be _very_ careful from here on. Bad things can happen if
273 * two buffer heads end IO at almost the same time and both
274 * decide that the page is now completely done.
276 first
= page_buffers(page
);
277 local_irq_save(flags
);
278 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
279 clear_buffer_async_read(bh
);
283 if (!buffer_uptodate(tmp
))
285 if (buffer_async_read(tmp
)) {
286 BUG_ON(!buffer_locked(tmp
));
289 tmp
= tmp
->b_this_page
;
291 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
292 local_irq_restore(flags
);
295 * If none of the buffers had errors and they are all
296 * uptodate then we can set the page uptodate.
298 if (page_uptodate
&& !PageError(page
))
299 SetPageUptodate(page
);
304 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
305 local_irq_restore(flags
);
310 * Completion handler for block_write_full_page() - pages which are unlocked
311 * during I/O, and which have PageWriteback cleared upon I/O completion.
313 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
316 struct buffer_head
*first
;
317 struct buffer_head
*tmp
;
320 BUG_ON(!buffer_async_write(bh
));
324 set_buffer_uptodate(bh
);
326 buffer_io_error(bh
, ", lost async page write");
327 mark_buffer_write_io_error(bh
);
328 clear_buffer_uptodate(bh
);
332 first
= page_buffers(page
);
333 local_irq_save(flags
);
334 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
336 clear_buffer_async_write(bh
);
338 tmp
= bh
->b_this_page
;
340 if (buffer_async_write(tmp
)) {
341 BUG_ON(!buffer_locked(tmp
));
344 tmp
= tmp
->b_this_page
;
346 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
347 local_irq_restore(flags
);
348 end_page_writeback(page
);
352 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
353 local_irq_restore(flags
);
356 EXPORT_SYMBOL(end_buffer_async_write
);
359 * If a page's buffers are under async readin (end_buffer_async_read
360 * completion) then there is a possibility that another thread of
361 * control could lock one of the buffers after it has completed
362 * but while some of the other buffers have not completed. This
363 * locked buffer would confuse end_buffer_async_read() into not unlocking
364 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
365 * that this buffer is not under async I/O.
367 * The page comes unlocked when it has no locked buffer_async buffers
370 * PageLocked prevents anyone starting new async I/O reads any of
373 * PageWriteback is used to prevent simultaneous writeout of the same
376 * PageLocked prevents anyone from starting writeback of a page which is
377 * under read I/O (PageWriteback is only ever set against a locked page).
379 static void mark_buffer_async_read(struct buffer_head
*bh
)
381 bh
->b_end_io
= end_buffer_async_read
;
382 set_buffer_async_read(bh
);
385 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
386 bh_end_io_t
*handler
)
388 bh
->b_end_io
= handler
;
389 set_buffer_async_write(bh
);
392 void mark_buffer_async_write(struct buffer_head
*bh
)
394 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
396 EXPORT_SYMBOL(mark_buffer_async_write
);
400 * fs/buffer.c contains helper functions for buffer-backed address space's
401 * fsync functions. A common requirement for buffer-based filesystems is
402 * that certain data from the backing blockdev needs to be written out for
403 * a successful fsync(). For example, ext2 indirect blocks need to be
404 * written back and waited upon before fsync() returns.
406 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
407 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
408 * management of a list of dependent buffers at ->i_mapping->private_list.
410 * Locking is a little subtle: try_to_free_buffers() will remove buffers
411 * from their controlling inode's queue when they are being freed. But
412 * try_to_free_buffers() will be operating against the *blockdev* mapping
413 * at the time, not against the S_ISREG file which depends on those buffers.
414 * So the locking for private_list is via the private_lock in the address_space
415 * which backs the buffers. Which is different from the address_space
416 * against which the buffers are listed. So for a particular address_space,
417 * mapping->private_lock does *not* protect mapping->private_list! In fact,
418 * mapping->private_list will always be protected by the backing blockdev's
421 * Which introduces a requirement: all buffers on an address_space's
422 * ->private_list must be from the same address_space: the blockdev's.
424 * address_spaces which do not place buffers at ->private_list via these
425 * utility functions are free to use private_lock and private_list for
426 * whatever they want. The only requirement is that list_empty(private_list)
427 * be true at clear_inode() time.
429 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
430 * filesystems should do that. invalidate_inode_buffers() should just go
431 * BUG_ON(!list_empty).
433 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
434 * take an address_space, not an inode. And it should be called
435 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
438 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
439 * list if it is already on a list. Because if the buffer is on a list,
440 * it *must* already be on the right one. If not, the filesystem is being
441 * silly. This will save a ton of locking. But first we have to ensure
442 * that buffers are taken *off* the old inode's list when they are freed
443 * (presumably in truncate). That requires careful auditing of all
444 * filesystems (do it inside bforget()). It could also be done by bringing
449 * The buffer's backing address_space's private_lock must be held
451 static void __remove_assoc_queue(struct buffer_head
*bh
)
453 list_del_init(&bh
->b_assoc_buffers
);
454 WARN_ON(!bh
->b_assoc_map
);
455 bh
->b_assoc_map
= NULL
;
458 int inode_has_buffers(struct inode
*inode
)
460 return !list_empty(&inode
->i_data
.private_list
);
464 * osync is designed to support O_SYNC io. It waits synchronously for
465 * all already-submitted IO to complete, but does not queue any new
466 * writes to the disk.
468 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
469 * you dirty the buffers, and then use osync_inode_buffers to wait for
470 * completion. Any other dirty buffers which are not yet queued for
471 * write will not be flushed to disk by the osync.
473 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
475 struct buffer_head
*bh
;
481 list_for_each_prev(p
, list
) {
483 if (buffer_locked(bh
)) {
487 if (!buffer_uptodate(bh
))
498 void emergency_thaw_bdev(struct super_block
*sb
)
500 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
501 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
505 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
506 * @mapping: the mapping which wants those buffers written
508 * Starts I/O against the buffers at mapping->private_list, and waits upon
511 * Basically, this is a convenience function for fsync().
512 * @mapping is a file or directory which needs those buffers to be written for
513 * a successful fsync().
515 int sync_mapping_buffers(struct address_space
*mapping
)
517 struct address_space
*buffer_mapping
= mapping
->private_data
;
519 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
522 return fsync_buffers_list(&buffer_mapping
->private_lock
,
523 &mapping
->private_list
);
525 EXPORT_SYMBOL(sync_mapping_buffers
);
528 * Called when we've recently written block `bblock', and it is known that
529 * `bblock' was for a buffer_boundary() buffer. This means that the block at
530 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
531 * dirty, schedule it for IO. So that indirects merge nicely with their data.
533 void write_boundary_block(struct block_device
*bdev
,
534 sector_t bblock
, unsigned blocksize
)
536 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
538 if (buffer_dirty(bh
))
539 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
544 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
546 struct address_space
*mapping
= inode
->i_mapping
;
547 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
549 mark_buffer_dirty(bh
);
550 if (!mapping
->private_data
) {
551 mapping
->private_data
= buffer_mapping
;
553 BUG_ON(mapping
->private_data
!= buffer_mapping
);
555 if (!bh
->b_assoc_map
) {
556 spin_lock(&buffer_mapping
->private_lock
);
557 list_move_tail(&bh
->b_assoc_buffers
,
558 &mapping
->private_list
);
559 bh
->b_assoc_map
= mapping
;
560 spin_unlock(&buffer_mapping
->private_lock
);
563 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
566 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
569 * If warn is true, then emit a warning if the page is not uptodate and has
570 * not been truncated.
572 * The caller must hold lock_page_memcg().
574 void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
579 xa_lock_irqsave(&mapping
->i_pages
, flags
);
580 if (page
->mapping
) { /* Race with truncate? */
581 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
582 account_page_dirtied(page
, mapping
);
583 radix_tree_tag_set(&mapping
->i_pages
,
584 page_index(page
), PAGECACHE_TAG_DIRTY
);
586 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
588 EXPORT_SYMBOL_GPL(__set_page_dirty
);
591 * Add a page to the dirty page list.
593 * It is a sad fact of life that this function is called from several places
594 * deeply under spinlocking. It may not sleep.
596 * If the page has buffers, the uptodate buffers are set dirty, to preserve
597 * dirty-state coherency between the page and the buffers. It the page does
598 * not have buffers then when they are later attached they will all be set
601 * The buffers are dirtied before the page is dirtied. There's a small race
602 * window in which a writepage caller may see the page cleanness but not the
603 * buffer dirtiness. That's fine. If this code were to set the page dirty
604 * before the buffers, a concurrent writepage caller could clear the page dirty
605 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
606 * page on the dirty page list.
608 * We use private_lock to lock against try_to_free_buffers while using the
609 * page's buffer list. Also use this to protect against clean buffers being
610 * added to the page after it was set dirty.
612 * FIXME: may need to call ->reservepage here as well. That's rather up to the
613 * address_space though.
615 int __set_page_dirty_buffers(struct page
*page
)
618 struct address_space
*mapping
= page_mapping(page
);
620 if (unlikely(!mapping
))
621 return !TestSetPageDirty(page
);
623 spin_lock(&mapping
->private_lock
);
624 if (page_has_buffers(page
)) {
625 struct buffer_head
*head
= page_buffers(page
);
626 struct buffer_head
*bh
= head
;
629 set_buffer_dirty(bh
);
630 bh
= bh
->b_this_page
;
631 } while (bh
!= head
);
634 * Lock out page->mem_cgroup migration to keep PageDirty
635 * synchronized with per-memcg dirty page counters.
637 lock_page_memcg(page
);
638 newly_dirty
= !TestSetPageDirty(page
);
639 spin_unlock(&mapping
->private_lock
);
642 __set_page_dirty(page
, mapping
, 1);
644 unlock_page_memcg(page
);
647 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
651 EXPORT_SYMBOL(__set_page_dirty_buffers
);
654 * Write out and wait upon a list of buffers.
656 * We have conflicting pressures: we want to make sure that all
657 * initially dirty buffers get waited on, but that any subsequently
658 * dirtied buffers don't. After all, we don't want fsync to last
659 * forever if somebody is actively writing to the file.
661 * Do this in two main stages: first we copy dirty buffers to a
662 * temporary inode list, queueing the writes as we go. Then we clean
663 * up, waiting for those writes to complete.
665 * During this second stage, any subsequent updates to the file may end
666 * up refiling the buffer on the original inode's dirty list again, so
667 * there is a chance we will end up with a buffer queued for write but
668 * not yet completed on that list. So, as a final cleanup we go through
669 * the osync code to catch these locked, dirty buffers without requeuing
670 * any newly dirty buffers for write.
672 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
674 struct buffer_head
*bh
;
675 struct list_head tmp
;
676 struct address_space
*mapping
;
678 struct blk_plug plug
;
680 INIT_LIST_HEAD(&tmp
);
681 blk_start_plug(&plug
);
684 while (!list_empty(list
)) {
685 bh
= BH_ENTRY(list
->next
);
686 mapping
= bh
->b_assoc_map
;
687 __remove_assoc_queue(bh
);
688 /* Avoid race with mark_buffer_dirty_inode() which does
689 * a lockless check and we rely on seeing the dirty bit */
691 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
692 list_add(&bh
->b_assoc_buffers
, &tmp
);
693 bh
->b_assoc_map
= mapping
;
694 if (buffer_dirty(bh
)) {
698 * Ensure any pending I/O completes so that
699 * write_dirty_buffer() actually writes the
700 * current contents - it is a noop if I/O is
701 * still in flight on potentially older
704 write_dirty_buffer(bh
, REQ_SYNC
);
707 * Kick off IO for the previous mapping. Note
708 * that we will not run the very last mapping,
709 * wait_on_buffer() will do that for us
710 * through sync_buffer().
719 blk_finish_plug(&plug
);
722 while (!list_empty(&tmp
)) {
723 bh
= BH_ENTRY(tmp
.prev
);
725 mapping
= bh
->b_assoc_map
;
726 __remove_assoc_queue(bh
);
727 /* Avoid race with mark_buffer_dirty_inode() which does
728 * a lockless check and we rely on seeing the dirty bit */
730 if (buffer_dirty(bh
)) {
731 list_add(&bh
->b_assoc_buffers
,
732 &mapping
->private_list
);
733 bh
->b_assoc_map
= mapping
;
737 if (!buffer_uptodate(bh
))
744 err2
= osync_buffers_list(lock
, list
);
752 * Invalidate any and all dirty buffers on a given inode. We are
753 * probably unmounting the fs, but that doesn't mean we have already
754 * done a sync(). Just drop the buffers from the inode list.
756 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
757 * assumes that all the buffers are against the blockdev. Not true
760 void invalidate_inode_buffers(struct inode
*inode
)
762 if (inode_has_buffers(inode
)) {
763 struct address_space
*mapping
= &inode
->i_data
;
764 struct list_head
*list
= &mapping
->private_list
;
765 struct address_space
*buffer_mapping
= mapping
->private_data
;
767 spin_lock(&buffer_mapping
->private_lock
);
768 while (!list_empty(list
))
769 __remove_assoc_queue(BH_ENTRY(list
->next
));
770 spin_unlock(&buffer_mapping
->private_lock
);
773 EXPORT_SYMBOL(invalidate_inode_buffers
);
776 * Remove any clean buffers from the inode's buffer list. This is called
777 * when we're trying to free the inode itself. Those buffers can pin it.
779 * Returns true if all buffers were removed.
781 int remove_inode_buffers(struct inode
*inode
)
785 if (inode_has_buffers(inode
)) {
786 struct address_space
*mapping
= &inode
->i_data
;
787 struct list_head
*list
= &mapping
->private_list
;
788 struct address_space
*buffer_mapping
= mapping
->private_data
;
790 spin_lock(&buffer_mapping
->private_lock
);
791 while (!list_empty(list
)) {
792 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
793 if (buffer_dirty(bh
)) {
797 __remove_assoc_queue(bh
);
799 spin_unlock(&buffer_mapping
->private_lock
);
805 * Create the appropriate buffers when given a page for data area and
806 * the size of each buffer.. Use the bh->b_this_page linked list to
807 * follow the buffers created. Return NULL if unable to create more
810 * The retry flag is used to differentiate async IO (paging, swapping)
811 * which may not fail from ordinary buffer allocations.
813 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
816 struct buffer_head
*bh
, *head
;
817 gfp_t gfp
= GFP_NOFS
| __GFP_ACCOUNT
;
819 struct mem_cgroup
*memcg
;
824 memcg
= get_mem_cgroup_from_page(page
);
825 memalloc_use_memcg(memcg
);
829 while ((offset
-= size
) >= 0) {
830 bh
= alloc_buffer_head(gfp
);
834 bh
->b_this_page
= head
;
840 /* Link the buffer to its page */
841 set_bh_page(bh
, page
, offset
);
844 memalloc_unuse_memcg();
845 mem_cgroup_put(memcg
);
848 * In case anything failed, we just free everything we got.
854 head
= head
->b_this_page
;
855 free_buffer_head(bh
);
861 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
864 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
866 struct buffer_head
*bh
, *tail
;
871 bh
= bh
->b_this_page
;
873 tail
->b_this_page
= head
;
874 attach_page_buffers(page
, head
);
877 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
879 sector_t retval
= ~((sector_t
)0);
880 loff_t sz
= i_size_read(bdev
->bd_inode
);
883 unsigned int sizebits
= blksize_bits(size
);
884 retval
= (sz
>> sizebits
);
890 * Initialise the state of a blockdev page's buffers.
893 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
894 sector_t block
, int size
)
896 struct buffer_head
*head
= page_buffers(page
);
897 struct buffer_head
*bh
= head
;
898 int uptodate
= PageUptodate(page
);
899 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
902 if (!buffer_mapped(bh
)) {
904 bh
->b_private
= NULL
;
906 bh
->b_blocknr
= block
;
908 set_buffer_uptodate(bh
);
909 if (block
< end_block
)
910 set_buffer_mapped(bh
);
913 bh
= bh
->b_this_page
;
914 } while (bh
!= head
);
917 * Caller needs to validate requested block against end of device.
923 * Create the page-cache page that contains the requested block.
925 * This is used purely for blockdev mappings.
928 grow_dev_page(struct block_device
*bdev
, sector_t block
,
929 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
931 struct inode
*inode
= bdev
->bd_inode
;
933 struct buffer_head
*bh
;
935 int ret
= 0; /* Will call free_more_memory() */
938 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
941 * XXX: __getblk_slow() can not really deal with failure and
942 * will endlessly loop on improvised global reclaim. Prefer
943 * looping in the allocator rather than here, at least that
944 * code knows what it's doing.
946 gfp_mask
|= __GFP_NOFAIL
;
948 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
950 BUG_ON(!PageLocked(page
));
952 if (page_has_buffers(page
)) {
953 bh
= page_buffers(page
);
954 if (bh
->b_size
== size
) {
955 end_block
= init_page_buffers(page
, bdev
,
956 (sector_t
)index
<< sizebits
,
960 if (!try_to_free_buffers(page
))
965 * Allocate some buffers for this page
967 bh
= alloc_page_buffers(page
, size
, true);
970 * Link the page to the buffers and initialise them. Take the
971 * lock to be atomic wrt __find_get_block(), which does not
972 * run under the page lock.
974 spin_lock(&inode
->i_mapping
->private_lock
);
975 link_dev_buffers(page
, bh
);
976 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
978 spin_unlock(&inode
->i_mapping
->private_lock
);
980 ret
= (block
< end_block
) ? 1 : -ENXIO
;
988 * Create buffers for the specified block device block's page. If
989 * that page was dirty, the buffers are set dirty also.
992 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1000 } while ((size
<< sizebits
) < PAGE_SIZE
);
1002 index
= block
>> sizebits
;
1005 * Check for a block which wants to lie outside our maximum possible
1006 * pagecache index. (this comparison is done using sector_t types).
1008 if (unlikely(index
!= block
>> sizebits
)) {
1009 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1011 __func__
, (unsigned long long)block
,
1016 /* Create a page with the proper size buffers.. */
1017 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1020 static struct buffer_head
*
1021 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1022 unsigned size
, gfp_t gfp
)
1024 /* Size must be multiple of hard sectorsize */
1025 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1026 (size
< 512 || size
> PAGE_SIZE
))) {
1027 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1029 printk(KERN_ERR
"logical block size: %d\n",
1030 bdev_logical_block_size(bdev
));
1037 struct buffer_head
*bh
;
1040 bh
= __find_get_block(bdev
, block
, size
);
1044 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1051 * The relationship between dirty buffers and dirty pages:
1053 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1054 * the page is tagged dirty in its radix tree.
1056 * At all times, the dirtiness of the buffers represents the dirtiness of
1057 * subsections of the page. If the page has buffers, the page dirty bit is
1058 * merely a hint about the true dirty state.
1060 * When a page is set dirty in its entirety, all its buffers are marked dirty
1061 * (if the page has buffers).
1063 * When a buffer is marked dirty, its page is dirtied, but the page's other
1066 * Also. When blockdev buffers are explicitly read with bread(), they
1067 * individually become uptodate. But their backing page remains not
1068 * uptodate - even if all of its buffers are uptodate. A subsequent
1069 * block_read_full_page() against that page will discover all the uptodate
1070 * buffers, will set the page uptodate and will perform no I/O.
1074 * mark_buffer_dirty - mark a buffer_head as needing writeout
1075 * @bh: the buffer_head to mark dirty
1077 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1078 * backing page dirty, then tag the page as dirty in its address_space's radix
1079 * tree and then attach the address_space's inode to its superblock's dirty
1082 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1083 * i_pages lock and mapping->host->i_lock.
1085 void mark_buffer_dirty(struct buffer_head
*bh
)
1087 WARN_ON_ONCE(!buffer_uptodate(bh
));
1089 trace_block_dirty_buffer(bh
);
1092 * Very *carefully* optimize the it-is-already-dirty case.
1094 * Don't let the final "is it dirty" escape to before we
1095 * perhaps modified the buffer.
1097 if (buffer_dirty(bh
)) {
1099 if (buffer_dirty(bh
))
1103 if (!test_set_buffer_dirty(bh
)) {
1104 struct page
*page
= bh
->b_page
;
1105 struct address_space
*mapping
= NULL
;
1107 lock_page_memcg(page
);
1108 if (!TestSetPageDirty(page
)) {
1109 mapping
= page_mapping(page
);
1111 __set_page_dirty(page
, mapping
, 0);
1113 unlock_page_memcg(page
);
1115 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1118 EXPORT_SYMBOL(mark_buffer_dirty
);
1120 void mark_buffer_write_io_error(struct buffer_head
*bh
)
1122 set_buffer_write_io_error(bh
);
1123 /* FIXME: do we need to set this in both places? */
1124 if (bh
->b_page
&& bh
->b_page
->mapping
)
1125 mapping_set_error(bh
->b_page
->mapping
, -EIO
);
1126 if (bh
->b_assoc_map
)
1127 mapping_set_error(bh
->b_assoc_map
, -EIO
);
1129 EXPORT_SYMBOL(mark_buffer_write_io_error
);
1132 * Decrement a buffer_head's reference count. If all buffers against a page
1133 * have zero reference count, are clean and unlocked, and if the page is clean
1134 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1135 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1136 * a page but it ends up not being freed, and buffers may later be reattached).
1138 void __brelse(struct buffer_head
* buf
)
1140 if (atomic_read(&buf
->b_count
)) {
1144 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1146 EXPORT_SYMBOL(__brelse
);
1149 * bforget() is like brelse(), except it discards any
1150 * potentially dirty data.
1152 void __bforget(struct buffer_head
*bh
)
1154 clear_buffer_dirty(bh
);
1155 if (bh
->b_assoc_map
) {
1156 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1158 spin_lock(&buffer_mapping
->private_lock
);
1159 list_del_init(&bh
->b_assoc_buffers
);
1160 bh
->b_assoc_map
= NULL
;
1161 spin_unlock(&buffer_mapping
->private_lock
);
1165 EXPORT_SYMBOL(__bforget
);
1167 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1170 if (buffer_uptodate(bh
)) {
1175 bh
->b_end_io
= end_buffer_read_sync
;
1176 submit_bh(REQ_OP_READ
, 0, bh
);
1178 if (buffer_uptodate(bh
))
1186 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1187 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1188 * refcount elevated by one when they're in an LRU. A buffer can only appear
1189 * once in a particular CPU's LRU. A single buffer can be present in multiple
1190 * CPU's LRUs at the same time.
1192 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1193 * sb_find_get_block().
1195 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1196 * a local interrupt disable for that.
1199 #define BH_LRU_SIZE 16
1202 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1205 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1208 #define bh_lru_lock() local_irq_disable()
1209 #define bh_lru_unlock() local_irq_enable()
1211 #define bh_lru_lock() preempt_disable()
1212 #define bh_lru_unlock() preempt_enable()
1215 static inline void check_irqs_on(void)
1217 #ifdef irqs_disabled
1218 BUG_ON(irqs_disabled());
1223 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1224 * inserted at the front, and the buffer_head at the back if any is evicted.
1225 * Or, if already in the LRU it is moved to the front.
1227 static void bh_lru_install(struct buffer_head
*bh
)
1229 struct buffer_head
*evictee
= bh
;
1236 b
= this_cpu_ptr(&bh_lrus
);
1237 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1238 swap(evictee
, b
->bhs
[i
]);
1239 if (evictee
== bh
) {
1251 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1253 static struct buffer_head
*
1254 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1256 struct buffer_head
*ret
= NULL
;
1261 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1262 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1264 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1265 bh
->b_size
== size
) {
1268 __this_cpu_write(bh_lrus
.bhs
[i
],
1269 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1272 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1284 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1285 * it in the LRU and mark it as accessed. If it is not present then return
1288 struct buffer_head
*
1289 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1291 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1294 /* __find_get_block_slow will mark the page accessed */
1295 bh
= __find_get_block_slow(bdev
, block
);
1303 EXPORT_SYMBOL(__find_get_block
);
1306 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1307 * which corresponds to the passed block_device, block and size. The
1308 * returned buffer has its reference count incremented.
1310 * __getblk_gfp() will lock up the machine if grow_dev_page's
1311 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1313 struct buffer_head
*
1314 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1315 unsigned size
, gfp_t gfp
)
1317 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1321 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1324 EXPORT_SYMBOL(__getblk_gfp
);
1327 * Do async read-ahead on a buffer..
1329 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1331 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1333 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1337 EXPORT_SYMBOL(__breadahead
);
1340 * __bread_gfp() - reads a specified block and returns the bh
1341 * @bdev: the block_device to read from
1342 * @block: number of block
1343 * @size: size (in bytes) to read
1344 * @gfp: page allocation flag
1346 * Reads a specified block, and returns buffer head that contains it.
1347 * The page cache can be allocated from non-movable area
1348 * not to prevent page migration if you set gfp to zero.
1349 * It returns NULL if the block was unreadable.
1351 struct buffer_head
*
1352 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1353 unsigned size
, gfp_t gfp
)
1355 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1357 if (likely(bh
) && !buffer_uptodate(bh
))
1358 bh
= __bread_slow(bh
);
1361 EXPORT_SYMBOL(__bread_gfp
);
1364 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1365 * This doesn't race because it runs in each cpu either in irq
1366 * or with preempt disabled.
1368 static void invalidate_bh_lru(void *arg
)
1370 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1373 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1377 put_cpu_var(bh_lrus
);
1380 static bool has_bh_in_lru(int cpu
, void *dummy
)
1382 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1385 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1393 void invalidate_bh_lrus(void)
1395 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1397 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1399 void set_bh_page(struct buffer_head
*bh
,
1400 struct page
*page
, unsigned long offset
)
1403 BUG_ON(offset
>= PAGE_SIZE
);
1404 if (PageHighMem(page
))
1406 * This catches illegal uses and preserves the offset:
1408 bh
->b_data
= (char *)(0 + offset
);
1410 bh
->b_data
= page_address(page
) + offset
;
1412 EXPORT_SYMBOL(set_bh_page
);
1415 * Called when truncating a buffer on a page completely.
1418 /* Bits that are cleared during an invalidate */
1419 #define BUFFER_FLAGS_DISCARD \
1420 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1421 1 << BH_Delay | 1 << BH_Unwritten)
1423 static void discard_buffer(struct buffer_head
* bh
)
1425 unsigned long b_state
, b_state_old
;
1428 clear_buffer_dirty(bh
);
1430 b_state
= bh
->b_state
;
1432 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1433 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1434 if (b_state_old
== b_state
)
1436 b_state
= b_state_old
;
1442 * block_invalidatepage - invalidate part or all of a buffer-backed page
1444 * @page: the page which is affected
1445 * @offset: start of the range to invalidate
1446 * @length: length of the range to invalidate
1448 * block_invalidatepage() is called when all or part of the page has become
1449 * invalidated by a truncate operation.
1451 * block_invalidatepage() does not have to release all buffers, but it must
1452 * ensure that no dirty buffer is left outside @offset and that no I/O
1453 * is underway against any of the blocks which are outside the truncation
1454 * point. Because the caller is about to free (and possibly reuse) those
1457 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1458 unsigned int length
)
1460 struct buffer_head
*head
, *bh
, *next
;
1461 unsigned int curr_off
= 0;
1462 unsigned int stop
= length
+ offset
;
1464 BUG_ON(!PageLocked(page
));
1465 if (!page_has_buffers(page
))
1469 * Check for overflow
1471 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1473 head
= page_buffers(page
);
1476 unsigned int next_off
= curr_off
+ bh
->b_size
;
1477 next
= bh
->b_this_page
;
1480 * Are we still fully in range ?
1482 if (next_off
> stop
)
1486 * is this block fully invalidated?
1488 if (offset
<= curr_off
)
1490 curr_off
= next_off
;
1492 } while (bh
!= head
);
1495 * We release buffers only if the entire page is being invalidated.
1496 * The get_block cached value has been unconditionally invalidated,
1497 * so real IO is not possible anymore.
1499 if (length
== PAGE_SIZE
)
1500 try_to_release_page(page
, 0);
1504 EXPORT_SYMBOL(block_invalidatepage
);
1508 * We attach and possibly dirty the buffers atomically wrt
1509 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1510 * is already excluded via the page lock.
1512 void create_empty_buffers(struct page
*page
,
1513 unsigned long blocksize
, unsigned long b_state
)
1515 struct buffer_head
*bh
, *head
, *tail
;
1517 head
= alloc_page_buffers(page
, blocksize
, true);
1520 bh
->b_state
|= b_state
;
1522 bh
= bh
->b_this_page
;
1524 tail
->b_this_page
= head
;
1526 spin_lock(&page
->mapping
->private_lock
);
1527 if (PageUptodate(page
) || PageDirty(page
)) {
1530 if (PageDirty(page
))
1531 set_buffer_dirty(bh
);
1532 if (PageUptodate(page
))
1533 set_buffer_uptodate(bh
);
1534 bh
= bh
->b_this_page
;
1535 } while (bh
!= head
);
1537 attach_page_buffers(page
, head
);
1538 spin_unlock(&page
->mapping
->private_lock
);
1540 EXPORT_SYMBOL(create_empty_buffers
);
1543 * clean_bdev_aliases: clean a range of buffers in block device
1544 * @bdev: Block device to clean buffers in
1545 * @block: Start of a range of blocks to clean
1546 * @len: Number of blocks to clean
1548 * We are taking a range of blocks for data and we don't want writeback of any
1549 * buffer-cache aliases starting from return from this function and until the
1550 * moment when something will explicitly mark the buffer dirty (hopefully that
1551 * will not happen until we will free that block ;-) We don't even need to mark
1552 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1553 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1554 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1555 * would confuse anyone who might pick it with bread() afterwards...
1557 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1558 * writeout I/O going on against recently-freed buffers. We don't wait on that
1559 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1560 * need to. That happens here.
1562 void clean_bdev_aliases(struct block_device
*bdev
, sector_t block
, sector_t len
)
1564 struct inode
*bd_inode
= bdev
->bd_inode
;
1565 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
1566 struct pagevec pvec
;
1567 pgoff_t index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1570 struct buffer_head
*bh
;
1571 struct buffer_head
*head
;
1573 end
= (block
+ len
- 1) >> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
1574 pagevec_init(&pvec
);
1575 while (pagevec_lookup_range(&pvec
, bd_mapping
, &index
, end
)) {
1576 count
= pagevec_count(&pvec
);
1577 for (i
= 0; i
< count
; i
++) {
1578 struct page
*page
= pvec
.pages
[i
];
1580 if (!page_has_buffers(page
))
1583 * We use page lock instead of bd_mapping->private_lock
1584 * to pin buffers here since we can afford to sleep and
1585 * it scales better than a global spinlock lock.
1588 /* Recheck when the page is locked which pins bhs */
1589 if (!page_has_buffers(page
))
1591 head
= page_buffers(page
);
1594 if (!buffer_mapped(bh
) || (bh
->b_blocknr
< block
))
1596 if (bh
->b_blocknr
>= block
+ len
)
1598 clear_buffer_dirty(bh
);
1600 clear_buffer_req(bh
);
1602 bh
= bh
->b_this_page
;
1603 } while (bh
!= head
);
1607 pagevec_release(&pvec
);
1609 /* End of range already reached? */
1610 if (index
> end
|| !index
)
1614 EXPORT_SYMBOL(clean_bdev_aliases
);
1617 * Size is a power-of-two in the range 512..PAGE_SIZE,
1618 * and the case we care about most is PAGE_SIZE.
1620 * So this *could* possibly be written with those
1621 * constraints in mind (relevant mostly if some
1622 * architecture has a slow bit-scan instruction)
1624 static inline int block_size_bits(unsigned int blocksize
)
1626 return ilog2(blocksize
);
1629 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1631 BUG_ON(!PageLocked(page
));
1633 if (!page_has_buffers(page
))
1634 create_empty_buffers(page
, 1 << READ_ONCE(inode
->i_blkbits
),
1636 return page_buffers(page
);
1640 * NOTE! All mapped/uptodate combinations are valid:
1642 * Mapped Uptodate Meaning
1644 * No No "unknown" - must do get_block()
1645 * No Yes "hole" - zero-filled
1646 * Yes No "allocated" - allocated on disk, not read in
1647 * Yes Yes "valid" - allocated and up-to-date in memory.
1649 * "Dirty" is valid only with the last case (mapped+uptodate).
1653 * While block_write_full_page is writing back the dirty buffers under
1654 * the page lock, whoever dirtied the buffers may decide to clean them
1655 * again at any time. We handle that by only looking at the buffer
1656 * state inside lock_buffer().
1658 * If block_write_full_page() is called for regular writeback
1659 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1660 * locked buffer. This only can happen if someone has written the buffer
1661 * directly, with submit_bh(). At the address_space level PageWriteback
1662 * prevents this contention from occurring.
1664 * If block_write_full_page() is called with wbc->sync_mode ==
1665 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1666 * causes the writes to be flagged as synchronous writes.
1668 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1669 get_block_t
*get_block
, struct writeback_control
*wbc
,
1670 bh_end_io_t
*handler
)
1674 sector_t last_block
;
1675 struct buffer_head
*bh
, *head
;
1676 unsigned int blocksize
, bbits
;
1677 int nr_underway
= 0;
1678 int write_flags
= wbc_to_write_flags(wbc
);
1680 head
= create_page_buffers(page
, inode
,
1681 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1684 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1685 * here, and the (potentially unmapped) buffers may become dirty at
1686 * any time. If a buffer becomes dirty here after we've inspected it
1687 * then we just miss that fact, and the page stays dirty.
1689 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1690 * handle that here by just cleaning them.
1694 blocksize
= bh
->b_size
;
1695 bbits
= block_size_bits(blocksize
);
1697 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1698 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1701 * Get all the dirty buffers mapped to disk addresses and
1702 * handle any aliases from the underlying blockdev's mapping.
1705 if (block
> last_block
) {
1707 * mapped buffers outside i_size will occur, because
1708 * this page can be outside i_size when there is a
1709 * truncate in progress.
1712 * The buffer was zeroed by block_write_full_page()
1714 clear_buffer_dirty(bh
);
1715 set_buffer_uptodate(bh
);
1716 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1718 WARN_ON(bh
->b_size
!= blocksize
);
1719 err
= get_block(inode
, block
, bh
, 1);
1722 clear_buffer_delay(bh
);
1723 if (buffer_new(bh
)) {
1724 /* blockdev mappings never come here */
1725 clear_buffer_new(bh
);
1726 clean_bdev_bh_alias(bh
);
1729 bh
= bh
->b_this_page
;
1731 } while (bh
!= head
);
1734 if (!buffer_mapped(bh
))
1737 * If it's a fully non-blocking write attempt and we cannot
1738 * lock the buffer then redirty the page. Note that this can
1739 * potentially cause a busy-wait loop from writeback threads
1740 * and kswapd activity, but those code paths have their own
1741 * higher-level throttling.
1743 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1745 } else if (!trylock_buffer(bh
)) {
1746 redirty_page_for_writepage(wbc
, page
);
1749 if (test_clear_buffer_dirty(bh
)) {
1750 mark_buffer_async_write_endio(bh
, handler
);
1754 } while ((bh
= bh
->b_this_page
) != head
);
1757 * The page and its buffers are protected by PageWriteback(), so we can
1758 * drop the bh refcounts early.
1760 BUG_ON(PageWriteback(page
));
1761 set_page_writeback(page
);
1764 struct buffer_head
*next
= bh
->b_this_page
;
1765 if (buffer_async_write(bh
)) {
1766 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1767 inode
->i_write_hint
, wbc
);
1771 } while (bh
!= head
);
1776 if (nr_underway
== 0) {
1778 * The page was marked dirty, but the buffers were
1779 * clean. Someone wrote them back by hand with
1780 * ll_rw_block/submit_bh. A rare case.
1782 end_page_writeback(page
);
1785 * The page and buffer_heads can be released at any time from
1793 * ENOSPC, or some other error. We may already have added some
1794 * blocks to the file, so we need to write these out to avoid
1795 * exposing stale data.
1796 * The page is currently locked and not marked for writeback
1799 /* Recovery: lock and submit the mapped buffers */
1801 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1802 !buffer_delay(bh
)) {
1804 mark_buffer_async_write_endio(bh
, handler
);
1807 * The buffer may have been set dirty during
1808 * attachment to a dirty page.
1810 clear_buffer_dirty(bh
);
1812 } while ((bh
= bh
->b_this_page
) != head
);
1814 BUG_ON(PageWriteback(page
));
1815 mapping_set_error(page
->mapping
, err
);
1816 set_page_writeback(page
);
1818 struct buffer_head
*next
= bh
->b_this_page
;
1819 if (buffer_async_write(bh
)) {
1820 clear_buffer_dirty(bh
);
1821 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
,
1822 inode
->i_write_hint
, wbc
);
1826 } while (bh
!= head
);
1830 EXPORT_SYMBOL(__block_write_full_page
);
1833 * If a page has any new buffers, zero them out here, and mark them uptodate
1834 * and dirty so they'll be written out (in order to prevent uninitialised
1835 * block data from leaking). And clear the new bit.
1837 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1839 unsigned int block_start
, block_end
;
1840 struct buffer_head
*head
, *bh
;
1842 BUG_ON(!PageLocked(page
));
1843 if (!page_has_buffers(page
))
1846 bh
= head
= page_buffers(page
);
1849 block_end
= block_start
+ bh
->b_size
;
1851 if (buffer_new(bh
)) {
1852 if (block_end
> from
&& block_start
< to
) {
1853 if (!PageUptodate(page
)) {
1854 unsigned start
, size
;
1856 start
= max(from
, block_start
);
1857 size
= min(to
, block_end
) - start
;
1859 zero_user(page
, start
, size
);
1860 set_buffer_uptodate(bh
);
1863 clear_buffer_new(bh
);
1864 mark_buffer_dirty(bh
);
1868 block_start
= block_end
;
1869 bh
= bh
->b_this_page
;
1870 } while (bh
!= head
);
1872 EXPORT_SYMBOL(page_zero_new_buffers
);
1875 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1876 struct iomap
*iomap
)
1878 loff_t offset
= block
<< inode
->i_blkbits
;
1880 bh
->b_bdev
= iomap
->bdev
;
1883 * Block points to offset in file we need to map, iomap contains
1884 * the offset at which the map starts. If the map ends before the
1885 * current block, then do not map the buffer and let the caller
1888 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1890 switch (iomap
->type
) {
1893 * If the buffer is not up to date or beyond the current EOF,
1894 * we need to mark it as new to ensure sub-block zeroing is
1895 * executed if necessary.
1897 if (!buffer_uptodate(bh
) ||
1898 (offset
>= i_size_read(inode
)))
1901 case IOMAP_DELALLOC
:
1902 if (!buffer_uptodate(bh
) ||
1903 (offset
>= i_size_read(inode
)))
1905 set_buffer_uptodate(bh
);
1906 set_buffer_mapped(bh
);
1907 set_buffer_delay(bh
);
1909 case IOMAP_UNWRITTEN
:
1911 * For unwritten regions, we always need to ensure that regions
1912 * in the block we are not writing to are zeroed. Mark the
1913 * buffer as new to ensure this.
1916 set_buffer_unwritten(bh
);
1919 if ((iomap
->flags
& IOMAP_F_NEW
) ||
1920 offset
>= i_size_read(inode
))
1922 bh
->b_blocknr
= (iomap
->addr
+ offset
- iomap
->offset
) >>
1924 set_buffer_mapped(bh
);
1929 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1930 get_block_t
*get_block
, struct iomap
*iomap
)
1932 unsigned from
= pos
& (PAGE_SIZE
- 1);
1933 unsigned to
= from
+ len
;
1934 struct inode
*inode
= page
->mapping
->host
;
1935 unsigned block_start
, block_end
;
1938 unsigned blocksize
, bbits
;
1939 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1941 BUG_ON(!PageLocked(page
));
1942 BUG_ON(from
> PAGE_SIZE
);
1943 BUG_ON(to
> PAGE_SIZE
);
1946 head
= create_page_buffers(page
, inode
, 0);
1947 blocksize
= head
->b_size
;
1948 bbits
= block_size_bits(blocksize
);
1950 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1952 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1953 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1954 block_end
= block_start
+ blocksize
;
1955 if (block_end
<= from
|| block_start
>= to
) {
1956 if (PageUptodate(page
)) {
1957 if (!buffer_uptodate(bh
))
1958 set_buffer_uptodate(bh
);
1963 clear_buffer_new(bh
);
1964 if (!buffer_mapped(bh
)) {
1965 WARN_ON(bh
->b_size
!= blocksize
);
1967 err
= get_block(inode
, block
, bh
, 1);
1971 iomap_to_bh(inode
, block
, bh
, iomap
);
1974 if (buffer_new(bh
)) {
1975 clean_bdev_bh_alias(bh
);
1976 if (PageUptodate(page
)) {
1977 clear_buffer_new(bh
);
1978 set_buffer_uptodate(bh
);
1979 mark_buffer_dirty(bh
);
1982 if (block_end
> to
|| block_start
< from
)
1983 zero_user_segments(page
,
1989 if (PageUptodate(page
)) {
1990 if (!buffer_uptodate(bh
))
1991 set_buffer_uptodate(bh
);
1994 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1995 !buffer_unwritten(bh
) &&
1996 (block_start
< from
|| block_end
> to
)) {
1997 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2002 * If we issued read requests - let them complete.
2004 while(wait_bh
> wait
) {
2005 wait_on_buffer(*--wait_bh
);
2006 if (!buffer_uptodate(*wait_bh
))
2010 page_zero_new_buffers(page
, from
, to
);
2014 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2015 get_block_t
*get_block
)
2017 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2019 EXPORT_SYMBOL(__block_write_begin
);
2021 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2022 unsigned from
, unsigned to
)
2024 unsigned block_start
, block_end
;
2027 struct buffer_head
*bh
, *head
;
2029 bh
= head
= page_buffers(page
);
2030 blocksize
= bh
->b_size
;
2034 block_end
= block_start
+ blocksize
;
2035 if (block_end
<= from
|| block_start
>= to
) {
2036 if (!buffer_uptodate(bh
))
2039 set_buffer_uptodate(bh
);
2040 mark_buffer_dirty(bh
);
2042 clear_buffer_new(bh
);
2044 block_start
= block_end
;
2045 bh
= bh
->b_this_page
;
2046 } while (bh
!= head
);
2049 * If this is a partial write which happened to make all buffers
2050 * uptodate then we can optimize away a bogus readpage() for
2051 * the next read(). Here we 'discover' whether the page went
2052 * uptodate as a result of this (potentially partial) write.
2055 SetPageUptodate(page
);
2060 * block_write_begin takes care of the basic task of block allocation and
2061 * bringing partial write blocks uptodate first.
2063 * The filesystem needs to handle block truncation upon failure.
2065 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2066 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2068 pgoff_t index
= pos
>> PAGE_SHIFT
;
2072 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2076 status
= __block_write_begin(page
, pos
, len
, get_block
);
2077 if (unlikely(status
)) {
2086 EXPORT_SYMBOL(block_write_begin
);
2088 int __generic_write_end(struct inode
*inode
, loff_t pos
, unsigned copied
,
2091 loff_t old_size
= inode
->i_size
;
2092 bool i_size_changed
= false;
2095 * No need to use i_size_read() here, the i_size cannot change under us
2096 * because we hold i_rwsem.
2098 * But it's important to update i_size while still holding page lock:
2099 * page writeout could otherwise come in and zero beyond i_size.
2101 if (pos
+ copied
> inode
->i_size
) {
2102 i_size_write(inode
, pos
+ copied
);
2103 i_size_changed
= true;
2110 pagecache_isize_extended(inode
, old_size
, pos
);
2112 * Don't mark the inode dirty under page lock. First, it unnecessarily
2113 * makes the holding time of page lock longer. Second, it forces lock
2114 * ordering of page lock and transaction start for journaling
2118 mark_inode_dirty(inode
);
2122 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2123 loff_t pos
, unsigned len
, unsigned copied
,
2124 struct page
*page
, void *fsdata
)
2126 struct inode
*inode
= mapping
->host
;
2129 start
= pos
& (PAGE_SIZE
- 1);
2131 if (unlikely(copied
< len
)) {
2133 * The buffers that were written will now be uptodate, so we
2134 * don't have to worry about a readpage reading them and
2135 * overwriting a partial write. However if we have encountered
2136 * a short write and only partially written into a buffer, it
2137 * will not be marked uptodate, so a readpage might come in and
2138 * destroy our partial write.
2140 * Do the simplest thing, and just treat any short write to a
2141 * non uptodate page as a zero-length write, and force the
2142 * caller to redo the whole thing.
2144 if (!PageUptodate(page
))
2147 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2149 flush_dcache_page(page
);
2151 /* This could be a short (even 0-length) commit */
2152 __block_commit_write(inode
, page
, start
, start
+copied
);
2156 EXPORT_SYMBOL(block_write_end
);
2158 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2159 loff_t pos
, unsigned len
, unsigned copied
,
2160 struct page
*page
, void *fsdata
)
2162 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2163 return __generic_write_end(mapping
->host
, pos
, copied
, page
);
2165 EXPORT_SYMBOL(generic_write_end
);
2168 * block_is_partially_uptodate checks whether buffers within a page are
2171 * Returns true if all buffers which correspond to a file portion
2172 * we want to read are uptodate.
2174 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2175 unsigned long count
)
2177 unsigned block_start
, block_end
, blocksize
;
2179 struct buffer_head
*bh
, *head
;
2182 if (!page_has_buffers(page
))
2185 head
= page_buffers(page
);
2186 blocksize
= head
->b_size
;
2187 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2189 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2195 block_end
= block_start
+ blocksize
;
2196 if (block_end
> from
&& block_start
< to
) {
2197 if (!buffer_uptodate(bh
)) {
2201 if (block_end
>= to
)
2204 block_start
= block_end
;
2205 bh
= bh
->b_this_page
;
2206 } while (bh
!= head
);
2210 EXPORT_SYMBOL(block_is_partially_uptodate
);
2213 * Generic "read page" function for block devices that have the normal
2214 * get_block functionality. This is most of the block device filesystems.
2215 * Reads the page asynchronously --- the unlock_buffer() and
2216 * set/clear_buffer_uptodate() functions propagate buffer state into the
2217 * page struct once IO has completed.
2219 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2221 struct inode
*inode
= page
->mapping
->host
;
2222 sector_t iblock
, lblock
;
2223 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2224 unsigned int blocksize
, bbits
;
2226 int fully_mapped
= 1;
2228 head
= create_page_buffers(page
, inode
, 0);
2229 blocksize
= head
->b_size
;
2230 bbits
= block_size_bits(blocksize
);
2232 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2233 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2239 if (buffer_uptodate(bh
))
2242 if (!buffer_mapped(bh
)) {
2246 if (iblock
< lblock
) {
2247 WARN_ON(bh
->b_size
!= blocksize
);
2248 err
= get_block(inode
, iblock
, bh
, 0);
2252 if (!buffer_mapped(bh
)) {
2253 zero_user(page
, i
* blocksize
, blocksize
);
2255 set_buffer_uptodate(bh
);
2259 * get_block() might have updated the buffer
2262 if (buffer_uptodate(bh
))
2266 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2269 SetPageMappedToDisk(page
);
2273 * All buffers are uptodate - we can set the page uptodate
2274 * as well. But not if get_block() returned an error.
2276 if (!PageError(page
))
2277 SetPageUptodate(page
);
2282 /* Stage two: lock the buffers */
2283 for (i
= 0; i
< nr
; i
++) {
2286 mark_buffer_async_read(bh
);
2290 * Stage 3: start the IO. Check for uptodateness
2291 * inside the buffer lock in case another process reading
2292 * the underlying blockdev brought it uptodate (the sct fix).
2294 for (i
= 0; i
< nr
; i
++) {
2296 if (buffer_uptodate(bh
))
2297 end_buffer_async_read(bh
, 1);
2299 submit_bh(REQ_OP_READ
, 0, bh
);
2303 EXPORT_SYMBOL(block_read_full_page
);
2305 /* utility function for filesystems that need to do work on expanding
2306 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2307 * deal with the hole.
2309 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2311 struct address_space
*mapping
= inode
->i_mapping
;
2316 err
= inode_newsize_ok(inode
, size
);
2320 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2321 AOP_FLAG_CONT_EXPAND
, &page
, &fsdata
);
2325 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2331 EXPORT_SYMBOL(generic_cont_expand_simple
);
2333 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2334 loff_t pos
, loff_t
*bytes
)
2336 struct inode
*inode
= mapping
->host
;
2337 unsigned int blocksize
= i_blocksize(inode
);
2340 pgoff_t index
, curidx
;
2342 unsigned zerofrom
, offset
, len
;
2345 index
= pos
>> PAGE_SHIFT
;
2346 offset
= pos
& ~PAGE_MASK
;
2348 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2349 zerofrom
= curpos
& ~PAGE_MASK
;
2350 if (zerofrom
& (blocksize
-1)) {
2351 *bytes
|= (blocksize
-1);
2354 len
= PAGE_SIZE
- zerofrom
;
2356 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2360 zero_user(page
, zerofrom
, len
);
2361 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2368 balance_dirty_pages_ratelimited(mapping
);
2370 if (unlikely(fatal_signal_pending(current
))) {
2376 /* page covers the boundary, find the boundary offset */
2377 if (index
== curidx
) {
2378 zerofrom
= curpos
& ~PAGE_MASK
;
2379 /* if we will expand the thing last block will be filled */
2380 if (offset
<= zerofrom
) {
2383 if (zerofrom
& (blocksize
-1)) {
2384 *bytes
|= (blocksize
-1);
2387 len
= offset
- zerofrom
;
2389 err
= pagecache_write_begin(file
, mapping
, curpos
, len
, 0,
2393 zero_user(page
, zerofrom
, len
);
2394 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2406 * For moronic filesystems that do not allow holes in file.
2407 * We may have to extend the file.
2409 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2410 loff_t pos
, unsigned len
, unsigned flags
,
2411 struct page
**pagep
, void **fsdata
,
2412 get_block_t
*get_block
, loff_t
*bytes
)
2414 struct inode
*inode
= mapping
->host
;
2415 unsigned int blocksize
= i_blocksize(inode
);
2416 unsigned int zerofrom
;
2419 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2423 zerofrom
= *bytes
& ~PAGE_MASK
;
2424 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2425 *bytes
|= (blocksize
-1);
2429 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2431 EXPORT_SYMBOL(cont_write_begin
);
2433 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2435 struct inode
*inode
= page
->mapping
->host
;
2436 __block_commit_write(inode
,page
,from
,to
);
2439 EXPORT_SYMBOL(block_commit_write
);
2442 * block_page_mkwrite() is not allowed to change the file size as it gets
2443 * called from a page fault handler when a page is first dirtied. Hence we must
2444 * be careful to check for EOF conditions here. We set the page up correctly
2445 * for a written page which means we get ENOSPC checking when writing into
2446 * holes and correct delalloc and unwritten extent mapping on filesystems that
2447 * support these features.
2449 * We are not allowed to take the i_mutex here so we have to play games to
2450 * protect against truncate races as the page could now be beyond EOF. Because
2451 * truncate writes the inode size before removing pages, once we have the
2452 * page lock we can determine safely if the page is beyond EOF. If it is not
2453 * beyond EOF, then the page is guaranteed safe against truncation until we
2456 * Direct callers of this function should protect against filesystem freezing
2457 * using sb_start_pagefault() - sb_end_pagefault() functions.
2459 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2460 get_block_t get_block
)
2462 struct page
*page
= vmf
->page
;
2463 struct inode
*inode
= file_inode(vma
->vm_file
);
2469 size
= i_size_read(inode
);
2470 if ((page
->mapping
!= inode
->i_mapping
) ||
2471 (page_offset(page
) > size
)) {
2472 /* We overload EFAULT to mean page got truncated */
2477 /* page is wholly or partially inside EOF */
2478 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2479 end
= size
& ~PAGE_MASK
;
2483 ret
= __block_write_begin(page
, 0, end
, get_block
);
2485 ret
= block_commit_write(page
, 0, end
);
2487 if (unlikely(ret
< 0))
2489 set_page_dirty(page
);
2490 wait_for_stable_page(page
);
2496 EXPORT_SYMBOL(block_page_mkwrite
);
2499 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2500 * immediately, while under the page lock. So it needs a special end_io
2501 * handler which does not touch the bh after unlocking it.
2503 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2505 __end_buffer_read_notouch(bh
, uptodate
);
2509 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2510 * the page (converting it to circular linked list and taking care of page
2513 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2515 struct buffer_head
*bh
;
2517 BUG_ON(!PageLocked(page
));
2519 spin_lock(&page
->mapping
->private_lock
);
2522 if (PageDirty(page
))
2523 set_buffer_dirty(bh
);
2524 if (!bh
->b_this_page
)
2525 bh
->b_this_page
= head
;
2526 bh
= bh
->b_this_page
;
2527 } while (bh
!= head
);
2528 attach_page_buffers(page
, head
);
2529 spin_unlock(&page
->mapping
->private_lock
);
2533 * On entry, the page is fully not uptodate.
2534 * On exit the page is fully uptodate in the areas outside (from,to)
2535 * The filesystem needs to handle block truncation upon failure.
2537 int nobh_write_begin(struct address_space
*mapping
,
2538 loff_t pos
, unsigned len
, unsigned flags
,
2539 struct page
**pagep
, void **fsdata
,
2540 get_block_t
*get_block
)
2542 struct inode
*inode
= mapping
->host
;
2543 const unsigned blkbits
= inode
->i_blkbits
;
2544 const unsigned blocksize
= 1 << blkbits
;
2545 struct buffer_head
*head
, *bh
;
2549 unsigned block_in_page
;
2550 unsigned block_start
, block_end
;
2551 sector_t block_in_file
;
2554 int is_mapped_to_disk
= 1;
2556 index
= pos
>> PAGE_SHIFT
;
2557 from
= pos
& (PAGE_SIZE
- 1);
2560 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2566 if (page_has_buffers(page
)) {
2567 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2573 if (PageMappedToDisk(page
))
2577 * Allocate buffers so that we can keep track of state, and potentially
2578 * attach them to the page if an error occurs. In the common case of
2579 * no error, they will just be freed again without ever being attached
2580 * to the page (which is all OK, because we're under the page lock).
2582 * Be careful: the buffer linked list is a NULL terminated one, rather
2583 * than the circular one we're used to.
2585 head
= alloc_page_buffers(page
, blocksize
, false);
2591 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2594 * We loop across all blocks in the page, whether or not they are
2595 * part of the affected region. This is so we can discover if the
2596 * page is fully mapped-to-disk.
2598 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2599 block_start
< PAGE_SIZE
;
2600 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2603 block_end
= block_start
+ blocksize
;
2606 if (block_start
>= to
)
2608 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2612 if (!buffer_mapped(bh
))
2613 is_mapped_to_disk
= 0;
2615 clean_bdev_bh_alias(bh
);
2616 if (PageUptodate(page
)) {
2617 set_buffer_uptodate(bh
);
2620 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2621 zero_user_segments(page
, block_start
, from
,
2625 if (buffer_uptodate(bh
))
2626 continue; /* reiserfs does this */
2627 if (block_start
< from
|| block_end
> to
) {
2629 bh
->b_end_io
= end_buffer_read_nobh
;
2630 submit_bh(REQ_OP_READ
, 0, bh
);
2637 * The page is locked, so these buffers are protected from
2638 * any VM or truncate activity. Hence we don't need to care
2639 * for the buffer_head refcounts.
2641 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2643 if (!buffer_uptodate(bh
))
2650 if (is_mapped_to_disk
)
2651 SetPageMappedToDisk(page
);
2653 *fsdata
= head
; /* to be released by nobh_write_end */
2660 * Error recovery is a bit difficult. We need to zero out blocks that
2661 * were newly allocated, and dirty them to ensure they get written out.
2662 * Buffers need to be attached to the page at this point, otherwise
2663 * the handling of potential IO errors during writeout would be hard
2664 * (could try doing synchronous writeout, but what if that fails too?)
2666 attach_nobh_buffers(page
, head
);
2667 page_zero_new_buffers(page
, from
, to
);
2676 EXPORT_SYMBOL(nobh_write_begin
);
2678 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2679 loff_t pos
, unsigned len
, unsigned copied
,
2680 struct page
*page
, void *fsdata
)
2682 struct inode
*inode
= page
->mapping
->host
;
2683 struct buffer_head
*head
= fsdata
;
2684 struct buffer_head
*bh
;
2685 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2687 if (unlikely(copied
< len
) && head
)
2688 attach_nobh_buffers(page
, head
);
2689 if (page_has_buffers(page
))
2690 return generic_write_end(file
, mapping
, pos
, len
,
2691 copied
, page
, fsdata
);
2693 SetPageUptodate(page
);
2694 set_page_dirty(page
);
2695 if (pos
+copied
> inode
->i_size
) {
2696 i_size_write(inode
, pos
+copied
);
2697 mark_inode_dirty(inode
);
2705 head
= head
->b_this_page
;
2706 free_buffer_head(bh
);
2711 EXPORT_SYMBOL(nobh_write_end
);
2714 * nobh_writepage() - based on block_full_write_page() except
2715 * that it tries to operate without attaching bufferheads to
2718 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2719 struct writeback_control
*wbc
)
2721 struct inode
* const inode
= page
->mapping
->host
;
2722 loff_t i_size
= i_size_read(inode
);
2723 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2727 /* Is the page fully inside i_size? */
2728 if (page
->index
< end_index
)
2731 /* Is the page fully outside i_size? (truncate in progress) */
2732 offset
= i_size
& (PAGE_SIZE
-1);
2733 if (page
->index
>= end_index
+1 || !offset
) {
2735 * The page may have dirty, unmapped buffers. For example,
2736 * they may have been added in ext3_writepage(). Make them
2737 * freeable here, so the page does not leak.
2740 /* Not really sure about this - do we need this ? */
2741 if (page
->mapping
->a_ops
->invalidatepage
)
2742 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2745 return 0; /* don't care */
2749 * The page straddles i_size. It must be zeroed out on each and every
2750 * writepage invocation because it may be mmapped. "A file is mapped
2751 * in multiples of the page size. For a file that is not a multiple of
2752 * the page size, the remaining memory is zeroed when mapped, and
2753 * writes to that region are not written out to the file."
2755 zero_user_segment(page
, offset
, PAGE_SIZE
);
2757 ret
= mpage_writepage(page
, get_block
, wbc
);
2759 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2760 end_buffer_async_write
);
2763 EXPORT_SYMBOL(nobh_writepage
);
2765 int nobh_truncate_page(struct address_space
*mapping
,
2766 loff_t from
, get_block_t
*get_block
)
2768 pgoff_t index
= from
>> PAGE_SHIFT
;
2769 unsigned offset
= from
& (PAGE_SIZE
-1);
2772 unsigned length
, pos
;
2773 struct inode
*inode
= mapping
->host
;
2775 struct buffer_head map_bh
;
2778 blocksize
= i_blocksize(inode
);
2779 length
= offset
& (blocksize
- 1);
2781 /* Block boundary? Nothing to do */
2785 length
= blocksize
- length
;
2786 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2788 page
= grab_cache_page(mapping
, index
);
2793 if (page_has_buffers(page
)) {
2797 return block_truncate_page(mapping
, from
, get_block
);
2800 /* Find the buffer that contains "offset" */
2802 while (offset
>= pos
) {
2807 map_bh
.b_size
= blocksize
;
2809 err
= get_block(inode
, iblock
, &map_bh
, 0);
2812 /* unmapped? It's a hole - nothing to do */
2813 if (!buffer_mapped(&map_bh
))
2816 /* Ok, it's mapped. Make sure it's up-to-date */
2817 if (!PageUptodate(page
)) {
2818 err
= mapping
->a_ops
->readpage(NULL
, page
);
2824 if (!PageUptodate(page
)) {
2828 if (page_has_buffers(page
))
2831 zero_user(page
, offset
, length
);
2832 set_page_dirty(page
);
2841 EXPORT_SYMBOL(nobh_truncate_page
);
2843 int block_truncate_page(struct address_space
*mapping
,
2844 loff_t from
, get_block_t
*get_block
)
2846 pgoff_t index
= from
>> PAGE_SHIFT
;
2847 unsigned offset
= from
& (PAGE_SIZE
-1);
2850 unsigned length
, pos
;
2851 struct inode
*inode
= mapping
->host
;
2853 struct buffer_head
*bh
;
2856 blocksize
= i_blocksize(inode
);
2857 length
= offset
& (blocksize
- 1);
2859 /* Block boundary? Nothing to do */
2863 length
= blocksize
- length
;
2864 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2866 page
= grab_cache_page(mapping
, index
);
2871 if (!page_has_buffers(page
))
2872 create_empty_buffers(page
, blocksize
, 0);
2874 /* Find the buffer that contains "offset" */
2875 bh
= page_buffers(page
);
2877 while (offset
>= pos
) {
2878 bh
= bh
->b_this_page
;
2884 if (!buffer_mapped(bh
)) {
2885 WARN_ON(bh
->b_size
!= blocksize
);
2886 err
= get_block(inode
, iblock
, bh
, 0);
2889 /* unmapped? It's a hole - nothing to do */
2890 if (!buffer_mapped(bh
))
2894 /* Ok, it's mapped. Make sure it's up-to-date */
2895 if (PageUptodate(page
))
2896 set_buffer_uptodate(bh
);
2898 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2900 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2902 /* Uhhuh. Read error. Complain and punt. */
2903 if (!buffer_uptodate(bh
))
2907 zero_user(page
, offset
, length
);
2908 mark_buffer_dirty(bh
);
2917 EXPORT_SYMBOL(block_truncate_page
);
2920 * The generic ->writepage function for buffer-backed address_spaces
2922 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2923 struct writeback_control
*wbc
)
2925 struct inode
* const inode
= page
->mapping
->host
;
2926 loff_t i_size
= i_size_read(inode
);
2927 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2930 /* Is the page fully inside i_size? */
2931 if (page
->index
< end_index
)
2932 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2933 end_buffer_async_write
);
2935 /* Is the page fully outside i_size? (truncate in progress) */
2936 offset
= i_size
& (PAGE_SIZE
-1);
2937 if (page
->index
>= end_index
+1 || !offset
) {
2939 * The page may have dirty, unmapped buffers. For example,
2940 * they may have been added in ext3_writepage(). Make them
2941 * freeable here, so the page does not leak.
2943 do_invalidatepage(page
, 0, PAGE_SIZE
);
2945 return 0; /* don't care */
2949 * The page straddles i_size. It must be zeroed out on each and every
2950 * writepage invocation because it may be mmapped. "A file is mapped
2951 * in multiples of the page size. For a file that is not a multiple of
2952 * the page size, the remaining memory is zeroed when mapped, and
2953 * writes to that region are not written out to the file."
2955 zero_user_segment(page
, offset
, PAGE_SIZE
);
2956 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2957 end_buffer_async_write
);
2959 EXPORT_SYMBOL(block_write_full_page
);
2961 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2962 get_block_t
*get_block
)
2964 struct inode
*inode
= mapping
->host
;
2965 struct buffer_head tmp
= {
2966 .b_size
= i_blocksize(inode
),
2969 get_block(inode
, block
, &tmp
, 0);
2970 return tmp
.b_blocknr
;
2972 EXPORT_SYMBOL(generic_block_bmap
);
2974 static void end_bio_bh_io_sync(struct bio
*bio
)
2976 struct buffer_head
*bh
= bio
->bi_private
;
2978 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
2979 set_bit(BH_Quiet
, &bh
->b_state
);
2981 bh
->b_end_io(bh
, !bio
->bi_status
);
2986 * This allows us to do IO even on the odd last sectors
2987 * of a device, even if the block size is some multiple
2988 * of the physical sector size.
2990 * We'll just truncate the bio to the size of the device,
2991 * and clear the end of the buffer head manually.
2993 * Truly out-of-range accesses will turn into actual IO
2994 * errors, this only handles the "we need to be able to
2995 * do IO at the final sector" case.
2997 void guard_bio_eod(int op
, struct bio
*bio
)
3000 struct bio_vec
*bvec
= bio_last_bvec_all(bio
);
3001 unsigned truncated_bytes
;
3002 struct hd_struct
*part
;
3005 part
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
3007 maxsector
= part_nr_sects_read(part
);
3009 maxsector
= get_capacity(bio
->bi_disk
);
3016 * If the *whole* IO is past the end of the device,
3017 * let it through, and the IO layer will turn it into
3020 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3023 maxsector
-= bio
->bi_iter
.bi_sector
;
3024 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3027 /* Uhhuh. We've got a bio that straddles the device size! */
3028 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
3030 /* Truncate the bio.. */
3031 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3032 bvec
->bv_len
-= truncated_bytes
;
3034 /* ..and clear the end of the buffer for reads */
3035 if (op
== REQ_OP_READ
) {
3036 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3041 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3042 enum rw_hint write_hint
, struct writeback_control
*wbc
)
3046 BUG_ON(!buffer_locked(bh
));
3047 BUG_ON(!buffer_mapped(bh
));
3048 BUG_ON(!bh
->b_end_io
);
3049 BUG_ON(buffer_delay(bh
));
3050 BUG_ON(buffer_unwritten(bh
));
3053 * Only clear out a write error when rewriting
3055 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3056 clear_buffer_write_io_error(bh
);
3059 * from here on down, it's all bio -- do the initial mapping,
3060 * submit_bio -> generic_make_request may further map this bio around
3062 bio
= bio_alloc(GFP_NOIO
, 1);
3065 wbc_init_bio(wbc
, bio
);
3066 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3069 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3070 bio_set_dev(bio
, bh
->b_bdev
);
3071 bio
->bi_write_hint
= write_hint
;
3073 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3074 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3076 bio
->bi_end_io
= end_bio_bh_io_sync
;
3077 bio
->bi_private
= bh
;
3079 /* Take care of bh's that straddle the end of the device */
3080 guard_bio_eod(op
, bio
);
3082 if (buffer_meta(bh
))
3083 op_flags
|= REQ_META
;
3084 if (buffer_prio(bh
))
3085 op_flags
|= REQ_PRIO
;
3086 bio_set_op_attrs(bio
, op
, op_flags
);
3092 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3094 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3096 EXPORT_SYMBOL(submit_bh
);
3099 * ll_rw_block: low-level access to block devices (DEPRECATED)
3100 * @op: whether to %READ or %WRITE
3101 * @op_flags: req_flag_bits
3102 * @nr: number of &struct buffer_heads in the array
3103 * @bhs: array of pointers to &struct buffer_head
3105 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3106 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3107 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3110 * This function drops any buffer that it cannot get a lock on (with the
3111 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3112 * request, and any buffer that appears to be up-to-date when doing read
3113 * request. Further it marks as clean buffers that are processed for
3114 * writing (the buffer cache won't assume that they are actually clean
3115 * until the buffer gets unlocked).
3117 * ll_rw_block sets b_end_io to simple completion handler that marks
3118 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3121 * All of the buffers must be for the same device, and must also be a
3122 * multiple of the current approved size for the device.
3124 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3128 for (i
= 0; i
< nr
; i
++) {
3129 struct buffer_head
*bh
= bhs
[i
];
3131 if (!trylock_buffer(bh
))
3134 if (test_clear_buffer_dirty(bh
)) {
3135 bh
->b_end_io
= end_buffer_write_sync
;
3137 submit_bh(op
, op_flags
, bh
);
3141 if (!buffer_uptodate(bh
)) {
3142 bh
->b_end_io
= end_buffer_read_sync
;
3144 submit_bh(op
, op_flags
, bh
);
3151 EXPORT_SYMBOL(ll_rw_block
);
3153 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3156 if (!test_clear_buffer_dirty(bh
)) {
3160 bh
->b_end_io
= end_buffer_write_sync
;
3162 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3164 EXPORT_SYMBOL(write_dirty_buffer
);
3167 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3168 * and then start new I/O and then wait upon it. The caller must have a ref on
3171 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3175 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3177 if (test_clear_buffer_dirty(bh
)) {
3179 bh
->b_end_io
= end_buffer_write_sync
;
3180 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3182 if (!ret
&& !buffer_uptodate(bh
))
3189 EXPORT_SYMBOL(__sync_dirty_buffer
);
3191 int sync_dirty_buffer(struct buffer_head
*bh
)
3193 return __sync_dirty_buffer(bh
, REQ_SYNC
);
3195 EXPORT_SYMBOL(sync_dirty_buffer
);
3198 * try_to_free_buffers() checks if all the buffers on this particular page
3199 * are unused, and releases them if so.
3201 * Exclusion against try_to_free_buffers may be obtained by either
3202 * locking the page or by holding its mapping's private_lock.
3204 * If the page is dirty but all the buffers are clean then we need to
3205 * be sure to mark the page clean as well. This is because the page
3206 * may be against a block device, and a later reattachment of buffers
3207 * to a dirty page will set *all* buffers dirty. Which would corrupt
3208 * filesystem data on the same device.
3210 * The same applies to regular filesystem pages: if all the buffers are
3211 * clean then we set the page clean and proceed. To do that, we require
3212 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3215 * try_to_free_buffers() is non-blocking.
3217 static inline int buffer_busy(struct buffer_head
*bh
)
3219 return atomic_read(&bh
->b_count
) |
3220 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3224 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3226 struct buffer_head
*head
= page_buffers(page
);
3227 struct buffer_head
*bh
;
3231 if (buffer_busy(bh
))
3233 bh
= bh
->b_this_page
;
3234 } while (bh
!= head
);
3237 struct buffer_head
*next
= bh
->b_this_page
;
3239 if (bh
->b_assoc_map
)
3240 __remove_assoc_queue(bh
);
3242 } while (bh
!= head
);
3243 *buffers_to_free
= head
;
3244 __clear_page_buffers(page
);
3250 int try_to_free_buffers(struct page
*page
)
3252 struct address_space
* const mapping
= page
->mapping
;
3253 struct buffer_head
*buffers_to_free
= NULL
;
3256 BUG_ON(!PageLocked(page
));
3257 if (PageWriteback(page
))
3260 if (mapping
== NULL
) { /* can this still happen? */
3261 ret
= drop_buffers(page
, &buffers_to_free
);
3265 spin_lock(&mapping
->private_lock
);
3266 ret
= drop_buffers(page
, &buffers_to_free
);
3269 * If the filesystem writes its buffers by hand (eg ext3)
3270 * then we can have clean buffers against a dirty page. We
3271 * clean the page here; otherwise the VM will never notice
3272 * that the filesystem did any IO at all.
3274 * Also, during truncate, discard_buffer will have marked all
3275 * the page's buffers clean. We discover that here and clean
3278 * private_lock must be held over this entire operation in order
3279 * to synchronise against __set_page_dirty_buffers and prevent the
3280 * dirty bit from being lost.
3283 cancel_dirty_page(page
);
3284 spin_unlock(&mapping
->private_lock
);
3286 if (buffers_to_free
) {
3287 struct buffer_head
*bh
= buffers_to_free
;
3290 struct buffer_head
*next
= bh
->b_this_page
;
3291 free_buffer_head(bh
);
3293 } while (bh
!= buffers_to_free
);
3297 EXPORT_SYMBOL(try_to_free_buffers
);
3300 * There are no bdflush tunables left. But distributions are
3301 * still running obsolete flush daemons, so we terminate them here.
3303 * Use of bdflush() is deprecated and will be removed in a future kernel.
3304 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3306 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3308 static int msg_count
;
3310 if (!capable(CAP_SYS_ADMIN
))
3313 if (msg_count
< 5) {
3316 "warning: process `%s' used the obsolete bdflush"
3317 " system call\n", current
->comm
);
3318 printk(KERN_INFO
"Fix your initscripts?\n");
3327 * Buffer-head allocation
3329 static struct kmem_cache
*bh_cachep __read_mostly
;
3332 * Once the number of bh's in the machine exceeds this level, we start
3333 * stripping them in writeback.
3335 static unsigned long max_buffer_heads
;
3337 int buffer_heads_over_limit
;
3339 struct bh_accounting
{
3340 int nr
; /* Number of live bh's */
3341 int ratelimit
; /* Limit cacheline bouncing */
3344 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3346 static void recalc_bh_state(void)
3351 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3353 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3354 for_each_online_cpu(i
)
3355 tot
+= per_cpu(bh_accounting
, i
).nr
;
3356 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3359 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3361 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3363 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3365 __this_cpu_inc(bh_accounting
.nr
);
3371 EXPORT_SYMBOL(alloc_buffer_head
);
3373 void free_buffer_head(struct buffer_head
*bh
)
3375 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3376 kmem_cache_free(bh_cachep
, bh
);
3378 __this_cpu_dec(bh_accounting
.nr
);
3382 EXPORT_SYMBOL(free_buffer_head
);
3384 static int buffer_exit_cpu_dead(unsigned int cpu
)
3387 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3389 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3393 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3394 per_cpu(bh_accounting
, cpu
).nr
= 0;
3399 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3400 * @bh: struct buffer_head
3402 * Return true if the buffer is up-to-date and false,
3403 * with the buffer locked, if not.
3405 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3407 if (!buffer_uptodate(bh
)) {
3409 if (!buffer_uptodate(bh
))
3415 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3418 * bh_submit_read - Submit a locked buffer for reading
3419 * @bh: struct buffer_head
3421 * Returns zero on success and -EIO on error.
3423 int bh_submit_read(struct buffer_head
*bh
)
3425 BUG_ON(!buffer_locked(bh
));
3427 if (buffer_uptodate(bh
)) {
3433 bh
->b_end_io
= end_buffer_read_sync
;
3434 submit_bh(REQ_OP_READ
, 0, bh
);
3436 if (buffer_uptodate(bh
))
3440 EXPORT_SYMBOL(bh_submit_read
);
3442 void __init
buffer_init(void)
3444 unsigned long nrpages
;
3447 bh_cachep
= kmem_cache_create("buffer_head",
3448 sizeof(struct buffer_head
), 0,
3449 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3454 * Limit the bh occupancy to 10% of ZONE_NORMAL
3456 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3457 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3458 ret
= cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD
, "fs/buffer:dead",
3459 NULL
, buffer_exit_cpu_dead
);