4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/uaccess.h>
24 #include <linux/proc_ns.h>
25 #include <linux/magic.h>
26 #include <linux/bootmem.h>
27 #include <linux/task_work.h>
28 #include <linux/sched/task.h>
33 /* Maximum number of mounts in a mount namespace */
34 unsigned int sysctl_mount_max __read_mostly
= 100000;
36 static unsigned int m_hash_mask __read_mostly
;
37 static unsigned int m_hash_shift __read_mostly
;
38 static unsigned int mp_hash_mask __read_mostly
;
39 static unsigned int mp_hash_shift __read_mostly
;
41 static __initdata
unsigned long mhash_entries
;
42 static int __init
set_mhash_entries(char *str
)
46 mhash_entries
= simple_strtoul(str
, &str
, 0);
49 __setup("mhash_entries=", set_mhash_entries
);
51 static __initdata
unsigned long mphash_entries
;
52 static int __init
set_mphash_entries(char *str
)
56 mphash_entries
= simple_strtoul(str
, &str
, 0);
59 __setup("mphash_entries=", set_mphash_entries
);
62 static DEFINE_IDA(mnt_id_ida
);
63 static DEFINE_IDA(mnt_group_ida
);
64 static DEFINE_SPINLOCK(mnt_id_lock
);
65 static int mnt_id_start
= 0;
66 static int mnt_group_start
= 1;
68 static struct hlist_head
*mount_hashtable __read_mostly
;
69 static struct hlist_head
*mountpoint_hashtable __read_mostly
;
70 static struct kmem_cache
*mnt_cache __read_mostly
;
71 static DECLARE_RWSEM(namespace_sem
);
74 struct kobject
*fs_kobj
;
75 EXPORT_SYMBOL_GPL(fs_kobj
);
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
85 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(mount_lock
);
87 static inline struct hlist_head
*m_hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
89 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
90 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
91 tmp
= tmp
+ (tmp
>> m_hash_shift
);
92 return &mount_hashtable
[tmp
& m_hash_mask
];
95 static inline struct hlist_head
*mp_hash(struct dentry
*dentry
)
97 unsigned long tmp
= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
98 tmp
= tmp
+ (tmp
>> mp_hash_shift
);
99 return &mountpoint_hashtable
[tmp
& mp_hash_mask
];
102 static int mnt_alloc_id(struct mount
*mnt
)
107 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
108 spin_lock(&mnt_id_lock
);
109 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
111 mnt_id_start
= mnt
->mnt_id
+ 1;
112 spin_unlock(&mnt_id_lock
);
119 static void mnt_free_id(struct mount
*mnt
)
121 int id
= mnt
->mnt_id
;
122 spin_lock(&mnt_id_lock
);
123 ida_remove(&mnt_id_ida
, id
);
124 if (mnt_id_start
> id
)
126 spin_unlock(&mnt_id_lock
);
130 * Allocate a new peer group ID
132 * mnt_group_ida is protected by namespace_sem
134 static int mnt_alloc_group_id(struct mount
*mnt
)
138 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
141 res
= ida_get_new_above(&mnt_group_ida
,
145 mnt_group_start
= mnt
->mnt_group_id
+ 1;
151 * Release a peer group ID
153 void mnt_release_group_id(struct mount
*mnt
)
155 int id
= mnt
->mnt_group_id
;
156 ida_remove(&mnt_group_ida
, id
);
157 if (mnt_group_start
> id
)
158 mnt_group_start
= id
;
159 mnt
->mnt_group_id
= 0;
163 * vfsmount lock must be held for read
165 static inline void mnt_add_count(struct mount
*mnt
, int n
)
168 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
177 * vfsmount lock must be held for write
179 unsigned int mnt_get_count(struct mount
*mnt
)
182 unsigned int count
= 0;
185 for_each_possible_cpu(cpu
) {
186 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
191 return mnt
->mnt_count
;
195 static void drop_mountpoint(struct fs_pin
*p
)
197 struct mount
*m
= container_of(p
, struct mount
, mnt_umount
);
198 dput(m
->mnt_ex_mountpoint
);
203 static struct mount
*alloc_vfsmnt(const char *name
)
205 struct mount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
209 err
= mnt_alloc_id(mnt
);
214 mnt
->mnt_devname
= kstrdup_const(name
, GFP_KERNEL
);
215 if (!mnt
->mnt_devname
)
220 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
222 goto out_free_devname
;
224 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, 1);
227 mnt
->mnt_writers
= 0;
230 INIT_HLIST_NODE(&mnt
->mnt_hash
);
231 INIT_LIST_HEAD(&mnt
->mnt_child
);
232 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
233 INIT_LIST_HEAD(&mnt
->mnt_list
);
234 INIT_LIST_HEAD(&mnt
->mnt_expire
);
235 INIT_LIST_HEAD(&mnt
->mnt_share
);
236 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
237 INIT_LIST_HEAD(&mnt
->mnt_slave
);
238 INIT_HLIST_NODE(&mnt
->mnt_mp_list
);
239 INIT_LIST_HEAD(&mnt
->mnt_umounting
);
240 init_fs_pin(&mnt
->mnt_umount
, drop_mountpoint
);
246 kfree_const(mnt
->mnt_devname
);
251 kmem_cache_free(mnt_cache
, mnt
);
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
274 int __mnt_is_readonly(struct vfsmount
*mnt
)
276 if (mnt
->mnt_flags
& MNT_READONLY
)
278 if (sb_rdonly(mnt
->mnt_sb
))
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
284 static inline void mnt_inc_writers(struct mount
*mnt
)
287 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
293 static inline void mnt_dec_writers(struct mount
*mnt
)
296 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
302 static unsigned int mnt_get_writers(struct mount
*mnt
)
305 unsigned int count
= 0;
308 for_each_possible_cpu(cpu
) {
309 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
314 return mnt
->mnt_writers
;
318 static int mnt_is_readonly(struct vfsmount
*mnt
)
320 if (mnt
->mnt_sb
->s_readonly_remount
)
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
324 return __mnt_is_readonly(mnt
);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount
*m
)
345 struct mount
*mnt
= real_mount(m
);
349 mnt_inc_writers(mnt
);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
356 while (READ_ONCE(mnt
->mnt
.mnt_flags
) & MNT_WRITE_HOLD
)
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
364 if (mnt_is_readonly(m
)) {
365 mnt_dec_writers(mnt
);
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount
*m
)
386 sb_start_write(m
->mnt_sb
);
387 ret
= __mnt_want_write(m
);
389 sb_end_write(m
->mnt_sb
);
392 EXPORT_SYMBOL_GPL(mnt_want_write
);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount
*mnt
)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt
))
412 mnt_inc_writers(real_mount(mnt
));
416 EXPORT_SYMBOL_GPL(mnt_clone_write
);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file
*file
)
427 if (!(file
->f_mode
& FMODE_WRITER
))
428 return __mnt_want_write(file
->f_path
.mnt
);
430 return mnt_clone_write(file
->f_path
.mnt
);
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 int mnt_want_write_file(struct file
*file
)
444 sb_start_write(file_inode(file
)->i_sb
);
445 ret
= __mnt_want_write_file(file
);
447 sb_end_write(file_inode(file
)->i_sb
);
450 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
460 void __mnt_drop_write(struct vfsmount
*mnt
)
463 mnt_dec_writers(real_mount(mnt
));
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
475 void mnt_drop_write(struct vfsmount
*mnt
)
477 __mnt_drop_write(mnt
);
478 sb_end_write(mnt
->mnt_sb
);
480 EXPORT_SYMBOL_GPL(mnt_drop_write
);
482 void __mnt_drop_write_file(struct file
*file
)
484 __mnt_drop_write(file
->f_path
.mnt
);
487 void mnt_drop_write_file(struct file
*file
)
489 __mnt_drop_write_file(file
);
490 sb_end_write(file_inode(file
)->i_sb
);
492 EXPORT_SYMBOL(mnt_drop_write_file
);
494 static int mnt_make_readonly(struct mount
*mnt
)
499 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
501 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
502 * should be visible before we do.
507 * With writers on hold, if this value is zero, then there are
508 * definitely no active writers (although held writers may subsequently
509 * increment the count, they'll have to wait, and decrement it after
510 * seeing MNT_READONLY).
512 * It is OK to have counter incremented on one CPU and decremented on
513 * another: the sum will add up correctly. The danger would be when we
514 * sum up each counter, if we read a counter before it is incremented,
515 * but then read another CPU's count which it has been subsequently
516 * decremented from -- we would see more decrements than we should.
517 * MNT_WRITE_HOLD protects against this scenario, because
518 * mnt_want_write first increments count, then smp_mb, then spins on
519 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
520 * we're counting up here.
522 if (mnt_get_writers(mnt
) > 0)
525 mnt
->mnt
.mnt_flags
|= MNT_READONLY
;
527 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
528 * that become unheld will see MNT_READONLY.
531 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
536 static void __mnt_unmake_readonly(struct mount
*mnt
)
539 mnt
->mnt
.mnt_flags
&= ~MNT_READONLY
;
543 int sb_prepare_remount_readonly(struct super_block
*sb
)
548 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
549 if (atomic_long_read(&sb
->s_remove_count
))
553 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
554 if (!(mnt
->mnt
.mnt_flags
& MNT_READONLY
)) {
555 mnt
->mnt
.mnt_flags
|= MNT_WRITE_HOLD
;
557 if (mnt_get_writers(mnt
) > 0) {
563 if (!err
&& atomic_long_read(&sb
->s_remove_count
))
567 sb
->s_readonly_remount
= 1;
570 list_for_each_entry(mnt
, &sb
->s_mounts
, mnt_instance
) {
571 if (mnt
->mnt
.mnt_flags
& MNT_WRITE_HOLD
)
572 mnt
->mnt
.mnt_flags
&= ~MNT_WRITE_HOLD
;
579 static void free_vfsmnt(struct mount
*mnt
)
581 kfree_const(mnt
->mnt_devname
);
583 free_percpu(mnt
->mnt_pcp
);
585 kmem_cache_free(mnt_cache
, mnt
);
588 static void delayed_free_vfsmnt(struct rcu_head
*head
)
590 free_vfsmnt(container_of(head
, struct mount
, mnt_rcu
));
593 /* call under rcu_read_lock */
594 int __legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
597 if (read_seqretry(&mount_lock
, seq
))
601 mnt
= real_mount(bastard
);
602 mnt_add_count(mnt
, 1);
603 smp_mb(); // see mntput_no_expire()
604 if (likely(!read_seqretry(&mount_lock
, seq
)))
606 if (bastard
->mnt_flags
& MNT_SYNC_UMOUNT
) {
607 mnt_add_count(mnt
, -1);
611 if (unlikely(bastard
->mnt_flags
& MNT_DOOMED
)) {
612 mnt_add_count(mnt
, -1);
617 /* caller will mntput() */
621 /* call under rcu_read_lock */
622 bool legitimize_mnt(struct vfsmount
*bastard
, unsigned seq
)
624 int res
= __legitimize_mnt(bastard
, seq
);
627 if (unlikely(res
< 0)) {
636 * find the first mount at @dentry on vfsmount @mnt.
637 * call under rcu_read_lock()
639 struct mount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
)
641 struct hlist_head
*head
= m_hash(mnt
, dentry
);
644 hlist_for_each_entry_rcu(p
, head
, mnt_hash
)
645 if (&p
->mnt_parent
->mnt
== mnt
&& p
->mnt_mountpoint
== dentry
)
651 * lookup_mnt - Return the first child mount mounted at path
653 * "First" means first mounted chronologically. If you create the
656 * mount /dev/sda1 /mnt
657 * mount /dev/sda2 /mnt
658 * mount /dev/sda3 /mnt
660 * Then lookup_mnt() on the base /mnt dentry in the root mount will
661 * return successively the root dentry and vfsmount of /dev/sda1, then
662 * /dev/sda2, then /dev/sda3, then NULL.
664 * lookup_mnt takes a reference to the found vfsmount.
666 struct vfsmount
*lookup_mnt(const struct path
*path
)
668 struct mount
*child_mnt
;
674 seq
= read_seqbegin(&mount_lock
);
675 child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
);
676 m
= child_mnt
? &child_mnt
->mnt
: NULL
;
677 } while (!legitimize_mnt(m
, seq
));
683 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
684 * current mount namespace.
686 * The common case is dentries are not mountpoints at all and that
687 * test is handled inline. For the slow case when we are actually
688 * dealing with a mountpoint of some kind, walk through all of the
689 * mounts in the current mount namespace and test to see if the dentry
692 * The mount_hashtable is not usable in the context because we
693 * need to identify all mounts that may be in the current mount
694 * namespace not just a mount that happens to have some specified
697 bool __is_local_mountpoint(struct dentry
*dentry
)
699 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
701 bool is_covered
= false;
703 if (!d_mountpoint(dentry
))
706 down_read(&namespace_sem
);
707 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
708 is_covered
= (mnt
->mnt_mountpoint
== dentry
);
712 up_read(&namespace_sem
);
717 static struct mountpoint
*lookup_mountpoint(struct dentry
*dentry
)
719 struct hlist_head
*chain
= mp_hash(dentry
);
720 struct mountpoint
*mp
;
722 hlist_for_each_entry(mp
, chain
, m_hash
) {
723 if (mp
->m_dentry
== dentry
) {
724 /* might be worth a WARN_ON() */
725 if (d_unlinked(dentry
))
726 return ERR_PTR(-ENOENT
);
734 static struct mountpoint
*get_mountpoint(struct dentry
*dentry
)
736 struct mountpoint
*mp
, *new = NULL
;
739 if (d_mountpoint(dentry
)) {
741 read_seqlock_excl(&mount_lock
);
742 mp
= lookup_mountpoint(dentry
);
743 read_sequnlock_excl(&mount_lock
);
749 new = kmalloc(sizeof(struct mountpoint
), GFP_KERNEL
);
751 return ERR_PTR(-ENOMEM
);
754 /* Exactly one processes may set d_mounted */
755 ret
= d_set_mounted(dentry
);
757 /* Someone else set d_mounted? */
761 /* The dentry is not available as a mountpoint? */
766 /* Add the new mountpoint to the hash table */
767 read_seqlock_excl(&mount_lock
);
768 new->m_dentry
= dentry
;
770 hlist_add_head(&new->m_hash
, mp_hash(dentry
));
771 INIT_HLIST_HEAD(&new->m_list
);
772 read_sequnlock_excl(&mount_lock
);
781 static void put_mountpoint(struct mountpoint
*mp
)
783 if (!--mp
->m_count
) {
784 struct dentry
*dentry
= mp
->m_dentry
;
785 BUG_ON(!hlist_empty(&mp
->m_list
));
786 spin_lock(&dentry
->d_lock
);
787 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
788 spin_unlock(&dentry
->d_lock
);
789 hlist_del(&mp
->m_hash
);
794 static inline int check_mnt(struct mount
*mnt
)
796 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
800 * vfsmount lock must be held for write
802 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
806 wake_up_interruptible(&ns
->poll
);
811 * vfsmount lock must be held for write
813 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
815 if (ns
&& ns
->event
!= event
) {
817 wake_up_interruptible(&ns
->poll
);
822 * vfsmount lock must be held for write
824 static void unhash_mnt(struct mount
*mnt
)
826 mnt
->mnt_parent
= mnt
;
827 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
828 list_del_init(&mnt
->mnt_child
);
829 hlist_del_init_rcu(&mnt
->mnt_hash
);
830 hlist_del_init(&mnt
->mnt_mp_list
);
831 put_mountpoint(mnt
->mnt_mp
);
836 * vfsmount lock must be held for write
838 static void detach_mnt(struct mount
*mnt
, struct path
*old_path
)
840 old_path
->dentry
= mnt
->mnt_mountpoint
;
841 old_path
->mnt
= &mnt
->mnt_parent
->mnt
;
846 * vfsmount lock must be held for write
848 static void umount_mnt(struct mount
*mnt
)
850 /* old mountpoint will be dropped when we can do that */
851 mnt
->mnt_ex_mountpoint
= mnt
->mnt_mountpoint
;
856 * vfsmount lock must be held for write
858 void mnt_set_mountpoint(struct mount
*mnt
,
859 struct mountpoint
*mp
,
860 struct mount
*child_mnt
)
863 mnt_add_count(mnt
, 1); /* essentially, that's mntget */
864 child_mnt
->mnt_mountpoint
= dget(mp
->m_dentry
);
865 child_mnt
->mnt_parent
= mnt
;
866 child_mnt
->mnt_mp
= mp
;
867 hlist_add_head(&child_mnt
->mnt_mp_list
, &mp
->m_list
);
870 static void __attach_mnt(struct mount
*mnt
, struct mount
*parent
)
872 hlist_add_head_rcu(&mnt
->mnt_hash
,
873 m_hash(&parent
->mnt
, mnt
->mnt_mountpoint
));
874 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
878 * vfsmount lock must be held for write
880 static void attach_mnt(struct mount
*mnt
,
881 struct mount
*parent
,
882 struct mountpoint
*mp
)
884 mnt_set_mountpoint(parent
, mp
, mnt
);
885 __attach_mnt(mnt
, parent
);
888 void mnt_change_mountpoint(struct mount
*parent
, struct mountpoint
*mp
, struct mount
*mnt
)
890 struct mountpoint
*old_mp
= mnt
->mnt_mp
;
891 struct dentry
*old_mountpoint
= mnt
->mnt_mountpoint
;
892 struct mount
*old_parent
= mnt
->mnt_parent
;
894 list_del_init(&mnt
->mnt_child
);
895 hlist_del_init(&mnt
->mnt_mp_list
);
896 hlist_del_init_rcu(&mnt
->mnt_hash
);
898 attach_mnt(mnt
, parent
, mp
);
900 put_mountpoint(old_mp
);
903 * Safely avoid even the suggestion this code might sleep or
904 * lock the mount hash by taking advantage of the knowledge that
905 * mnt_change_mountpoint will not release the final reference
908 * During mounting, the mount passed in as the parent mount will
909 * continue to use the old mountpoint and during unmounting, the
910 * old mountpoint will continue to exist until namespace_unlock,
911 * which happens well after mnt_change_mountpoint.
913 spin_lock(&old_mountpoint
->d_lock
);
914 old_mountpoint
->d_lockref
.count
--;
915 spin_unlock(&old_mountpoint
->d_lock
);
917 mnt_add_count(old_parent
, -1);
921 * vfsmount lock must be held for write
923 static void commit_tree(struct mount
*mnt
)
925 struct mount
*parent
= mnt
->mnt_parent
;
928 struct mnt_namespace
*n
= parent
->mnt_ns
;
930 BUG_ON(parent
== mnt
);
932 list_add_tail(&head
, &mnt
->mnt_list
);
933 list_for_each_entry(m
, &head
, mnt_list
)
936 list_splice(&head
, n
->list
.prev
);
938 n
->mounts
+= n
->pending_mounts
;
939 n
->pending_mounts
= 0;
941 __attach_mnt(mnt
, parent
);
942 touch_mnt_namespace(n
);
945 static struct mount
*next_mnt(struct mount
*p
, struct mount
*root
)
947 struct list_head
*next
= p
->mnt_mounts
.next
;
948 if (next
== &p
->mnt_mounts
) {
952 next
= p
->mnt_child
.next
;
953 if (next
!= &p
->mnt_parent
->mnt_mounts
)
958 return list_entry(next
, struct mount
, mnt_child
);
961 static struct mount
*skip_mnt_tree(struct mount
*p
)
963 struct list_head
*prev
= p
->mnt_mounts
.prev
;
964 while (prev
!= &p
->mnt_mounts
) {
965 p
= list_entry(prev
, struct mount
, mnt_child
);
966 prev
= p
->mnt_mounts
.prev
;
972 vfs_kern_mount(struct file_system_type
*type
, int flags
, const char *name
, void *data
)
978 return ERR_PTR(-ENODEV
);
980 mnt
= alloc_vfsmnt(name
);
982 return ERR_PTR(-ENOMEM
);
984 if (flags
& SB_KERNMOUNT
)
985 mnt
->mnt
.mnt_flags
= MNT_INTERNAL
;
987 root
= mount_fs(type
, flags
, name
, data
);
991 return ERR_CAST(root
);
994 mnt
->mnt
.mnt_root
= root
;
995 mnt
->mnt
.mnt_sb
= root
->d_sb
;
996 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
997 mnt
->mnt_parent
= mnt
;
999 list_add_tail(&mnt
->mnt_instance
, &root
->d_sb
->s_mounts
);
1000 unlock_mount_hash();
1003 EXPORT_SYMBOL_GPL(vfs_kern_mount
);
1006 vfs_submount(const struct dentry
*mountpoint
, struct file_system_type
*type
,
1007 const char *name
, void *data
)
1009 /* Until it is worked out how to pass the user namespace
1010 * through from the parent mount to the submount don't support
1011 * unprivileged mounts with submounts.
1013 if (mountpoint
->d_sb
->s_user_ns
!= &init_user_ns
)
1014 return ERR_PTR(-EPERM
);
1016 return vfs_kern_mount(type
, SB_SUBMOUNT
, name
, data
);
1018 EXPORT_SYMBOL_GPL(vfs_submount
);
1020 static struct mount
*clone_mnt(struct mount
*old
, struct dentry
*root
,
1023 struct super_block
*sb
= old
->mnt
.mnt_sb
;
1027 mnt
= alloc_vfsmnt(old
->mnt_devname
);
1029 return ERR_PTR(-ENOMEM
);
1031 if (flag
& (CL_SLAVE
| CL_PRIVATE
| CL_SHARED_TO_SLAVE
))
1032 mnt
->mnt_group_id
= 0; /* not a peer of original */
1034 mnt
->mnt_group_id
= old
->mnt_group_id
;
1036 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
1037 err
= mnt_alloc_group_id(mnt
);
1042 mnt
->mnt
.mnt_flags
= old
->mnt
.mnt_flags
;
1043 mnt
->mnt
.mnt_flags
&= ~(MNT_WRITE_HOLD
|MNT_MARKED
|MNT_INTERNAL
);
1044 /* Don't allow unprivileged users to change mount flags */
1045 if (flag
& CL_UNPRIVILEGED
) {
1046 mnt
->mnt
.mnt_flags
|= MNT_LOCK_ATIME
;
1048 if (mnt
->mnt
.mnt_flags
& MNT_READONLY
)
1049 mnt
->mnt
.mnt_flags
|= MNT_LOCK_READONLY
;
1051 if (mnt
->mnt
.mnt_flags
& MNT_NODEV
)
1052 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NODEV
;
1054 if (mnt
->mnt
.mnt_flags
& MNT_NOSUID
)
1055 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOSUID
;
1057 if (mnt
->mnt
.mnt_flags
& MNT_NOEXEC
)
1058 mnt
->mnt
.mnt_flags
|= MNT_LOCK_NOEXEC
;
1061 /* Don't allow unprivileged users to reveal what is under a mount */
1062 if ((flag
& CL_UNPRIVILEGED
) &&
1063 (!(flag
& CL_EXPIRE
) || list_empty(&old
->mnt_expire
)))
1064 mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
1066 atomic_inc(&sb
->s_active
);
1067 mnt
->mnt
.mnt_sb
= sb
;
1068 mnt
->mnt
.mnt_root
= dget(root
);
1069 mnt
->mnt_mountpoint
= mnt
->mnt
.mnt_root
;
1070 mnt
->mnt_parent
= mnt
;
1072 list_add_tail(&mnt
->mnt_instance
, &sb
->s_mounts
);
1073 unlock_mount_hash();
1075 if ((flag
& CL_SLAVE
) ||
1076 ((flag
& CL_SHARED_TO_SLAVE
) && IS_MNT_SHARED(old
))) {
1077 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
1078 mnt
->mnt_master
= old
;
1079 CLEAR_MNT_SHARED(mnt
);
1080 } else if (!(flag
& CL_PRIVATE
)) {
1081 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
1082 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
1083 if (IS_MNT_SLAVE(old
))
1084 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
1085 mnt
->mnt_master
= old
->mnt_master
;
1087 CLEAR_MNT_SHARED(mnt
);
1089 if (flag
& CL_MAKE_SHARED
)
1090 set_mnt_shared(mnt
);
1092 /* stick the duplicate mount on the same expiry list
1093 * as the original if that was on one */
1094 if (flag
& CL_EXPIRE
) {
1095 if (!list_empty(&old
->mnt_expire
))
1096 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
1104 return ERR_PTR(err
);
1107 static void cleanup_mnt(struct mount
*mnt
)
1110 * This probably indicates that somebody messed
1111 * up a mnt_want/drop_write() pair. If this
1112 * happens, the filesystem was probably unable
1113 * to make r/w->r/o transitions.
1116 * The locking used to deal with mnt_count decrement provides barriers,
1117 * so mnt_get_writers() below is safe.
1119 WARN_ON(mnt_get_writers(mnt
));
1120 if (unlikely(mnt
->mnt_pins
.first
))
1122 fsnotify_vfsmount_delete(&mnt
->mnt
);
1123 dput(mnt
->mnt
.mnt_root
);
1124 deactivate_super(mnt
->mnt
.mnt_sb
);
1126 call_rcu(&mnt
->mnt_rcu
, delayed_free_vfsmnt
);
1129 static void __cleanup_mnt(struct rcu_head
*head
)
1131 cleanup_mnt(container_of(head
, struct mount
, mnt_rcu
));
1134 static LLIST_HEAD(delayed_mntput_list
);
1135 static void delayed_mntput(struct work_struct
*unused
)
1137 struct llist_node
*node
= llist_del_all(&delayed_mntput_list
);
1138 struct mount
*m
, *t
;
1140 llist_for_each_entry_safe(m
, t
, node
, mnt_llist
)
1143 static DECLARE_DELAYED_WORK(delayed_mntput_work
, delayed_mntput
);
1145 static void mntput_no_expire(struct mount
*mnt
)
1148 if (likely(READ_ONCE(mnt
->mnt_ns
))) {
1150 * Since we don't do lock_mount_hash() here,
1151 * ->mnt_ns can change under us. However, if it's
1152 * non-NULL, then there's a reference that won't
1153 * be dropped until after an RCU delay done after
1154 * turning ->mnt_ns NULL. So if we observe it
1155 * non-NULL under rcu_read_lock(), the reference
1156 * we are dropping is not the final one.
1158 mnt_add_count(mnt
, -1);
1164 * make sure that if __legitimize_mnt() has not seen us grab
1165 * mount_lock, we'll see their refcount increment here.
1168 mnt_add_count(mnt
, -1);
1169 if (mnt_get_count(mnt
)) {
1171 unlock_mount_hash();
1174 if (unlikely(mnt
->mnt
.mnt_flags
& MNT_DOOMED
)) {
1176 unlock_mount_hash();
1179 mnt
->mnt
.mnt_flags
|= MNT_DOOMED
;
1182 list_del(&mnt
->mnt_instance
);
1184 if (unlikely(!list_empty(&mnt
->mnt_mounts
))) {
1185 struct mount
*p
, *tmp
;
1186 list_for_each_entry_safe(p
, tmp
, &mnt
->mnt_mounts
, mnt_child
) {
1190 unlock_mount_hash();
1192 if (likely(!(mnt
->mnt
.mnt_flags
& MNT_INTERNAL
))) {
1193 struct task_struct
*task
= current
;
1194 if (likely(!(task
->flags
& PF_KTHREAD
))) {
1195 init_task_work(&mnt
->mnt_rcu
, __cleanup_mnt
);
1196 if (!task_work_add(task
, &mnt
->mnt_rcu
, true))
1199 if (llist_add(&mnt
->mnt_llist
, &delayed_mntput_list
))
1200 schedule_delayed_work(&delayed_mntput_work
, 1);
1206 void mntput(struct vfsmount
*mnt
)
1209 struct mount
*m
= real_mount(mnt
);
1210 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1211 if (unlikely(m
->mnt_expiry_mark
))
1212 m
->mnt_expiry_mark
= 0;
1213 mntput_no_expire(m
);
1216 EXPORT_SYMBOL(mntput
);
1218 struct vfsmount
*mntget(struct vfsmount
*mnt
)
1221 mnt_add_count(real_mount(mnt
), 1);
1224 EXPORT_SYMBOL(mntget
);
1226 /* path_is_mountpoint() - Check if path is a mount in the current
1229 * d_mountpoint() can only be used reliably to establish if a dentry is
1230 * not mounted in any namespace and that common case is handled inline.
1231 * d_mountpoint() isn't aware of the possibility there may be multiple
1232 * mounts using a given dentry in a different namespace. This function
1233 * checks if the passed in path is a mountpoint rather than the dentry
1236 bool path_is_mountpoint(const struct path
*path
)
1241 if (!d_mountpoint(path
->dentry
))
1246 seq
= read_seqbegin(&mount_lock
);
1247 res
= __path_is_mountpoint(path
);
1248 } while (read_seqretry(&mount_lock
, seq
));
1253 EXPORT_SYMBOL(path_is_mountpoint
);
1255 struct vfsmount
*mnt_clone_internal(const struct path
*path
)
1258 p
= clone_mnt(real_mount(path
->mnt
), path
->dentry
, CL_PRIVATE
);
1261 p
->mnt
.mnt_flags
|= MNT_INTERNAL
;
1265 #ifdef CONFIG_PROC_FS
1266 /* iterator; we want it to have access to namespace_sem, thus here... */
1267 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
1269 struct proc_mounts
*p
= m
->private;
1271 down_read(&namespace_sem
);
1272 if (p
->cached_event
== p
->ns
->event
) {
1273 void *v
= p
->cached_mount
;
1274 if (*pos
== p
->cached_index
)
1276 if (*pos
== p
->cached_index
+ 1) {
1277 v
= seq_list_next(v
, &p
->ns
->list
, &p
->cached_index
);
1278 return p
->cached_mount
= v
;
1282 p
->cached_event
= p
->ns
->event
;
1283 p
->cached_mount
= seq_list_start(&p
->ns
->list
, *pos
);
1284 p
->cached_index
= *pos
;
1285 return p
->cached_mount
;
1288 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
1290 struct proc_mounts
*p
= m
->private;
1292 p
->cached_mount
= seq_list_next(v
, &p
->ns
->list
, pos
);
1293 p
->cached_index
= *pos
;
1294 return p
->cached_mount
;
1297 static void m_stop(struct seq_file
*m
, void *v
)
1299 up_read(&namespace_sem
);
1302 static int m_show(struct seq_file
*m
, void *v
)
1304 struct proc_mounts
*p
= m
->private;
1305 struct mount
*r
= list_entry(v
, struct mount
, mnt_list
);
1306 return p
->show(m
, &r
->mnt
);
1309 const struct seq_operations mounts_op
= {
1315 #endif /* CONFIG_PROC_FS */
1318 * may_umount_tree - check if a mount tree is busy
1319 * @mnt: root of mount tree
1321 * This is called to check if a tree of mounts has any
1322 * open files, pwds, chroots or sub mounts that are
1325 int may_umount_tree(struct vfsmount
*m
)
1327 struct mount
*mnt
= real_mount(m
);
1328 int actual_refs
= 0;
1329 int minimum_refs
= 0;
1333 /* write lock needed for mnt_get_count */
1335 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1336 actual_refs
+= mnt_get_count(p
);
1339 unlock_mount_hash();
1341 if (actual_refs
> minimum_refs
)
1347 EXPORT_SYMBOL(may_umount_tree
);
1350 * may_umount - check if a mount point is busy
1351 * @mnt: root of mount
1353 * This is called to check if a mount point has any
1354 * open files, pwds, chroots or sub mounts. If the
1355 * mount has sub mounts this will return busy
1356 * regardless of whether the sub mounts are busy.
1358 * Doesn't take quota and stuff into account. IOW, in some cases it will
1359 * give false negatives. The main reason why it's here is that we need
1360 * a non-destructive way to look for easily umountable filesystems.
1362 int may_umount(struct vfsmount
*mnt
)
1365 down_read(&namespace_sem
);
1367 if (propagate_mount_busy(real_mount(mnt
), 2))
1369 unlock_mount_hash();
1370 up_read(&namespace_sem
);
1374 EXPORT_SYMBOL(may_umount
);
1376 static HLIST_HEAD(unmounted
); /* protected by namespace_sem */
1378 static void namespace_unlock(void)
1380 struct hlist_head head
;
1382 hlist_move_list(&unmounted
, &head
);
1384 up_write(&namespace_sem
);
1386 if (likely(hlist_empty(&head
)))
1391 group_pin_kill(&head
);
1394 static inline void namespace_lock(void)
1396 down_write(&namespace_sem
);
1399 enum umount_tree_flags
{
1401 UMOUNT_PROPAGATE
= 2,
1402 UMOUNT_CONNECTED
= 4,
1405 static bool disconnect_mount(struct mount
*mnt
, enum umount_tree_flags how
)
1407 /* Leaving mounts connected is only valid for lazy umounts */
1408 if (how
& UMOUNT_SYNC
)
1411 /* A mount without a parent has nothing to be connected to */
1412 if (!mnt_has_parent(mnt
))
1415 /* Because the reference counting rules change when mounts are
1416 * unmounted and connected, umounted mounts may not be
1417 * connected to mounted mounts.
1419 if (!(mnt
->mnt_parent
->mnt
.mnt_flags
& MNT_UMOUNT
))
1422 /* Has it been requested that the mount remain connected? */
1423 if (how
& UMOUNT_CONNECTED
)
1426 /* Is the mount locked such that it needs to remain connected? */
1427 if (IS_MNT_LOCKED(mnt
))
1430 /* By default disconnect the mount */
1435 * mount_lock must be held
1436 * namespace_sem must be held for write
1438 static void umount_tree(struct mount
*mnt
, enum umount_tree_flags how
)
1440 LIST_HEAD(tmp_list
);
1443 if (how
& UMOUNT_PROPAGATE
)
1444 propagate_mount_unlock(mnt
);
1446 /* Gather the mounts to umount */
1447 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1448 p
->mnt
.mnt_flags
|= MNT_UMOUNT
;
1449 list_move(&p
->mnt_list
, &tmp_list
);
1452 /* Hide the mounts from mnt_mounts */
1453 list_for_each_entry(p
, &tmp_list
, mnt_list
) {
1454 list_del_init(&p
->mnt_child
);
1457 /* Add propogated mounts to the tmp_list */
1458 if (how
& UMOUNT_PROPAGATE
)
1459 propagate_umount(&tmp_list
);
1461 while (!list_empty(&tmp_list
)) {
1462 struct mnt_namespace
*ns
;
1464 p
= list_first_entry(&tmp_list
, struct mount
, mnt_list
);
1465 list_del_init(&p
->mnt_expire
);
1466 list_del_init(&p
->mnt_list
);
1470 __touch_mnt_namespace(ns
);
1473 if (how
& UMOUNT_SYNC
)
1474 p
->mnt
.mnt_flags
|= MNT_SYNC_UMOUNT
;
1476 disconnect
= disconnect_mount(p
, how
);
1478 pin_insert_group(&p
->mnt_umount
, &p
->mnt_parent
->mnt
,
1479 disconnect
? &unmounted
: NULL
);
1480 if (mnt_has_parent(p
)) {
1481 mnt_add_count(p
->mnt_parent
, -1);
1483 /* Don't forget about p */
1484 list_add_tail(&p
->mnt_child
, &p
->mnt_parent
->mnt_mounts
);
1489 change_mnt_propagation(p
, MS_PRIVATE
);
1493 static void shrink_submounts(struct mount
*mnt
);
1495 static int do_umount(struct mount
*mnt
, int flags
)
1497 struct super_block
*sb
= mnt
->mnt
.mnt_sb
;
1500 retval
= security_sb_umount(&mnt
->mnt
, flags
);
1505 * Allow userspace to request a mountpoint be expired rather than
1506 * unmounting unconditionally. Unmount only happens if:
1507 * (1) the mark is already set (the mark is cleared by mntput())
1508 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1510 if (flags
& MNT_EXPIRE
) {
1511 if (&mnt
->mnt
== current
->fs
->root
.mnt
||
1512 flags
& (MNT_FORCE
| MNT_DETACH
))
1516 * probably don't strictly need the lock here if we examined
1517 * all race cases, but it's a slowpath.
1520 if (mnt_get_count(mnt
) != 2) {
1521 unlock_mount_hash();
1524 unlock_mount_hash();
1526 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1531 * If we may have to abort operations to get out of this
1532 * mount, and they will themselves hold resources we must
1533 * allow the fs to do things. In the Unix tradition of
1534 * 'Gee thats tricky lets do it in userspace' the umount_begin
1535 * might fail to complete on the first run through as other tasks
1536 * must return, and the like. Thats for the mount program to worry
1537 * about for the moment.
1540 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1541 sb
->s_op
->umount_begin(sb
);
1545 * No sense to grab the lock for this test, but test itself looks
1546 * somewhat bogus. Suggestions for better replacement?
1547 * Ho-hum... In principle, we might treat that as umount + switch
1548 * to rootfs. GC would eventually take care of the old vfsmount.
1549 * Actually it makes sense, especially if rootfs would contain a
1550 * /reboot - static binary that would close all descriptors and
1551 * call reboot(9). Then init(8) could umount root and exec /reboot.
1553 if (&mnt
->mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1555 * Special case for "unmounting" root ...
1556 * we just try to remount it readonly.
1558 if (!ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
))
1560 down_write(&sb
->s_umount
);
1562 retval
= do_remount_sb(sb
, SB_RDONLY
, NULL
, 0);
1563 up_write(&sb
->s_umount
);
1571 if (flags
& MNT_DETACH
) {
1572 if (!list_empty(&mnt
->mnt_list
))
1573 umount_tree(mnt
, UMOUNT_PROPAGATE
);
1576 shrink_submounts(mnt
);
1578 if (!propagate_mount_busy(mnt
, 2)) {
1579 if (!list_empty(&mnt
->mnt_list
))
1580 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
1584 unlock_mount_hash();
1590 * __detach_mounts - lazily unmount all mounts on the specified dentry
1592 * During unlink, rmdir, and d_drop it is possible to loose the path
1593 * to an existing mountpoint, and wind up leaking the mount.
1594 * detach_mounts allows lazily unmounting those mounts instead of
1597 * The caller may hold dentry->d_inode->i_mutex.
1599 void __detach_mounts(struct dentry
*dentry
)
1601 struct mountpoint
*mp
;
1606 mp
= lookup_mountpoint(dentry
);
1607 if (IS_ERR_OR_NULL(mp
))
1611 while (!hlist_empty(&mp
->m_list
)) {
1612 mnt
= hlist_entry(mp
->m_list
.first
, struct mount
, mnt_mp_list
);
1613 if (mnt
->mnt
.mnt_flags
& MNT_UMOUNT
) {
1614 hlist_add_head(&mnt
->mnt_umount
.s_list
, &unmounted
);
1617 else umount_tree(mnt
, UMOUNT_CONNECTED
);
1621 unlock_mount_hash();
1626 * Is the caller allowed to modify his namespace?
1628 static inline bool may_mount(void)
1630 return ns_capable(current
->nsproxy
->mnt_ns
->user_ns
, CAP_SYS_ADMIN
);
1633 static inline bool may_mandlock(void)
1635 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1638 return capable(CAP_SYS_ADMIN
);
1642 * Now umount can handle mount points as well as block devices.
1643 * This is important for filesystems which use unnamed block devices.
1645 * We now support a flag for forced unmount like the other 'big iron'
1646 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1649 int ksys_umount(char __user
*name
, int flags
)
1654 int lookup_flags
= 0;
1656 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1662 if (!(flags
& UMOUNT_NOFOLLOW
))
1663 lookup_flags
|= LOOKUP_FOLLOW
;
1665 retval
= user_path_mountpoint_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1668 mnt
= real_mount(path
.mnt
);
1670 if (path
.dentry
!= path
.mnt
->mnt_root
)
1672 if (!check_mnt(mnt
))
1674 if (mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
1677 if (flags
& MNT_FORCE
&& !capable(CAP_SYS_ADMIN
))
1680 retval
= do_umount(mnt
, flags
);
1682 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1684 mntput_no_expire(mnt
);
1689 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1691 return ksys_umount(name
, flags
);
1694 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1697 * The 2.0 compatible umount. No flags.
1699 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1701 return ksys_umount(name
, 0);
1706 static bool is_mnt_ns_file(struct dentry
*dentry
)
1708 /* Is this a proxy for a mount namespace? */
1709 return dentry
->d_op
== &ns_dentry_operations
&&
1710 dentry
->d_fsdata
== &mntns_operations
;
1713 struct mnt_namespace
*to_mnt_ns(struct ns_common
*ns
)
1715 return container_of(ns
, struct mnt_namespace
, ns
);
1718 static bool mnt_ns_loop(struct dentry
*dentry
)
1720 /* Could bind mounting the mount namespace inode cause a
1721 * mount namespace loop?
1723 struct mnt_namespace
*mnt_ns
;
1724 if (!is_mnt_ns_file(dentry
))
1727 mnt_ns
= to_mnt_ns(get_proc_ns(dentry
->d_inode
));
1728 return current
->nsproxy
->mnt_ns
->seq
>= mnt_ns
->seq
;
1731 struct mount
*copy_tree(struct mount
*mnt
, struct dentry
*dentry
,
1734 struct mount
*res
, *p
, *q
, *r
, *parent
;
1736 if (!(flag
& CL_COPY_UNBINDABLE
) && IS_MNT_UNBINDABLE(mnt
))
1737 return ERR_PTR(-EINVAL
);
1739 if (!(flag
& CL_COPY_MNT_NS_FILE
) && is_mnt_ns_file(dentry
))
1740 return ERR_PTR(-EINVAL
);
1742 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1746 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1749 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1751 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1754 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1755 if (!(flag
& CL_COPY_UNBINDABLE
) &&
1756 IS_MNT_UNBINDABLE(s
)) {
1757 s
= skip_mnt_tree(s
);
1760 if (!(flag
& CL_COPY_MNT_NS_FILE
) &&
1761 is_mnt_ns_file(s
->mnt
.mnt_root
)) {
1762 s
= skip_mnt_tree(s
);
1765 while (p
!= s
->mnt_parent
) {
1771 q
= clone_mnt(p
, p
->mnt
.mnt_root
, flag
);
1775 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1776 attach_mnt(q
, parent
, p
->mnt_mp
);
1777 unlock_mount_hash();
1784 umount_tree(res
, UMOUNT_SYNC
);
1785 unlock_mount_hash();
1790 /* Caller should check returned pointer for errors */
1792 struct vfsmount
*collect_mounts(const struct path
*path
)
1796 if (!check_mnt(real_mount(path
->mnt
)))
1797 tree
= ERR_PTR(-EINVAL
);
1799 tree
= copy_tree(real_mount(path
->mnt
), path
->dentry
,
1800 CL_COPY_ALL
| CL_PRIVATE
);
1803 return ERR_CAST(tree
);
1807 void drop_collected_mounts(struct vfsmount
*mnt
)
1811 umount_tree(real_mount(mnt
), UMOUNT_SYNC
);
1812 unlock_mount_hash();
1817 * clone_private_mount - create a private clone of a path
1819 * This creates a new vfsmount, which will be the clone of @path. The new will
1820 * not be attached anywhere in the namespace and will be private (i.e. changes
1821 * to the originating mount won't be propagated into this).
1823 * Release with mntput().
1825 struct vfsmount
*clone_private_mount(const struct path
*path
)
1827 struct mount
*old_mnt
= real_mount(path
->mnt
);
1828 struct mount
*new_mnt
;
1830 if (IS_MNT_UNBINDABLE(old_mnt
))
1831 return ERR_PTR(-EINVAL
);
1833 new_mnt
= clone_mnt(old_mnt
, path
->dentry
, CL_PRIVATE
);
1834 if (IS_ERR(new_mnt
))
1835 return ERR_CAST(new_mnt
);
1837 return &new_mnt
->mnt
;
1839 EXPORT_SYMBOL_GPL(clone_private_mount
);
1841 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1842 struct vfsmount
*root
)
1845 int res
= f(root
, arg
);
1848 list_for_each_entry(mnt
, &real_mount(root
)->mnt_list
, mnt_list
) {
1849 res
= f(&mnt
->mnt
, arg
);
1856 static void cleanup_group_ids(struct mount
*mnt
, struct mount
*end
)
1860 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1861 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1862 mnt_release_group_id(p
);
1866 static int invent_group_ids(struct mount
*mnt
, bool recurse
)
1870 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1871 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1872 int err
= mnt_alloc_group_id(p
);
1874 cleanup_group_ids(mnt
, p
);
1883 int count_mounts(struct mnt_namespace
*ns
, struct mount
*mnt
)
1885 unsigned int max
= READ_ONCE(sysctl_mount_max
);
1886 unsigned int mounts
= 0, old
, pending
, sum
;
1889 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1893 pending
= ns
->pending_mounts
;
1894 sum
= old
+ pending
;
1898 (mounts
> (max
- sum
)))
1901 ns
->pending_mounts
= pending
+ mounts
;
1906 * @source_mnt : mount tree to be attached
1907 * @nd : place the mount tree @source_mnt is attached
1908 * @parent_nd : if non-null, detach the source_mnt from its parent and
1909 * store the parent mount and mountpoint dentry.
1910 * (done when source_mnt is moved)
1912 * NOTE: in the table below explains the semantics when a source mount
1913 * of a given type is attached to a destination mount of a given type.
1914 * ---------------------------------------------------------------------------
1915 * | BIND MOUNT OPERATION |
1916 * |**************************************************************************
1917 * | source-->| shared | private | slave | unbindable |
1921 * |**************************************************************************
1922 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1924 * |non-shared| shared (+) | private | slave (*) | invalid |
1925 * ***************************************************************************
1926 * A bind operation clones the source mount and mounts the clone on the
1927 * destination mount.
1929 * (++) the cloned mount is propagated to all the mounts in the propagation
1930 * tree of the destination mount and the cloned mount is added to
1931 * the peer group of the source mount.
1932 * (+) the cloned mount is created under the destination mount and is marked
1933 * as shared. The cloned mount is added to the peer group of the source
1935 * (+++) the mount is propagated to all the mounts in the propagation tree
1936 * of the destination mount and the cloned mount is made slave
1937 * of the same master as that of the source mount. The cloned mount
1938 * is marked as 'shared and slave'.
1939 * (*) the cloned mount is made a slave of the same master as that of the
1942 * ---------------------------------------------------------------------------
1943 * | MOVE MOUNT OPERATION |
1944 * |**************************************************************************
1945 * | source-->| shared | private | slave | unbindable |
1949 * |**************************************************************************
1950 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1952 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1953 * ***************************************************************************
1955 * (+) the mount is moved to the destination. And is then propagated to
1956 * all the mounts in the propagation tree of the destination mount.
1957 * (+*) the mount is moved to the destination.
1958 * (+++) the mount is moved to the destination and is then propagated to
1959 * all the mounts belonging to the destination mount's propagation tree.
1960 * the mount is marked as 'shared and slave'.
1961 * (*) the mount continues to be a slave at the new location.
1963 * if the source mount is a tree, the operations explained above is
1964 * applied to each mount in the tree.
1965 * Must be called without spinlocks held, since this function can sleep
1968 static int attach_recursive_mnt(struct mount
*source_mnt
,
1969 struct mount
*dest_mnt
,
1970 struct mountpoint
*dest_mp
,
1971 struct path
*parent_path
)
1973 HLIST_HEAD(tree_list
);
1974 struct mnt_namespace
*ns
= dest_mnt
->mnt_ns
;
1975 struct mountpoint
*smp
;
1976 struct mount
*child
, *p
;
1977 struct hlist_node
*n
;
1980 /* Preallocate a mountpoint in case the new mounts need
1981 * to be tucked under other mounts.
1983 smp
= get_mountpoint(source_mnt
->mnt
.mnt_root
);
1985 return PTR_ERR(smp
);
1987 /* Is there space to add these mounts to the mount namespace? */
1989 err
= count_mounts(ns
, source_mnt
);
1994 if (IS_MNT_SHARED(dest_mnt
)) {
1995 err
= invent_group_ids(source_mnt
, true);
1998 err
= propagate_mnt(dest_mnt
, dest_mp
, source_mnt
, &tree_list
);
2001 goto out_cleanup_ids
;
2002 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
2008 detach_mnt(source_mnt
, parent_path
);
2009 attach_mnt(source_mnt
, dest_mnt
, dest_mp
);
2010 touch_mnt_namespace(source_mnt
->mnt_ns
);
2012 mnt_set_mountpoint(dest_mnt
, dest_mp
, source_mnt
);
2013 commit_tree(source_mnt
);
2016 hlist_for_each_entry_safe(child
, n
, &tree_list
, mnt_hash
) {
2018 hlist_del_init(&child
->mnt_hash
);
2019 q
= __lookup_mnt(&child
->mnt_parent
->mnt
,
2020 child
->mnt_mountpoint
);
2022 mnt_change_mountpoint(child
, smp
, q
);
2025 put_mountpoint(smp
);
2026 unlock_mount_hash();
2031 while (!hlist_empty(&tree_list
)) {
2032 child
= hlist_entry(tree_list
.first
, struct mount
, mnt_hash
);
2033 child
->mnt_parent
->mnt_ns
->pending_mounts
= 0;
2034 umount_tree(child
, UMOUNT_SYNC
);
2036 unlock_mount_hash();
2037 cleanup_group_ids(source_mnt
, NULL
);
2039 ns
->pending_mounts
= 0;
2041 read_seqlock_excl(&mount_lock
);
2042 put_mountpoint(smp
);
2043 read_sequnlock_excl(&mount_lock
);
2048 static struct mountpoint
*lock_mount(struct path
*path
)
2050 struct vfsmount
*mnt
;
2051 struct dentry
*dentry
= path
->dentry
;
2053 inode_lock(dentry
->d_inode
);
2054 if (unlikely(cant_mount(dentry
))) {
2055 inode_unlock(dentry
->d_inode
);
2056 return ERR_PTR(-ENOENT
);
2059 mnt
= lookup_mnt(path
);
2061 struct mountpoint
*mp
= get_mountpoint(dentry
);
2064 inode_unlock(dentry
->d_inode
);
2070 inode_unlock(path
->dentry
->d_inode
);
2073 dentry
= path
->dentry
= dget(mnt
->mnt_root
);
2077 static void unlock_mount(struct mountpoint
*where
)
2079 struct dentry
*dentry
= where
->m_dentry
;
2081 read_seqlock_excl(&mount_lock
);
2082 put_mountpoint(where
);
2083 read_sequnlock_excl(&mount_lock
);
2086 inode_unlock(dentry
->d_inode
);
2089 static int graft_tree(struct mount
*mnt
, struct mount
*p
, struct mountpoint
*mp
)
2091 if (mnt
->mnt
.mnt_sb
->s_flags
& SB_NOUSER
)
2094 if (d_is_dir(mp
->m_dentry
) !=
2095 d_is_dir(mnt
->mnt
.mnt_root
))
2098 return attach_recursive_mnt(mnt
, p
, mp
, NULL
);
2102 * Sanity check the flags to change_mnt_propagation.
2105 static int flags_to_propagation_type(int ms_flags
)
2107 int type
= ms_flags
& ~(MS_REC
| MS_SILENT
);
2109 /* Fail if any non-propagation flags are set */
2110 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2112 /* Only one propagation flag should be set */
2113 if (!is_power_of_2(type
))
2119 * recursively change the type of the mountpoint.
2121 static int do_change_type(struct path
*path
, int ms_flags
)
2124 struct mount
*mnt
= real_mount(path
->mnt
);
2125 int recurse
= ms_flags
& MS_REC
;
2129 if (path
->dentry
!= path
->mnt
->mnt_root
)
2132 type
= flags_to_propagation_type(ms_flags
);
2137 if (type
== MS_SHARED
) {
2138 err
= invent_group_ids(mnt
, recurse
);
2144 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
2145 change_mnt_propagation(m
, type
);
2146 unlock_mount_hash();
2153 static bool has_locked_children(struct mount
*mnt
, struct dentry
*dentry
)
2155 struct mount
*child
;
2156 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
2157 if (!is_subdir(child
->mnt_mountpoint
, dentry
))
2160 if (child
->mnt
.mnt_flags
& MNT_LOCKED
)
2167 * do loopback mount.
2169 static int do_loopback(struct path
*path
, const char *old_name
,
2172 struct path old_path
;
2173 struct mount
*mnt
= NULL
, *old
, *parent
;
2174 struct mountpoint
*mp
;
2176 if (!old_name
|| !*old_name
)
2178 err
= kern_path(old_name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &old_path
);
2183 if (mnt_ns_loop(old_path
.dentry
))
2186 mp
= lock_mount(path
);
2191 old
= real_mount(old_path
.mnt
);
2192 parent
= real_mount(path
->mnt
);
2195 if (IS_MNT_UNBINDABLE(old
))
2198 if (!check_mnt(parent
))
2201 if (!check_mnt(old
) && old_path
.dentry
->d_op
!= &ns_dentry_operations
)
2204 if (!recurse
&& has_locked_children(old
, old_path
.dentry
))
2208 mnt
= copy_tree(old
, old_path
.dentry
, CL_COPY_MNT_NS_FILE
);
2210 mnt
= clone_mnt(old
, old_path
.dentry
, 0);
2217 mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
2219 err
= graft_tree(mnt
, parent
, mp
);
2222 umount_tree(mnt
, UMOUNT_SYNC
);
2223 unlock_mount_hash();
2228 path_put(&old_path
);
2232 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
2235 int readonly_request
= 0;
2237 if (ms_flags
& MS_RDONLY
)
2238 readonly_request
= 1;
2239 if (readonly_request
== __mnt_is_readonly(mnt
))
2242 if (readonly_request
)
2243 error
= mnt_make_readonly(real_mount(mnt
));
2245 __mnt_unmake_readonly(real_mount(mnt
));
2250 * change filesystem flags. dir should be a physical root of filesystem.
2251 * If you've mounted a non-root directory somewhere and want to do remount
2252 * on it - tough luck.
2254 static int do_remount(struct path
*path
, int ms_flags
, int sb_flags
,
2255 int mnt_flags
, void *data
)
2258 struct super_block
*sb
= path
->mnt
->mnt_sb
;
2259 struct mount
*mnt
= real_mount(path
->mnt
);
2261 if (!check_mnt(mnt
))
2264 if (path
->dentry
!= path
->mnt
->mnt_root
)
2267 /* Don't allow changing of locked mnt flags.
2269 * No locks need to be held here while testing the various
2270 * MNT_LOCK flags because those flags can never be cleared
2271 * once they are set.
2273 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_READONLY
) &&
2274 !(mnt_flags
& MNT_READONLY
)) {
2277 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NODEV
) &&
2278 !(mnt_flags
& MNT_NODEV
)) {
2281 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOSUID
) &&
2282 !(mnt_flags
& MNT_NOSUID
)) {
2285 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_NOEXEC
) &&
2286 !(mnt_flags
& MNT_NOEXEC
)) {
2289 if ((mnt
->mnt
.mnt_flags
& MNT_LOCK_ATIME
) &&
2290 ((mnt
->mnt
.mnt_flags
& MNT_ATIME_MASK
) != (mnt_flags
& MNT_ATIME_MASK
))) {
2294 err
= security_sb_remount(sb
, data
);
2298 down_write(&sb
->s_umount
);
2299 if (ms_flags
& MS_BIND
)
2300 err
= change_mount_flags(path
->mnt
, ms_flags
);
2301 else if (!ns_capable(sb
->s_user_ns
, CAP_SYS_ADMIN
))
2304 err
= do_remount_sb(sb
, sb_flags
, data
, 0);
2307 mnt_flags
|= mnt
->mnt
.mnt_flags
& ~MNT_USER_SETTABLE_MASK
;
2308 mnt
->mnt
.mnt_flags
= mnt_flags
;
2309 touch_mnt_namespace(mnt
->mnt_ns
);
2310 unlock_mount_hash();
2312 up_write(&sb
->s_umount
);
2316 static inline int tree_contains_unbindable(struct mount
*mnt
)
2319 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
2320 if (IS_MNT_UNBINDABLE(p
))
2326 static int do_move_mount(struct path
*path
, const char *old_name
)
2328 struct path old_path
, parent_path
;
2331 struct mountpoint
*mp
;
2333 if (!old_name
|| !*old_name
)
2335 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
2339 mp
= lock_mount(path
);
2344 old
= real_mount(old_path
.mnt
);
2345 p
= real_mount(path
->mnt
);
2348 if (!check_mnt(p
) || !check_mnt(old
))
2351 if (old
->mnt
.mnt_flags
& MNT_LOCKED
)
2355 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
2358 if (!mnt_has_parent(old
))
2361 if (d_is_dir(path
->dentry
) !=
2362 d_is_dir(old_path
.dentry
))
2365 * Don't move a mount residing in a shared parent.
2367 if (IS_MNT_SHARED(old
->mnt_parent
))
2370 * Don't move a mount tree containing unbindable mounts to a destination
2371 * mount which is shared.
2373 if (IS_MNT_SHARED(p
) && tree_contains_unbindable(old
))
2376 for (; mnt_has_parent(p
); p
= p
->mnt_parent
)
2380 err
= attach_recursive_mnt(old
, real_mount(path
->mnt
), mp
, &parent_path
);
2384 /* if the mount is moved, it should no longer be expire
2386 list_del_init(&old
->mnt_expire
);
2391 path_put(&parent_path
);
2392 path_put(&old_path
);
2396 static struct vfsmount
*fs_set_subtype(struct vfsmount
*mnt
, const char *fstype
)
2399 const char *subtype
= strchr(fstype
, '.');
2408 mnt
->mnt_sb
->s_subtype
= kstrdup(subtype
, GFP_KERNEL
);
2410 if (!mnt
->mnt_sb
->s_subtype
)
2416 return ERR_PTR(err
);
2420 * add a mount into a namespace's mount tree
2422 static int do_add_mount(struct mount
*newmnt
, struct path
*path
, int mnt_flags
)
2424 struct mountpoint
*mp
;
2425 struct mount
*parent
;
2428 mnt_flags
&= ~MNT_INTERNAL_FLAGS
;
2430 mp
= lock_mount(path
);
2434 parent
= real_mount(path
->mnt
);
2436 if (unlikely(!check_mnt(parent
))) {
2437 /* that's acceptable only for automounts done in private ns */
2438 if (!(mnt_flags
& MNT_SHRINKABLE
))
2440 /* ... and for those we'd better have mountpoint still alive */
2441 if (!parent
->mnt_ns
)
2445 /* Refuse the same filesystem on the same mount point */
2447 if (path
->mnt
->mnt_sb
== newmnt
->mnt
.mnt_sb
&&
2448 path
->mnt
->mnt_root
== path
->dentry
)
2452 if (d_is_symlink(newmnt
->mnt
.mnt_root
))
2455 newmnt
->mnt
.mnt_flags
= mnt_flags
;
2456 err
= graft_tree(newmnt
, parent
, mp
);
2463 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
);
2466 * create a new mount for userspace and request it to be added into the
2469 static int do_new_mount(struct path
*path
, const char *fstype
, int sb_flags
,
2470 int mnt_flags
, const char *name
, void *data
)
2472 struct file_system_type
*type
;
2473 struct vfsmount
*mnt
;
2479 type
= get_fs_type(fstype
);
2483 mnt
= vfs_kern_mount(type
, sb_flags
, name
, data
);
2484 if (!IS_ERR(mnt
) && (type
->fs_flags
& FS_HAS_SUBTYPE
) &&
2485 !mnt
->mnt_sb
->s_subtype
)
2486 mnt
= fs_set_subtype(mnt
, fstype
);
2488 put_filesystem(type
);
2490 return PTR_ERR(mnt
);
2492 if (mount_too_revealing(mnt
, &mnt_flags
)) {
2497 err
= do_add_mount(real_mount(mnt
), path
, mnt_flags
);
2503 int finish_automount(struct vfsmount
*m
, struct path
*path
)
2505 struct mount
*mnt
= real_mount(m
);
2507 /* The new mount record should have at least 2 refs to prevent it being
2508 * expired before we get a chance to add it
2510 BUG_ON(mnt_get_count(mnt
) < 2);
2512 if (m
->mnt_sb
== path
->mnt
->mnt_sb
&&
2513 m
->mnt_root
== path
->dentry
) {
2518 err
= do_add_mount(mnt
, path
, path
->mnt
->mnt_flags
| MNT_SHRINKABLE
);
2522 /* remove m from any expiration list it may be on */
2523 if (!list_empty(&mnt
->mnt_expire
)) {
2525 list_del_init(&mnt
->mnt_expire
);
2534 * mnt_set_expiry - Put a mount on an expiration list
2535 * @mnt: The mount to list.
2536 * @expiry_list: The list to add the mount to.
2538 void mnt_set_expiry(struct vfsmount
*mnt
, struct list_head
*expiry_list
)
2542 list_add_tail(&real_mount(mnt
)->mnt_expire
, expiry_list
);
2546 EXPORT_SYMBOL(mnt_set_expiry
);
2549 * process a list of expirable mountpoints with the intent of discarding any
2550 * mountpoints that aren't in use and haven't been touched since last we came
2553 void mark_mounts_for_expiry(struct list_head
*mounts
)
2555 struct mount
*mnt
, *next
;
2556 LIST_HEAD(graveyard
);
2558 if (list_empty(mounts
))
2564 /* extract from the expiration list every vfsmount that matches the
2565 * following criteria:
2566 * - only referenced by its parent vfsmount
2567 * - still marked for expiry (marked on the last call here; marks are
2568 * cleared by mntput())
2570 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2571 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2572 propagate_mount_busy(mnt
, 1))
2574 list_move(&mnt
->mnt_expire
, &graveyard
);
2576 while (!list_empty(&graveyard
)) {
2577 mnt
= list_first_entry(&graveyard
, struct mount
, mnt_expire
);
2578 touch_mnt_namespace(mnt
->mnt_ns
);
2579 umount_tree(mnt
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2581 unlock_mount_hash();
2585 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2588 * Ripoff of 'select_parent()'
2590 * search the list of submounts for a given mountpoint, and move any
2591 * shrinkable submounts to the 'graveyard' list.
2593 static int select_submounts(struct mount
*parent
, struct list_head
*graveyard
)
2595 struct mount
*this_parent
= parent
;
2596 struct list_head
*next
;
2600 next
= this_parent
->mnt_mounts
.next
;
2602 while (next
!= &this_parent
->mnt_mounts
) {
2603 struct list_head
*tmp
= next
;
2604 struct mount
*mnt
= list_entry(tmp
, struct mount
, mnt_child
);
2607 if (!(mnt
->mnt
.mnt_flags
& MNT_SHRINKABLE
))
2610 * Descend a level if the d_mounts list is non-empty.
2612 if (!list_empty(&mnt
->mnt_mounts
)) {
2617 if (!propagate_mount_busy(mnt
, 1)) {
2618 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2623 * All done at this level ... ascend and resume the search
2625 if (this_parent
!= parent
) {
2626 next
= this_parent
->mnt_child
.next
;
2627 this_parent
= this_parent
->mnt_parent
;
2634 * process a list of expirable mountpoints with the intent of discarding any
2635 * submounts of a specific parent mountpoint
2637 * mount_lock must be held for write
2639 static void shrink_submounts(struct mount
*mnt
)
2641 LIST_HEAD(graveyard
);
2644 /* extract submounts of 'mountpoint' from the expiration list */
2645 while (select_submounts(mnt
, &graveyard
)) {
2646 while (!list_empty(&graveyard
)) {
2647 m
= list_first_entry(&graveyard
, struct mount
,
2649 touch_mnt_namespace(m
->mnt_ns
);
2650 umount_tree(m
, UMOUNT_PROPAGATE
|UMOUNT_SYNC
);
2656 * Some copy_from_user() implementations do not return the exact number of
2657 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2658 * Note that this function differs from copy_from_user() in that it will oops
2659 * on bad values of `to', rather than returning a short copy.
2661 static long exact_copy_from_user(void *to
, const void __user
* from
,
2665 const char __user
*f
= from
;
2668 if (!access_ok(VERIFY_READ
, from
, n
))
2672 if (__get_user(c
, f
)) {
2683 void *copy_mount_options(const void __user
* data
)
2692 copy
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2694 return ERR_PTR(-ENOMEM
);
2696 /* We only care that *some* data at the address the user
2697 * gave us is valid. Just in case, we'll zero
2698 * the remainder of the page.
2700 /* copy_from_user cannot cross TASK_SIZE ! */
2701 size
= TASK_SIZE
- (unsigned long)data
;
2702 if (size
> PAGE_SIZE
)
2705 i
= size
- exact_copy_from_user(copy
, data
, size
);
2708 return ERR_PTR(-EFAULT
);
2711 memset(copy
+ i
, 0, PAGE_SIZE
- i
);
2715 char *copy_mount_string(const void __user
*data
)
2717 return data
? strndup_user(data
, PAGE_SIZE
) : NULL
;
2721 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2722 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2724 * data is a (void *) that can point to any structure up to
2725 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2726 * information (or be NULL).
2728 * Pre-0.97 versions of mount() didn't have a flags word.
2729 * When the flags word was introduced its top half was required
2730 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2731 * Therefore, if this magic number is present, it carries no information
2732 * and must be discarded.
2734 long do_mount(const char *dev_name
, const char __user
*dir_name
,
2735 const char *type_page
, unsigned long flags
, void *data_page
)
2738 unsigned int mnt_flags
= 0, sb_flags
;
2742 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2743 flags
&= ~MS_MGC_MSK
;
2745 /* Basic sanity checks */
2747 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2749 if (flags
& MS_NOUSER
)
2752 /* ... and get the mountpoint */
2753 retval
= user_path(dir_name
, &path
);
2757 retval
= security_sb_mount(dev_name
, &path
,
2758 type_page
, flags
, data_page
);
2759 if (!retval
&& !may_mount())
2761 if (!retval
&& (flags
& SB_MANDLOCK
) && !may_mandlock())
2766 /* Default to relatime unless overriden */
2767 if (!(flags
& MS_NOATIME
))
2768 mnt_flags
|= MNT_RELATIME
;
2770 /* Separate the per-mountpoint flags */
2771 if (flags
& MS_NOSUID
)
2772 mnt_flags
|= MNT_NOSUID
;
2773 if (flags
& MS_NODEV
)
2774 mnt_flags
|= MNT_NODEV
;
2775 if (flags
& MS_NOEXEC
)
2776 mnt_flags
|= MNT_NOEXEC
;
2777 if (flags
& MS_NOATIME
)
2778 mnt_flags
|= MNT_NOATIME
;
2779 if (flags
& MS_NODIRATIME
)
2780 mnt_flags
|= MNT_NODIRATIME
;
2781 if (flags
& MS_STRICTATIME
)
2782 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2783 if (flags
& MS_RDONLY
)
2784 mnt_flags
|= MNT_READONLY
;
2786 /* The default atime for remount is preservation */
2787 if ((flags
& MS_REMOUNT
) &&
2788 ((flags
& (MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
|
2789 MS_STRICTATIME
)) == 0)) {
2790 mnt_flags
&= ~MNT_ATIME_MASK
;
2791 mnt_flags
|= path
.mnt
->mnt_flags
& MNT_ATIME_MASK
;
2794 sb_flags
= flags
& (SB_RDONLY
|
2803 if (flags
& MS_REMOUNT
)
2804 retval
= do_remount(&path
, flags
, sb_flags
, mnt_flags
,
2806 else if (flags
& MS_BIND
)
2807 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2808 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2809 retval
= do_change_type(&path
, flags
);
2810 else if (flags
& MS_MOVE
)
2811 retval
= do_move_mount(&path
, dev_name
);
2813 retval
= do_new_mount(&path
, type_page
, sb_flags
, mnt_flags
,
2814 dev_name
, data_page
);
2820 static struct ucounts
*inc_mnt_namespaces(struct user_namespace
*ns
)
2822 return inc_ucount(ns
, current_euid(), UCOUNT_MNT_NAMESPACES
);
2825 static void dec_mnt_namespaces(struct ucounts
*ucounts
)
2827 dec_ucount(ucounts
, UCOUNT_MNT_NAMESPACES
);
2830 static void free_mnt_ns(struct mnt_namespace
*ns
)
2832 ns_free_inum(&ns
->ns
);
2833 dec_mnt_namespaces(ns
->ucounts
);
2834 put_user_ns(ns
->user_ns
);
2839 * Assign a sequence number so we can detect when we attempt to bind
2840 * mount a reference to an older mount namespace into the current
2841 * mount namespace, preventing reference counting loops. A 64bit
2842 * number incrementing at 10Ghz will take 12,427 years to wrap which
2843 * is effectively never, so we can ignore the possibility.
2845 static atomic64_t mnt_ns_seq
= ATOMIC64_INIT(1);
2847 static struct mnt_namespace
*alloc_mnt_ns(struct user_namespace
*user_ns
)
2849 struct mnt_namespace
*new_ns
;
2850 struct ucounts
*ucounts
;
2853 ucounts
= inc_mnt_namespaces(user_ns
);
2855 return ERR_PTR(-ENOSPC
);
2857 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2859 dec_mnt_namespaces(ucounts
);
2860 return ERR_PTR(-ENOMEM
);
2862 ret
= ns_alloc_inum(&new_ns
->ns
);
2865 dec_mnt_namespaces(ucounts
);
2866 return ERR_PTR(ret
);
2868 new_ns
->ns
.ops
= &mntns_operations
;
2869 new_ns
->seq
= atomic64_add_return(1, &mnt_ns_seq
);
2870 atomic_set(&new_ns
->count
, 1);
2871 new_ns
->root
= NULL
;
2872 INIT_LIST_HEAD(&new_ns
->list
);
2873 init_waitqueue_head(&new_ns
->poll
);
2875 new_ns
->user_ns
= get_user_ns(user_ns
);
2876 new_ns
->ucounts
= ucounts
;
2878 new_ns
->pending_mounts
= 0;
2883 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2884 struct user_namespace
*user_ns
, struct fs_struct
*new_fs
)
2886 struct mnt_namespace
*new_ns
;
2887 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2888 struct mount
*p
, *q
;
2895 if (likely(!(flags
& CLONE_NEWNS
))) {
2902 new_ns
= alloc_mnt_ns(user_ns
);
2907 /* First pass: copy the tree topology */
2908 copy_flags
= CL_COPY_UNBINDABLE
| CL_EXPIRE
;
2909 if (user_ns
!= ns
->user_ns
)
2910 copy_flags
|= CL_SHARED_TO_SLAVE
| CL_UNPRIVILEGED
;
2911 new = copy_tree(old
, old
->mnt
.mnt_root
, copy_flags
);
2914 free_mnt_ns(new_ns
);
2915 return ERR_CAST(new);
2918 list_add_tail(&new_ns
->list
, &new->mnt_list
);
2921 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2922 * as belonging to new namespace. We have already acquired a private
2923 * fs_struct, so tsk->fs->lock is not needed.
2931 if (&p
->mnt
== new_fs
->root
.mnt
) {
2932 new_fs
->root
.mnt
= mntget(&q
->mnt
);
2935 if (&p
->mnt
== new_fs
->pwd
.mnt
) {
2936 new_fs
->pwd
.mnt
= mntget(&q
->mnt
);
2940 p
= next_mnt(p
, old
);
2941 q
= next_mnt(q
, new);
2944 while (p
->mnt
.mnt_root
!= q
->mnt
.mnt_root
)
2945 p
= next_mnt(p
, old
);
2958 * create_mnt_ns - creates a private namespace and adds a root filesystem
2959 * @mnt: pointer to the new root filesystem mountpoint
2961 static struct mnt_namespace
*create_mnt_ns(struct vfsmount
*m
)
2963 struct mnt_namespace
*new_ns
= alloc_mnt_ns(&init_user_ns
);
2964 if (!IS_ERR(new_ns
)) {
2965 struct mount
*mnt
= real_mount(m
);
2966 mnt
->mnt_ns
= new_ns
;
2969 list_add(&mnt
->mnt_list
, &new_ns
->list
);
2976 struct dentry
*mount_subtree(struct vfsmount
*mnt
, const char *name
)
2978 struct mnt_namespace
*ns
;
2979 struct super_block
*s
;
2983 ns
= create_mnt_ns(mnt
);
2985 return ERR_CAST(ns
);
2987 err
= vfs_path_lookup(mnt
->mnt_root
, mnt
,
2988 name
, LOOKUP_FOLLOW
|LOOKUP_AUTOMOUNT
, &path
);
2993 return ERR_PTR(err
);
2995 /* trade a vfsmount reference for active sb one */
2996 s
= path
.mnt
->mnt_sb
;
2997 atomic_inc(&s
->s_active
);
2999 /* lock the sucker */
3000 down_write(&s
->s_umount
);
3001 /* ... and return the root of (sub)tree on it */
3004 EXPORT_SYMBOL(mount_subtree
);
3006 int ksys_mount(char __user
*dev_name
, char __user
*dir_name
, char __user
*type
,
3007 unsigned long flags
, void __user
*data
)
3014 kernel_type
= copy_mount_string(type
);
3015 ret
= PTR_ERR(kernel_type
);
3016 if (IS_ERR(kernel_type
))
3019 kernel_dev
= copy_mount_string(dev_name
);
3020 ret
= PTR_ERR(kernel_dev
);
3021 if (IS_ERR(kernel_dev
))
3024 options
= copy_mount_options(data
);
3025 ret
= PTR_ERR(options
);
3026 if (IS_ERR(options
))
3029 ret
= do_mount(kernel_dev
, dir_name
, kernel_type
, flags
, options
);
3040 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
3041 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
3043 return ksys_mount(dev_name
, dir_name
, type
, flags
, data
);
3047 * Return true if path is reachable from root
3049 * namespace_sem or mount_lock is held
3051 bool is_path_reachable(struct mount
*mnt
, struct dentry
*dentry
,
3052 const struct path
*root
)
3054 while (&mnt
->mnt
!= root
->mnt
&& mnt_has_parent(mnt
)) {
3055 dentry
= mnt
->mnt_mountpoint
;
3056 mnt
= mnt
->mnt_parent
;
3058 return &mnt
->mnt
== root
->mnt
&& is_subdir(dentry
, root
->dentry
);
3061 bool path_is_under(const struct path
*path1
, const struct path
*path2
)
3064 read_seqlock_excl(&mount_lock
);
3065 res
= is_path_reachable(real_mount(path1
->mnt
), path1
->dentry
, path2
);
3066 read_sequnlock_excl(&mount_lock
);
3069 EXPORT_SYMBOL(path_is_under
);
3072 * pivot_root Semantics:
3073 * Moves the root file system of the current process to the directory put_old,
3074 * makes new_root as the new root file system of the current process, and sets
3075 * root/cwd of all processes which had them on the current root to new_root.
3078 * The new_root and put_old must be directories, and must not be on the
3079 * same file system as the current process root. The put_old must be
3080 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3081 * pointed to by put_old must yield the same directory as new_root. No other
3082 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3084 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3085 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3086 * in this situation.
3089 * - we don't move root/cwd if they are not at the root (reason: if something
3090 * cared enough to change them, it's probably wrong to force them elsewhere)
3091 * - it's okay to pick a root that isn't the root of a file system, e.g.
3092 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3093 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3096 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
3097 const char __user
*, put_old
)
3099 struct path
new, old
, parent_path
, root_parent
, root
;
3100 struct mount
*new_mnt
, *root_mnt
, *old_mnt
;
3101 struct mountpoint
*old_mp
, *root_mp
;
3107 error
= user_path_dir(new_root
, &new);
3111 error
= user_path_dir(put_old
, &old
);
3115 error
= security_sb_pivotroot(&old
, &new);
3119 get_fs_root(current
->fs
, &root
);
3120 old_mp
= lock_mount(&old
);
3121 error
= PTR_ERR(old_mp
);
3126 new_mnt
= real_mount(new.mnt
);
3127 root_mnt
= real_mount(root
.mnt
);
3128 old_mnt
= real_mount(old
.mnt
);
3129 if (IS_MNT_SHARED(old_mnt
) ||
3130 IS_MNT_SHARED(new_mnt
->mnt_parent
) ||
3131 IS_MNT_SHARED(root_mnt
->mnt_parent
))
3133 if (!check_mnt(root_mnt
) || !check_mnt(new_mnt
))
3135 if (new_mnt
->mnt
.mnt_flags
& MNT_LOCKED
)
3138 if (d_unlinked(new.dentry
))
3141 if (new_mnt
== root_mnt
|| old_mnt
== root_mnt
)
3142 goto out4
; /* loop, on the same file system */
3144 if (root
.mnt
->mnt_root
!= root
.dentry
)
3145 goto out4
; /* not a mountpoint */
3146 if (!mnt_has_parent(root_mnt
))
3147 goto out4
; /* not attached */
3148 root_mp
= root_mnt
->mnt_mp
;
3149 if (new.mnt
->mnt_root
!= new.dentry
)
3150 goto out4
; /* not a mountpoint */
3151 if (!mnt_has_parent(new_mnt
))
3152 goto out4
; /* not attached */
3153 /* make sure we can reach put_old from new_root */
3154 if (!is_path_reachable(old_mnt
, old
.dentry
, &new))
3156 /* make certain new is below the root */
3157 if (!is_path_reachable(new_mnt
, new.dentry
, &root
))
3159 root_mp
->m_count
++; /* pin it so it won't go away */
3161 detach_mnt(new_mnt
, &parent_path
);
3162 detach_mnt(root_mnt
, &root_parent
);
3163 if (root_mnt
->mnt
.mnt_flags
& MNT_LOCKED
) {
3164 new_mnt
->mnt
.mnt_flags
|= MNT_LOCKED
;
3165 root_mnt
->mnt
.mnt_flags
&= ~MNT_LOCKED
;
3167 /* mount old root on put_old */
3168 attach_mnt(root_mnt
, old_mnt
, old_mp
);
3169 /* mount new_root on / */
3170 attach_mnt(new_mnt
, real_mount(root_parent
.mnt
), root_mp
);
3171 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
3172 /* A moved mount should not expire automatically */
3173 list_del_init(&new_mnt
->mnt_expire
);
3174 put_mountpoint(root_mp
);
3175 unlock_mount_hash();
3176 chroot_fs_refs(&root
, &new);
3179 unlock_mount(old_mp
);
3181 path_put(&root_parent
);
3182 path_put(&parent_path
);
3194 static void __init
init_mount_tree(void)
3196 struct vfsmount
*mnt
;
3197 struct mnt_namespace
*ns
;
3199 struct file_system_type
*type
;
3201 type
= get_fs_type("rootfs");
3203 panic("Can't find rootfs type");
3204 mnt
= vfs_kern_mount(type
, 0, "rootfs", NULL
);
3205 put_filesystem(type
);
3207 panic("Can't create rootfs");
3209 ns
= create_mnt_ns(mnt
);
3211 panic("Can't allocate initial namespace");
3213 init_task
.nsproxy
->mnt_ns
= ns
;
3217 root
.dentry
= mnt
->mnt_root
;
3218 mnt
->mnt_flags
|= MNT_LOCKED
;
3220 set_fs_pwd(current
->fs
, &root
);
3221 set_fs_root(current
->fs
, &root
);
3224 void __init
mnt_init(void)
3228 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct mount
),
3229 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
3231 mount_hashtable
= alloc_large_system_hash("Mount-cache",
3232 sizeof(struct hlist_head
),
3235 &m_hash_shift
, &m_hash_mask
, 0, 0);
3236 mountpoint_hashtable
= alloc_large_system_hash("Mountpoint-cache",
3237 sizeof(struct hlist_head
),
3240 &mp_hash_shift
, &mp_hash_mask
, 0, 0);
3242 if (!mount_hashtable
|| !mountpoint_hashtable
)
3243 panic("Failed to allocate mount hash table\n");
3249 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
3251 fs_kobj
= kobject_create_and_add("fs", NULL
);
3253 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
3258 void put_mnt_ns(struct mnt_namespace
*ns
)
3260 if (!atomic_dec_and_test(&ns
->count
))
3262 drop_collected_mounts(&ns
->root
->mnt
);
3266 struct vfsmount
*kern_mount_data(struct file_system_type
*type
, void *data
)
3268 struct vfsmount
*mnt
;
3269 mnt
= vfs_kern_mount(type
, SB_KERNMOUNT
, type
->name
, data
);
3272 * it is a longterm mount, don't release mnt until
3273 * we unmount before file sys is unregistered
3275 real_mount(mnt
)->mnt_ns
= MNT_NS_INTERNAL
;
3279 EXPORT_SYMBOL_GPL(kern_mount_data
);
3281 void kern_unmount(struct vfsmount
*mnt
)
3283 /* release long term mount so mount point can be released */
3284 if (!IS_ERR_OR_NULL(mnt
)) {
3285 real_mount(mnt
)->mnt_ns
= NULL
;
3286 synchronize_rcu(); /* yecchhh... */
3290 EXPORT_SYMBOL(kern_unmount
);
3292 bool our_mnt(struct vfsmount
*mnt
)
3294 return check_mnt(real_mount(mnt
));
3297 bool current_chrooted(void)
3299 /* Does the current process have a non-standard root */
3300 struct path ns_root
;
3301 struct path fs_root
;
3304 /* Find the namespace root */
3305 ns_root
.mnt
= ¤t
->nsproxy
->mnt_ns
->root
->mnt
;
3306 ns_root
.dentry
= ns_root
.mnt
->mnt_root
;
3308 while (d_mountpoint(ns_root
.dentry
) && follow_down_one(&ns_root
))
3311 get_fs_root(current
->fs
, &fs_root
);
3313 chrooted
= !path_equal(&fs_root
, &ns_root
);
3321 static bool mnt_already_visible(struct mnt_namespace
*ns
, struct vfsmount
*new,
3324 int new_flags
= *new_mnt_flags
;
3326 bool visible
= false;
3328 down_read(&namespace_sem
);
3329 list_for_each_entry(mnt
, &ns
->list
, mnt_list
) {
3330 struct mount
*child
;
3333 if (mnt
->mnt
.mnt_sb
->s_type
!= new->mnt_sb
->s_type
)
3336 /* This mount is not fully visible if it's root directory
3337 * is not the root directory of the filesystem.
3339 if (mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_sb
->s_root
)
3342 /* A local view of the mount flags */
3343 mnt_flags
= mnt
->mnt
.mnt_flags
;
3345 /* Don't miss readonly hidden in the superblock flags */
3346 if (sb_rdonly(mnt
->mnt
.mnt_sb
))
3347 mnt_flags
|= MNT_LOCK_READONLY
;
3349 /* Verify the mount flags are equal to or more permissive
3350 * than the proposed new mount.
3352 if ((mnt_flags
& MNT_LOCK_READONLY
) &&
3353 !(new_flags
& MNT_READONLY
))
3355 if ((mnt_flags
& MNT_LOCK_ATIME
) &&
3356 ((mnt_flags
& MNT_ATIME_MASK
) != (new_flags
& MNT_ATIME_MASK
)))
3359 /* This mount is not fully visible if there are any
3360 * locked child mounts that cover anything except for
3361 * empty directories.
3363 list_for_each_entry(child
, &mnt
->mnt_mounts
, mnt_child
) {
3364 struct inode
*inode
= child
->mnt_mountpoint
->d_inode
;
3365 /* Only worry about locked mounts */
3366 if (!(child
->mnt
.mnt_flags
& MNT_LOCKED
))
3368 /* Is the directory permanetly empty? */
3369 if (!is_empty_dir_inode(inode
))
3372 /* Preserve the locked attributes */
3373 *new_mnt_flags
|= mnt_flags
& (MNT_LOCK_READONLY
| \
3380 up_read(&namespace_sem
);
3384 static bool mount_too_revealing(struct vfsmount
*mnt
, int *new_mnt_flags
)
3386 const unsigned long required_iflags
= SB_I_NOEXEC
| SB_I_NODEV
;
3387 struct mnt_namespace
*ns
= current
->nsproxy
->mnt_ns
;
3388 unsigned long s_iflags
;
3390 if (ns
->user_ns
== &init_user_ns
)
3393 /* Can this filesystem be too revealing? */
3394 s_iflags
= mnt
->mnt_sb
->s_iflags
;
3395 if (!(s_iflags
& SB_I_USERNS_VISIBLE
))
3398 if ((s_iflags
& required_iflags
) != required_iflags
) {
3399 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3404 return !mnt_already_visible(ns
, mnt
, new_mnt_flags
);
3407 bool mnt_may_suid(struct vfsmount
*mnt
)
3410 * Foreign mounts (accessed via fchdir or through /proc
3411 * symlinks) are always treated as if they are nosuid. This
3412 * prevents namespaces from trusting potentially unsafe
3413 * suid/sgid bits, file caps, or security labels that originate
3414 * in other namespaces.
3416 return !(mnt
->mnt_flags
& MNT_NOSUID
) && check_mnt(real_mount(mnt
)) &&
3417 current_in_userns(mnt
->mnt_sb
->s_user_ns
);
3420 static struct ns_common
*mntns_get(struct task_struct
*task
)
3422 struct ns_common
*ns
= NULL
;
3423 struct nsproxy
*nsproxy
;
3426 nsproxy
= task
->nsproxy
;
3428 ns
= &nsproxy
->mnt_ns
->ns
;
3429 get_mnt_ns(to_mnt_ns(ns
));
3436 static void mntns_put(struct ns_common
*ns
)
3438 put_mnt_ns(to_mnt_ns(ns
));
3441 static int mntns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
3443 struct fs_struct
*fs
= current
->fs
;
3444 struct mnt_namespace
*mnt_ns
= to_mnt_ns(ns
), *old_mnt_ns
;
3448 if (!ns_capable(mnt_ns
->user_ns
, CAP_SYS_ADMIN
) ||
3449 !ns_capable(current_user_ns(), CAP_SYS_CHROOT
) ||
3450 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
3457 old_mnt_ns
= nsproxy
->mnt_ns
;
3458 nsproxy
->mnt_ns
= mnt_ns
;
3461 err
= vfs_path_lookup(mnt_ns
->root
->mnt
.mnt_root
, &mnt_ns
->root
->mnt
,
3462 "/", LOOKUP_DOWN
, &root
);
3464 /* revert to old namespace */
3465 nsproxy
->mnt_ns
= old_mnt_ns
;
3470 put_mnt_ns(old_mnt_ns
);
3472 /* Update the pwd and root */
3473 set_fs_pwd(fs
, &root
);
3474 set_fs_root(fs
, &root
);
3480 static struct user_namespace
*mntns_owner(struct ns_common
*ns
)
3482 return to_mnt_ns(ns
)->user_ns
;
3485 const struct proc_ns_operations mntns_operations
= {
3487 .type
= CLONE_NEWNS
,
3490 .install
= mntns_install
,
3491 .owner
= mntns_owner
,