4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache
*userfaultfd_ctx_cachep __read_mostly
;
35 enum userfaultfd_state
{
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 struct userfaultfd_ctx
{
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh
;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh
;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh
;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh
;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq
;
55 /* pseudo fd refcounting */
57 /* userfaultfd syscall flags */
59 /* features requested from the userspace */
60 unsigned int features
;
62 enum userfaultfd_state state
;
65 /* memory mappings are changing because of non-cooperative event */
67 /* mm with one ore more vmas attached to this userfaultfd_ctx */
71 struct userfaultfd_fork_ctx
{
72 struct userfaultfd_ctx
*orig
;
73 struct userfaultfd_ctx
*new;
74 struct list_head list
;
77 struct userfaultfd_unmap_ctx
{
78 struct userfaultfd_ctx
*ctx
;
81 struct list_head list
;
84 struct userfaultfd_wait_queue
{
86 wait_queue_entry_t wq
;
87 struct userfaultfd_ctx
*ctx
;
91 struct userfaultfd_wake_range
{
96 static int userfaultfd_wake_function(wait_queue_entry_t
*wq
, unsigned mode
,
97 int wake_flags
, void *key
)
99 struct userfaultfd_wake_range
*range
= key
;
101 struct userfaultfd_wait_queue
*uwq
;
102 unsigned long start
, len
;
104 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
106 /* len == 0 means wake all */
107 start
= range
->start
;
109 if (len
&& (start
> uwq
->msg
.arg
.pagefault
.address
||
110 start
+ len
<= uwq
->msg
.arg
.pagefault
.address
))
112 WRITE_ONCE(uwq
->waken
, true);
114 * The Program-Order guarantees provided by the scheduler
115 * ensure uwq->waken is visible before the task is woken.
117 ret
= wake_up_state(wq
->private, mode
);
120 * Wake only once, autoremove behavior.
122 * After the effect of list_del_init is visible to the other
123 * CPUs, the waitqueue may disappear from under us, see the
124 * !list_empty_careful() in handle_userfault().
126 * try_to_wake_up() has an implicit smp_mb(), and the
127 * wq->private is read before calling the extern function
128 * "wake_up_state" (which in turns calls try_to_wake_up).
130 list_del_init(&wq
->entry
);
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * @ctx: [in] Pointer to the userfaultfd context.
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx
*ctx
)
143 if (!atomic_inc_not_zero(&ctx
->refcount
))
148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150 * @ctx: [in] Pointer to userfaultfd context.
152 * The userfaultfd context reference must have been previously acquired either
153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155 static void userfaultfd_ctx_put(struct userfaultfd_ctx
*ctx
)
157 if (atomic_dec_and_test(&ctx
->refcount
)) {
158 VM_BUG_ON(spin_is_locked(&ctx
->fault_pending_wqh
.lock
));
159 VM_BUG_ON(waitqueue_active(&ctx
->fault_pending_wqh
));
160 VM_BUG_ON(spin_is_locked(&ctx
->fault_wqh
.lock
));
161 VM_BUG_ON(waitqueue_active(&ctx
->fault_wqh
));
162 VM_BUG_ON(spin_is_locked(&ctx
->event_wqh
.lock
));
163 VM_BUG_ON(waitqueue_active(&ctx
->event_wqh
));
164 VM_BUG_ON(spin_is_locked(&ctx
->fd_wqh
.lock
));
165 VM_BUG_ON(waitqueue_active(&ctx
->fd_wqh
));
167 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
171 static inline void msg_init(struct uffd_msg
*msg
)
173 BUILD_BUG_ON(sizeof(struct uffd_msg
) != 32);
175 * Must use memset to zero out the paddings or kernel data is
176 * leaked to userland.
178 memset(msg
, 0, sizeof(struct uffd_msg
));
181 static inline struct uffd_msg
userfault_msg(unsigned long address
,
183 unsigned long reason
,
184 unsigned int features
)
188 msg
.event
= UFFD_EVENT_PAGEFAULT
;
189 msg
.arg
.pagefault
.address
= address
;
190 if (flags
& FAULT_FLAG_WRITE
)
192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
198 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WRITE
;
199 if (reason
& VM_UFFD_WP
)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
207 msg
.arg
.pagefault
.flags
|= UFFD_PAGEFAULT_FLAG_WP
;
208 if (features
& UFFD_FEATURE_THREAD_ID
)
209 msg
.arg
.pagefault
.feat
.ptid
= task_pid_vnr(current
);
213 #ifdef CONFIG_HUGETLB_PAGE
215 * Same functionality as userfaultfd_must_wait below with modifications for
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
219 struct vm_area_struct
*vma
,
220 unsigned long address
,
222 unsigned long reason
)
224 struct mm_struct
*mm
= ctx
->mm
;
228 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
230 ptep
= huge_pte_offset(mm
, address
, vma_mmu_pagesize(vma
));
236 pte
= huge_ptep_get(ptep
);
239 * Lockless access: we're in a wait_event so it's ok if it
242 if (huge_pte_none(pte
))
244 if (!huge_pte_write(pte
) && (reason
& VM_UFFD_WP
))
250 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx
*ctx
,
251 struct vm_area_struct
*vma
,
252 unsigned long address
,
254 unsigned long reason
)
256 return false; /* should never get here */
258 #endif /* CONFIG_HUGETLB_PAGE */
261 * Verify the pagetables are still not ok after having reigstered into
262 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
263 * userfault that has already been resolved, if userfaultfd_read and
264 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
267 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx
*ctx
,
268 unsigned long address
,
270 unsigned long reason
)
272 struct mm_struct
*mm
= ctx
->mm
;
280 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
282 pgd
= pgd_offset(mm
, address
);
283 if (!pgd_present(*pgd
))
285 p4d
= p4d_offset(pgd
, address
);
286 if (!p4d_present(*p4d
))
288 pud
= pud_offset(p4d
, address
);
289 if (!pud_present(*pud
))
291 pmd
= pmd_offset(pud
, address
);
293 * READ_ONCE must function as a barrier with narrower scope
294 * and it must be equivalent to:
295 * _pmd = *pmd; barrier();
297 * This is to deal with the instability (as in
298 * pmd_trans_unstable) of the pmd.
300 _pmd
= READ_ONCE(*pmd
);
305 if (!pmd_present(_pmd
))
308 if (pmd_trans_huge(_pmd
))
312 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
313 * and use the standard pte_offset_map() instead of parsing _pmd.
315 pte
= pte_offset_map(pmd
, address
);
317 * Lockless access: we're in a wait_event so it's ok if it
329 * The locking rules involved in returning VM_FAULT_RETRY depending on
330 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
331 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
332 * recommendation in __lock_page_or_retry is not an understatement.
334 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
335 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
338 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
339 * set, VM_FAULT_RETRY can still be returned if and only if there are
340 * fatal_signal_pending()s, and the mmap_sem must be released before
343 int handle_userfault(struct vm_fault
*vmf
, unsigned long reason
)
345 struct mm_struct
*mm
= vmf
->vma
->vm_mm
;
346 struct userfaultfd_ctx
*ctx
;
347 struct userfaultfd_wait_queue uwq
;
349 bool must_wait
, return_to_userland
;
352 ret
= VM_FAULT_SIGBUS
;
355 * We don't do userfault handling for the final child pid update.
357 * We also don't do userfault handling during
358 * coredumping. hugetlbfs has the special
359 * follow_hugetlb_page() to skip missing pages in the
360 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
361 * the no_page_table() helper in follow_page_mask(), but the
362 * shmem_vm_ops->fault method is invoked even during
363 * coredumping without mmap_sem and it ends up here.
365 if (current
->flags
& (PF_EXITING
|PF_DUMPCORE
))
369 * Coredumping runs without mmap_sem so we can only check that
370 * the mmap_sem is held, if PF_DUMPCORE was not set.
372 WARN_ON_ONCE(!rwsem_is_locked(&mm
->mmap_sem
));
374 ctx
= vmf
->vma
->vm_userfaultfd_ctx
.ctx
;
378 BUG_ON(ctx
->mm
!= mm
);
380 VM_BUG_ON(reason
& ~(VM_UFFD_MISSING
|VM_UFFD_WP
));
381 VM_BUG_ON(!(reason
& VM_UFFD_MISSING
) ^ !!(reason
& VM_UFFD_WP
));
383 if (ctx
->features
& UFFD_FEATURE_SIGBUS
)
387 * If it's already released don't get it. This avoids to loop
388 * in __get_user_pages if userfaultfd_release waits on the
389 * caller of handle_userfault to release the mmap_sem.
391 if (unlikely(READ_ONCE(ctx
->released
))) {
393 * Don't return VM_FAULT_SIGBUS in this case, so a non
394 * cooperative manager can close the uffd after the
395 * last UFFDIO_COPY, without risking to trigger an
396 * involuntary SIGBUS if the process was starting the
397 * userfaultfd while the userfaultfd was still armed
398 * (but after the last UFFDIO_COPY). If the uffd
399 * wasn't already closed when the userfault reached
400 * this point, that would normally be solved by
401 * userfaultfd_must_wait returning 'false'.
403 * If we were to return VM_FAULT_SIGBUS here, the non
404 * cooperative manager would be instead forced to
405 * always call UFFDIO_UNREGISTER before it can safely
408 ret
= VM_FAULT_NOPAGE
;
413 * Check that we can return VM_FAULT_RETRY.
415 * NOTE: it should become possible to return VM_FAULT_RETRY
416 * even if FAULT_FLAG_TRIED is set without leading to gup()
417 * -EBUSY failures, if the userfaultfd is to be extended for
418 * VM_UFFD_WP tracking and we intend to arm the userfault
419 * without first stopping userland access to the memory. For
420 * VM_UFFD_MISSING userfaults this is enough for now.
422 if (unlikely(!(vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
))) {
424 * Validate the invariant that nowait must allow retry
425 * to be sure not to return SIGBUS erroneously on
426 * nowait invocations.
428 BUG_ON(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
);
429 #ifdef CONFIG_DEBUG_VM
430 if (printk_ratelimit()) {
432 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
441 * Handle nowait, not much to do other than tell it to retry
444 ret
= VM_FAULT_RETRY
;
445 if (vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)
448 /* take the reference before dropping the mmap_sem */
449 userfaultfd_ctx_get(ctx
);
451 init_waitqueue_func_entry(&uwq
.wq
, userfaultfd_wake_function
);
452 uwq
.wq
.private = current
;
453 uwq
.msg
= userfault_msg(vmf
->address
, vmf
->flags
, reason
,
459 (vmf
->flags
& (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
)) ==
460 (FAULT_FLAG_USER
|FAULT_FLAG_KILLABLE
);
461 blocking_state
= return_to_userland
? TASK_INTERRUPTIBLE
:
464 spin_lock(&ctx
->fault_pending_wqh
.lock
);
466 * After the __add_wait_queue the uwq is visible to userland
467 * through poll/read().
469 __add_wait_queue(&ctx
->fault_pending_wqh
, &uwq
.wq
);
471 * The smp_mb() after __set_current_state prevents the reads
472 * following the spin_unlock to happen before the list_add in
475 set_current_state(blocking_state
);
476 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
478 if (!is_vm_hugetlb_page(vmf
->vma
))
479 must_wait
= userfaultfd_must_wait(ctx
, vmf
->address
, vmf
->flags
,
482 must_wait
= userfaultfd_huge_must_wait(ctx
, vmf
->vma
,
485 up_read(&mm
->mmap_sem
);
487 if (likely(must_wait
&& !READ_ONCE(ctx
->released
) &&
488 (return_to_userland
? !signal_pending(current
) :
489 !fatal_signal_pending(current
)))) {
490 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
492 ret
|= VM_FAULT_MAJOR
;
495 * False wakeups can orginate even from rwsem before
496 * up_read() however userfaults will wait either for a
497 * targeted wakeup on the specific uwq waitqueue from
498 * wake_userfault() or for signals or for uffd
501 while (!READ_ONCE(uwq
.waken
)) {
503 * This needs the full smp_store_mb()
504 * guarantee as the state write must be
505 * visible to other CPUs before reading
506 * uwq.waken from other CPUs.
508 set_current_state(blocking_state
);
509 if (READ_ONCE(uwq
.waken
) ||
510 READ_ONCE(ctx
->released
) ||
511 (return_to_userland
? signal_pending(current
) :
512 fatal_signal_pending(current
)))
518 __set_current_state(TASK_RUNNING
);
520 if (return_to_userland
) {
521 if (signal_pending(current
) &&
522 !fatal_signal_pending(current
)) {
524 * If we got a SIGSTOP or SIGCONT and this is
525 * a normal userland page fault, just let
526 * userland return so the signal will be
527 * handled and gdb debugging works. The page
528 * fault code immediately after we return from
529 * this function is going to release the
530 * mmap_sem and it's not depending on it
531 * (unlike gup would if we were not to return
534 * If a fatal signal is pending we still take
535 * the streamlined VM_FAULT_RETRY failure path
536 * and there's no need to retake the mmap_sem
539 down_read(&mm
->mmap_sem
);
540 ret
= VM_FAULT_NOPAGE
;
545 * Here we race with the list_del; list_add in
546 * userfaultfd_ctx_read(), however because we don't ever run
547 * list_del_init() to refile across the two lists, the prev
548 * and next pointers will never point to self. list_add also
549 * would never let any of the two pointers to point to
550 * self. So list_empty_careful won't risk to see both pointers
551 * pointing to self at any time during the list refile. The
552 * only case where list_del_init() is called is the full
553 * removal in the wake function and there we don't re-list_add
554 * and it's fine not to block on the spinlock. The uwq on this
555 * kernel stack can be released after the list_del_init.
557 if (!list_empty_careful(&uwq
.wq
.entry
)) {
558 spin_lock(&ctx
->fault_pending_wqh
.lock
);
560 * No need of list_del_init(), the uwq on the stack
561 * will be freed shortly anyway.
563 list_del(&uwq
.wq
.entry
);
564 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
568 * ctx may go away after this if the userfault pseudo fd is
571 userfaultfd_ctx_put(ctx
);
577 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx
*ctx
,
578 struct userfaultfd_wait_queue
*ewq
)
580 struct userfaultfd_ctx
*release_new_ctx
;
582 if (WARN_ON_ONCE(current
->flags
& PF_EXITING
))
586 init_waitqueue_entry(&ewq
->wq
, current
);
587 release_new_ctx
= NULL
;
589 spin_lock(&ctx
->event_wqh
.lock
);
591 * After the __add_wait_queue the uwq is visible to userland
592 * through poll/read().
594 __add_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
596 set_current_state(TASK_KILLABLE
);
597 if (ewq
->msg
.event
== 0)
599 if (READ_ONCE(ctx
->released
) ||
600 fatal_signal_pending(current
)) {
602 * &ewq->wq may be queued in fork_event, but
603 * __remove_wait_queue ignores the head
604 * parameter. It would be a problem if it
607 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
608 if (ewq
->msg
.event
== UFFD_EVENT_FORK
) {
609 struct userfaultfd_ctx
*new;
611 new = (struct userfaultfd_ctx
*)
613 ewq
->msg
.arg
.reserved
.reserved1
;
614 release_new_ctx
= new;
619 spin_unlock(&ctx
->event_wqh
.lock
);
621 wake_up_poll(&ctx
->fd_wqh
, EPOLLIN
);
624 spin_lock(&ctx
->event_wqh
.lock
);
626 __set_current_state(TASK_RUNNING
);
627 spin_unlock(&ctx
->event_wqh
.lock
);
629 if (release_new_ctx
) {
630 struct vm_area_struct
*vma
;
631 struct mm_struct
*mm
= release_new_ctx
->mm
;
633 /* the various vma->vm_userfaultfd_ctx still points to it */
634 down_write(&mm
->mmap_sem
);
635 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
636 if (vma
->vm_userfaultfd_ctx
.ctx
== release_new_ctx
) {
637 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
638 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
640 up_write(&mm
->mmap_sem
);
642 userfaultfd_ctx_put(release_new_ctx
);
646 * ctx may go away after this if the userfault pseudo fd is
650 WRITE_ONCE(ctx
->mmap_changing
, false);
651 userfaultfd_ctx_put(ctx
);
654 static void userfaultfd_event_complete(struct userfaultfd_ctx
*ctx
,
655 struct userfaultfd_wait_queue
*ewq
)
658 wake_up_locked(&ctx
->event_wqh
);
659 __remove_wait_queue(&ctx
->event_wqh
, &ewq
->wq
);
662 int dup_userfaultfd(struct vm_area_struct
*vma
, struct list_head
*fcs
)
664 struct userfaultfd_ctx
*ctx
= NULL
, *octx
;
665 struct userfaultfd_fork_ctx
*fctx
;
667 octx
= vma
->vm_userfaultfd_ctx
.ctx
;
668 if (!octx
|| !(octx
->features
& UFFD_FEATURE_EVENT_FORK
)) {
669 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
670 vma
->vm_flags
&= ~(VM_UFFD_WP
| VM_UFFD_MISSING
);
674 list_for_each_entry(fctx
, fcs
, list
)
675 if (fctx
->orig
== octx
) {
681 fctx
= kmalloc(sizeof(*fctx
), GFP_KERNEL
);
685 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
691 atomic_set(&ctx
->refcount
, 1);
692 ctx
->flags
= octx
->flags
;
693 ctx
->state
= UFFD_STATE_RUNNING
;
694 ctx
->features
= octx
->features
;
695 ctx
->released
= false;
696 ctx
->mmap_changing
= false;
697 ctx
->mm
= vma
->vm_mm
;
700 userfaultfd_ctx_get(octx
);
701 WRITE_ONCE(octx
->mmap_changing
, true);
704 list_add_tail(&fctx
->list
, fcs
);
707 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
711 static void dup_fctx(struct userfaultfd_fork_ctx
*fctx
)
713 struct userfaultfd_ctx
*ctx
= fctx
->orig
;
714 struct userfaultfd_wait_queue ewq
;
718 ewq
.msg
.event
= UFFD_EVENT_FORK
;
719 ewq
.msg
.arg
.reserved
.reserved1
= (unsigned long)fctx
->new;
721 userfaultfd_event_wait_completion(ctx
, &ewq
);
724 void dup_userfaultfd_complete(struct list_head
*fcs
)
726 struct userfaultfd_fork_ctx
*fctx
, *n
;
728 list_for_each_entry_safe(fctx
, n
, fcs
, list
) {
730 list_del(&fctx
->list
);
735 void mremap_userfaultfd_prep(struct vm_area_struct
*vma
,
736 struct vm_userfaultfd_ctx
*vm_ctx
)
738 struct userfaultfd_ctx
*ctx
;
740 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
741 if (ctx
&& (ctx
->features
& UFFD_FEATURE_EVENT_REMAP
)) {
743 userfaultfd_ctx_get(ctx
);
744 WRITE_ONCE(ctx
->mmap_changing
, true);
748 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx
*vm_ctx
,
749 unsigned long from
, unsigned long to
,
752 struct userfaultfd_ctx
*ctx
= vm_ctx
->ctx
;
753 struct userfaultfd_wait_queue ewq
;
758 if (to
& ~PAGE_MASK
) {
759 userfaultfd_ctx_put(ctx
);
765 ewq
.msg
.event
= UFFD_EVENT_REMAP
;
766 ewq
.msg
.arg
.remap
.from
= from
;
767 ewq
.msg
.arg
.remap
.to
= to
;
768 ewq
.msg
.arg
.remap
.len
= len
;
770 userfaultfd_event_wait_completion(ctx
, &ewq
);
773 bool userfaultfd_remove(struct vm_area_struct
*vma
,
774 unsigned long start
, unsigned long end
)
776 struct mm_struct
*mm
= vma
->vm_mm
;
777 struct userfaultfd_ctx
*ctx
;
778 struct userfaultfd_wait_queue ewq
;
780 ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
781 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_REMOVE
))
784 userfaultfd_ctx_get(ctx
);
785 WRITE_ONCE(ctx
->mmap_changing
, true);
786 up_read(&mm
->mmap_sem
);
790 ewq
.msg
.event
= UFFD_EVENT_REMOVE
;
791 ewq
.msg
.arg
.remove
.start
= start
;
792 ewq
.msg
.arg
.remove
.end
= end
;
794 userfaultfd_event_wait_completion(ctx
, &ewq
);
799 static bool has_unmap_ctx(struct userfaultfd_ctx
*ctx
, struct list_head
*unmaps
,
800 unsigned long start
, unsigned long end
)
802 struct userfaultfd_unmap_ctx
*unmap_ctx
;
804 list_for_each_entry(unmap_ctx
, unmaps
, list
)
805 if (unmap_ctx
->ctx
== ctx
&& unmap_ctx
->start
== start
&&
806 unmap_ctx
->end
== end
)
812 int userfaultfd_unmap_prep(struct vm_area_struct
*vma
,
813 unsigned long start
, unsigned long end
,
814 struct list_head
*unmaps
)
816 for ( ; vma
&& vma
->vm_start
< end
; vma
= vma
->vm_next
) {
817 struct userfaultfd_unmap_ctx
*unmap_ctx
;
818 struct userfaultfd_ctx
*ctx
= vma
->vm_userfaultfd_ctx
.ctx
;
820 if (!ctx
|| !(ctx
->features
& UFFD_FEATURE_EVENT_UNMAP
) ||
821 has_unmap_ctx(ctx
, unmaps
, start
, end
))
824 unmap_ctx
= kzalloc(sizeof(*unmap_ctx
), GFP_KERNEL
);
828 userfaultfd_ctx_get(ctx
);
829 WRITE_ONCE(ctx
->mmap_changing
, true);
830 unmap_ctx
->ctx
= ctx
;
831 unmap_ctx
->start
= start
;
832 unmap_ctx
->end
= end
;
833 list_add_tail(&unmap_ctx
->list
, unmaps
);
839 void userfaultfd_unmap_complete(struct mm_struct
*mm
, struct list_head
*uf
)
841 struct userfaultfd_unmap_ctx
*ctx
, *n
;
842 struct userfaultfd_wait_queue ewq
;
844 list_for_each_entry_safe(ctx
, n
, uf
, list
) {
847 ewq
.msg
.event
= UFFD_EVENT_UNMAP
;
848 ewq
.msg
.arg
.remove
.start
= ctx
->start
;
849 ewq
.msg
.arg
.remove
.end
= ctx
->end
;
851 userfaultfd_event_wait_completion(ctx
->ctx
, &ewq
);
853 list_del(&ctx
->list
);
858 static int userfaultfd_release(struct inode
*inode
, struct file
*file
)
860 struct userfaultfd_ctx
*ctx
= file
->private_data
;
861 struct mm_struct
*mm
= ctx
->mm
;
862 struct vm_area_struct
*vma
, *prev
;
863 /* len == 0 means wake all */
864 struct userfaultfd_wake_range range
= { .len
= 0, };
865 unsigned long new_flags
;
867 WRITE_ONCE(ctx
->released
, true);
869 if (!mmget_not_zero(mm
))
873 * Flush page faults out of all CPUs. NOTE: all page faults
874 * must be retried without returning VM_FAULT_SIGBUS if
875 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
876 * changes while handle_userfault released the mmap_sem. So
877 * it's critical that released is set to true (above), before
878 * taking the mmap_sem for writing.
880 down_write(&mm
->mmap_sem
);
882 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
884 BUG_ON(!!vma
->vm_userfaultfd_ctx
.ctx
^
885 !!(vma
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
886 if (vma
->vm_userfaultfd_ctx
.ctx
!= ctx
) {
890 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
891 prev
= vma_merge(mm
, prev
, vma
->vm_start
, vma
->vm_end
,
892 new_flags
, vma
->anon_vma
,
893 vma
->vm_file
, vma
->vm_pgoff
,
900 vma
->vm_flags
= new_flags
;
901 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
903 up_write(&mm
->mmap_sem
);
907 * After no new page faults can wait on this fault_*wqh, flush
908 * the last page faults that may have been already waiting on
911 spin_lock(&ctx
->fault_pending_wqh
.lock
);
912 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
, &range
);
913 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, &range
);
914 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
916 /* Flush pending events that may still wait on event_wqh */
917 wake_up_all(&ctx
->event_wqh
);
919 wake_up_poll(&ctx
->fd_wqh
, EPOLLHUP
);
920 userfaultfd_ctx_put(ctx
);
924 /* fault_pending_wqh.lock must be hold by the caller */
925 static inline struct userfaultfd_wait_queue
*find_userfault_in(
926 wait_queue_head_t
*wqh
)
928 wait_queue_entry_t
*wq
;
929 struct userfaultfd_wait_queue
*uwq
;
931 VM_BUG_ON(!spin_is_locked(&wqh
->lock
));
934 if (!waitqueue_active(wqh
))
936 /* walk in reverse to provide FIFO behavior to read userfaults */
937 wq
= list_last_entry(&wqh
->head
, typeof(*wq
), entry
);
938 uwq
= container_of(wq
, struct userfaultfd_wait_queue
, wq
);
943 static inline struct userfaultfd_wait_queue
*find_userfault(
944 struct userfaultfd_ctx
*ctx
)
946 return find_userfault_in(&ctx
->fault_pending_wqh
);
949 static inline struct userfaultfd_wait_queue
*find_userfault_evt(
950 struct userfaultfd_ctx
*ctx
)
952 return find_userfault_in(&ctx
->event_wqh
);
955 static __poll_t
userfaultfd_poll(struct file
*file
, poll_table
*wait
)
957 struct userfaultfd_ctx
*ctx
= file
->private_data
;
960 poll_wait(file
, &ctx
->fd_wqh
, wait
);
962 switch (ctx
->state
) {
963 case UFFD_STATE_WAIT_API
:
965 case UFFD_STATE_RUNNING
:
967 * poll() never guarantees that read won't block.
968 * userfaults can be waken before they're read().
970 if (unlikely(!(file
->f_flags
& O_NONBLOCK
)))
973 * lockless access to see if there are pending faults
974 * __pollwait last action is the add_wait_queue but
975 * the spin_unlock would allow the waitqueue_active to
976 * pass above the actual list_add inside
977 * add_wait_queue critical section. So use a full
978 * memory barrier to serialize the list_add write of
979 * add_wait_queue() with the waitqueue_active read
984 if (waitqueue_active(&ctx
->fault_pending_wqh
))
986 else if (waitqueue_active(&ctx
->event_wqh
))
996 static const struct file_operations userfaultfd_fops
;
998 static int resolve_userfault_fork(struct userfaultfd_ctx
*ctx
,
999 struct userfaultfd_ctx
*new,
1000 struct uffd_msg
*msg
)
1004 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, new,
1005 O_RDWR
| (new->flags
& UFFD_SHARED_FCNTL_FLAGS
));
1009 msg
->arg
.reserved
.reserved1
= 0;
1010 msg
->arg
.fork
.ufd
= fd
;
1014 static ssize_t
userfaultfd_ctx_read(struct userfaultfd_ctx
*ctx
, int no_wait
,
1015 struct uffd_msg
*msg
)
1018 DECLARE_WAITQUEUE(wait
, current
);
1019 struct userfaultfd_wait_queue
*uwq
;
1021 * Handling fork event requires sleeping operations, so
1022 * we drop the event_wqh lock, then do these ops, then
1023 * lock it back and wake up the waiter. While the lock is
1024 * dropped the ewq may go away so we keep track of it
1027 LIST_HEAD(fork_event
);
1028 struct userfaultfd_ctx
*fork_nctx
= NULL
;
1030 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1031 spin_lock(&ctx
->fd_wqh
.lock
);
1032 __add_wait_queue(&ctx
->fd_wqh
, &wait
);
1034 set_current_state(TASK_INTERRUPTIBLE
);
1035 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1036 uwq
= find_userfault(ctx
);
1039 * Use a seqcount to repeat the lockless check
1040 * in wake_userfault() to avoid missing
1041 * wakeups because during the refile both
1042 * waitqueue could become empty if this is the
1045 write_seqcount_begin(&ctx
->refile_seq
);
1048 * The fault_pending_wqh.lock prevents the uwq
1049 * to disappear from under us.
1051 * Refile this userfault from
1052 * fault_pending_wqh to fault_wqh, it's not
1053 * pending anymore after we read it.
1055 * Use list_del() by hand (as
1056 * userfaultfd_wake_function also uses
1057 * list_del_init() by hand) to be sure nobody
1058 * changes __remove_wait_queue() to use
1059 * list_del_init() in turn breaking the
1060 * !list_empty_careful() check in
1061 * handle_userfault(). The uwq->wq.head list
1062 * must never be empty at any time during the
1063 * refile, or the waitqueue could disappear
1064 * from under us. The "wait_queue_head_t"
1065 * parameter of __remove_wait_queue() is unused
1068 list_del(&uwq
->wq
.entry
);
1069 add_wait_queue(&ctx
->fault_wqh
, &uwq
->wq
);
1071 write_seqcount_end(&ctx
->refile_seq
);
1073 /* careful to always initialize msg if ret == 0 */
1075 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1079 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1081 spin_lock(&ctx
->event_wqh
.lock
);
1082 uwq
= find_userfault_evt(ctx
);
1086 if (uwq
->msg
.event
== UFFD_EVENT_FORK
) {
1087 fork_nctx
= (struct userfaultfd_ctx
*)
1089 uwq
->msg
.arg
.reserved
.reserved1
;
1090 list_move(&uwq
->wq
.entry
, &fork_event
);
1092 * fork_nctx can be freed as soon as
1093 * we drop the lock, unless we take a
1096 userfaultfd_ctx_get(fork_nctx
);
1097 spin_unlock(&ctx
->event_wqh
.lock
);
1102 userfaultfd_event_complete(ctx
, uwq
);
1103 spin_unlock(&ctx
->event_wqh
.lock
);
1107 spin_unlock(&ctx
->event_wqh
.lock
);
1109 if (signal_pending(current
)) {
1117 spin_unlock(&ctx
->fd_wqh
.lock
);
1119 spin_lock(&ctx
->fd_wqh
.lock
);
1121 __remove_wait_queue(&ctx
->fd_wqh
, &wait
);
1122 __set_current_state(TASK_RUNNING
);
1123 spin_unlock(&ctx
->fd_wqh
.lock
);
1125 if (!ret
&& msg
->event
== UFFD_EVENT_FORK
) {
1126 ret
= resolve_userfault_fork(ctx
, fork_nctx
, msg
);
1127 spin_lock(&ctx
->event_wqh
.lock
);
1128 if (!list_empty(&fork_event
)) {
1130 * The fork thread didn't abort, so we can
1131 * drop the temporary refcount.
1133 userfaultfd_ctx_put(fork_nctx
);
1135 uwq
= list_first_entry(&fork_event
,
1139 * If fork_event list wasn't empty and in turn
1140 * the event wasn't already released by fork
1141 * (the event is allocated on fork kernel
1142 * stack), put the event back to its place in
1143 * the event_wq. fork_event head will be freed
1144 * as soon as we return so the event cannot
1145 * stay queued there no matter the current
1148 list_del(&uwq
->wq
.entry
);
1149 __add_wait_queue(&ctx
->event_wqh
, &uwq
->wq
);
1152 * Leave the event in the waitqueue and report
1153 * error to userland if we failed to resolve
1154 * the userfault fork.
1157 userfaultfd_event_complete(ctx
, uwq
);
1160 * Here the fork thread aborted and the
1161 * refcount from the fork thread on fork_nctx
1162 * has already been released. We still hold
1163 * the reference we took before releasing the
1164 * lock above. If resolve_userfault_fork
1165 * failed we've to drop it because the
1166 * fork_nctx has to be freed in such case. If
1167 * it succeeded we'll hold it because the new
1168 * uffd references it.
1171 userfaultfd_ctx_put(fork_nctx
);
1173 spin_unlock(&ctx
->event_wqh
.lock
);
1179 static ssize_t
userfaultfd_read(struct file
*file
, char __user
*buf
,
1180 size_t count
, loff_t
*ppos
)
1182 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1183 ssize_t _ret
, ret
= 0;
1184 struct uffd_msg msg
;
1185 int no_wait
= file
->f_flags
& O_NONBLOCK
;
1187 if (ctx
->state
== UFFD_STATE_WAIT_API
)
1191 if (count
< sizeof(msg
))
1192 return ret
? ret
: -EINVAL
;
1193 _ret
= userfaultfd_ctx_read(ctx
, no_wait
, &msg
);
1195 return ret
? ret
: _ret
;
1196 if (copy_to_user((__u64 __user
*) buf
, &msg
, sizeof(msg
)))
1197 return ret
? ret
: -EFAULT
;
1200 count
-= sizeof(msg
);
1202 * Allow to read more than one fault at time but only
1203 * block if waiting for the very first one.
1205 no_wait
= O_NONBLOCK
;
1209 static void __wake_userfault(struct userfaultfd_ctx
*ctx
,
1210 struct userfaultfd_wake_range
*range
)
1212 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1213 /* wake all in the range and autoremove */
1214 if (waitqueue_active(&ctx
->fault_pending_wqh
))
1215 __wake_up_locked_key(&ctx
->fault_pending_wqh
, TASK_NORMAL
,
1217 if (waitqueue_active(&ctx
->fault_wqh
))
1218 __wake_up(&ctx
->fault_wqh
, TASK_NORMAL
, 1, range
);
1219 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1222 static __always_inline
void wake_userfault(struct userfaultfd_ctx
*ctx
,
1223 struct userfaultfd_wake_range
*range
)
1229 * To be sure waitqueue_active() is not reordered by the CPU
1230 * before the pagetable update, use an explicit SMP memory
1231 * barrier here. PT lock release or up_read(mmap_sem) still
1232 * have release semantics that can allow the
1233 * waitqueue_active() to be reordered before the pte update.
1238 * Use waitqueue_active because it's very frequent to
1239 * change the address space atomically even if there are no
1240 * userfaults yet. So we take the spinlock only when we're
1241 * sure we've userfaults to wake.
1244 seq
= read_seqcount_begin(&ctx
->refile_seq
);
1245 need_wakeup
= waitqueue_active(&ctx
->fault_pending_wqh
) ||
1246 waitqueue_active(&ctx
->fault_wqh
);
1248 } while (read_seqcount_retry(&ctx
->refile_seq
, seq
));
1250 __wake_userfault(ctx
, range
);
1253 static __always_inline
int validate_range(struct mm_struct
*mm
,
1254 __u64 start
, __u64 len
)
1256 __u64 task_size
= mm
->task_size
;
1258 if (start
& ~PAGE_MASK
)
1260 if (len
& ~PAGE_MASK
)
1264 if (start
< mmap_min_addr
)
1266 if (start
>= task_size
)
1268 if (len
> task_size
- start
)
1273 static inline bool vma_can_userfault(struct vm_area_struct
*vma
)
1275 return vma_is_anonymous(vma
) || is_vm_hugetlb_page(vma
) ||
1279 static int userfaultfd_register(struct userfaultfd_ctx
*ctx
,
1282 struct mm_struct
*mm
= ctx
->mm
;
1283 struct vm_area_struct
*vma
, *prev
, *cur
;
1285 struct uffdio_register uffdio_register
;
1286 struct uffdio_register __user
*user_uffdio_register
;
1287 unsigned long vm_flags
, new_flags
;
1290 unsigned long start
, end
, vma_end
;
1292 user_uffdio_register
= (struct uffdio_register __user
*) arg
;
1295 if (copy_from_user(&uffdio_register
, user_uffdio_register
,
1296 sizeof(uffdio_register
)-sizeof(__u64
)))
1300 if (!uffdio_register
.mode
)
1302 if (uffdio_register
.mode
& ~(UFFDIO_REGISTER_MODE_MISSING
|
1303 UFFDIO_REGISTER_MODE_WP
))
1306 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_MISSING
)
1307 vm_flags
|= VM_UFFD_MISSING
;
1308 if (uffdio_register
.mode
& UFFDIO_REGISTER_MODE_WP
) {
1309 vm_flags
|= VM_UFFD_WP
;
1311 * FIXME: remove the below error constraint by
1312 * implementing the wprotect tracking mode.
1318 ret
= validate_range(mm
, uffdio_register
.range
.start
,
1319 uffdio_register
.range
.len
);
1323 start
= uffdio_register
.range
.start
;
1324 end
= start
+ uffdio_register
.range
.len
;
1327 if (!mmget_not_zero(mm
))
1330 down_write(&mm
->mmap_sem
);
1331 vma
= find_vma_prev(mm
, start
, &prev
);
1335 /* check that there's at least one vma in the range */
1337 if (vma
->vm_start
>= end
)
1341 * If the first vma contains huge pages, make sure start address
1342 * is aligned to huge page size.
1344 if (is_vm_hugetlb_page(vma
)) {
1345 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1347 if (start
& (vma_hpagesize
- 1))
1352 * Search for not compatible vmas.
1355 basic_ioctls
= false;
1356 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1359 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1360 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1362 /* check not compatible vmas */
1364 if (!vma_can_userfault(cur
))
1367 * If this vma contains ending address, and huge pages
1370 if (is_vm_hugetlb_page(cur
) && end
<= cur
->vm_end
&&
1371 end
> cur
->vm_start
) {
1372 unsigned long vma_hpagesize
= vma_kernel_pagesize(cur
);
1376 if (end
& (vma_hpagesize
- 1))
1381 * Check that this vma isn't already owned by a
1382 * different userfaultfd. We can't allow more than one
1383 * userfaultfd to own a single vma simultaneously or we
1384 * wouldn't know which one to deliver the userfaults to.
1387 if (cur
->vm_userfaultfd_ctx
.ctx
&&
1388 cur
->vm_userfaultfd_ctx
.ctx
!= ctx
)
1392 * Note vmas containing huge pages
1394 if (is_vm_hugetlb_page(cur
))
1395 basic_ioctls
= true;
1401 if (vma
->vm_start
< start
)
1408 BUG_ON(!vma_can_userfault(vma
));
1409 BUG_ON(vma
->vm_userfaultfd_ctx
.ctx
&&
1410 vma
->vm_userfaultfd_ctx
.ctx
!= ctx
);
1413 * Nothing to do: this vma is already registered into this
1414 * userfaultfd and with the right tracking mode too.
1416 if (vma
->vm_userfaultfd_ctx
.ctx
== ctx
&&
1417 (vma
->vm_flags
& vm_flags
) == vm_flags
)
1420 if (vma
->vm_start
> start
)
1421 start
= vma
->vm_start
;
1422 vma_end
= min(end
, vma
->vm_end
);
1424 new_flags
= (vma
->vm_flags
& ~vm_flags
) | vm_flags
;
1425 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1426 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1428 ((struct vm_userfaultfd_ctx
){ ctx
}));
1433 if (vma
->vm_start
< start
) {
1434 ret
= split_vma(mm
, vma
, start
, 1);
1438 if (vma
->vm_end
> end
) {
1439 ret
= split_vma(mm
, vma
, end
, 0);
1445 * In the vma_merge() successful mprotect-like case 8:
1446 * the next vma was merged into the current one and
1447 * the current one has not been updated yet.
1449 vma
->vm_flags
= new_flags
;
1450 vma
->vm_userfaultfd_ctx
.ctx
= ctx
;
1454 start
= vma
->vm_end
;
1456 } while (vma
&& vma
->vm_start
< end
);
1458 up_write(&mm
->mmap_sem
);
1462 * Now that we scanned all vmas we can already tell
1463 * userland which ioctls methods are guaranteed to
1464 * succeed on this range.
1466 if (put_user(basic_ioctls
? UFFD_API_RANGE_IOCTLS_BASIC
:
1467 UFFD_API_RANGE_IOCTLS
,
1468 &user_uffdio_register
->ioctls
))
1475 static int userfaultfd_unregister(struct userfaultfd_ctx
*ctx
,
1478 struct mm_struct
*mm
= ctx
->mm
;
1479 struct vm_area_struct
*vma
, *prev
, *cur
;
1481 struct uffdio_range uffdio_unregister
;
1482 unsigned long new_flags
;
1484 unsigned long start
, end
, vma_end
;
1485 const void __user
*buf
= (void __user
*)arg
;
1488 if (copy_from_user(&uffdio_unregister
, buf
, sizeof(uffdio_unregister
)))
1491 ret
= validate_range(mm
, uffdio_unregister
.start
,
1492 uffdio_unregister
.len
);
1496 start
= uffdio_unregister
.start
;
1497 end
= start
+ uffdio_unregister
.len
;
1500 if (!mmget_not_zero(mm
))
1503 down_write(&mm
->mmap_sem
);
1504 vma
= find_vma_prev(mm
, start
, &prev
);
1508 /* check that there's at least one vma in the range */
1510 if (vma
->vm_start
>= end
)
1514 * If the first vma contains huge pages, make sure start address
1515 * is aligned to huge page size.
1517 if (is_vm_hugetlb_page(vma
)) {
1518 unsigned long vma_hpagesize
= vma_kernel_pagesize(vma
);
1520 if (start
& (vma_hpagesize
- 1))
1525 * Search for not compatible vmas.
1529 for (cur
= vma
; cur
&& cur
->vm_start
< end
; cur
= cur
->vm_next
) {
1532 BUG_ON(!!cur
->vm_userfaultfd_ctx
.ctx
^
1533 !!(cur
->vm_flags
& (VM_UFFD_MISSING
| VM_UFFD_WP
)));
1536 * Check not compatible vmas, not strictly required
1537 * here as not compatible vmas cannot have an
1538 * userfaultfd_ctx registered on them, but this
1539 * provides for more strict behavior to notice
1540 * unregistration errors.
1542 if (!vma_can_userfault(cur
))
1549 if (vma
->vm_start
< start
)
1556 BUG_ON(!vma_can_userfault(vma
));
1559 * Nothing to do: this vma is already registered into this
1560 * userfaultfd and with the right tracking mode too.
1562 if (!vma
->vm_userfaultfd_ctx
.ctx
)
1565 if (vma
->vm_start
> start
)
1566 start
= vma
->vm_start
;
1567 vma_end
= min(end
, vma
->vm_end
);
1569 if (userfaultfd_missing(vma
)) {
1571 * Wake any concurrent pending userfault while
1572 * we unregister, so they will not hang
1573 * permanently and it avoids userland to call
1574 * UFFDIO_WAKE explicitly.
1576 struct userfaultfd_wake_range range
;
1577 range
.start
= start
;
1578 range
.len
= vma_end
- start
;
1579 wake_userfault(vma
->vm_userfaultfd_ctx
.ctx
, &range
);
1582 new_flags
= vma
->vm_flags
& ~(VM_UFFD_MISSING
| VM_UFFD_WP
);
1583 prev
= vma_merge(mm
, prev
, start
, vma_end
, new_flags
,
1584 vma
->anon_vma
, vma
->vm_file
, vma
->vm_pgoff
,
1591 if (vma
->vm_start
< start
) {
1592 ret
= split_vma(mm
, vma
, start
, 1);
1596 if (vma
->vm_end
> end
) {
1597 ret
= split_vma(mm
, vma
, end
, 0);
1603 * In the vma_merge() successful mprotect-like case 8:
1604 * the next vma was merged into the current one and
1605 * the current one has not been updated yet.
1607 vma
->vm_flags
= new_flags
;
1608 vma
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
1612 start
= vma
->vm_end
;
1614 } while (vma
&& vma
->vm_start
< end
);
1616 up_write(&mm
->mmap_sem
);
1623 * userfaultfd_wake may be used in combination with the
1624 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1626 static int userfaultfd_wake(struct userfaultfd_ctx
*ctx
,
1630 struct uffdio_range uffdio_wake
;
1631 struct userfaultfd_wake_range range
;
1632 const void __user
*buf
= (void __user
*)arg
;
1635 if (copy_from_user(&uffdio_wake
, buf
, sizeof(uffdio_wake
)))
1638 ret
= validate_range(ctx
->mm
, uffdio_wake
.start
, uffdio_wake
.len
);
1642 range
.start
= uffdio_wake
.start
;
1643 range
.len
= uffdio_wake
.len
;
1646 * len == 0 means wake all and we don't want to wake all here,
1647 * so check it again to be sure.
1649 VM_BUG_ON(!range
.len
);
1651 wake_userfault(ctx
, &range
);
1658 static int userfaultfd_copy(struct userfaultfd_ctx
*ctx
,
1662 struct uffdio_copy uffdio_copy
;
1663 struct uffdio_copy __user
*user_uffdio_copy
;
1664 struct userfaultfd_wake_range range
;
1666 user_uffdio_copy
= (struct uffdio_copy __user
*) arg
;
1669 if (READ_ONCE(ctx
->mmap_changing
))
1673 if (copy_from_user(&uffdio_copy
, user_uffdio_copy
,
1674 /* don't copy "copy" last field */
1675 sizeof(uffdio_copy
)-sizeof(__s64
)))
1678 ret
= validate_range(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.len
);
1682 * double check for wraparound just in case. copy_from_user()
1683 * will later check uffdio_copy.src + uffdio_copy.len to fit
1684 * in the userland range.
1687 if (uffdio_copy
.src
+ uffdio_copy
.len
<= uffdio_copy
.src
)
1689 if (uffdio_copy
.mode
& ~UFFDIO_COPY_MODE_DONTWAKE
)
1691 if (mmget_not_zero(ctx
->mm
)) {
1692 ret
= mcopy_atomic(ctx
->mm
, uffdio_copy
.dst
, uffdio_copy
.src
,
1693 uffdio_copy
.len
, &ctx
->mmap_changing
);
1698 if (unlikely(put_user(ret
, &user_uffdio_copy
->copy
)))
1703 /* len == 0 would wake all */
1705 if (!(uffdio_copy
.mode
& UFFDIO_COPY_MODE_DONTWAKE
)) {
1706 range
.start
= uffdio_copy
.dst
;
1707 wake_userfault(ctx
, &range
);
1709 ret
= range
.len
== uffdio_copy
.len
? 0 : -EAGAIN
;
1714 static int userfaultfd_zeropage(struct userfaultfd_ctx
*ctx
,
1718 struct uffdio_zeropage uffdio_zeropage
;
1719 struct uffdio_zeropage __user
*user_uffdio_zeropage
;
1720 struct userfaultfd_wake_range range
;
1722 user_uffdio_zeropage
= (struct uffdio_zeropage __user
*) arg
;
1725 if (READ_ONCE(ctx
->mmap_changing
))
1729 if (copy_from_user(&uffdio_zeropage
, user_uffdio_zeropage
,
1730 /* don't copy "zeropage" last field */
1731 sizeof(uffdio_zeropage
)-sizeof(__s64
)))
1734 ret
= validate_range(ctx
->mm
, uffdio_zeropage
.range
.start
,
1735 uffdio_zeropage
.range
.len
);
1739 if (uffdio_zeropage
.mode
& ~UFFDIO_ZEROPAGE_MODE_DONTWAKE
)
1742 if (mmget_not_zero(ctx
->mm
)) {
1743 ret
= mfill_zeropage(ctx
->mm
, uffdio_zeropage
.range
.start
,
1744 uffdio_zeropage
.range
.len
,
1745 &ctx
->mmap_changing
);
1750 if (unlikely(put_user(ret
, &user_uffdio_zeropage
->zeropage
)))
1754 /* len == 0 would wake all */
1757 if (!(uffdio_zeropage
.mode
& UFFDIO_ZEROPAGE_MODE_DONTWAKE
)) {
1758 range
.start
= uffdio_zeropage
.range
.start
;
1759 wake_userfault(ctx
, &range
);
1761 ret
= range
.len
== uffdio_zeropage
.range
.len
? 0 : -EAGAIN
;
1766 static inline unsigned int uffd_ctx_features(__u64 user_features
)
1769 * For the current set of features the bits just coincide
1771 return (unsigned int)user_features
;
1775 * userland asks for a certain API version and we return which bits
1776 * and ioctl commands are implemented in this kernel for such API
1777 * version or -EINVAL if unknown.
1779 static int userfaultfd_api(struct userfaultfd_ctx
*ctx
,
1782 struct uffdio_api uffdio_api
;
1783 void __user
*buf
= (void __user
*)arg
;
1788 if (ctx
->state
!= UFFD_STATE_WAIT_API
)
1791 if (copy_from_user(&uffdio_api
, buf
, sizeof(uffdio_api
)))
1793 features
= uffdio_api
.features
;
1794 if (uffdio_api
.api
!= UFFD_API
|| (features
& ~UFFD_API_FEATURES
)) {
1795 memset(&uffdio_api
, 0, sizeof(uffdio_api
));
1796 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1801 /* report all available features and ioctls to userland */
1802 uffdio_api
.features
= UFFD_API_FEATURES
;
1803 uffdio_api
.ioctls
= UFFD_API_IOCTLS
;
1805 if (copy_to_user(buf
, &uffdio_api
, sizeof(uffdio_api
)))
1807 ctx
->state
= UFFD_STATE_RUNNING
;
1808 /* only enable the requested features for this uffd context */
1809 ctx
->features
= uffd_ctx_features(features
);
1815 static long userfaultfd_ioctl(struct file
*file
, unsigned cmd
,
1819 struct userfaultfd_ctx
*ctx
= file
->private_data
;
1821 if (cmd
!= UFFDIO_API
&& ctx
->state
== UFFD_STATE_WAIT_API
)
1826 ret
= userfaultfd_api(ctx
, arg
);
1828 case UFFDIO_REGISTER
:
1829 ret
= userfaultfd_register(ctx
, arg
);
1831 case UFFDIO_UNREGISTER
:
1832 ret
= userfaultfd_unregister(ctx
, arg
);
1835 ret
= userfaultfd_wake(ctx
, arg
);
1838 ret
= userfaultfd_copy(ctx
, arg
);
1840 case UFFDIO_ZEROPAGE
:
1841 ret
= userfaultfd_zeropage(ctx
, arg
);
1847 #ifdef CONFIG_PROC_FS
1848 static void userfaultfd_show_fdinfo(struct seq_file
*m
, struct file
*f
)
1850 struct userfaultfd_ctx
*ctx
= f
->private_data
;
1851 wait_queue_entry_t
*wq
;
1852 unsigned long pending
= 0, total
= 0;
1854 spin_lock(&ctx
->fault_pending_wqh
.lock
);
1855 list_for_each_entry(wq
, &ctx
->fault_pending_wqh
.head
, entry
) {
1859 list_for_each_entry(wq
, &ctx
->fault_wqh
.head
, entry
) {
1862 spin_unlock(&ctx
->fault_pending_wqh
.lock
);
1865 * If more protocols will be added, there will be all shown
1866 * separated by a space. Like this:
1867 * protocols: aa:... bb:...
1869 seq_printf(m
, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1870 pending
, total
, UFFD_API
, ctx
->features
,
1871 UFFD_API_IOCTLS
|UFFD_API_RANGE_IOCTLS
);
1875 static const struct file_operations userfaultfd_fops
= {
1876 #ifdef CONFIG_PROC_FS
1877 .show_fdinfo
= userfaultfd_show_fdinfo
,
1879 .release
= userfaultfd_release
,
1880 .poll
= userfaultfd_poll
,
1881 .read
= userfaultfd_read
,
1882 .unlocked_ioctl
= userfaultfd_ioctl
,
1883 .compat_ioctl
= userfaultfd_ioctl
,
1884 .llseek
= noop_llseek
,
1887 static void init_once_userfaultfd_ctx(void *mem
)
1889 struct userfaultfd_ctx
*ctx
= (struct userfaultfd_ctx
*) mem
;
1891 init_waitqueue_head(&ctx
->fault_pending_wqh
);
1892 init_waitqueue_head(&ctx
->fault_wqh
);
1893 init_waitqueue_head(&ctx
->event_wqh
);
1894 init_waitqueue_head(&ctx
->fd_wqh
);
1895 seqcount_init(&ctx
->refile_seq
);
1898 SYSCALL_DEFINE1(userfaultfd
, int, flags
)
1900 struct userfaultfd_ctx
*ctx
;
1903 BUG_ON(!current
->mm
);
1905 /* Check the UFFD_* constants for consistency. */
1906 BUILD_BUG_ON(UFFD_CLOEXEC
!= O_CLOEXEC
);
1907 BUILD_BUG_ON(UFFD_NONBLOCK
!= O_NONBLOCK
);
1909 if (flags
& ~UFFD_SHARED_FCNTL_FLAGS
)
1912 ctx
= kmem_cache_alloc(userfaultfd_ctx_cachep
, GFP_KERNEL
);
1916 atomic_set(&ctx
->refcount
, 1);
1919 ctx
->state
= UFFD_STATE_WAIT_API
;
1920 ctx
->released
= false;
1921 ctx
->mmap_changing
= false;
1922 ctx
->mm
= current
->mm
;
1923 /* prevent the mm struct to be freed */
1926 fd
= anon_inode_getfd("[userfaultfd]", &userfaultfd_fops
, ctx
,
1927 O_RDWR
| (flags
& UFFD_SHARED_FCNTL_FLAGS
));
1930 kmem_cache_free(userfaultfd_ctx_cachep
, ctx
);
1935 static int __init
userfaultfd_init(void)
1937 userfaultfd_ctx_cachep
= kmem_cache_create("userfaultfd_ctx_cache",
1938 sizeof(struct userfaultfd_ctx
),
1940 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
,
1941 init_once_userfaultfd_ctx
);
1944 __initcall(userfaultfd_init
);