1 // SPDX-License-Identifier: GPL-2.0-only
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
8 #define pr_fmt(fmt) "CPU features: " fmt
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
17 #include <linux/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly
;
32 #define COMPAT_ELF_HWCAP_DEFAULT \
33 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
37 unsigned int compat_elf_hwcap __read_mostly
= COMPAT_ELF_HWCAP_DEFAULT
;
38 unsigned int compat_elf_hwcap2 __read_mostly
;
41 DECLARE_BITMAP(cpu_hwcaps
, ARM64_NCAPS
);
42 EXPORT_SYMBOL(cpu_hwcaps
);
43 static struct arm64_cpu_capabilities
const __ro_after_init
*cpu_hwcaps_ptrs
[ARM64_NCAPS
];
45 /* Need also bit for ARM64_CB_PATCH */
46 DECLARE_BITMAP(boot_capabilities
, ARM64_NPATCHABLE
);
48 bool arm64_use_ng_mappings
= false;
49 EXPORT_SYMBOL(arm64_use_ng_mappings
);
52 * Flag to indicate if we have computed the system wide
53 * capabilities based on the boot time active CPUs. This
54 * will be used to determine if a new booting CPU should
55 * go through the verification process to make sure that it
56 * supports the system capabilities, without using a hotplug
57 * notifier. This is also used to decide if we could use
58 * the fast path for checking constant CPU caps.
60 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready
);
61 EXPORT_SYMBOL(arm64_const_caps_ready
);
62 static inline void finalize_system_capabilities(void)
64 static_branch_enable(&arm64_const_caps_ready
);
67 static int dump_cpu_hwcaps(struct notifier_block
*self
, unsigned long v
, void *p
)
69 /* file-wide pr_fmt adds "CPU features: " prefix */
70 pr_emerg("0x%*pb\n", ARM64_NCAPS
, &cpu_hwcaps
);
74 static struct notifier_block cpu_hwcaps_notifier
= {
75 .notifier_call
= dump_cpu_hwcaps
78 static int __init
register_cpu_hwcaps_dumper(void)
80 atomic_notifier_chain_register(&panic_notifier_list
,
81 &cpu_hwcaps_notifier
);
84 __initcall(register_cpu_hwcaps_dumper
);
86 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys
, ARM64_NCAPS
);
87 EXPORT_SYMBOL(cpu_hwcap_keys
);
89 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
97 .safe_val = SAFE_VAL, \
100 /* Define a feature with unsigned values */
101 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
102 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
104 /* Define a feature with a signed value */
105 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
106 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
108 #define ARM64_FTR_END \
113 /* meta feature for alternatives */
114 static bool __maybe_unused
115 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
);
117 static void cpu_enable_cnp(struct arm64_cpu_capabilities
const *cap
);
119 static bool __system_matches_cap(unsigned int n
);
122 * NOTE: Any changes to the visibility of features should be kept in
123 * sync with the documentation of the CPU feature register ABI.
125 static const struct arm64_ftr_bits ftr_id_aa64isar0
[] = {
126 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_RNDR_SHIFT
, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_TS_SHIFT
, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_FHM_SHIFT
, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_DP_SHIFT
, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM4_SHIFT
, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SM3_SHIFT
, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA3_SHIFT
, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_RDM_SHIFT
, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_ATOMICS_SHIFT
, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_CRC32_SHIFT
, 4, 0),
136 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA2_SHIFT
, 4, 0),
137 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_SHA1_SHIFT
, 4, 0),
138 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR0_AES_SHIFT
, 4, 0),
142 static const struct arm64_ftr_bits ftr_id_aa64isar1
[] = {
143 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_I8MM_SHIFT
, 4, 0),
144 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_DGH_SHIFT
, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_BF16_SHIFT
, 4, 0),
146 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_SPECRES_SHIFT
, 4, 0),
147 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_SB_SHIFT
, 4, 0),
148 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_FRINTTS_SHIFT
, 4, 0),
149 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
150 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_GPI_SHIFT
, 4, 0),
151 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
152 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_GPA_SHIFT
, 4, 0),
153 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_LRCPC_SHIFT
, 4, 0),
154 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_FCMA_SHIFT
, 4, 0),
155 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_JSCVT_SHIFT
, 4, 0),
156 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
157 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_API_SHIFT
, 4, 0),
158 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH
),
159 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_APA_SHIFT
, 4, 0),
160 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ISAR1_DPB_SHIFT
, 4, 0),
164 static const struct arm64_ftr_bits ftr_id_aa64pfr0
[] = {
165 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_CSV3_SHIFT
, 4, 0),
166 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_CSV2_SHIFT
, 4, 0),
167 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_DIT_SHIFT
, 4, 0),
168 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_AMU_SHIFT
, 4, 0),
169 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
170 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_SVE_SHIFT
, 4, 0),
171 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_RAS_SHIFT
, 4, 0),
172 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_GIC_SHIFT
, 4, 0),
173 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_ASIMD_SHIFT
, 4, ID_AA64PFR0_ASIMD_NI
),
174 S_ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_FP_SHIFT
, 4, ID_AA64PFR0_FP_NI
),
175 /* Linux doesn't care about the EL3 */
176 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL3_SHIFT
, 4, 0),
177 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL2_SHIFT
, 4, 0),
178 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL1_SHIFT
, 4, ID_AA64PFR0_EL1_64BIT_ONLY
),
179 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR0_EL0_SHIFT
, 4, ID_AA64PFR0_EL0_64BIT_ONLY
),
183 static const struct arm64_ftr_bits ftr_id_aa64pfr1
[] = {
184 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64PFR1_SSBS_SHIFT
, 4, ID_AA64PFR1_SSBS_PSTATE_NI
),
188 static const struct arm64_ftr_bits ftr_id_aa64zfr0
[] = {
189 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
190 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_F64MM_SHIFT
, 4, 0),
191 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
192 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_F32MM_SHIFT
, 4, 0),
193 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
194 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_I8MM_SHIFT
, 4, 0),
195 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
196 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SM4_SHIFT
, 4, 0),
197 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
198 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SHA3_SHIFT
, 4, 0),
199 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
200 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_BF16_SHIFT
, 4, 0),
201 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
202 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_BITPERM_SHIFT
, 4, 0),
203 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
204 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_AES_SHIFT
, 4, 0),
205 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE
),
206 FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64ZFR0_SVEVER_SHIFT
, 4, 0),
210 static const struct arm64_ftr_bits ftr_id_aa64mmfr0
[] = {
212 * We already refuse to boot CPUs that don't support our configured
213 * page size, so we can only detect mismatches for a page size other
214 * than the one we're currently using. Unfortunately, SoCs like this
215 * exist in the wild so, even though we don't like it, we'll have to go
216 * along with it and treat them as non-strict.
218 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN4_SHIFT
, 4, ID_AA64MMFR0_TGRAN4_NI
),
219 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN64_SHIFT
, 4, ID_AA64MMFR0_TGRAN64_NI
),
220 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_TGRAN16_SHIFT
, 4, ID_AA64MMFR0_TGRAN16_NI
),
222 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL0_SHIFT
, 4, 0),
223 /* Linux shouldn't care about secure memory */
224 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_SNSMEM_SHIFT
, 4, 0),
225 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_BIGENDEL_SHIFT
, 4, 0),
226 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_ASID_SHIFT
, 4, 0),
228 * Differing PARange is fine as long as all peripherals and memory are mapped
229 * within the minimum PARange of all CPUs
231 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR0_PARANGE_SHIFT
, 4, 0),
235 static const struct arm64_ftr_bits ftr_id_aa64mmfr1
[] = {
236 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_PAN_SHIFT
, 4, 0),
237 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_LOR_SHIFT
, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HPD_SHIFT
, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VHE_SHIFT
, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_VMIDBITS_SHIFT
, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR1_HADBS_SHIFT
, 4, 0),
245 static const struct arm64_ftr_bits ftr_id_aa64mmfr2
[] = {
246 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_E0PD_SHIFT
, 4, 0),
247 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_FWB_SHIFT
, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_AT_SHIFT
, 4, 0),
249 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LVA_SHIFT
, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_IESB_SHIFT
, 4, 0),
251 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_LSM_SHIFT
, 4, 0),
252 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_UAO_SHIFT
, 4, 0),
253 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64MMFR2_CNP_SHIFT
, 4, 0),
257 static const struct arm64_ftr_bits ftr_ctr
[] = {
258 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 31, 1, 1), /* RES1 */
259 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_DIC_SHIFT
, 1, 1),
260 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_IDC_SHIFT
, 1, 1),
261 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_OR_ZERO_SAFE
, CTR_CWG_SHIFT
, 4, 0),
262 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_HIGHER_OR_ZERO_SAFE
, CTR_ERG_SHIFT
, 4, 0),
263 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_DMINLINE_SHIFT
, 4, 1),
265 * Linux can handle differing I-cache policies. Userspace JITs will
266 * make use of *minLine.
267 * If we have differing I-cache policies, report it as the weakest - VIPT.
269 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_NONSTRICT
, FTR_EXACT
, 14, 2, ICACHE_POLICY_VIPT
), /* L1Ip */
270 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, CTR_IMINLINE_SHIFT
, 4, 0),
274 struct arm64_ftr_reg arm64_ftr_reg_ctrel0
= {
275 .name
= "SYS_CTR_EL0",
279 static const struct arm64_ftr_bits ftr_id_mmfr0
[] = {
280 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0xf), /* InnerShr */
281 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0), /* FCSE */
282 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, 20, 4, 0), /* AuxReg */
283 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0), /* TCM */
284 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* ShareLvl */
285 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0xf), /* OuterShr */
286 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* PMSA */
287 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* VMSA */
291 static const struct arm64_ftr_bits ftr_id_aa64dfr0
[] = {
292 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 36, 28, 0),
293 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_PMSVER_SHIFT
, 4, 0),
294 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_CTX_CMPS_SHIFT
, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_WRPS_SHIFT
, 4, 0),
296 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_AA64DFR0_BRPS_SHIFT
, 4, 0),
298 * We can instantiate multiple PMU instances with different levels
301 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_EXACT
, ID_AA64DFR0_PMUVER_SHIFT
, 4, 0),
302 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_TRACEVER_SHIFT
, 4, 0),
303 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, ID_AA64DFR0_DEBUGVER_SHIFT
, 4, 0x6),
307 static const struct arm64_ftr_bits ftr_mvfr2
[] = {
308 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* FPMisc */
309 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* SIMDMisc */
313 static const struct arm64_ftr_bits ftr_dczid
[] = {
314 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_EXACT
, 4, 1, 1), /* DZP */
315 ARM64_FTR_BITS(FTR_VISIBLE
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* BS */
320 static const struct arm64_ftr_bits ftr_id_isar5
[] = {
321 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_RDM_SHIFT
, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_CRC32_SHIFT
, 4, 0),
323 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA2_SHIFT
, 4, 0),
324 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SHA1_SHIFT
, 4, 0),
325 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_AES_SHIFT
, 4, 0),
326 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR5_SEVL_SHIFT
, 4, 0),
330 static const struct arm64_ftr_bits ftr_id_mmfr4
[] = {
331 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* ac2 */
335 static const struct arm64_ftr_bits ftr_id_isar6
[] = {
336 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_I8MM_SHIFT
, 4, 0),
337 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_BF16_SHIFT
, 4, 0),
338 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_SPECRES_SHIFT
, 4, 0),
339 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_SB_SHIFT
, 4, 0),
340 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_FHM_SHIFT
, 4, 0),
341 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_DP_SHIFT
, 4, 0),
342 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, ID_ISAR6_JSCVT_SHIFT
, 4, 0),
346 static const struct arm64_ftr_bits ftr_id_pfr0
[] = {
347 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0), /* State3 */
348 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0), /* State2 */
349 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0), /* State1 */
350 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0), /* State0 */
354 static const struct arm64_ftr_bits ftr_id_dfr0
[] = {
355 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
356 S_ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0xf), /* PerfMon */
357 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
358 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
359 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
360 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
361 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
362 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
366 static const struct arm64_ftr_bits ftr_zcr
[] = {
367 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_NONSTRICT
, FTR_LOWER_SAFE
,
368 ZCR_ELx_LEN_SHIFT
, ZCR_ELx_LEN_SIZE
, 0), /* LEN */
373 * Common ftr bits for a 32bit register with all hidden, strict
374 * attributes, with 4bit feature fields and a default safe value of
375 * 0. Covers the following 32bit registers:
376 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
378 static const struct arm64_ftr_bits ftr_generic_32bits
[] = {
379 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 28, 4, 0),
380 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 24, 4, 0),
381 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 20, 4, 0),
382 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 16, 4, 0),
383 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 12, 4, 0),
384 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 8, 4, 0),
385 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 4, 4, 0),
386 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_LOWER_SAFE
, 0, 4, 0),
390 /* Table for a single 32bit feature value */
391 static const struct arm64_ftr_bits ftr_single32
[] = {
392 ARM64_FTR_BITS(FTR_HIDDEN
, FTR_STRICT
, FTR_EXACT
, 0, 32, 0),
396 static const struct arm64_ftr_bits ftr_raz
[] = {
400 #define ARM64_FTR_REG(id, table) { \
402 .reg = &(struct arm64_ftr_reg){ \
404 .ftr_bits = &((table)[0]), \
407 static const struct __ftr_reg_entry
{
409 struct arm64_ftr_reg
*reg
;
410 } arm64_ftr_regs
[] = {
412 /* Op1 = 0, CRn = 0, CRm = 1 */
413 ARM64_FTR_REG(SYS_ID_PFR0_EL1
, ftr_id_pfr0
),
414 ARM64_FTR_REG(SYS_ID_PFR1_EL1
, ftr_generic_32bits
),
415 ARM64_FTR_REG(SYS_ID_DFR0_EL1
, ftr_id_dfr0
),
416 ARM64_FTR_REG(SYS_ID_MMFR0_EL1
, ftr_id_mmfr0
),
417 ARM64_FTR_REG(SYS_ID_MMFR1_EL1
, ftr_generic_32bits
),
418 ARM64_FTR_REG(SYS_ID_MMFR2_EL1
, ftr_generic_32bits
),
419 ARM64_FTR_REG(SYS_ID_MMFR3_EL1
, ftr_generic_32bits
),
421 /* Op1 = 0, CRn = 0, CRm = 2 */
422 ARM64_FTR_REG(SYS_ID_ISAR0_EL1
, ftr_generic_32bits
),
423 ARM64_FTR_REG(SYS_ID_ISAR1_EL1
, ftr_generic_32bits
),
424 ARM64_FTR_REG(SYS_ID_ISAR2_EL1
, ftr_generic_32bits
),
425 ARM64_FTR_REG(SYS_ID_ISAR3_EL1
, ftr_generic_32bits
),
426 ARM64_FTR_REG(SYS_ID_ISAR4_EL1
, ftr_generic_32bits
),
427 ARM64_FTR_REG(SYS_ID_ISAR5_EL1
, ftr_id_isar5
),
428 ARM64_FTR_REG(SYS_ID_MMFR4_EL1
, ftr_id_mmfr4
),
429 ARM64_FTR_REG(SYS_ID_ISAR6_EL1
, ftr_id_isar6
),
431 /* Op1 = 0, CRn = 0, CRm = 3 */
432 ARM64_FTR_REG(SYS_MVFR0_EL1
, ftr_generic_32bits
),
433 ARM64_FTR_REG(SYS_MVFR1_EL1
, ftr_generic_32bits
),
434 ARM64_FTR_REG(SYS_MVFR2_EL1
, ftr_mvfr2
),
436 /* Op1 = 0, CRn = 0, CRm = 4 */
437 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1
, ftr_id_aa64pfr0
),
438 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1
, ftr_id_aa64pfr1
),
439 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1
, ftr_id_aa64zfr0
),
441 /* Op1 = 0, CRn = 0, CRm = 5 */
442 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1
, ftr_id_aa64dfr0
),
443 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1
, ftr_raz
),
445 /* Op1 = 0, CRn = 0, CRm = 6 */
446 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1
, ftr_id_aa64isar0
),
447 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1
, ftr_id_aa64isar1
),
449 /* Op1 = 0, CRn = 0, CRm = 7 */
450 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1
, ftr_id_aa64mmfr0
),
451 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1
, ftr_id_aa64mmfr1
),
452 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1
, ftr_id_aa64mmfr2
),
454 /* Op1 = 0, CRn = 1, CRm = 2 */
455 ARM64_FTR_REG(SYS_ZCR_EL1
, ftr_zcr
),
457 /* Op1 = 3, CRn = 0, CRm = 0 */
458 { SYS_CTR_EL0
, &arm64_ftr_reg_ctrel0
},
459 ARM64_FTR_REG(SYS_DCZID_EL0
, ftr_dczid
),
461 /* Op1 = 3, CRn = 14, CRm = 0 */
462 ARM64_FTR_REG(SYS_CNTFRQ_EL0
, ftr_single32
),
465 static int search_cmp_ftr_reg(const void *id
, const void *regp
)
467 return (int)(unsigned long)id
- (int)((const struct __ftr_reg_entry
*)regp
)->sys_id
;
471 * get_arm64_ftr_reg - Lookup a feature register entry using its
472 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
473 * ascending order of sys_id , we use binary search to find a matching
476 * returns - Upon success, matching ftr_reg entry for id.
477 * - NULL on failure. It is upto the caller to decide
478 * the impact of a failure.
480 static struct arm64_ftr_reg
*get_arm64_ftr_reg(u32 sys_id
)
482 const struct __ftr_reg_entry
*ret
;
484 ret
= bsearch((const void *)(unsigned long)sys_id
,
486 ARRAY_SIZE(arm64_ftr_regs
),
487 sizeof(arm64_ftr_regs
[0]),
494 static u64
arm64_ftr_set_value(const struct arm64_ftr_bits
*ftrp
, s64 reg
,
497 u64 mask
= arm64_ftr_mask(ftrp
);
500 reg
|= (ftr_val
<< ftrp
->shift
) & mask
;
504 static s64
arm64_ftr_safe_value(const struct arm64_ftr_bits
*ftrp
, s64
new,
509 switch (ftrp
->type
) {
511 ret
= ftrp
->safe_val
;
514 ret
= new < cur
? new : cur
;
516 case FTR_HIGHER_OR_ZERO_SAFE
:
520 case FTR_HIGHER_SAFE
:
521 ret
= new > cur
? new : cur
;
530 static void __init
sort_ftr_regs(void)
534 /* Check that the array is sorted so that we can do the binary search */
535 for (i
= 1; i
< ARRAY_SIZE(arm64_ftr_regs
); i
++)
536 BUG_ON(arm64_ftr_regs
[i
].sys_id
< arm64_ftr_regs
[i
- 1].sys_id
);
540 * Initialise the CPU feature register from Boot CPU values.
541 * Also initiliases the strict_mask for the register.
542 * Any bits that are not covered by an arm64_ftr_bits entry are considered
543 * RES0 for the system-wide value, and must strictly match.
545 static void __init
init_cpu_ftr_reg(u32 sys_reg
, u64
new)
548 u64 strict_mask
= ~0x0ULL
;
552 const struct arm64_ftr_bits
*ftrp
;
553 struct arm64_ftr_reg
*reg
= get_arm64_ftr_reg(sys_reg
);
557 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
558 u64 ftr_mask
= arm64_ftr_mask(ftrp
);
559 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
561 val
= arm64_ftr_set_value(ftrp
, val
, ftr_new
);
563 valid_mask
|= ftr_mask
;
565 strict_mask
&= ~ftr_mask
;
567 user_mask
|= ftr_mask
;
569 reg
->user_val
= arm64_ftr_set_value(ftrp
,
577 reg
->strict_mask
= strict_mask
;
578 reg
->user_mask
= user_mask
;
581 extern const struct arm64_cpu_capabilities arm64_errata
[];
582 static const struct arm64_cpu_capabilities arm64_features
[];
585 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities
*caps
)
587 for (; caps
->matches
; caps
++) {
588 if (WARN(caps
->capability
>= ARM64_NCAPS
,
589 "Invalid capability %d\n", caps
->capability
))
591 if (WARN(cpu_hwcaps_ptrs
[caps
->capability
],
592 "Duplicate entry for capability %d\n",
595 cpu_hwcaps_ptrs
[caps
->capability
] = caps
;
599 static void __init
init_cpu_hwcaps_indirect_list(void)
601 init_cpu_hwcaps_indirect_list_from_array(arm64_features
);
602 init_cpu_hwcaps_indirect_list_from_array(arm64_errata
);
605 static void __init
setup_boot_cpu_capabilities(void);
607 void __init
init_cpu_features(struct cpuinfo_arm64
*info
)
609 /* Before we start using the tables, make sure it is sorted */
612 init_cpu_ftr_reg(SYS_CTR_EL0
, info
->reg_ctr
);
613 init_cpu_ftr_reg(SYS_DCZID_EL0
, info
->reg_dczid
);
614 init_cpu_ftr_reg(SYS_CNTFRQ_EL0
, info
->reg_cntfrq
);
615 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1
, info
->reg_id_aa64dfr0
);
616 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1
, info
->reg_id_aa64dfr1
);
617 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1
, info
->reg_id_aa64isar0
);
618 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1
, info
->reg_id_aa64isar1
);
619 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1
, info
->reg_id_aa64mmfr0
);
620 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1
, info
->reg_id_aa64mmfr1
);
621 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1
, info
->reg_id_aa64mmfr2
);
622 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1
, info
->reg_id_aa64pfr0
);
623 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1
, info
->reg_id_aa64pfr1
);
624 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1
, info
->reg_id_aa64zfr0
);
626 if (id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
627 init_cpu_ftr_reg(SYS_ID_DFR0_EL1
, info
->reg_id_dfr0
);
628 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1
, info
->reg_id_isar0
);
629 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1
, info
->reg_id_isar1
);
630 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1
, info
->reg_id_isar2
);
631 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1
, info
->reg_id_isar3
);
632 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1
, info
->reg_id_isar4
);
633 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1
, info
->reg_id_isar5
);
634 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1
, info
->reg_id_isar6
);
635 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1
, info
->reg_id_mmfr0
);
636 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1
, info
->reg_id_mmfr1
);
637 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1
, info
->reg_id_mmfr2
);
638 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1
, info
->reg_id_mmfr3
);
639 init_cpu_ftr_reg(SYS_ID_PFR0_EL1
, info
->reg_id_pfr0
);
640 init_cpu_ftr_reg(SYS_ID_PFR1_EL1
, info
->reg_id_pfr1
);
641 init_cpu_ftr_reg(SYS_MVFR0_EL1
, info
->reg_mvfr0
);
642 init_cpu_ftr_reg(SYS_MVFR1_EL1
, info
->reg_mvfr1
);
643 init_cpu_ftr_reg(SYS_MVFR2_EL1
, info
->reg_mvfr2
);
646 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
647 init_cpu_ftr_reg(SYS_ZCR_EL1
, info
->reg_zcr
);
652 * Initialize the indirect array of CPU hwcaps capabilities pointers
653 * before we handle the boot CPU below.
655 init_cpu_hwcaps_indirect_list();
658 * Detect and enable early CPU capabilities based on the boot CPU,
659 * after we have initialised the CPU feature infrastructure.
661 setup_boot_cpu_capabilities();
664 static void update_cpu_ftr_reg(struct arm64_ftr_reg
*reg
, u64
new)
666 const struct arm64_ftr_bits
*ftrp
;
668 for (ftrp
= reg
->ftr_bits
; ftrp
->width
; ftrp
++) {
669 s64 ftr_cur
= arm64_ftr_value(ftrp
, reg
->sys_val
);
670 s64 ftr_new
= arm64_ftr_value(ftrp
, new);
672 if (ftr_cur
== ftr_new
)
674 /* Find a safe value */
675 ftr_new
= arm64_ftr_safe_value(ftrp
, ftr_new
, ftr_cur
);
676 reg
->sys_val
= arm64_ftr_set_value(ftrp
, reg
->sys_val
, ftr_new
);
681 static int check_update_ftr_reg(u32 sys_id
, int cpu
, u64 val
, u64 boot
)
683 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(sys_id
);
686 update_cpu_ftr_reg(regp
, val
);
687 if ((boot
& regp
->strict_mask
) == (val
& regp
->strict_mask
))
689 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
690 regp
->name
, boot
, cpu
, val
);
695 * Update system wide CPU feature registers with the values from a
696 * non-boot CPU. Also performs SANITY checks to make sure that there
697 * aren't any insane variations from that of the boot CPU.
699 void update_cpu_features(int cpu
,
700 struct cpuinfo_arm64
*info
,
701 struct cpuinfo_arm64
*boot
)
706 * The kernel can handle differing I-cache policies, but otherwise
707 * caches should look identical. Userspace JITs will make use of
710 taint
|= check_update_ftr_reg(SYS_CTR_EL0
, cpu
,
711 info
->reg_ctr
, boot
->reg_ctr
);
714 * Userspace may perform DC ZVA instructions. Mismatched block sizes
715 * could result in too much or too little memory being zeroed if a
716 * process is preempted and migrated between CPUs.
718 taint
|= check_update_ftr_reg(SYS_DCZID_EL0
, cpu
,
719 info
->reg_dczid
, boot
->reg_dczid
);
721 /* If different, timekeeping will be broken (especially with KVM) */
722 taint
|= check_update_ftr_reg(SYS_CNTFRQ_EL0
, cpu
,
723 info
->reg_cntfrq
, boot
->reg_cntfrq
);
726 * The kernel uses self-hosted debug features and expects CPUs to
727 * support identical debug features. We presently need CTX_CMPs, WRPs,
728 * and BRPs to be identical.
729 * ID_AA64DFR1 is currently RES0.
731 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1
, cpu
,
732 info
->reg_id_aa64dfr0
, boot
->reg_id_aa64dfr0
);
733 taint
|= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1
, cpu
,
734 info
->reg_id_aa64dfr1
, boot
->reg_id_aa64dfr1
);
736 * Even in big.LITTLE, processors should be identical instruction-set
739 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1
, cpu
,
740 info
->reg_id_aa64isar0
, boot
->reg_id_aa64isar0
);
741 taint
|= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1
, cpu
,
742 info
->reg_id_aa64isar1
, boot
->reg_id_aa64isar1
);
745 * Differing PARange support is fine as long as all peripherals and
746 * memory are mapped within the minimum PARange of all CPUs.
747 * Linux should not care about secure memory.
749 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1
, cpu
,
750 info
->reg_id_aa64mmfr0
, boot
->reg_id_aa64mmfr0
);
751 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1
, cpu
,
752 info
->reg_id_aa64mmfr1
, boot
->reg_id_aa64mmfr1
);
753 taint
|= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1
, cpu
,
754 info
->reg_id_aa64mmfr2
, boot
->reg_id_aa64mmfr2
);
757 * EL3 is not our concern.
759 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1
, cpu
,
760 info
->reg_id_aa64pfr0
, boot
->reg_id_aa64pfr0
);
761 taint
|= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1
, cpu
,
762 info
->reg_id_aa64pfr1
, boot
->reg_id_aa64pfr1
);
764 taint
|= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1
, cpu
,
765 info
->reg_id_aa64zfr0
, boot
->reg_id_aa64zfr0
);
768 * If we have AArch32, we care about 32-bit features for compat.
769 * If the system doesn't support AArch32, don't update them.
771 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
772 id_aa64pfr0_32bit_el0(info
->reg_id_aa64pfr0
)) {
774 taint
|= check_update_ftr_reg(SYS_ID_DFR0_EL1
, cpu
,
775 info
->reg_id_dfr0
, boot
->reg_id_dfr0
);
776 taint
|= check_update_ftr_reg(SYS_ID_ISAR0_EL1
, cpu
,
777 info
->reg_id_isar0
, boot
->reg_id_isar0
);
778 taint
|= check_update_ftr_reg(SYS_ID_ISAR1_EL1
, cpu
,
779 info
->reg_id_isar1
, boot
->reg_id_isar1
);
780 taint
|= check_update_ftr_reg(SYS_ID_ISAR2_EL1
, cpu
,
781 info
->reg_id_isar2
, boot
->reg_id_isar2
);
782 taint
|= check_update_ftr_reg(SYS_ID_ISAR3_EL1
, cpu
,
783 info
->reg_id_isar3
, boot
->reg_id_isar3
);
784 taint
|= check_update_ftr_reg(SYS_ID_ISAR4_EL1
, cpu
,
785 info
->reg_id_isar4
, boot
->reg_id_isar4
);
786 taint
|= check_update_ftr_reg(SYS_ID_ISAR5_EL1
, cpu
,
787 info
->reg_id_isar5
, boot
->reg_id_isar5
);
788 taint
|= check_update_ftr_reg(SYS_ID_ISAR6_EL1
, cpu
,
789 info
->reg_id_isar6
, boot
->reg_id_isar6
);
792 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
793 * ACTLR formats could differ across CPUs and therefore would have to
794 * be trapped for virtualization anyway.
796 taint
|= check_update_ftr_reg(SYS_ID_MMFR0_EL1
, cpu
,
797 info
->reg_id_mmfr0
, boot
->reg_id_mmfr0
);
798 taint
|= check_update_ftr_reg(SYS_ID_MMFR1_EL1
, cpu
,
799 info
->reg_id_mmfr1
, boot
->reg_id_mmfr1
);
800 taint
|= check_update_ftr_reg(SYS_ID_MMFR2_EL1
, cpu
,
801 info
->reg_id_mmfr2
, boot
->reg_id_mmfr2
);
802 taint
|= check_update_ftr_reg(SYS_ID_MMFR3_EL1
, cpu
,
803 info
->reg_id_mmfr3
, boot
->reg_id_mmfr3
);
804 taint
|= check_update_ftr_reg(SYS_ID_PFR0_EL1
, cpu
,
805 info
->reg_id_pfr0
, boot
->reg_id_pfr0
);
806 taint
|= check_update_ftr_reg(SYS_ID_PFR1_EL1
, cpu
,
807 info
->reg_id_pfr1
, boot
->reg_id_pfr1
);
808 taint
|= check_update_ftr_reg(SYS_MVFR0_EL1
, cpu
,
809 info
->reg_mvfr0
, boot
->reg_mvfr0
);
810 taint
|= check_update_ftr_reg(SYS_MVFR1_EL1
, cpu
,
811 info
->reg_mvfr1
, boot
->reg_mvfr1
);
812 taint
|= check_update_ftr_reg(SYS_MVFR2_EL1
, cpu
,
813 info
->reg_mvfr2
, boot
->reg_mvfr2
);
816 if (id_aa64pfr0_sve(info
->reg_id_aa64pfr0
)) {
817 taint
|= check_update_ftr_reg(SYS_ZCR_EL1
, cpu
,
818 info
->reg_zcr
, boot
->reg_zcr
);
820 /* Probe vector lengths, unless we already gave up on SVE */
821 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
)) &&
822 !system_capabilities_finalized())
827 * Mismatched CPU features are a recipe for disaster. Don't even
828 * pretend to support them.
831 pr_warn_once("Unsupported CPU feature variation detected.\n");
832 add_taint(TAINT_CPU_OUT_OF_SPEC
, LOCKDEP_STILL_OK
);
836 u64
read_sanitised_ftr_reg(u32 id
)
838 struct arm64_ftr_reg
*regp
= get_arm64_ftr_reg(id
);
840 /* We shouldn't get a request for an unsupported register */
842 return regp
->sys_val
;
845 #define read_sysreg_case(r) \
846 case r: return read_sysreg_s(r)
849 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
850 * Read the system register on the current CPU
852 static u64
__read_sysreg_by_encoding(u32 sys_id
)
855 read_sysreg_case(SYS_ID_PFR0_EL1
);
856 read_sysreg_case(SYS_ID_PFR1_EL1
);
857 read_sysreg_case(SYS_ID_DFR0_EL1
);
858 read_sysreg_case(SYS_ID_MMFR0_EL1
);
859 read_sysreg_case(SYS_ID_MMFR1_EL1
);
860 read_sysreg_case(SYS_ID_MMFR2_EL1
);
861 read_sysreg_case(SYS_ID_MMFR3_EL1
);
862 read_sysreg_case(SYS_ID_ISAR0_EL1
);
863 read_sysreg_case(SYS_ID_ISAR1_EL1
);
864 read_sysreg_case(SYS_ID_ISAR2_EL1
);
865 read_sysreg_case(SYS_ID_ISAR3_EL1
);
866 read_sysreg_case(SYS_ID_ISAR4_EL1
);
867 read_sysreg_case(SYS_ID_ISAR5_EL1
);
868 read_sysreg_case(SYS_ID_ISAR6_EL1
);
869 read_sysreg_case(SYS_MVFR0_EL1
);
870 read_sysreg_case(SYS_MVFR1_EL1
);
871 read_sysreg_case(SYS_MVFR2_EL1
);
873 read_sysreg_case(SYS_ID_AA64PFR0_EL1
);
874 read_sysreg_case(SYS_ID_AA64PFR1_EL1
);
875 read_sysreg_case(SYS_ID_AA64ZFR0_EL1
);
876 read_sysreg_case(SYS_ID_AA64DFR0_EL1
);
877 read_sysreg_case(SYS_ID_AA64DFR1_EL1
);
878 read_sysreg_case(SYS_ID_AA64MMFR0_EL1
);
879 read_sysreg_case(SYS_ID_AA64MMFR1_EL1
);
880 read_sysreg_case(SYS_ID_AA64MMFR2_EL1
);
881 read_sysreg_case(SYS_ID_AA64ISAR0_EL1
);
882 read_sysreg_case(SYS_ID_AA64ISAR1_EL1
);
884 read_sysreg_case(SYS_CNTFRQ_EL0
);
885 read_sysreg_case(SYS_CTR_EL0
);
886 read_sysreg_case(SYS_DCZID_EL0
);
894 #include <linux/irqchip/arm-gic-v3.h>
897 feature_matches(u64 reg
, const struct arm64_cpu_capabilities
*entry
)
899 int val
= cpuid_feature_extract_field(reg
, entry
->field_pos
, entry
->sign
);
901 return val
>= entry
->min_field_value
;
905 has_cpuid_feature(const struct arm64_cpu_capabilities
*entry
, int scope
)
909 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
910 if (scope
== SCOPE_SYSTEM
)
911 val
= read_sanitised_ftr_reg(entry
->sys_reg
);
913 val
= __read_sysreg_by_encoding(entry
->sys_reg
);
915 return feature_matches(val
, entry
);
918 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities
*entry
, int scope
)
922 if (!has_cpuid_feature(entry
, scope
))
925 has_sre
= gic_enable_sre();
927 pr_warn_once("%s present but disabled by higher exception level\n",
933 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities
*entry
, int __unused
)
935 u32 midr
= read_cpuid_id();
937 /* Cavium ThunderX pass 1.x and 2.x */
938 return midr_is_cpu_model_range(midr
, MIDR_THUNDERX
,
939 MIDR_CPU_VAR_REV(0, 0),
940 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK
));
943 static bool has_no_fpsimd(const struct arm64_cpu_capabilities
*entry
, int __unused
)
945 u64 pfr0
= read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1
);
947 return cpuid_feature_extract_signed_field(pfr0
,
948 ID_AA64PFR0_FP_SHIFT
) < 0;
951 static bool has_cache_idc(const struct arm64_cpu_capabilities
*entry
,
956 if (scope
== SCOPE_SYSTEM
)
957 ctr
= arm64_ftr_reg_ctrel0
.sys_val
;
959 ctr
= read_cpuid_effective_cachetype();
961 return ctr
& BIT(CTR_IDC_SHIFT
);
964 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities
*__unused
)
967 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
968 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
969 * to the CTR_EL0 on this CPU and emulate it with the real/safe
972 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT
)))
973 sysreg_clear_set(sctlr_el1
, SCTLR_EL1_UCT
, 0);
976 static bool has_cache_dic(const struct arm64_cpu_capabilities
*entry
,
981 if (scope
== SCOPE_SYSTEM
)
982 ctr
= arm64_ftr_reg_ctrel0
.sys_val
;
984 ctr
= read_cpuid_cachetype();
986 return ctr
& BIT(CTR_DIC_SHIFT
);
989 static bool __maybe_unused
990 has_useable_cnp(const struct arm64_cpu_capabilities
*entry
, int scope
)
993 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
994 * may share TLB entries with a CPU stuck in the crashed
997 if (is_kdump_kernel())
1000 return has_cpuid_feature(entry
, scope
);
1004 * This check is triggered during the early boot before the cpufeature
1005 * is initialised. Checking the status on the local CPU allows the boot
1006 * CPU to detect the need for non-global mappings and thus avoiding a
1007 * pagetable re-write after all the CPUs are booted. This check will be
1008 * anyway run on individual CPUs, allowing us to get the consistent
1009 * state once the SMP CPUs are up and thus make the switch to non-global
1010 * mappings if required.
1012 bool kaslr_requires_kpti(void)
1014 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE
))
1018 * E0PD does a similar job to KPTI so can be used instead
1021 if (IS_ENABLED(CONFIG_ARM64_E0PD
)) {
1022 u64 mmfr2
= read_sysreg_s(SYS_ID_AA64MMFR2_EL1
);
1023 if (cpuid_feature_extract_unsigned_field(mmfr2
,
1024 ID_AA64MMFR2_E0PD_SHIFT
))
1029 * Systems affected by Cavium erratum 24756 are incompatible
1032 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456
)) {
1033 extern const struct midr_range cavium_erratum_27456_cpus
[];
1035 if (is_midr_in_range_list(read_cpuid_id(),
1036 cavium_erratum_27456_cpus
))
1040 return kaslr_offset() > 0;
1043 static bool __meltdown_safe
= true;
1044 static int __kpti_forced
; /* 0: not forced, >0: forced on, <0: forced off */
1046 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities
*entry
,
1049 /* List of CPUs that are not vulnerable and don't need KPTI */
1050 static const struct midr_range kpti_safe_list
[] = {
1051 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2
),
1052 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN
),
1053 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53
),
1054 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35
),
1055 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53
),
1056 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55
),
1057 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57
),
1058 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72
),
1059 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73
),
1060 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110
),
1061 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL
),
1064 char const *str
= "kpti command line option";
1067 meltdown_safe
= is_midr_in_range_list(read_cpuid_id(), kpti_safe_list
);
1069 /* Defer to CPU feature registers */
1070 if (has_cpuid_feature(entry
, scope
))
1071 meltdown_safe
= true;
1074 __meltdown_safe
= false;
1077 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1078 * ThunderX leads to apparent I-cache corruption of kernel text, which
1079 * ends as well as you might imagine. Don't even try.
1081 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456
)) {
1082 str
= "ARM64_WORKAROUND_CAVIUM_27456";
1086 /* Useful for KASLR robustness */
1087 if (kaslr_requires_kpti()) {
1088 if (!__kpti_forced
) {
1094 if (cpu_mitigations_off() && !__kpti_forced
) {
1095 str
= "mitigations=off";
1099 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0
)) {
1100 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1105 if (__kpti_forced
) {
1106 pr_info_once("kernel page table isolation forced %s by %s\n",
1107 __kpti_forced
> 0 ? "ON" : "OFF", str
);
1108 return __kpti_forced
> 0;
1111 return !meltdown_safe
;
1114 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1116 kpti_install_ng_mappings(const struct arm64_cpu_capabilities
*__unused
)
1118 typedef void (kpti_remap_fn
)(int, int, phys_addr_t
);
1119 extern kpti_remap_fn idmap_kpti_install_ng_mappings
;
1120 kpti_remap_fn
*remap_fn
;
1122 int cpu
= smp_processor_id();
1125 * We don't need to rewrite the page-tables if either we've done
1126 * it already or we have KASLR enabled and therefore have not
1127 * created any global mappings at all.
1129 if (arm64_use_ng_mappings
)
1132 remap_fn
= (void *)__pa_symbol(idmap_kpti_install_ng_mappings
);
1134 cpu_install_idmap();
1135 remap_fn(cpu
, num_online_cpus(), __pa_symbol(swapper_pg_dir
));
1136 cpu_uninstall_idmap();
1139 arm64_use_ng_mappings
= true;
1145 kpti_install_ng_mappings(const struct arm64_cpu_capabilities
*__unused
)
1148 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1150 static int __init
parse_kpti(char *str
)
1153 int ret
= strtobool(str
, &enabled
);
1158 __kpti_forced
= enabled
? 1 : -1;
1161 early_param("kpti", parse_kpti
);
1163 #ifdef CONFIG_ARM64_HW_AFDBM
1164 static inline void __cpu_enable_hw_dbm(void)
1166 u64 tcr
= read_sysreg(tcr_el1
) | TCR_HD
;
1168 write_sysreg(tcr
, tcr_el1
);
1172 static bool cpu_has_broken_dbm(void)
1174 /* List of CPUs which have broken DBM support. */
1175 static const struct midr_range cpus
[] = {
1176 #ifdef CONFIG_ARM64_ERRATUM_1024718
1177 MIDR_RANGE(MIDR_CORTEX_A55
, 0, 0, 1, 0), // A55 r0p0 -r1p0
1182 return is_midr_in_range_list(read_cpuid_id(), cpus
);
1185 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities
*cap
)
1187 return has_cpuid_feature(cap
, SCOPE_LOCAL_CPU
) &&
1188 !cpu_has_broken_dbm();
1191 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities
const *cap
)
1193 if (cpu_can_use_dbm(cap
))
1194 __cpu_enable_hw_dbm();
1197 static bool has_hw_dbm(const struct arm64_cpu_capabilities
*cap
,
1200 static bool detected
= false;
1202 * DBM is a non-conflicting feature. i.e, the kernel can safely
1203 * run a mix of CPUs with and without the feature. So, we
1204 * unconditionally enable the capability to allow any late CPU
1205 * to use the feature. We only enable the control bits on the
1206 * CPU, if it actually supports.
1208 * We have to make sure we print the "feature" detection only
1209 * when at least one CPU actually uses it. So check if this CPU
1210 * can actually use it and print the message exactly once.
1212 * This is safe as all CPUs (including secondary CPUs - due to the
1213 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1214 * goes through the "matches" check exactly once. Also if a CPU
1215 * matches the criteria, it is guaranteed that the CPU will turn
1216 * the DBM on, as the capability is unconditionally enabled.
1218 if (!detected
&& cpu_can_use_dbm(cap
)) {
1220 pr_info("detected: Hardware dirty bit management\n");
1228 #ifdef CONFIG_ARM64_AMU_EXTN
1231 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1232 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1233 * information regarding all the events that it supports. When a CPU bit is
1234 * set in the cpumask, the user of this feature can only rely on the presence
1235 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1236 * counters are enabled or access to these counters is enabled by code
1237 * executed at higher exception levels (firmware).
1239 static struct cpumask amu_cpus __read_mostly
;
1241 bool cpu_has_amu_feat(int cpu
)
1243 return cpumask_test_cpu(cpu
, &amu_cpus
);
1246 /* Initialize the use of AMU counters for frequency invariance */
1247 extern void init_cpu_freq_invariance_counters(void);
1249 static void cpu_amu_enable(struct arm64_cpu_capabilities
const *cap
)
1251 if (has_cpuid_feature(cap
, SCOPE_LOCAL_CPU
)) {
1252 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1253 smp_processor_id());
1254 cpumask_set_cpu(smp_processor_id(), &amu_cpus
);
1255 init_cpu_freq_invariance_counters();
1259 static bool has_amu(const struct arm64_cpu_capabilities
*cap
,
1263 * The AMU extension is a non-conflicting feature: the kernel can
1264 * safely run a mix of CPUs with and without support for the
1265 * activity monitors extension. Therefore, unconditionally enable
1266 * the capability to allow any late CPU to use the feature.
1268 * With this feature unconditionally enabled, the cpu_enable
1269 * function will be called for all CPUs that match the criteria,
1270 * including secondary and hotplugged, marking this feature as
1271 * present on that respective CPU. The enable function will also
1272 * print a detection message.
1279 #ifdef CONFIG_ARM64_VHE
1280 static bool runs_at_el2(const struct arm64_cpu_capabilities
*entry
, int __unused
)
1282 return is_kernel_in_hyp_mode();
1285 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities
*__unused
)
1288 * Copy register values that aren't redirected by hardware.
1290 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1291 * this value to tpidr_el2 before we patch the code. Once we've done
1292 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1295 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN
))
1296 write_sysreg(read_sysreg(tpidr_el1
), tpidr_el2
);
1300 static void cpu_has_fwb(const struct arm64_cpu_capabilities
*__unused
)
1302 u64 val
= read_sysreg_s(SYS_CLIDR_EL1
);
1304 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1305 WARN_ON(val
& (7 << 27 | 7 << 21));
1308 #ifdef CONFIG_ARM64_SSBD
1309 static int ssbs_emulation_handler(struct pt_regs
*regs
, u32 instr
)
1311 if (user_mode(regs
))
1314 if (instr
& BIT(PSTATE_Imm_shift
))
1315 regs
->pstate
|= PSR_SSBS_BIT
;
1317 regs
->pstate
&= ~PSR_SSBS_BIT
;
1319 arm64_skip_faulting_instruction(regs
, 4);
1323 static struct undef_hook ssbs_emulation_hook
= {
1324 .instr_mask
= ~(1U << PSTATE_Imm_shift
),
1325 .instr_val
= 0xd500401f | PSTATE_SSBS
,
1326 .fn
= ssbs_emulation_handler
,
1329 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities
*__unused
)
1331 static bool undef_hook_registered
= false;
1332 static DEFINE_RAW_SPINLOCK(hook_lock
);
1334 raw_spin_lock(&hook_lock
);
1335 if (!undef_hook_registered
) {
1336 register_undef_hook(&ssbs_emulation_hook
);
1337 undef_hook_registered
= true;
1339 raw_spin_unlock(&hook_lock
);
1341 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE
) {
1342 sysreg_clear_set(sctlr_el1
, 0, SCTLR_ELx_DSSBS
);
1343 arm64_set_ssbd_mitigation(false);
1345 arm64_set_ssbd_mitigation(true);
1348 #endif /* CONFIG_ARM64_SSBD */
1350 #ifdef CONFIG_ARM64_PAN
1351 static void cpu_enable_pan(const struct arm64_cpu_capabilities
*__unused
)
1354 * We modify PSTATE. This won't work from irq context as the PSTATE
1355 * is discarded once we return from the exception.
1357 WARN_ON_ONCE(in_interrupt());
1359 sysreg_clear_set(sctlr_el1
, SCTLR_EL1_SPAN
, 0);
1360 asm(SET_PSTATE_PAN(1));
1362 #endif /* CONFIG_ARM64_PAN */
1364 #ifdef CONFIG_ARM64_RAS_EXTN
1365 static void cpu_clear_disr(const struct arm64_cpu_capabilities
*__unused
)
1367 /* Firmware may have left a deferred SError in this register. */
1368 write_sysreg_s(0, SYS_DISR_EL1
);
1370 #endif /* CONFIG_ARM64_RAS_EXTN */
1372 #ifdef CONFIG_ARM64_PTR_AUTH
1373 static bool has_address_auth(const struct arm64_cpu_capabilities
*entry
,
1376 return __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_ARCH
) ||
1377 __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF
);
1380 static bool has_generic_auth(const struct arm64_cpu_capabilities
*entry
,
1383 return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH
) ||
1384 __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF
);
1386 #endif /* CONFIG_ARM64_PTR_AUTH */
1388 #ifdef CONFIG_ARM64_E0PD
1389 static void cpu_enable_e0pd(struct arm64_cpu_capabilities
const *cap
)
1391 if (this_cpu_has_cap(ARM64_HAS_E0PD
))
1392 sysreg_clear_set(tcr_el1
, 0, TCR_E0PD1
);
1394 #endif /* CONFIG_ARM64_E0PD */
1396 #ifdef CONFIG_ARM64_PSEUDO_NMI
1397 static bool enable_pseudo_nmi
;
1399 static int __init
early_enable_pseudo_nmi(char *p
)
1401 return strtobool(p
, &enable_pseudo_nmi
);
1403 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi
);
1405 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities
*entry
,
1408 return enable_pseudo_nmi
&& has_useable_gicv3_cpuif(entry
, scope
);
1412 /* Internal helper functions to match cpu capability type */
1414 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities
*cap
)
1416 return !!(cap
->type
& ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU
);
1420 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities
*cap
)
1422 return !!(cap
->type
& ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU
);
1426 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities
*cap
)
1428 return !!(cap
->type
& ARM64_CPUCAP_PANIC_ON_CONFLICT
);
1431 static const struct arm64_cpu_capabilities arm64_features
[] = {
1433 .desc
= "GIC system register CPU interface",
1434 .capability
= ARM64_HAS_SYSREG_GIC_CPUIF
,
1435 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1436 .matches
= has_useable_gicv3_cpuif
,
1437 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1438 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
1439 .sign
= FTR_UNSIGNED
,
1440 .min_field_value
= 1,
1442 #ifdef CONFIG_ARM64_PAN
1444 .desc
= "Privileged Access Never",
1445 .capability
= ARM64_HAS_PAN
,
1446 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1447 .matches
= has_cpuid_feature
,
1448 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
1449 .field_pos
= ID_AA64MMFR1_PAN_SHIFT
,
1450 .sign
= FTR_UNSIGNED
,
1451 .min_field_value
= 1,
1452 .cpu_enable
= cpu_enable_pan
,
1454 #endif /* CONFIG_ARM64_PAN */
1455 #ifdef CONFIG_ARM64_LSE_ATOMICS
1457 .desc
= "LSE atomic instructions",
1458 .capability
= ARM64_HAS_LSE_ATOMICS
,
1459 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1460 .matches
= has_cpuid_feature
,
1461 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
1462 .field_pos
= ID_AA64ISAR0_ATOMICS_SHIFT
,
1463 .sign
= FTR_UNSIGNED
,
1464 .min_field_value
= 2,
1466 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1468 .desc
= "Software prefetching using PRFM",
1469 .capability
= ARM64_HAS_NO_HW_PREFETCH
,
1470 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1471 .matches
= has_no_hw_prefetch
,
1473 #ifdef CONFIG_ARM64_UAO
1475 .desc
= "User Access Override",
1476 .capability
= ARM64_HAS_UAO
,
1477 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1478 .matches
= has_cpuid_feature
,
1479 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1480 .field_pos
= ID_AA64MMFR2_UAO_SHIFT
,
1481 .min_field_value
= 1,
1483 * We rely on stop_machine() calling uao_thread_switch() to set
1484 * UAO immediately after patching.
1487 #endif /* CONFIG_ARM64_UAO */
1488 #ifdef CONFIG_ARM64_PAN
1490 .capability
= ARM64_ALT_PAN_NOT_UAO
,
1491 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1492 .matches
= cpufeature_pan_not_uao
,
1494 #endif /* CONFIG_ARM64_PAN */
1495 #ifdef CONFIG_ARM64_VHE
1497 .desc
= "Virtualization Host Extensions",
1498 .capability
= ARM64_HAS_VIRT_HOST_EXTN
,
1499 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1500 .matches
= runs_at_el2
,
1501 .cpu_enable
= cpu_copy_el2regs
,
1503 #endif /* CONFIG_ARM64_VHE */
1505 .desc
= "32-bit EL0 Support",
1506 .capability
= ARM64_HAS_32BIT_EL0
,
1507 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1508 .matches
= has_cpuid_feature
,
1509 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1510 .sign
= FTR_UNSIGNED
,
1511 .field_pos
= ID_AA64PFR0_EL0_SHIFT
,
1512 .min_field_value
= ID_AA64PFR0_EL0_32BIT_64BIT
,
1515 .desc
= "Kernel page table isolation (KPTI)",
1516 .capability
= ARM64_UNMAP_KERNEL_AT_EL0
,
1517 .type
= ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE
,
1519 * The ID feature fields below are used to indicate that
1520 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1523 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1524 .field_pos
= ID_AA64PFR0_CSV3_SHIFT
,
1525 .min_field_value
= 1,
1526 .matches
= unmap_kernel_at_el0
,
1527 .cpu_enable
= kpti_install_ng_mappings
,
1530 /* FP/SIMD is not implemented */
1531 .capability
= ARM64_HAS_NO_FPSIMD
,
1532 .type
= ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE
,
1533 .min_field_value
= 0,
1534 .matches
= has_no_fpsimd
,
1536 #ifdef CONFIG_ARM64_PMEM
1538 .desc
= "Data cache clean to Point of Persistence",
1539 .capability
= ARM64_HAS_DCPOP
,
1540 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1541 .matches
= has_cpuid_feature
,
1542 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1543 .field_pos
= ID_AA64ISAR1_DPB_SHIFT
,
1544 .min_field_value
= 1,
1547 .desc
= "Data cache clean to Point of Deep Persistence",
1548 .capability
= ARM64_HAS_DCPODP
,
1549 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1550 .matches
= has_cpuid_feature
,
1551 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1552 .sign
= FTR_UNSIGNED
,
1553 .field_pos
= ID_AA64ISAR1_DPB_SHIFT
,
1554 .min_field_value
= 2,
1557 #ifdef CONFIG_ARM64_SVE
1559 .desc
= "Scalable Vector Extension",
1560 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1561 .capability
= ARM64_SVE
,
1562 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1563 .sign
= FTR_UNSIGNED
,
1564 .field_pos
= ID_AA64PFR0_SVE_SHIFT
,
1565 .min_field_value
= ID_AA64PFR0_SVE
,
1566 .matches
= has_cpuid_feature
,
1567 .cpu_enable
= sve_kernel_enable
,
1569 #endif /* CONFIG_ARM64_SVE */
1570 #ifdef CONFIG_ARM64_RAS_EXTN
1572 .desc
= "RAS Extension Support",
1573 .capability
= ARM64_HAS_RAS_EXTN
,
1574 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1575 .matches
= has_cpuid_feature
,
1576 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1577 .sign
= FTR_UNSIGNED
,
1578 .field_pos
= ID_AA64PFR0_RAS_SHIFT
,
1579 .min_field_value
= ID_AA64PFR0_RAS_V1
,
1580 .cpu_enable
= cpu_clear_disr
,
1582 #endif /* CONFIG_ARM64_RAS_EXTN */
1583 #ifdef CONFIG_ARM64_AMU_EXTN
1586 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1587 * Therefore, don't provide .desc as we don't want the detection
1588 * message to be shown until at least one CPU is detected to
1589 * support the feature.
1591 .capability
= ARM64_HAS_AMU_EXTN
,
1592 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1594 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1595 .sign
= FTR_UNSIGNED
,
1596 .field_pos
= ID_AA64PFR0_AMU_SHIFT
,
1597 .min_field_value
= ID_AA64PFR0_AMU
,
1598 .cpu_enable
= cpu_amu_enable
,
1600 #endif /* CONFIG_ARM64_AMU_EXTN */
1602 .desc
= "Data cache clean to the PoU not required for I/D coherence",
1603 .capability
= ARM64_HAS_CACHE_IDC
,
1604 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1605 .matches
= has_cache_idc
,
1606 .cpu_enable
= cpu_emulate_effective_ctr
,
1609 .desc
= "Instruction cache invalidation not required for I/D coherence",
1610 .capability
= ARM64_HAS_CACHE_DIC
,
1611 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1612 .matches
= has_cache_dic
,
1615 .desc
= "Stage-2 Force Write-Back",
1616 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1617 .capability
= ARM64_HAS_STAGE2_FWB
,
1618 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1619 .sign
= FTR_UNSIGNED
,
1620 .field_pos
= ID_AA64MMFR2_FWB_SHIFT
,
1621 .min_field_value
= 1,
1622 .matches
= has_cpuid_feature
,
1623 .cpu_enable
= cpu_has_fwb
,
1625 #ifdef CONFIG_ARM64_HW_AFDBM
1628 * Since we turn this on always, we don't want the user to
1629 * think that the feature is available when it may not be.
1630 * So hide the description.
1632 * .desc = "Hardware pagetable Dirty Bit Management",
1635 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1636 .capability
= ARM64_HW_DBM
,
1637 .sys_reg
= SYS_ID_AA64MMFR1_EL1
,
1638 .sign
= FTR_UNSIGNED
,
1639 .field_pos
= ID_AA64MMFR1_HADBS_SHIFT
,
1640 .min_field_value
= 2,
1641 .matches
= has_hw_dbm
,
1642 .cpu_enable
= cpu_enable_hw_dbm
,
1646 .desc
= "CRC32 instructions",
1647 .capability
= ARM64_HAS_CRC32
,
1648 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1649 .matches
= has_cpuid_feature
,
1650 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
1651 .field_pos
= ID_AA64ISAR0_CRC32_SHIFT
,
1652 .min_field_value
= 1,
1654 #ifdef CONFIG_ARM64_SSBD
1656 .desc
= "Speculative Store Bypassing Safe (SSBS)",
1657 .capability
= ARM64_SSBS
,
1658 .type
= ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE
,
1659 .matches
= has_cpuid_feature
,
1660 .sys_reg
= SYS_ID_AA64PFR1_EL1
,
1661 .field_pos
= ID_AA64PFR1_SSBS_SHIFT
,
1662 .sign
= FTR_UNSIGNED
,
1663 .min_field_value
= ID_AA64PFR1_SSBS_PSTATE_ONLY
,
1664 .cpu_enable
= cpu_enable_ssbs
,
1667 #ifdef CONFIG_ARM64_CNP
1669 .desc
= "Common not Private translations",
1670 .capability
= ARM64_HAS_CNP
,
1671 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1672 .matches
= has_useable_cnp
,
1673 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1674 .sign
= FTR_UNSIGNED
,
1675 .field_pos
= ID_AA64MMFR2_CNP_SHIFT
,
1676 .min_field_value
= 1,
1677 .cpu_enable
= cpu_enable_cnp
,
1681 .desc
= "Speculation barrier (SB)",
1682 .capability
= ARM64_HAS_SB
,
1683 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1684 .matches
= has_cpuid_feature
,
1685 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1686 .field_pos
= ID_AA64ISAR1_SB_SHIFT
,
1687 .sign
= FTR_UNSIGNED
,
1688 .min_field_value
= 1,
1690 #ifdef CONFIG_ARM64_PTR_AUTH
1692 .desc
= "Address authentication (architected algorithm)",
1693 .capability
= ARM64_HAS_ADDRESS_AUTH_ARCH
,
1694 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
1695 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1696 .sign
= FTR_UNSIGNED
,
1697 .field_pos
= ID_AA64ISAR1_APA_SHIFT
,
1698 .min_field_value
= ID_AA64ISAR1_APA_ARCHITECTED
,
1699 .matches
= has_cpuid_feature
,
1702 .desc
= "Address authentication (IMP DEF algorithm)",
1703 .capability
= ARM64_HAS_ADDRESS_AUTH_IMP_DEF
,
1704 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
1705 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1706 .sign
= FTR_UNSIGNED
,
1707 .field_pos
= ID_AA64ISAR1_API_SHIFT
,
1708 .min_field_value
= ID_AA64ISAR1_API_IMP_DEF
,
1709 .matches
= has_cpuid_feature
,
1712 .capability
= ARM64_HAS_ADDRESS_AUTH
,
1713 .type
= ARM64_CPUCAP_BOOT_CPU_FEATURE
,
1714 .matches
= has_address_auth
,
1717 .desc
= "Generic authentication (architected algorithm)",
1718 .capability
= ARM64_HAS_GENERIC_AUTH_ARCH
,
1719 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1720 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1721 .sign
= FTR_UNSIGNED
,
1722 .field_pos
= ID_AA64ISAR1_GPA_SHIFT
,
1723 .min_field_value
= ID_AA64ISAR1_GPA_ARCHITECTED
,
1724 .matches
= has_cpuid_feature
,
1727 .desc
= "Generic authentication (IMP DEF algorithm)",
1728 .capability
= ARM64_HAS_GENERIC_AUTH_IMP_DEF
,
1729 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1730 .sys_reg
= SYS_ID_AA64ISAR1_EL1
,
1731 .sign
= FTR_UNSIGNED
,
1732 .field_pos
= ID_AA64ISAR1_GPI_SHIFT
,
1733 .min_field_value
= ID_AA64ISAR1_GPI_IMP_DEF
,
1734 .matches
= has_cpuid_feature
,
1737 .capability
= ARM64_HAS_GENERIC_AUTH
,
1738 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1739 .matches
= has_generic_auth
,
1741 #endif /* CONFIG_ARM64_PTR_AUTH */
1742 #ifdef CONFIG_ARM64_PSEUDO_NMI
1745 * Depends on having GICv3
1747 .desc
= "IRQ priority masking",
1748 .capability
= ARM64_HAS_IRQ_PRIO_MASKING
,
1749 .type
= ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE
,
1750 .matches
= can_use_gic_priorities
,
1751 .sys_reg
= SYS_ID_AA64PFR0_EL1
,
1752 .field_pos
= ID_AA64PFR0_GIC_SHIFT
,
1753 .sign
= FTR_UNSIGNED
,
1754 .min_field_value
= 1,
1757 #ifdef CONFIG_ARM64_E0PD
1760 .capability
= ARM64_HAS_E0PD
,
1761 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1762 .sys_reg
= SYS_ID_AA64MMFR2_EL1
,
1763 .sign
= FTR_UNSIGNED
,
1764 .field_pos
= ID_AA64MMFR2_E0PD_SHIFT
,
1765 .matches
= has_cpuid_feature
,
1766 .min_field_value
= 1,
1767 .cpu_enable
= cpu_enable_e0pd
,
1770 #ifdef CONFIG_ARCH_RANDOM
1772 .desc
= "Random Number Generator",
1773 .capability
= ARM64_HAS_RNG
,
1774 .type
= ARM64_CPUCAP_SYSTEM_FEATURE
,
1775 .matches
= has_cpuid_feature
,
1776 .sys_reg
= SYS_ID_AA64ISAR0_EL1
,
1777 .field_pos
= ID_AA64ISAR0_RNDR_SHIFT
,
1778 .sign
= FTR_UNSIGNED
,
1779 .min_field_value
= 1,
1785 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1786 .matches = has_cpuid_feature, \
1788 .field_pos = field, \
1790 .min_field_value = min_value,
1792 #define __HWCAP_CAP(name, cap_type, cap) \
1794 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1795 .hwcap_type = cap_type, \
1798 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1800 __HWCAP_CAP(#cap, cap_type, cap) \
1801 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1804 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
1806 __HWCAP_CAP(#cap, cap_type, cap) \
1807 .matches = cpucap_multi_entry_cap_matches, \
1808 .match_list = list, \
1811 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
1813 __HWCAP_CAP(#cap, cap_type, cap) \
1817 #ifdef CONFIG_ARM64_PTR_AUTH
1818 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches
[] = {
1820 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_APA_SHIFT
,
1821 FTR_UNSIGNED
, ID_AA64ISAR1_APA_ARCHITECTED
)
1824 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_API_SHIFT
,
1825 FTR_UNSIGNED
, ID_AA64ISAR1_API_IMP_DEF
)
1830 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches
[] = {
1832 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_GPA_SHIFT
,
1833 FTR_UNSIGNED
, ID_AA64ISAR1_GPA_ARCHITECTED
)
1836 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_GPI_SHIFT
,
1837 FTR_UNSIGNED
, ID_AA64ISAR1_GPI_IMP_DEF
)
1843 static const struct arm64_cpu_capabilities arm64_elf_hwcaps
[] = {
1844 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_PMULL
),
1845 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_AES
),
1846 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA1
),
1847 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA2
),
1848 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA2_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_SHA512
),
1849 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_CRC32
),
1850 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_ATOMICS_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_ATOMICS
),
1851 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_RDM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDRDM
),
1852 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SHA3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SHA3
),
1853 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM3_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SM3
),
1854 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_SM4_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SM4
),
1855 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_DP_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDDP
),
1856 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_FHM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDFHM
),
1857 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_TS_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FLAGM
),
1858 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_TS_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_FLAGM2
),
1859 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1
, ID_AA64ISAR0_RNDR_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_RNG
),
1860 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, KERNEL_HWCAP_FP
),
1861 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_FP_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FPHP
),
1862 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 0, CAP_HWCAP
, KERNEL_HWCAP_ASIMD
),
1863 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_ASIMD_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_ASIMDHP
),
1864 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_DIT_SHIFT
, FTR_SIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_DIT
),
1865 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DPB_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_DCPOP
),
1866 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DPB_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_DCPODP
),
1867 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_JSCVT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_JSCVT
),
1868 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_FCMA_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FCMA
),
1869 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_LRCPC
),
1870 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_LRCPC_SHIFT
, FTR_UNSIGNED
, 2, CAP_HWCAP
, KERNEL_HWCAP_ILRCPC
),
1871 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_FRINTTS_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_FRINT
),
1872 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_SB_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_SB
),
1873 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_BF16_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_BF16
),
1874 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_DGH_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_DGH
),
1875 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1
, ID_AA64ISAR1_I8MM_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_I8MM
),
1876 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1
, ID_AA64MMFR2_AT_SHIFT
, FTR_UNSIGNED
, 1, CAP_HWCAP
, KERNEL_HWCAP_USCAT
),
1877 #ifdef CONFIG_ARM64_SVE
1878 HWCAP_CAP(SYS_ID_AA64PFR0_EL1
, ID_AA64PFR0_SVE_SHIFT
, FTR_UNSIGNED
, ID_AA64PFR0_SVE
, CAP_HWCAP
, KERNEL_HWCAP_SVE
),
1879 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SVEVER_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SVEVER_SVE2
, CAP_HWCAP
, KERNEL_HWCAP_SVE2
),
1880 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_AES_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_AES
, CAP_HWCAP
, KERNEL_HWCAP_SVEAES
),
1881 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_AES_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_AES_PMULL
, CAP_HWCAP
, KERNEL_HWCAP_SVEPMULL
),
1882 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_BITPERM_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_BITPERM
, CAP_HWCAP
, KERNEL_HWCAP_SVEBITPERM
),
1883 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_BF16_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_BF16
, CAP_HWCAP
, KERNEL_HWCAP_SVEBF16
),
1884 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SHA3_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SHA3
, CAP_HWCAP
, KERNEL_HWCAP_SVESHA3
),
1885 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_SM4_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_SM4
, CAP_HWCAP
, KERNEL_HWCAP_SVESM4
),
1886 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_I8MM_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_I8MM
, CAP_HWCAP
, KERNEL_HWCAP_SVEI8MM
),
1887 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_F32MM_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_F32MM
, CAP_HWCAP
, KERNEL_HWCAP_SVEF32MM
),
1888 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1
, ID_AA64ZFR0_F64MM_SHIFT
, FTR_UNSIGNED
, ID_AA64ZFR0_F64MM
, CAP_HWCAP
, KERNEL_HWCAP_SVEF64MM
),
1890 HWCAP_CAP(SYS_ID_AA64PFR1_EL1
, ID_AA64PFR1_SSBS_SHIFT
, FTR_UNSIGNED
, ID_AA64PFR1_SSBS_PSTATE_INSNS
, CAP_HWCAP
, KERNEL_HWCAP_SSBS
),
1891 #ifdef CONFIG_ARM64_PTR_AUTH
1892 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches
, CAP_HWCAP
, KERNEL_HWCAP_PACA
),
1893 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches
, CAP_HWCAP
, KERNEL_HWCAP_PACG
),
1898 #ifdef CONFIG_COMPAT
1899 static bool compat_has_neon(const struct arm64_cpu_capabilities
*cap
, int scope
)
1902 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
1903 * in line with that of arm32 as in vfp_init(). We make sure that the
1904 * check is future proof, by making sure value is non-zero.
1908 WARN_ON(scope
== SCOPE_LOCAL_CPU
&& preemptible());
1909 if (scope
== SCOPE_SYSTEM
)
1910 mvfr1
= read_sanitised_ftr_reg(SYS_MVFR1_EL1
);
1912 mvfr1
= read_sysreg_s(SYS_MVFR1_EL1
);
1914 return cpuid_feature_extract_unsigned_field(mvfr1
, MVFR1_SIMDSP_SHIFT
) &&
1915 cpuid_feature_extract_unsigned_field(mvfr1
, MVFR1_SIMDINT_SHIFT
) &&
1916 cpuid_feature_extract_unsigned_field(mvfr1
, MVFR1_SIMDLS_SHIFT
);
1920 static const struct arm64_cpu_capabilities compat_elf_hwcaps
[] = {
1921 #ifdef CONFIG_COMPAT
1922 HWCAP_CAP_MATCH(compat_has_neon
, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_NEON
),
1923 HWCAP_CAP(SYS_MVFR1_EL1
, MVFR1_SIMDFMAC_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_VFPv4
),
1924 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
1925 HWCAP_CAP(SYS_MVFR0_EL1
, MVFR0_FPDP_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_VFP
),
1926 HWCAP_CAP(SYS_MVFR0_EL1
, MVFR0_FPDP_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP
, COMPAT_HWCAP_VFPv3
),
1927 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 2, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_PMULL
),
1928 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_AES_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_AES
),
1929 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA1_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA1
),
1930 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_SHA2_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_SHA2
),
1931 HWCAP_CAP(SYS_ID_ISAR5_EL1
, ID_ISAR5_CRC32_SHIFT
, FTR_UNSIGNED
, 1, CAP_COMPAT_HWCAP2
, COMPAT_HWCAP2_CRC32
),
1936 static void __init
cap_set_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1938 switch (cap
->hwcap_type
) {
1940 cpu_set_feature(cap
->hwcap
);
1942 #ifdef CONFIG_COMPAT
1943 case CAP_COMPAT_HWCAP
:
1944 compat_elf_hwcap
|= (u32
)cap
->hwcap
;
1946 case CAP_COMPAT_HWCAP2
:
1947 compat_elf_hwcap2
|= (u32
)cap
->hwcap
;
1956 /* Check if we have a particular HWCAP enabled */
1957 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities
*cap
)
1961 switch (cap
->hwcap_type
) {
1963 rc
= cpu_have_feature(cap
->hwcap
);
1965 #ifdef CONFIG_COMPAT
1966 case CAP_COMPAT_HWCAP
:
1967 rc
= (compat_elf_hwcap
& (u32
)cap
->hwcap
) != 0;
1969 case CAP_COMPAT_HWCAP2
:
1970 rc
= (compat_elf_hwcap2
& (u32
)cap
->hwcap
) != 0;
1981 static void __init
setup_elf_hwcaps(const struct arm64_cpu_capabilities
*hwcaps
)
1983 /* We support emulation of accesses to CPU ID feature registers */
1984 cpu_set_named_feature(CPUID
);
1985 for (; hwcaps
->matches
; hwcaps
++)
1986 if (hwcaps
->matches(hwcaps
, cpucap_default_scope(hwcaps
)))
1987 cap_set_elf_hwcap(hwcaps
);
1990 static void update_cpu_capabilities(u16 scope_mask
)
1993 const struct arm64_cpu_capabilities
*caps
;
1995 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
1996 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
1997 caps
= cpu_hwcaps_ptrs
[i
];
1998 if (!caps
|| !(caps
->type
& scope_mask
) ||
1999 cpus_have_cap(caps
->capability
) ||
2000 !caps
->matches(caps
, cpucap_default_scope(caps
)))
2004 pr_info("detected: %s\n", caps
->desc
);
2005 cpus_set_cap(caps
->capability
);
2007 if ((scope_mask
& SCOPE_BOOT_CPU
) && (caps
->type
& SCOPE_BOOT_CPU
))
2008 set_bit(caps
->capability
, boot_capabilities
);
2013 * Enable all the available capabilities on this CPU. The capabilities
2014 * with BOOT_CPU scope are handled separately and hence skipped here.
2016 static int cpu_enable_non_boot_scope_capabilities(void *__unused
)
2019 u16 non_boot_scope
= SCOPE_ALL
& ~SCOPE_BOOT_CPU
;
2021 for_each_available_cap(i
) {
2022 const struct arm64_cpu_capabilities
*cap
= cpu_hwcaps_ptrs
[i
];
2027 if (!(cap
->type
& non_boot_scope
))
2030 if (cap
->cpu_enable
)
2031 cap
->cpu_enable(cap
);
2037 * Run through the enabled capabilities and enable() it on all active
2040 static void __init
enable_cpu_capabilities(u16 scope_mask
)
2043 const struct arm64_cpu_capabilities
*caps
;
2046 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
2047 boot_scope
= !!(scope_mask
& SCOPE_BOOT_CPU
);
2049 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
2052 caps
= cpu_hwcaps_ptrs
[i
];
2053 if (!caps
|| !(caps
->type
& scope_mask
))
2055 num
= caps
->capability
;
2056 if (!cpus_have_cap(num
))
2059 /* Ensure cpus_have_const_cap(num) works */
2060 static_branch_enable(&cpu_hwcap_keys
[num
]);
2062 if (boot_scope
&& caps
->cpu_enable
)
2064 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2065 * before any secondary CPU boots. Thus, each secondary
2066 * will enable the capability as appropriate via
2067 * check_local_cpu_capabilities(). The only exception is
2068 * the boot CPU, for which the capability must be
2069 * enabled here. This approach avoids costly
2070 * stop_machine() calls for this case.
2072 caps
->cpu_enable(caps
);
2076 * For all non-boot scope capabilities, use stop_machine()
2077 * as it schedules the work allowing us to modify PSTATE,
2078 * instead of on_each_cpu() which uses an IPI, giving us a
2079 * PSTATE that disappears when we return.
2082 stop_machine(cpu_enable_non_boot_scope_capabilities
,
2083 NULL
, cpu_online_mask
);
2087 * Run through the list of capabilities to check for conflicts.
2088 * If the system has already detected a capability, take necessary
2089 * action on this CPU.
2091 static void verify_local_cpu_caps(u16 scope_mask
)
2094 bool cpu_has_cap
, system_has_cap
;
2095 const struct arm64_cpu_capabilities
*caps
;
2097 scope_mask
&= ARM64_CPUCAP_SCOPE_MASK
;
2099 for (i
= 0; i
< ARM64_NCAPS
; i
++) {
2100 caps
= cpu_hwcaps_ptrs
[i
];
2101 if (!caps
|| !(caps
->type
& scope_mask
))
2104 cpu_has_cap
= caps
->matches(caps
, SCOPE_LOCAL_CPU
);
2105 system_has_cap
= cpus_have_cap(caps
->capability
);
2107 if (system_has_cap
) {
2109 * Check if the new CPU misses an advertised feature,
2110 * which is not safe to miss.
2112 if (!cpu_has_cap
&& !cpucap_late_cpu_optional(caps
))
2115 * We have to issue cpu_enable() irrespective of
2116 * whether the CPU has it or not, as it is enabeld
2117 * system wide. It is upto the call back to take
2118 * appropriate action on this CPU.
2120 if (caps
->cpu_enable
)
2121 caps
->cpu_enable(caps
);
2124 * Check if the CPU has this capability if it isn't
2125 * safe to have when the system doesn't.
2127 if (cpu_has_cap
&& !cpucap_late_cpu_permitted(caps
))
2132 if (i
< ARM64_NCAPS
) {
2133 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2134 smp_processor_id(), caps
->capability
,
2135 caps
->desc
, system_has_cap
, cpu_has_cap
);
2137 if (cpucap_panic_on_conflict(caps
))
2145 * Check for CPU features that are used in early boot
2146 * based on the Boot CPU value.
2148 static void check_early_cpu_features(void)
2150 verify_cpu_asid_bits();
2152 verify_local_cpu_caps(SCOPE_BOOT_CPU
);
2156 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities
*caps
)
2159 for (; caps
->matches
; caps
++)
2160 if (cpus_have_elf_hwcap(caps
) && !caps
->matches(caps
, SCOPE_LOCAL_CPU
)) {
2161 pr_crit("CPU%d: missing HWCAP: %s\n",
2162 smp_processor_id(), caps
->desc
);
2167 static void verify_sve_features(void)
2169 u64 safe_zcr
= read_sanitised_ftr_reg(SYS_ZCR_EL1
);
2170 u64 zcr
= read_zcr_features();
2172 unsigned int safe_len
= safe_zcr
& ZCR_ELx_LEN_MASK
;
2173 unsigned int len
= zcr
& ZCR_ELx_LEN_MASK
;
2175 if (len
< safe_len
|| sve_verify_vq_map()) {
2176 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2177 smp_processor_id());
2181 /* Add checks on other ZCR bits here if necessary */
2186 * Run through the enabled system capabilities and enable() it on this CPU.
2187 * The capabilities were decided based on the available CPUs at the boot time.
2188 * Any new CPU should match the system wide status of the capability. If the
2189 * new CPU doesn't have a capability which the system now has enabled, we
2190 * cannot do anything to fix it up and could cause unexpected failures. So
2193 static void verify_local_cpu_capabilities(void)
2196 * The capabilities with SCOPE_BOOT_CPU are checked from
2197 * check_early_cpu_features(), as they need to be verified
2198 * on all secondary CPUs.
2200 verify_local_cpu_caps(SCOPE_ALL
& ~SCOPE_BOOT_CPU
);
2202 verify_local_elf_hwcaps(arm64_elf_hwcaps
);
2204 if (system_supports_32bit_el0())
2205 verify_local_elf_hwcaps(compat_elf_hwcaps
);
2207 if (system_supports_sve())
2208 verify_sve_features();
2211 void check_local_cpu_capabilities(void)
2214 * All secondary CPUs should conform to the early CPU features
2215 * in use by the kernel based on boot CPU.
2217 check_early_cpu_features();
2220 * If we haven't finalised the system capabilities, this CPU gets
2221 * a chance to update the errata work arounds and local features.
2222 * Otherwise, this CPU should verify that it has all the system
2223 * advertised capabilities.
2225 if (!system_capabilities_finalized())
2226 update_cpu_capabilities(SCOPE_LOCAL_CPU
);
2228 verify_local_cpu_capabilities();
2231 static void __init
setup_boot_cpu_capabilities(void)
2233 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2234 update_cpu_capabilities(SCOPE_BOOT_CPU
| SCOPE_LOCAL_CPU
);
2235 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2236 enable_cpu_capabilities(SCOPE_BOOT_CPU
);
2239 bool this_cpu_has_cap(unsigned int n
)
2241 if (!WARN_ON(preemptible()) && n
< ARM64_NCAPS
) {
2242 const struct arm64_cpu_capabilities
*cap
= cpu_hwcaps_ptrs
[n
];
2245 return cap
->matches(cap
, SCOPE_LOCAL_CPU
);
2252 * This helper function is used in a narrow window when,
2253 * - The system wide safe registers are set with all the SMP CPUs and,
2254 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2255 * In all other cases cpus_have_{const_}cap() should be used.
2257 static bool __system_matches_cap(unsigned int n
)
2259 if (n
< ARM64_NCAPS
) {
2260 const struct arm64_cpu_capabilities
*cap
= cpu_hwcaps_ptrs
[n
];
2263 return cap
->matches(cap
, SCOPE_SYSTEM
);
2268 void cpu_set_feature(unsigned int num
)
2270 WARN_ON(num
>= MAX_CPU_FEATURES
);
2271 elf_hwcap
|= BIT(num
);
2273 EXPORT_SYMBOL_GPL(cpu_set_feature
);
2275 bool cpu_have_feature(unsigned int num
)
2277 WARN_ON(num
>= MAX_CPU_FEATURES
);
2278 return elf_hwcap
& BIT(num
);
2280 EXPORT_SYMBOL_GPL(cpu_have_feature
);
2282 unsigned long cpu_get_elf_hwcap(void)
2285 * We currently only populate the first 32 bits of AT_HWCAP. Please
2286 * note that for userspace compatibility we guarantee that bits 62
2287 * and 63 will always be returned as 0.
2289 return lower_32_bits(elf_hwcap
);
2292 unsigned long cpu_get_elf_hwcap2(void)
2294 return upper_32_bits(elf_hwcap
);
2297 static void __init
setup_system_capabilities(void)
2300 * We have finalised the system-wide safe feature
2301 * registers, finalise the capabilities that depend
2302 * on it. Also enable all the available capabilities,
2303 * that are not enabled already.
2305 update_cpu_capabilities(SCOPE_SYSTEM
);
2306 enable_cpu_capabilities(SCOPE_ALL
& ~SCOPE_BOOT_CPU
);
2309 void __init
setup_cpu_features(void)
2313 setup_system_capabilities();
2314 setup_elf_hwcaps(arm64_elf_hwcaps
);
2316 if (system_supports_32bit_el0())
2317 setup_elf_hwcaps(compat_elf_hwcaps
);
2319 if (system_uses_ttbr0_pan())
2320 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2323 minsigstksz_setup();
2325 /* Advertise that we have computed the system capabilities */
2326 finalize_system_capabilities();
2329 * Check for sane CTR_EL0.CWG value.
2331 cwg
= cache_type_cwg();
2333 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2337 static bool __maybe_unused
2338 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities
*entry
, int __unused
)
2340 return (__system_matches_cap(ARM64_HAS_PAN
) && !__system_matches_cap(ARM64_HAS_UAO
));
2343 static void __maybe_unused
cpu_enable_cnp(struct arm64_cpu_capabilities
const *cap
)
2345 cpu_replace_ttbr1(lm_alias(swapper_pg_dir
));
2349 * We emulate only the following system register space.
2350 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2351 * See Table C5-6 System instruction encodings for System register accesses,
2352 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2354 static inline bool __attribute_const__
is_emulated(u32 id
)
2356 return (sys_reg_Op0(id
) == 0x3 &&
2357 sys_reg_CRn(id
) == 0x0 &&
2358 sys_reg_Op1(id
) == 0x0 &&
2359 (sys_reg_CRm(id
) == 0 ||
2360 ((sys_reg_CRm(id
) >= 4) && (sys_reg_CRm(id
) <= 7))));
2364 * With CRm == 0, reg should be one of :
2365 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2367 static inline int emulate_id_reg(u32 id
, u64
*valp
)
2371 *valp
= read_cpuid_id();
2374 *valp
= SYS_MPIDR_SAFE_VAL
;
2376 case SYS_REVIDR_EL1
:
2377 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2387 static int emulate_sys_reg(u32 id
, u64
*valp
)
2389 struct arm64_ftr_reg
*regp
;
2391 if (!is_emulated(id
))
2394 if (sys_reg_CRm(id
) == 0)
2395 return emulate_id_reg(id
, valp
);
2397 regp
= get_arm64_ftr_reg(id
);
2399 *valp
= arm64_ftr_reg_user_value(regp
);
2402 * The untracked registers are either IMPLEMENTATION DEFINED
2403 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2409 int do_emulate_mrs(struct pt_regs
*regs
, u32 sys_reg
, u32 rt
)
2414 rc
= emulate_sys_reg(sys_reg
, &val
);
2416 pt_regs_write_reg(regs
, rt
, val
);
2417 arm64_skip_faulting_instruction(regs
, AARCH64_INSN_SIZE
);
2422 static int emulate_mrs(struct pt_regs
*regs
, u32 insn
)
2427 * sys_reg values are defined as used in mrs/msr instruction.
2428 * shift the imm value to get the encoding.
2430 sys_reg
= (u32
)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16
, insn
) << 5;
2431 rt
= aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT
, insn
);
2432 return do_emulate_mrs(regs
, sys_reg
, rt
);
2435 static struct undef_hook mrs_hook
= {
2436 .instr_mask
= 0xfff00000,
2437 .instr_val
= 0xd5300000,
2438 .pstate_mask
= PSR_AA32_MODE_MASK
,
2439 .pstate_val
= PSR_MODE_EL0t
,
2443 static int __init
enable_mrs_emulation(void)
2445 register_undef_hook(&mrs_hook
);
2449 core_initcall(enable_mrs_emulation
);
2451 ssize_t
cpu_show_meltdown(struct device
*dev
, struct device_attribute
*attr
,
2454 if (__meltdown_safe
)
2455 return sprintf(buf
, "Not affected\n");
2457 if (arm64_kernel_unmapped_at_el0())
2458 return sprintf(buf
, "Mitigation: PTI\n");
2460 return sprintf(buf
, "Vulnerable\n");