gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / arch / arm64 / kernel / cpufeature.c
blob9fac745aa7bb248771bf113c7b3e8539707af51a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Contains CPU feature definitions
5 * Copyright (C) 2015 ARM Ltd.
6 */
8 #define pr_fmt(fmt) "CPU features: " fmt
10 #include <linux/bsearch.h>
11 #include <linux/cpumask.h>
12 #include <linux/crash_dump.h>
13 #include <linux/sort.h>
14 #include <linux/stop_machine.h>
15 #include <linux/types.h>
16 #include <linux/mm.h>
17 #include <linux/cpu.h>
18 #include <asm/cpu.h>
19 #include <asm/cpufeature.h>
20 #include <asm/cpu_ops.h>
21 #include <asm/fpsimd.h>
22 #include <asm/mmu_context.h>
23 #include <asm/processor.h>
24 #include <asm/sysreg.h>
25 #include <asm/traps.h>
26 #include <asm/virt.h>
28 /* Kernel representation of AT_HWCAP and AT_HWCAP2 */
29 static unsigned long elf_hwcap __read_mostly;
31 #ifdef CONFIG_COMPAT
32 #define COMPAT_ELF_HWCAP_DEFAULT \
33 (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
34 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
35 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
36 COMPAT_HWCAP_LPAE)
37 unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
38 unsigned int compat_elf_hwcap2 __read_mostly;
39 #endif
41 DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
42 EXPORT_SYMBOL(cpu_hwcaps);
43 static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
45 /* Need also bit for ARM64_CB_PATCH */
46 DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
48 bool arm64_use_ng_mappings = false;
49 EXPORT_SYMBOL(arm64_use_ng_mappings);
52 * Flag to indicate if we have computed the system wide
53 * capabilities based on the boot time active CPUs. This
54 * will be used to determine if a new booting CPU should
55 * go through the verification process to make sure that it
56 * supports the system capabilities, without using a hotplug
57 * notifier. This is also used to decide if we could use
58 * the fast path for checking constant CPU caps.
60 DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
61 EXPORT_SYMBOL(arm64_const_caps_ready);
62 static inline void finalize_system_capabilities(void)
64 static_branch_enable(&arm64_const_caps_ready);
67 static int dump_cpu_hwcaps(struct notifier_block *self, unsigned long v, void *p)
69 /* file-wide pr_fmt adds "CPU features: " prefix */
70 pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
71 return 0;
74 static struct notifier_block cpu_hwcaps_notifier = {
75 .notifier_call = dump_cpu_hwcaps
78 static int __init register_cpu_hwcaps_dumper(void)
80 atomic_notifier_chain_register(&panic_notifier_list,
81 &cpu_hwcaps_notifier);
82 return 0;
84 __initcall(register_cpu_hwcaps_dumper);
86 DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
87 EXPORT_SYMBOL(cpu_hwcap_keys);
89 #define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
90 { \
91 .sign = SIGNED, \
92 .visible = VISIBLE, \
93 .strict = STRICT, \
94 .type = TYPE, \
95 .shift = SHIFT, \
96 .width = WIDTH, \
97 .safe_val = SAFE_VAL, \
100 /* Define a feature with unsigned values */
101 #define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
102 __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
104 /* Define a feature with a signed value */
105 #define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
106 __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
108 #define ARM64_FTR_END \
110 .width = 0, \
113 /* meta feature for alternatives */
114 static bool __maybe_unused
115 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused);
117 static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
119 static bool __system_matches_cap(unsigned int n);
122 * NOTE: Any changes to the visibility of features should be kept in
123 * sync with the documentation of the CPU feature register ABI.
125 static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
126 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
127 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
128 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
129 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
130 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
131 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
132 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
133 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
134 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
135 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
136 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
137 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
138 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
139 ARM64_FTR_END,
142 static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
143 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
144 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
145 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
146 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
147 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
148 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
149 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
150 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
151 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
152 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
153 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
154 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
155 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
156 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
157 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_API_SHIFT, 4, 0),
158 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
159 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_APA_SHIFT, 4, 0),
160 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
161 ARM64_FTR_END,
164 static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
165 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
166 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
167 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
168 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
169 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
170 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
171 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
172 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
173 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
174 S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
175 /* Linux doesn't care about the EL3 */
176 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
177 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
178 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
179 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
180 ARM64_FTR_END,
183 static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
184 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
185 ARM64_FTR_END,
188 static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
189 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
190 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
191 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
192 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
193 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
194 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
195 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
196 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
197 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
198 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
199 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
200 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
201 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
202 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
203 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
204 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
205 ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
206 FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
207 ARM64_FTR_END,
210 static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
212 * We already refuse to boot CPUs that don't support our configured
213 * page size, so we can only detect mismatches for a page size other
214 * than the one we're currently using. Unfortunately, SoCs like this
215 * exist in the wild so, even though we don't like it, we'll have to go
216 * along with it and treat them as non-strict.
218 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
219 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
220 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
222 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
223 /* Linux shouldn't care about secure memory */
224 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
225 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
226 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
228 * Differing PARange is fine as long as all peripherals and memory are mapped
229 * within the minimum PARange of all CPUs
231 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
232 ARM64_FTR_END,
235 static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
236 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
237 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
238 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
239 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
240 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
241 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
242 ARM64_FTR_END,
245 static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
246 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
247 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
248 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
249 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
250 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
251 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
252 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
253 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
254 ARM64_FTR_END,
257 static const struct arm64_ftr_bits ftr_ctr[] = {
258 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
259 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
260 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
261 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
262 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
263 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
265 * Linux can handle differing I-cache policies. Userspace JITs will
266 * make use of *minLine.
267 * If we have differing I-cache policies, report it as the weakest - VIPT.
269 ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, 14, 2, ICACHE_POLICY_VIPT), /* L1Ip */
270 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
271 ARM64_FTR_END,
274 struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
275 .name = "SYS_CTR_EL0",
276 .ftr_bits = ftr_ctr
279 static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
280 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0xf), /* InnerShr */
281 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0), /* FCSE */
282 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, 20, 4, 0), /* AuxReg */
283 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0), /* TCM */
284 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* ShareLvl */
285 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0xf), /* OuterShr */
286 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* PMSA */
287 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* VMSA */
288 ARM64_FTR_END,
291 static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
292 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 36, 28, 0),
293 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
294 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
295 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
296 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
298 * We can instantiate multiple PMU instances with different levels
299 * of support.
301 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
302 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
303 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
304 ARM64_FTR_END,
307 static const struct arm64_ftr_bits ftr_mvfr2[] = {
308 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* FPMisc */
309 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* SIMDMisc */
310 ARM64_FTR_END,
313 static const struct arm64_ftr_bits ftr_dczid[] = {
314 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 4, 1, 1), /* DZP */
315 ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* BS */
316 ARM64_FTR_END,
320 static const struct arm64_ftr_bits ftr_id_isar5[] = {
321 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
322 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
323 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
324 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
325 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
326 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
327 ARM64_FTR_END,
330 static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
331 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* ac2 */
332 ARM64_FTR_END,
335 static const struct arm64_ftr_bits ftr_id_isar6[] = {
336 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
337 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
338 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
339 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
340 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
341 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
342 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
343 ARM64_FTR_END,
346 static const struct arm64_ftr_bits ftr_id_pfr0[] = {
347 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0), /* State3 */
348 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0), /* State2 */
349 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0), /* State1 */
350 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0), /* State0 */
351 ARM64_FTR_END,
354 static const struct arm64_ftr_bits ftr_id_dfr0[] = {
355 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
356 S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0xf), /* PerfMon */
357 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
358 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
359 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
360 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
361 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
362 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
363 ARM64_FTR_END,
366 static const struct arm64_ftr_bits ftr_zcr[] = {
367 ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
368 ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0), /* LEN */
369 ARM64_FTR_END,
373 * Common ftr bits for a 32bit register with all hidden, strict
374 * attributes, with 4bit feature fields and a default safe value of
375 * 0. Covers the following 32bit registers:
376 * id_isar[0-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
378 static const struct arm64_ftr_bits ftr_generic_32bits[] = {
379 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
380 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
381 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
382 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
383 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
384 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
385 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
386 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
387 ARM64_FTR_END,
390 /* Table for a single 32bit feature value */
391 static const struct arm64_ftr_bits ftr_single32[] = {
392 ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
393 ARM64_FTR_END,
396 static const struct arm64_ftr_bits ftr_raz[] = {
397 ARM64_FTR_END,
400 #define ARM64_FTR_REG(id, table) { \
401 .sys_id = id, \
402 .reg = &(struct arm64_ftr_reg){ \
403 .name = #id, \
404 .ftr_bits = &((table)[0]), \
407 static const struct __ftr_reg_entry {
408 u32 sys_id;
409 struct arm64_ftr_reg *reg;
410 } arm64_ftr_regs[] = {
412 /* Op1 = 0, CRn = 0, CRm = 1 */
413 ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
414 ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_generic_32bits),
415 ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
416 ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
417 ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
418 ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
419 ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
421 /* Op1 = 0, CRn = 0, CRm = 2 */
422 ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_generic_32bits),
423 ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
424 ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
425 ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
426 ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_generic_32bits),
427 ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
428 ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
429 ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
431 /* Op1 = 0, CRn = 0, CRm = 3 */
432 ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
433 ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
434 ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
436 /* Op1 = 0, CRn = 0, CRm = 4 */
437 ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
438 ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
439 ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
441 /* Op1 = 0, CRn = 0, CRm = 5 */
442 ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
443 ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
445 /* Op1 = 0, CRn = 0, CRm = 6 */
446 ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
447 ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
449 /* Op1 = 0, CRn = 0, CRm = 7 */
450 ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
451 ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
452 ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
454 /* Op1 = 0, CRn = 1, CRm = 2 */
455 ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
457 /* Op1 = 3, CRn = 0, CRm = 0 */
458 { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
459 ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
461 /* Op1 = 3, CRn = 14, CRm = 0 */
462 ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
465 static int search_cmp_ftr_reg(const void *id, const void *regp)
467 return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
471 * get_arm64_ftr_reg - Lookup a feature register entry using its
472 * sys_reg() encoding. With the array arm64_ftr_regs sorted in the
473 * ascending order of sys_id , we use binary search to find a matching
474 * entry.
476 * returns - Upon success, matching ftr_reg entry for id.
477 * - NULL on failure. It is upto the caller to decide
478 * the impact of a failure.
480 static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
482 const struct __ftr_reg_entry *ret;
484 ret = bsearch((const void *)(unsigned long)sys_id,
485 arm64_ftr_regs,
486 ARRAY_SIZE(arm64_ftr_regs),
487 sizeof(arm64_ftr_regs[0]),
488 search_cmp_ftr_reg);
489 if (ret)
490 return ret->reg;
491 return NULL;
494 static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
495 s64 ftr_val)
497 u64 mask = arm64_ftr_mask(ftrp);
499 reg &= ~mask;
500 reg |= (ftr_val << ftrp->shift) & mask;
501 return reg;
504 static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
505 s64 cur)
507 s64 ret = 0;
509 switch (ftrp->type) {
510 case FTR_EXACT:
511 ret = ftrp->safe_val;
512 break;
513 case FTR_LOWER_SAFE:
514 ret = new < cur ? new : cur;
515 break;
516 case FTR_HIGHER_OR_ZERO_SAFE:
517 if (!cur || !new)
518 break;
519 /* Fallthrough */
520 case FTR_HIGHER_SAFE:
521 ret = new > cur ? new : cur;
522 break;
523 default:
524 BUG();
527 return ret;
530 static void __init sort_ftr_regs(void)
532 int i;
534 /* Check that the array is sorted so that we can do the binary search */
535 for (i = 1; i < ARRAY_SIZE(arm64_ftr_regs); i++)
536 BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
540 * Initialise the CPU feature register from Boot CPU values.
541 * Also initiliases the strict_mask for the register.
542 * Any bits that are not covered by an arm64_ftr_bits entry are considered
543 * RES0 for the system-wide value, and must strictly match.
545 static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
547 u64 val = 0;
548 u64 strict_mask = ~0x0ULL;
549 u64 user_mask = 0;
550 u64 valid_mask = 0;
552 const struct arm64_ftr_bits *ftrp;
553 struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
555 BUG_ON(!reg);
557 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
558 u64 ftr_mask = arm64_ftr_mask(ftrp);
559 s64 ftr_new = arm64_ftr_value(ftrp, new);
561 val = arm64_ftr_set_value(ftrp, val, ftr_new);
563 valid_mask |= ftr_mask;
564 if (!ftrp->strict)
565 strict_mask &= ~ftr_mask;
566 if (ftrp->visible)
567 user_mask |= ftr_mask;
568 else
569 reg->user_val = arm64_ftr_set_value(ftrp,
570 reg->user_val,
571 ftrp->safe_val);
574 val &= valid_mask;
576 reg->sys_val = val;
577 reg->strict_mask = strict_mask;
578 reg->user_mask = user_mask;
581 extern const struct arm64_cpu_capabilities arm64_errata[];
582 static const struct arm64_cpu_capabilities arm64_features[];
584 static void __init
585 init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
587 for (; caps->matches; caps++) {
588 if (WARN(caps->capability >= ARM64_NCAPS,
589 "Invalid capability %d\n", caps->capability))
590 continue;
591 if (WARN(cpu_hwcaps_ptrs[caps->capability],
592 "Duplicate entry for capability %d\n",
593 caps->capability))
594 continue;
595 cpu_hwcaps_ptrs[caps->capability] = caps;
599 static void __init init_cpu_hwcaps_indirect_list(void)
601 init_cpu_hwcaps_indirect_list_from_array(arm64_features);
602 init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
605 static void __init setup_boot_cpu_capabilities(void);
607 void __init init_cpu_features(struct cpuinfo_arm64 *info)
609 /* Before we start using the tables, make sure it is sorted */
610 sort_ftr_regs();
612 init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
613 init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
614 init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
615 init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
616 init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
617 init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
618 init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
619 init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
620 init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
621 init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
622 init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
623 init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
624 init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
626 if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
627 init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
628 init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
629 init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
630 init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
631 init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
632 init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
633 init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
634 init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
635 init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
636 init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
637 init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
638 init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
639 init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
640 init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
641 init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
642 init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
643 init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
646 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
647 init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
648 sve_init_vq_map();
652 * Initialize the indirect array of CPU hwcaps capabilities pointers
653 * before we handle the boot CPU below.
655 init_cpu_hwcaps_indirect_list();
658 * Detect and enable early CPU capabilities based on the boot CPU,
659 * after we have initialised the CPU feature infrastructure.
661 setup_boot_cpu_capabilities();
664 static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
666 const struct arm64_ftr_bits *ftrp;
668 for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
669 s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
670 s64 ftr_new = arm64_ftr_value(ftrp, new);
672 if (ftr_cur == ftr_new)
673 continue;
674 /* Find a safe value */
675 ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
676 reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
681 static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
683 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
685 BUG_ON(!regp);
686 update_cpu_ftr_reg(regp, val);
687 if ((boot & regp->strict_mask) == (val & regp->strict_mask))
688 return 0;
689 pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
690 regp->name, boot, cpu, val);
691 return 1;
695 * Update system wide CPU feature registers with the values from a
696 * non-boot CPU. Also performs SANITY checks to make sure that there
697 * aren't any insane variations from that of the boot CPU.
699 void update_cpu_features(int cpu,
700 struct cpuinfo_arm64 *info,
701 struct cpuinfo_arm64 *boot)
703 int taint = 0;
706 * The kernel can handle differing I-cache policies, but otherwise
707 * caches should look identical. Userspace JITs will make use of
708 * *minLine.
710 taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
711 info->reg_ctr, boot->reg_ctr);
714 * Userspace may perform DC ZVA instructions. Mismatched block sizes
715 * could result in too much or too little memory being zeroed if a
716 * process is preempted and migrated between CPUs.
718 taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
719 info->reg_dczid, boot->reg_dczid);
721 /* If different, timekeeping will be broken (especially with KVM) */
722 taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
723 info->reg_cntfrq, boot->reg_cntfrq);
726 * The kernel uses self-hosted debug features and expects CPUs to
727 * support identical debug features. We presently need CTX_CMPs, WRPs,
728 * and BRPs to be identical.
729 * ID_AA64DFR1 is currently RES0.
731 taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
732 info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
733 taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
734 info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
736 * Even in big.LITTLE, processors should be identical instruction-set
737 * wise.
739 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
740 info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
741 taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
742 info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
745 * Differing PARange support is fine as long as all peripherals and
746 * memory are mapped within the minimum PARange of all CPUs.
747 * Linux should not care about secure memory.
749 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
750 info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
751 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
752 info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
753 taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
754 info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
757 * EL3 is not our concern.
759 taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
760 info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
761 taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
762 info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
764 taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
765 info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
768 * If we have AArch32, we care about 32-bit features for compat.
769 * If the system doesn't support AArch32, don't update them.
771 if (id_aa64pfr0_32bit_el0(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
772 id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
774 taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
775 info->reg_id_dfr0, boot->reg_id_dfr0);
776 taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
777 info->reg_id_isar0, boot->reg_id_isar0);
778 taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
779 info->reg_id_isar1, boot->reg_id_isar1);
780 taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
781 info->reg_id_isar2, boot->reg_id_isar2);
782 taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
783 info->reg_id_isar3, boot->reg_id_isar3);
784 taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
785 info->reg_id_isar4, boot->reg_id_isar4);
786 taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
787 info->reg_id_isar5, boot->reg_id_isar5);
788 taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
789 info->reg_id_isar6, boot->reg_id_isar6);
792 * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
793 * ACTLR formats could differ across CPUs and therefore would have to
794 * be trapped for virtualization anyway.
796 taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
797 info->reg_id_mmfr0, boot->reg_id_mmfr0);
798 taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
799 info->reg_id_mmfr1, boot->reg_id_mmfr1);
800 taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
801 info->reg_id_mmfr2, boot->reg_id_mmfr2);
802 taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
803 info->reg_id_mmfr3, boot->reg_id_mmfr3);
804 taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
805 info->reg_id_pfr0, boot->reg_id_pfr0);
806 taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
807 info->reg_id_pfr1, boot->reg_id_pfr1);
808 taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
809 info->reg_mvfr0, boot->reg_mvfr0);
810 taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
811 info->reg_mvfr1, boot->reg_mvfr1);
812 taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
813 info->reg_mvfr2, boot->reg_mvfr2);
816 if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
817 taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
818 info->reg_zcr, boot->reg_zcr);
820 /* Probe vector lengths, unless we already gave up on SVE */
821 if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
822 !system_capabilities_finalized())
823 sve_update_vq_map();
827 * Mismatched CPU features are a recipe for disaster. Don't even
828 * pretend to support them.
830 if (taint) {
831 pr_warn_once("Unsupported CPU feature variation detected.\n");
832 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
836 u64 read_sanitised_ftr_reg(u32 id)
838 struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
840 /* We shouldn't get a request for an unsupported register */
841 BUG_ON(!regp);
842 return regp->sys_val;
845 #define read_sysreg_case(r) \
846 case r: return read_sysreg_s(r)
849 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
850 * Read the system register on the current CPU
852 static u64 __read_sysreg_by_encoding(u32 sys_id)
854 switch (sys_id) {
855 read_sysreg_case(SYS_ID_PFR0_EL1);
856 read_sysreg_case(SYS_ID_PFR1_EL1);
857 read_sysreg_case(SYS_ID_DFR0_EL1);
858 read_sysreg_case(SYS_ID_MMFR0_EL1);
859 read_sysreg_case(SYS_ID_MMFR1_EL1);
860 read_sysreg_case(SYS_ID_MMFR2_EL1);
861 read_sysreg_case(SYS_ID_MMFR3_EL1);
862 read_sysreg_case(SYS_ID_ISAR0_EL1);
863 read_sysreg_case(SYS_ID_ISAR1_EL1);
864 read_sysreg_case(SYS_ID_ISAR2_EL1);
865 read_sysreg_case(SYS_ID_ISAR3_EL1);
866 read_sysreg_case(SYS_ID_ISAR4_EL1);
867 read_sysreg_case(SYS_ID_ISAR5_EL1);
868 read_sysreg_case(SYS_ID_ISAR6_EL1);
869 read_sysreg_case(SYS_MVFR0_EL1);
870 read_sysreg_case(SYS_MVFR1_EL1);
871 read_sysreg_case(SYS_MVFR2_EL1);
873 read_sysreg_case(SYS_ID_AA64PFR0_EL1);
874 read_sysreg_case(SYS_ID_AA64PFR1_EL1);
875 read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
876 read_sysreg_case(SYS_ID_AA64DFR0_EL1);
877 read_sysreg_case(SYS_ID_AA64DFR1_EL1);
878 read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
879 read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
880 read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
881 read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
882 read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
884 read_sysreg_case(SYS_CNTFRQ_EL0);
885 read_sysreg_case(SYS_CTR_EL0);
886 read_sysreg_case(SYS_DCZID_EL0);
888 default:
889 BUG();
890 return 0;
894 #include <linux/irqchip/arm-gic-v3.h>
896 static bool
897 feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
899 int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
901 return val >= entry->min_field_value;
904 static bool
905 has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
907 u64 val;
909 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
910 if (scope == SCOPE_SYSTEM)
911 val = read_sanitised_ftr_reg(entry->sys_reg);
912 else
913 val = __read_sysreg_by_encoding(entry->sys_reg);
915 return feature_matches(val, entry);
918 static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
920 bool has_sre;
922 if (!has_cpuid_feature(entry, scope))
923 return false;
925 has_sre = gic_enable_sre();
926 if (!has_sre)
927 pr_warn_once("%s present but disabled by higher exception level\n",
928 entry->desc);
930 return has_sre;
933 static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
935 u32 midr = read_cpuid_id();
937 /* Cavium ThunderX pass 1.x and 2.x */
938 return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
939 MIDR_CPU_VAR_REV(0, 0),
940 MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
943 static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
945 u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
947 return cpuid_feature_extract_signed_field(pfr0,
948 ID_AA64PFR0_FP_SHIFT) < 0;
951 static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
952 int scope)
954 u64 ctr;
956 if (scope == SCOPE_SYSTEM)
957 ctr = arm64_ftr_reg_ctrel0.sys_val;
958 else
959 ctr = read_cpuid_effective_cachetype();
961 return ctr & BIT(CTR_IDC_SHIFT);
964 static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
967 * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
968 * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
969 * to the CTR_EL0 on this CPU and emulate it with the real/safe
970 * value.
972 if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
973 sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
976 static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
977 int scope)
979 u64 ctr;
981 if (scope == SCOPE_SYSTEM)
982 ctr = arm64_ftr_reg_ctrel0.sys_val;
983 else
984 ctr = read_cpuid_cachetype();
986 return ctr & BIT(CTR_DIC_SHIFT);
989 static bool __maybe_unused
990 has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
993 * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
994 * may share TLB entries with a CPU stuck in the crashed
995 * kernel.
997 if (is_kdump_kernel())
998 return false;
1000 return has_cpuid_feature(entry, scope);
1004 * This check is triggered during the early boot before the cpufeature
1005 * is initialised. Checking the status on the local CPU allows the boot
1006 * CPU to detect the need for non-global mappings and thus avoiding a
1007 * pagetable re-write after all the CPUs are booted. This check will be
1008 * anyway run on individual CPUs, allowing us to get the consistent
1009 * state once the SMP CPUs are up and thus make the switch to non-global
1010 * mappings if required.
1012 bool kaslr_requires_kpti(void)
1014 if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1015 return false;
1018 * E0PD does a similar job to KPTI so can be used instead
1019 * where available.
1021 if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1022 u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1023 if (cpuid_feature_extract_unsigned_field(mmfr2,
1024 ID_AA64MMFR2_E0PD_SHIFT))
1025 return false;
1029 * Systems affected by Cavium erratum 24756 are incompatible
1030 * with KPTI.
1032 if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1033 extern const struct midr_range cavium_erratum_27456_cpus[];
1035 if (is_midr_in_range_list(read_cpuid_id(),
1036 cavium_erratum_27456_cpus))
1037 return false;
1040 return kaslr_offset() > 0;
1043 static bool __meltdown_safe = true;
1044 static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1046 static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1047 int scope)
1049 /* List of CPUs that are not vulnerable and don't need KPTI */
1050 static const struct midr_range kpti_safe_list[] = {
1051 MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1052 MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1053 MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1054 MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1055 MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1056 MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1057 MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1058 MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1059 MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1060 MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1061 MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1062 { /* sentinel */ }
1064 char const *str = "kpti command line option";
1065 bool meltdown_safe;
1067 meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1069 /* Defer to CPU feature registers */
1070 if (has_cpuid_feature(entry, scope))
1071 meltdown_safe = true;
1073 if (!meltdown_safe)
1074 __meltdown_safe = false;
1077 * For reasons that aren't entirely clear, enabling KPTI on Cavium
1078 * ThunderX leads to apparent I-cache corruption of kernel text, which
1079 * ends as well as you might imagine. Don't even try.
1081 if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1082 str = "ARM64_WORKAROUND_CAVIUM_27456";
1083 __kpti_forced = -1;
1086 /* Useful for KASLR robustness */
1087 if (kaslr_requires_kpti()) {
1088 if (!__kpti_forced) {
1089 str = "KASLR";
1090 __kpti_forced = 1;
1094 if (cpu_mitigations_off() && !__kpti_forced) {
1095 str = "mitigations=off";
1096 __kpti_forced = -1;
1099 if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1100 pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1101 return false;
1104 /* Forced? */
1105 if (__kpti_forced) {
1106 pr_info_once("kernel page table isolation forced %s by %s\n",
1107 __kpti_forced > 0 ? "ON" : "OFF", str);
1108 return __kpti_forced > 0;
1111 return !meltdown_safe;
1114 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1115 static void
1116 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1118 typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1119 extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1120 kpti_remap_fn *remap_fn;
1122 int cpu = smp_processor_id();
1125 * We don't need to rewrite the page-tables if either we've done
1126 * it already or we have KASLR enabled and therefore have not
1127 * created any global mappings at all.
1129 if (arm64_use_ng_mappings)
1130 return;
1132 remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1134 cpu_install_idmap();
1135 remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1136 cpu_uninstall_idmap();
1138 if (!cpu)
1139 arm64_use_ng_mappings = true;
1141 return;
1143 #else
1144 static void
1145 kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1148 #endif /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1150 static int __init parse_kpti(char *str)
1152 bool enabled;
1153 int ret = strtobool(str, &enabled);
1155 if (ret)
1156 return ret;
1158 __kpti_forced = enabled ? 1 : -1;
1159 return 0;
1161 early_param("kpti", parse_kpti);
1163 #ifdef CONFIG_ARM64_HW_AFDBM
1164 static inline void __cpu_enable_hw_dbm(void)
1166 u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1168 write_sysreg(tcr, tcr_el1);
1169 isb();
1172 static bool cpu_has_broken_dbm(void)
1174 /* List of CPUs which have broken DBM support. */
1175 static const struct midr_range cpus[] = {
1176 #ifdef CONFIG_ARM64_ERRATUM_1024718
1177 MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0), // A55 r0p0 -r1p0
1178 #endif
1182 return is_midr_in_range_list(read_cpuid_id(), cpus);
1185 static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1187 return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1188 !cpu_has_broken_dbm();
1191 static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1193 if (cpu_can_use_dbm(cap))
1194 __cpu_enable_hw_dbm();
1197 static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1198 int __unused)
1200 static bool detected = false;
1202 * DBM is a non-conflicting feature. i.e, the kernel can safely
1203 * run a mix of CPUs with and without the feature. So, we
1204 * unconditionally enable the capability to allow any late CPU
1205 * to use the feature. We only enable the control bits on the
1206 * CPU, if it actually supports.
1208 * We have to make sure we print the "feature" detection only
1209 * when at least one CPU actually uses it. So check if this CPU
1210 * can actually use it and print the message exactly once.
1212 * This is safe as all CPUs (including secondary CPUs - due to the
1213 * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1214 * goes through the "matches" check exactly once. Also if a CPU
1215 * matches the criteria, it is guaranteed that the CPU will turn
1216 * the DBM on, as the capability is unconditionally enabled.
1218 if (!detected && cpu_can_use_dbm(cap)) {
1219 detected = true;
1220 pr_info("detected: Hardware dirty bit management\n");
1223 return true;
1226 #endif
1228 #ifdef CONFIG_ARM64_AMU_EXTN
1231 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1232 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1233 * information regarding all the events that it supports. When a CPU bit is
1234 * set in the cpumask, the user of this feature can only rely on the presence
1235 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1236 * counters are enabled or access to these counters is enabled by code
1237 * executed at higher exception levels (firmware).
1239 static struct cpumask amu_cpus __read_mostly;
1241 bool cpu_has_amu_feat(int cpu)
1243 return cpumask_test_cpu(cpu, &amu_cpus);
1246 /* Initialize the use of AMU counters for frequency invariance */
1247 extern void init_cpu_freq_invariance_counters(void);
1249 static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1251 if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1252 pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1253 smp_processor_id());
1254 cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1255 init_cpu_freq_invariance_counters();
1259 static bool has_amu(const struct arm64_cpu_capabilities *cap,
1260 int __unused)
1263 * The AMU extension is a non-conflicting feature: the kernel can
1264 * safely run a mix of CPUs with and without support for the
1265 * activity monitors extension. Therefore, unconditionally enable
1266 * the capability to allow any late CPU to use the feature.
1268 * With this feature unconditionally enabled, the cpu_enable
1269 * function will be called for all CPUs that match the criteria,
1270 * including secondary and hotplugged, marking this feature as
1271 * present on that respective CPU. The enable function will also
1272 * print a detection message.
1275 return true;
1277 #endif
1279 #ifdef CONFIG_ARM64_VHE
1280 static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1282 return is_kernel_in_hyp_mode();
1285 static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1288 * Copy register values that aren't redirected by hardware.
1290 * Before code patching, we only set tpidr_el1, all CPUs need to copy
1291 * this value to tpidr_el2 before we patch the code. Once we've done
1292 * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1293 * do anything here.
1295 if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1296 write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1298 #endif
1300 static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1302 u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1304 /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1305 WARN_ON(val & (7 << 27 | 7 << 21));
1308 #ifdef CONFIG_ARM64_SSBD
1309 static int ssbs_emulation_handler(struct pt_regs *regs, u32 instr)
1311 if (user_mode(regs))
1312 return 1;
1314 if (instr & BIT(PSTATE_Imm_shift))
1315 regs->pstate |= PSR_SSBS_BIT;
1316 else
1317 regs->pstate &= ~PSR_SSBS_BIT;
1319 arm64_skip_faulting_instruction(regs, 4);
1320 return 0;
1323 static struct undef_hook ssbs_emulation_hook = {
1324 .instr_mask = ~(1U << PSTATE_Imm_shift),
1325 .instr_val = 0xd500401f | PSTATE_SSBS,
1326 .fn = ssbs_emulation_handler,
1329 static void cpu_enable_ssbs(const struct arm64_cpu_capabilities *__unused)
1331 static bool undef_hook_registered = false;
1332 static DEFINE_RAW_SPINLOCK(hook_lock);
1334 raw_spin_lock(&hook_lock);
1335 if (!undef_hook_registered) {
1336 register_undef_hook(&ssbs_emulation_hook);
1337 undef_hook_registered = true;
1339 raw_spin_unlock(&hook_lock);
1341 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE) {
1342 sysreg_clear_set(sctlr_el1, 0, SCTLR_ELx_DSSBS);
1343 arm64_set_ssbd_mitigation(false);
1344 } else {
1345 arm64_set_ssbd_mitigation(true);
1348 #endif /* CONFIG_ARM64_SSBD */
1350 #ifdef CONFIG_ARM64_PAN
1351 static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1354 * We modify PSTATE. This won't work from irq context as the PSTATE
1355 * is discarded once we return from the exception.
1357 WARN_ON_ONCE(in_interrupt());
1359 sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1360 asm(SET_PSTATE_PAN(1));
1362 #endif /* CONFIG_ARM64_PAN */
1364 #ifdef CONFIG_ARM64_RAS_EXTN
1365 static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1367 /* Firmware may have left a deferred SError in this register. */
1368 write_sysreg_s(0, SYS_DISR_EL1);
1370 #endif /* CONFIG_ARM64_RAS_EXTN */
1372 #ifdef CONFIG_ARM64_PTR_AUTH
1373 static bool has_address_auth(const struct arm64_cpu_capabilities *entry,
1374 int __unused)
1376 return __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_ARCH) ||
1377 __system_matches_cap(ARM64_HAS_ADDRESS_AUTH_IMP_DEF);
1380 static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1381 int __unused)
1383 return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1384 __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1386 #endif /* CONFIG_ARM64_PTR_AUTH */
1388 #ifdef CONFIG_ARM64_E0PD
1389 static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1391 if (this_cpu_has_cap(ARM64_HAS_E0PD))
1392 sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1394 #endif /* CONFIG_ARM64_E0PD */
1396 #ifdef CONFIG_ARM64_PSEUDO_NMI
1397 static bool enable_pseudo_nmi;
1399 static int __init early_enable_pseudo_nmi(char *p)
1401 return strtobool(p, &enable_pseudo_nmi);
1403 early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1405 static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1406 int scope)
1408 return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1410 #endif
1412 /* Internal helper functions to match cpu capability type */
1413 static bool
1414 cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1416 return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1419 static bool
1420 cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1422 return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1425 static bool
1426 cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1428 return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1431 static const struct arm64_cpu_capabilities arm64_features[] = {
1433 .desc = "GIC system register CPU interface",
1434 .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1435 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1436 .matches = has_useable_gicv3_cpuif,
1437 .sys_reg = SYS_ID_AA64PFR0_EL1,
1438 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1439 .sign = FTR_UNSIGNED,
1440 .min_field_value = 1,
1442 #ifdef CONFIG_ARM64_PAN
1444 .desc = "Privileged Access Never",
1445 .capability = ARM64_HAS_PAN,
1446 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1447 .matches = has_cpuid_feature,
1448 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1449 .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1450 .sign = FTR_UNSIGNED,
1451 .min_field_value = 1,
1452 .cpu_enable = cpu_enable_pan,
1454 #endif /* CONFIG_ARM64_PAN */
1455 #ifdef CONFIG_ARM64_LSE_ATOMICS
1457 .desc = "LSE atomic instructions",
1458 .capability = ARM64_HAS_LSE_ATOMICS,
1459 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1460 .matches = has_cpuid_feature,
1461 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1462 .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1463 .sign = FTR_UNSIGNED,
1464 .min_field_value = 2,
1466 #endif /* CONFIG_ARM64_LSE_ATOMICS */
1468 .desc = "Software prefetching using PRFM",
1469 .capability = ARM64_HAS_NO_HW_PREFETCH,
1470 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1471 .matches = has_no_hw_prefetch,
1473 #ifdef CONFIG_ARM64_UAO
1475 .desc = "User Access Override",
1476 .capability = ARM64_HAS_UAO,
1477 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1478 .matches = has_cpuid_feature,
1479 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1480 .field_pos = ID_AA64MMFR2_UAO_SHIFT,
1481 .min_field_value = 1,
1483 * We rely on stop_machine() calling uao_thread_switch() to set
1484 * UAO immediately after patching.
1487 #endif /* CONFIG_ARM64_UAO */
1488 #ifdef CONFIG_ARM64_PAN
1490 .capability = ARM64_ALT_PAN_NOT_UAO,
1491 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1492 .matches = cpufeature_pan_not_uao,
1494 #endif /* CONFIG_ARM64_PAN */
1495 #ifdef CONFIG_ARM64_VHE
1497 .desc = "Virtualization Host Extensions",
1498 .capability = ARM64_HAS_VIRT_HOST_EXTN,
1499 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1500 .matches = runs_at_el2,
1501 .cpu_enable = cpu_copy_el2regs,
1503 #endif /* CONFIG_ARM64_VHE */
1505 .desc = "32-bit EL0 Support",
1506 .capability = ARM64_HAS_32BIT_EL0,
1507 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1508 .matches = has_cpuid_feature,
1509 .sys_reg = SYS_ID_AA64PFR0_EL1,
1510 .sign = FTR_UNSIGNED,
1511 .field_pos = ID_AA64PFR0_EL0_SHIFT,
1512 .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1515 .desc = "Kernel page table isolation (KPTI)",
1516 .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1517 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1519 * The ID feature fields below are used to indicate that
1520 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1521 * more details.
1523 .sys_reg = SYS_ID_AA64PFR0_EL1,
1524 .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1525 .min_field_value = 1,
1526 .matches = unmap_kernel_at_el0,
1527 .cpu_enable = kpti_install_ng_mappings,
1530 /* FP/SIMD is not implemented */
1531 .capability = ARM64_HAS_NO_FPSIMD,
1532 .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1533 .min_field_value = 0,
1534 .matches = has_no_fpsimd,
1536 #ifdef CONFIG_ARM64_PMEM
1538 .desc = "Data cache clean to Point of Persistence",
1539 .capability = ARM64_HAS_DCPOP,
1540 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1541 .matches = has_cpuid_feature,
1542 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1543 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1544 .min_field_value = 1,
1547 .desc = "Data cache clean to Point of Deep Persistence",
1548 .capability = ARM64_HAS_DCPODP,
1549 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1550 .matches = has_cpuid_feature,
1551 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1552 .sign = FTR_UNSIGNED,
1553 .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1554 .min_field_value = 2,
1556 #endif
1557 #ifdef CONFIG_ARM64_SVE
1559 .desc = "Scalable Vector Extension",
1560 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1561 .capability = ARM64_SVE,
1562 .sys_reg = SYS_ID_AA64PFR0_EL1,
1563 .sign = FTR_UNSIGNED,
1564 .field_pos = ID_AA64PFR0_SVE_SHIFT,
1565 .min_field_value = ID_AA64PFR0_SVE,
1566 .matches = has_cpuid_feature,
1567 .cpu_enable = sve_kernel_enable,
1569 #endif /* CONFIG_ARM64_SVE */
1570 #ifdef CONFIG_ARM64_RAS_EXTN
1572 .desc = "RAS Extension Support",
1573 .capability = ARM64_HAS_RAS_EXTN,
1574 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1575 .matches = has_cpuid_feature,
1576 .sys_reg = SYS_ID_AA64PFR0_EL1,
1577 .sign = FTR_UNSIGNED,
1578 .field_pos = ID_AA64PFR0_RAS_SHIFT,
1579 .min_field_value = ID_AA64PFR0_RAS_V1,
1580 .cpu_enable = cpu_clear_disr,
1582 #endif /* CONFIG_ARM64_RAS_EXTN */
1583 #ifdef CONFIG_ARM64_AMU_EXTN
1586 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1587 * Therefore, don't provide .desc as we don't want the detection
1588 * message to be shown until at least one CPU is detected to
1589 * support the feature.
1591 .capability = ARM64_HAS_AMU_EXTN,
1592 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1593 .matches = has_amu,
1594 .sys_reg = SYS_ID_AA64PFR0_EL1,
1595 .sign = FTR_UNSIGNED,
1596 .field_pos = ID_AA64PFR0_AMU_SHIFT,
1597 .min_field_value = ID_AA64PFR0_AMU,
1598 .cpu_enable = cpu_amu_enable,
1600 #endif /* CONFIG_ARM64_AMU_EXTN */
1602 .desc = "Data cache clean to the PoU not required for I/D coherence",
1603 .capability = ARM64_HAS_CACHE_IDC,
1604 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1605 .matches = has_cache_idc,
1606 .cpu_enable = cpu_emulate_effective_ctr,
1609 .desc = "Instruction cache invalidation not required for I/D coherence",
1610 .capability = ARM64_HAS_CACHE_DIC,
1611 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1612 .matches = has_cache_dic,
1615 .desc = "Stage-2 Force Write-Back",
1616 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1617 .capability = ARM64_HAS_STAGE2_FWB,
1618 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1619 .sign = FTR_UNSIGNED,
1620 .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1621 .min_field_value = 1,
1622 .matches = has_cpuid_feature,
1623 .cpu_enable = cpu_has_fwb,
1625 #ifdef CONFIG_ARM64_HW_AFDBM
1628 * Since we turn this on always, we don't want the user to
1629 * think that the feature is available when it may not be.
1630 * So hide the description.
1632 * .desc = "Hardware pagetable Dirty Bit Management",
1635 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1636 .capability = ARM64_HW_DBM,
1637 .sys_reg = SYS_ID_AA64MMFR1_EL1,
1638 .sign = FTR_UNSIGNED,
1639 .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1640 .min_field_value = 2,
1641 .matches = has_hw_dbm,
1642 .cpu_enable = cpu_enable_hw_dbm,
1644 #endif
1646 .desc = "CRC32 instructions",
1647 .capability = ARM64_HAS_CRC32,
1648 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1649 .matches = has_cpuid_feature,
1650 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1651 .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1652 .min_field_value = 1,
1654 #ifdef CONFIG_ARM64_SSBD
1656 .desc = "Speculative Store Bypassing Safe (SSBS)",
1657 .capability = ARM64_SSBS,
1658 .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1659 .matches = has_cpuid_feature,
1660 .sys_reg = SYS_ID_AA64PFR1_EL1,
1661 .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1662 .sign = FTR_UNSIGNED,
1663 .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1664 .cpu_enable = cpu_enable_ssbs,
1666 #endif
1667 #ifdef CONFIG_ARM64_CNP
1669 .desc = "Common not Private translations",
1670 .capability = ARM64_HAS_CNP,
1671 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1672 .matches = has_useable_cnp,
1673 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1674 .sign = FTR_UNSIGNED,
1675 .field_pos = ID_AA64MMFR2_CNP_SHIFT,
1676 .min_field_value = 1,
1677 .cpu_enable = cpu_enable_cnp,
1679 #endif
1681 .desc = "Speculation barrier (SB)",
1682 .capability = ARM64_HAS_SB,
1683 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1684 .matches = has_cpuid_feature,
1685 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1686 .field_pos = ID_AA64ISAR1_SB_SHIFT,
1687 .sign = FTR_UNSIGNED,
1688 .min_field_value = 1,
1690 #ifdef CONFIG_ARM64_PTR_AUTH
1692 .desc = "Address authentication (architected algorithm)",
1693 .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
1694 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
1695 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1696 .sign = FTR_UNSIGNED,
1697 .field_pos = ID_AA64ISAR1_APA_SHIFT,
1698 .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
1699 .matches = has_cpuid_feature,
1702 .desc = "Address authentication (IMP DEF algorithm)",
1703 .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
1704 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
1705 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1706 .sign = FTR_UNSIGNED,
1707 .field_pos = ID_AA64ISAR1_API_SHIFT,
1708 .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
1709 .matches = has_cpuid_feature,
1712 .capability = ARM64_HAS_ADDRESS_AUTH,
1713 .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
1714 .matches = has_address_auth,
1717 .desc = "Generic authentication (architected algorithm)",
1718 .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
1719 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1720 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1721 .sign = FTR_UNSIGNED,
1722 .field_pos = ID_AA64ISAR1_GPA_SHIFT,
1723 .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
1724 .matches = has_cpuid_feature,
1727 .desc = "Generic authentication (IMP DEF algorithm)",
1728 .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
1729 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1730 .sys_reg = SYS_ID_AA64ISAR1_EL1,
1731 .sign = FTR_UNSIGNED,
1732 .field_pos = ID_AA64ISAR1_GPI_SHIFT,
1733 .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
1734 .matches = has_cpuid_feature,
1737 .capability = ARM64_HAS_GENERIC_AUTH,
1738 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1739 .matches = has_generic_auth,
1741 #endif /* CONFIG_ARM64_PTR_AUTH */
1742 #ifdef CONFIG_ARM64_PSEUDO_NMI
1745 * Depends on having GICv3
1747 .desc = "IRQ priority masking",
1748 .capability = ARM64_HAS_IRQ_PRIO_MASKING,
1749 .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1750 .matches = can_use_gic_priorities,
1751 .sys_reg = SYS_ID_AA64PFR0_EL1,
1752 .field_pos = ID_AA64PFR0_GIC_SHIFT,
1753 .sign = FTR_UNSIGNED,
1754 .min_field_value = 1,
1756 #endif
1757 #ifdef CONFIG_ARM64_E0PD
1759 .desc = "E0PD",
1760 .capability = ARM64_HAS_E0PD,
1761 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1762 .sys_reg = SYS_ID_AA64MMFR2_EL1,
1763 .sign = FTR_UNSIGNED,
1764 .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
1765 .matches = has_cpuid_feature,
1766 .min_field_value = 1,
1767 .cpu_enable = cpu_enable_e0pd,
1769 #endif
1770 #ifdef CONFIG_ARCH_RANDOM
1772 .desc = "Random Number Generator",
1773 .capability = ARM64_HAS_RNG,
1774 .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1775 .matches = has_cpuid_feature,
1776 .sys_reg = SYS_ID_AA64ISAR0_EL1,
1777 .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
1778 .sign = FTR_UNSIGNED,
1779 .min_field_value = 1,
1781 #endif
1785 #define HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1786 .matches = has_cpuid_feature, \
1787 .sys_reg = reg, \
1788 .field_pos = field, \
1789 .sign = s, \
1790 .min_field_value = min_value,
1792 #define __HWCAP_CAP(name, cap_type, cap) \
1793 .desc = name, \
1794 .type = ARM64_CPUCAP_SYSTEM_FEATURE, \
1795 .hwcap_type = cap_type, \
1796 .hwcap = cap, \
1798 #define HWCAP_CAP(reg, field, s, min_value, cap_type, cap) \
1800 __HWCAP_CAP(#cap, cap_type, cap) \
1801 HWCAP_CPUID_MATCH(reg, field, s, min_value) \
1804 #define HWCAP_MULTI_CAP(list, cap_type, cap) \
1806 __HWCAP_CAP(#cap, cap_type, cap) \
1807 .matches = cpucap_multi_entry_cap_matches, \
1808 .match_list = list, \
1811 #define HWCAP_CAP_MATCH(match, cap_type, cap) \
1813 __HWCAP_CAP(#cap, cap_type, cap) \
1814 .matches = match, \
1817 #ifdef CONFIG_ARM64_PTR_AUTH
1818 static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
1820 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
1821 FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
1824 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
1825 FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
1830 static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
1832 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
1833 FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
1836 HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
1837 FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
1841 #endif
1843 static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
1844 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
1845 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
1846 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
1847 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
1848 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
1849 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
1850 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
1851 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
1852 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
1853 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
1854 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
1855 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
1856 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
1857 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
1858 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
1859 HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
1860 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
1861 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
1862 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
1863 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
1864 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
1865 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
1866 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
1867 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
1868 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
1869 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
1870 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
1871 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
1872 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
1873 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
1874 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
1875 HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
1876 HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
1877 #ifdef CONFIG_ARM64_SVE
1878 HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
1879 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
1880 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
1881 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
1882 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
1883 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
1884 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
1885 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
1886 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
1887 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
1888 HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
1889 #endif
1890 HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
1891 #ifdef CONFIG_ARM64_PTR_AUTH
1892 HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
1893 HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
1894 #endif
1898 #ifdef CONFIG_COMPAT
1899 static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
1902 * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
1903 * in line with that of arm32 as in vfp_init(). We make sure that the
1904 * check is future proof, by making sure value is non-zero.
1906 u32 mvfr1;
1908 WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1909 if (scope == SCOPE_SYSTEM)
1910 mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
1911 else
1912 mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
1914 return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
1915 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
1916 cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
1918 #endif
1920 static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
1921 #ifdef CONFIG_COMPAT
1922 HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
1923 HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
1924 /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
1925 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
1926 HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
1927 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
1928 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
1929 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
1930 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
1931 HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
1932 #endif
1936 static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1938 switch (cap->hwcap_type) {
1939 case CAP_HWCAP:
1940 cpu_set_feature(cap->hwcap);
1941 break;
1942 #ifdef CONFIG_COMPAT
1943 case CAP_COMPAT_HWCAP:
1944 compat_elf_hwcap |= (u32)cap->hwcap;
1945 break;
1946 case CAP_COMPAT_HWCAP2:
1947 compat_elf_hwcap2 |= (u32)cap->hwcap;
1948 break;
1949 #endif
1950 default:
1951 WARN_ON(1);
1952 break;
1956 /* Check if we have a particular HWCAP enabled */
1957 static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
1959 bool rc;
1961 switch (cap->hwcap_type) {
1962 case CAP_HWCAP:
1963 rc = cpu_have_feature(cap->hwcap);
1964 break;
1965 #ifdef CONFIG_COMPAT
1966 case CAP_COMPAT_HWCAP:
1967 rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
1968 break;
1969 case CAP_COMPAT_HWCAP2:
1970 rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
1971 break;
1972 #endif
1973 default:
1974 WARN_ON(1);
1975 rc = false;
1978 return rc;
1981 static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
1983 /* We support emulation of accesses to CPU ID feature registers */
1984 cpu_set_named_feature(CPUID);
1985 for (; hwcaps->matches; hwcaps++)
1986 if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
1987 cap_set_elf_hwcap(hwcaps);
1990 static void update_cpu_capabilities(u16 scope_mask)
1992 int i;
1993 const struct arm64_cpu_capabilities *caps;
1995 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
1996 for (i = 0; i < ARM64_NCAPS; i++) {
1997 caps = cpu_hwcaps_ptrs[i];
1998 if (!caps || !(caps->type & scope_mask) ||
1999 cpus_have_cap(caps->capability) ||
2000 !caps->matches(caps, cpucap_default_scope(caps)))
2001 continue;
2003 if (caps->desc)
2004 pr_info("detected: %s\n", caps->desc);
2005 cpus_set_cap(caps->capability);
2007 if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2008 set_bit(caps->capability, boot_capabilities);
2013 * Enable all the available capabilities on this CPU. The capabilities
2014 * with BOOT_CPU scope are handled separately and hence skipped here.
2016 static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2018 int i;
2019 u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2021 for_each_available_cap(i) {
2022 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2024 if (WARN_ON(!cap))
2025 continue;
2027 if (!(cap->type & non_boot_scope))
2028 continue;
2030 if (cap->cpu_enable)
2031 cap->cpu_enable(cap);
2033 return 0;
2037 * Run through the enabled capabilities and enable() it on all active
2038 * CPUs
2040 static void __init enable_cpu_capabilities(u16 scope_mask)
2042 int i;
2043 const struct arm64_cpu_capabilities *caps;
2044 bool boot_scope;
2046 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2047 boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2049 for (i = 0; i < ARM64_NCAPS; i++) {
2050 unsigned int num;
2052 caps = cpu_hwcaps_ptrs[i];
2053 if (!caps || !(caps->type & scope_mask))
2054 continue;
2055 num = caps->capability;
2056 if (!cpus_have_cap(num))
2057 continue;
2059 /* Ensure cpus_have_const_cap(num) works */
2060 static_branch_enable(&cpu_hwcap_keys[num]);
2062 if (boot_scope && caps->cpu_enable)
2064 * Capabilities with SCOPE_BOOT_CPU scope are finalised
2065 * before any secondary CPU boots. Thus, each secondary
2066 * will enable the capability as appropriate via
2067 * check_local_cpu_capabilities(). The only exception is
2068 * the boot CPU, for which the capability must be
2069 * enabled here. This approach avoids costly
2070 * stop_machine() calls for this case.
2072 caps->cpu_enable(caps);
2076 * For all non-boot scope capabilities, use stop_machine()
2077 * as it schedules the work allowing us to modify PSTATE,
2078 * instead of on_each_cpu() which uses an IPI, giving us a
2079 * PSTATE that disappears when we return.
2081 if (!boot_scope)
2082 stop_machine(cpu_enable_non_boot_scope_capabilities,
2083 NULL, cpu_online_mask);
2087 * Run through the list of capabilities to check for conflicts.
2088 * If the system has already detected a capability, take necessary
2089 * action on this CPU.
2091 static void verify_local_cpu_caps(u16 scope_mask)
2093 int i;
2094 bool cpu_has_cap, system_has_cap;
2095 const struct arm64_cpu_capabilities *caps;
2097 scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2099 for (i = 0; i < ARM64_NCAPS; i++) {
2100 caps = cpu_hwcaps_ptrs[i];
2101 if (!caps || !(caps->type & scope_mask))
2102 continue;
2104 cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2105 system_has_cap = cpus_have_cap(caps->capability);
2107 if (system_has_cap) {
2109 * Check if the new CPU misses an advertised feature,
2110 * which is not safe to miss.
2112 if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2113 break;
2115 * We have to issue cpu_enable() irrespective of
2116 * whether the CPU has it or not, as it is enabeld
2117 * system wide. It is upto the call back to take
2118 * appropriate action on this CPU.
2120 if (caps->cpu_enable)
2121 caps->cpu_enable(caps);
2122 } else {
2124 * Check if the CPU has this capability if it isn't
2125 * safe to have when the system doesn't.
2127 if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2128 break;
2132 if (i < ARM64_NCAPS) {
2133 pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2134 smp_processor_id(), caps->capability,
2135 caps->desc, system_has_cap, cpu_has_cap);
2137 if (cpucap_panic_on_conflict(caps))
2138 cpu_panic_kernel();
2139 else
2140 cpu_die_early();
2145 * Check for CPU features that are used in early boot
2146 * based on the Boot CPU value.
2148 static void check_early_cpu_features(void)
2150 verify_cpu_asid_bits();
2152 verify_local_cpu_caps(SCOPE_BOOT_CPU);
2155 static void
2156 verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2159 for (; caps->matches; caps++)
2160 if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2161 pr_crit("CPU%d: missing HWCAP: %s\n",
2162 smp_processor_id(), caps->desc);
2163 cpu_die_early();
2167 static void verify_sve_features(void)
2169 u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2170 u64 zcr = read_zcr_features();
2172 unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2173 unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2175 if (len < safe_len || sve_verify_vq_map()) {
2176 pr_crit("CPU%d: SVE: vector length support mismatch\n",
2177 smp_processor_id());
2178 cpu_die_early();
2181 /* Add checks on other ZCR bits here if necessary */
2186 * Run through the enabled system capabilities and enable() it on this CPU.
2187 * The capabilities were decided based on the available CPUs at the boot time.
2188 * Any new CPU should match the system wide status of the capability. If the
2189 * new CPU doesn't have a capability which the system now has enabled, we
2190 * cannot do anything to fix it up and could cause unexpected failures. So
2191 * we park the CPU.
2193 static void verify_local_cpu_capabilities(void)
2196 * The capabilities with SCOPE_BOOT_CPU are checked from
2197 * check_early_cpu_features(), as they need to be verified
2198 * on all secondary CPUs.
2200 verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2202 verify_local_elf_hwcaps(arm64_elf_hwcaps);
2204 if (system_supports_32bit_el0())
2205 verify_local_elf_hwcaps(compat_elf_hwcaps);
2207 if (system_supports_sve())
2208 verify_sve_features();
2211 void check_local_cpu_capabilities(void)
2214 * All secondary CPUs should conform to the early CPU features
2215 * in use by the kernel based on boot CPU.
2217 check_early_cpu_features();
2220 * If we haven't finalised the system capabilities, this CPU gets
2221 * a chance to update the errata work arounds and local features.
2222 * Otherwise, this CPU should verify that it has all the system
2223 * advertised capabilities.
2225 if (!system_capabilities_finalized())
2226 update_cpu_capabilities(SCOPE_LOCAL_CPU);
2227 else
2228 verify_local_cpu_capabilities();
2231 static void __init setup_boot_cpu_capabilities(void)
2233 /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2234 update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2235 /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2236 enable_cpu_capabilities(SCOPE_BOOT_CPU);
2239 bool this_cpu_has_cap(unsigned int n)
2241 if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2242 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2244 if (cap)
2245 return cap->matches(cap, SCOPE_LOCAL_CPU);
2248 return false;
2252 * This helper function is used in a narrow window when,
2253 * - The system wide safe registers are set with all the SMP CPUs and,
2254 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2255 * In all other cases cpus_have_{const_}cap() should be used.
2257 static bool __system_matches_cap(unsigned int n)
2259 if (n < ARM64_NCAPS) {
2260 const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2262 if (cap)
2263 return cap->matches(cap, SCOPE_SYSTEM);
2265 return false;
2268 void cpu_set_feature(unsigned int num)
2270 WARN_ON(num >= MAX_CPU_FEATURES);
2271 elf_hwcap |= BIT(num);
2273 EXPORT_SYMBOL_GPL(cpu_set_feature);
2275 bool cpu_have_feature(unsigned int num)
2277 WARN_ON(num >= MAX_CPU_FEATURES);
2278 return elf_hwcap & BIT(num);
2280 EXPORT_SYMBOL_GPL(cpu_have_feature);
2282 unsigned long cpu_get_elf_hwcap(void)
2285 * We currently only populate the first 32 bits of AT_HWCAP. Please
2286 * note that for userspace compatibility we guarantee that bits 62
2287 * and 63 will always be returned as 0.
2289 return lower_32_bits(elf_hwcap);
2292 unsigned long cpu_get_elf_hwcap2(void)
2294 return upper_32_bits(elf_hwcap);
2297 static void __init setup_system_capabilities(void)
2300 * We have finalised the system-wide safe feature
2301 * registers, finalise the capabilities that depend
2302 * on it. Also enable all the available capabilities,
2303 * that are not enabled already.
2305 update_cpu_capabilities(SCOPE_SYSTEM);
2306 enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2309 void __init setup_cpu_features(void)
2311 u32 cwg;
2313 setup_system_capabilities();
2314 setup_elf_hwcaps(arm64_elf_hwcaps);
2316 if (system_supports_32bit_el0())
2317 setup_elf_hwcaps(compat_elf_hwcaps);
2319 if (system_uses_ttbr0_pan())
2320 pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2322 sve_setup();
2323 minsigstksz_setup();
2325 /* Advertise that we have computed the system capabilities */
2326 finalize_system_capabilities();
2329 * Check for sane CTR_EL0.CWG value.
2331 cwg = cache_type_cwg();
2332 if (!cwg)
2333 pr_warn("No Cache Writeback Granule information, assuming %d\n",
2334 ARCH_DMA_MINALIGN);
2337 static bool __maybe_unused
2338 cpufeature_pan_not_uao(const struct arm64_cpu_capabilities *entry, int __unused)
2340 return (__system_matches_cap(ARM64_HAS_PAN) && !__system_matches_cap(ARM64_HAS_UAO));
2343 static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2345 cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2349 * We emulate only the following system register space.
2350 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2351 * See Table C5-6 System instruction encodings for System register accesses,
2352 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2354 static inline bool __attribute_const__ is_emulated(u32 id)
2356 return (sys_reg_Op0(id) == 0x3 &&
2357 sys_reg_CRn(id) == 0x0 &&
2358 sys_reg_Op1(id) == 0x0 &&
2359 (sys_reg_CRm(id) == 0 ||
2360 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2364 * With CRm == 0, reg should be one of :
2365 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2367 static inline int emulate_id_reg(u32 id, u64 *valp)
2369 switch (id) {
2370 case SYS_MIDR_EL1:
2371 *valp = read_cpuid_id();
2372 break;
2373 case SYS_MPIDR_EL1:
2374 *valp = SYS_MPIDR_SAFE_VAL;
2375 break;
2376 case SYS_REVIDR_EL1:
2377 /* IMPLEMENTATION DEFINED values are emulated with 0 */
2378 *valp = 0;
2379 break;
2380 default:
2381 return -EINVAL;
2384 return 0;
2387 static int emulate_sys_reg(u32 id, u64 *valp)
2389 struct arm64_ftr_reg *regp;
2391 if (!is_emulated(id))
2392 return -EINVAL;
2394 if (sys_reg_CRm(id) == 0)
2395 return emulate_id_reg(id, valp);
2397 regp = get_arm64_ftr_reg(id);
2398 if (regp)
2399 *valp = arm64_ftr_reg_user_value(regp);
2400 else
2402 * The untracked registers are either IMPLEMENTATION DEFINED
2403 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2405 *valp = 0;
2406 return 0;
2409 int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2411 int rc;
2412 u64 val;
2414 rc = emulate_sys_reg(sys_reg, &val);
2415 if (!rc) {
2416 pt_regs_write_reg(regs, rt, val);
2417 arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2419 return rc;
2422 static int emulate_mrs(struct pt_regs *regs, u32 insn)
2424 u32 sys_reg, rt;
2427 * sys_reg values are defined as used in mrs/msr instruction.
2428 * shift the imm value to get the encoding.
2430 sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2431 rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2432 return do_emulate_mrs(regs, sys_reg, rt);
2435 static struct undef_hook mrs_hook = {
2436 .instr_mask = 0xfff00000,
2437 .instr_val = 0xd5300000,
2438 .pstate_mask = PSR_AA32_MODE_MASK,
2439 .pstate_val = PSR_MODE_EL0t,
2440 .fn = emulate_mrs,
2443 static int __init enable_mrs_emulation(void)
2445 register_undef_hook(&mrs_hook);
2446 return 0;
2449 core_initcall(enable_mrs_emulation);
2451 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2452 char *buf)
2454 if (__meltdown_safe)
2455 return sprintf(buf, "Not affected\n");
2457 if (arm64_kernel_unmapped_at_el0())
2458 return sprintf(buf, "Mitigation: PTI\n");
2460 return sprintf(buf, "Vulnerable\n");