gpio: rcar: Fix runtime PM imbalance on error
[linux/fpc-iii.git] / arch / s390 / mm / fault.c
blobdedc28be27ab40834f23175b7310772312b30665
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/pgtable.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include <asm/uv.h>
42 #include "../kernel/entry.h"
44 #define __FAIL_ADDR_MASK -4096L
45 #define __SUBCODE_MASK 0x0600
46 #define __PF_RES_FIELD 0x8000000000000000ULL
48 #define VM_FAULT_BADCONTEXT ((__force vm_fault_t) 0x010000)
49 #define VM_FAULT_BADMAP ((__force vm_fault_t) 0x020000)
50 #define VM_FAULT_BADACCESS ((__force vm_fault_t) 0x040000)
51 #define VM_FAULT_SIGNAL ((__force vm_fault_t) 0x080000)
52 #define VM_FAULT_PFAULT ((__force vm_fault_t) 0x100000)
54 enum fault_type {
55 KERNEL_FAULT,
56 USER_FAULT,
57 VDSO_FAULT,
58 GMAP_FAULT,
61 static unsigned long store_indication __read_mostly;
63 static int __init fault_init(void)
65 if (test_facility(75))
66 store_indication = 0xc00;
67 return 0;
69 early_initcall(fault_init);
72 * Find out which address space caused the exception.
74 static enum fault_type get_fault_type(struct pt_regs *regs)
76 unsigned long trans_exc_code;
78 trans_exc_code = regs->int_parm_long & 3;
79 if (likely(trans_exc_code == 0)) {
80 /* primary space exception */
81 if (IS_ENABLED(CONFIG_PGSTE) &&
82 test_pt_regs_flag(regs, PIF_GUEST_FAULT))
83 return GMAP_FAULT;
84 if (current->thread.mm_segment == USER_DS)
85 return USER_FAULT;
86 return KERNEL_FAULT;
88 if (trans_exc_code == 2) {
89 /* secondary space exception */
90 if (current->thread.mm_segment & 1) {
91 if (current->thread.mm_segment == USER_DS_SACF)
92 return USER_FAULT;
93 return KERNEL_FAULT;
95 return VDSO_FAULT;
97 if (trans_exc_code == 1) {
98 /* access register mode, not used in the kernel */
99 return USER_FAULT;
101 /* home space exception -> access via kernel ASCE */
102 return KERNEL_FAULT;
105 static int bad_address(void *p)
107 unsigned long dummy;
109 return probe_kernel_address((unsigned long *)p, dummy);
112 static void dump_pagetable(unsigned long asce, unsigned long address)
114 unsigned long *table = __va(asce & _ASCE_ORIGIN);
116 pr_alert("AS:%016lx ", asce);
117 switch (asce & _ASCE_TYPE_MASK) {
118 case _ASCE_TYPE_REGION1:
119 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
120 if (bad_address(table))
121 goto bad;
122 pr_cont("R1:%016lx ", *table);
123 if (*table & _REGION_ENTRY_INVALID)
124 goto out;
125 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
126 fallthrough;
127 case _ASCE_TYPE_REGION2:
128 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
129 if (bad_address(table))
130 goto bad;
131 pr_cont("R2:%016lx ", *table);
132 if (*table & _REGION_ENTRY_INVALID)
133 goto out;
134 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
135 fallthrough;
136 case _ASCE_TYPE_REGION3:
137 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
138 if (bad_address(table))
139 goto bad;
140 pr_cont("R3:%016lx ", *table);
141 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
142 goto out;
143 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
144 fallthrough;
145 case _ASCE_TYPE_SEGMENT:
146 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
147 if (bad_address(table))
148 goto bad;
149 pr_cont("S:%016lx ", *table);
150 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
151 goto out;
152 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
154 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
155 if (bad_address(table))
156 goto bad;
157 pr_cont("P:%016lx ", *table);
158 out:
159 pr_cont("\n");
160 return;
161 bad:
162 pr_cont("BAD\n");
165 static void dump_fault_info(struct pt_regs *regs)
167 unsigned long asce;
169 pr_alert("Failing address: %016lx TEID: %016lx\n",
170 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
171 pr_alert("Fault in ");
172 switch (regs->int_parm_long & 3) {
173 case 3:
174 pr_cont("home space ");
175 break;
176 case 2:
177 pr_cont("secondary space ");
178 break;
179 case 1:
180 pr_cont("access register ");
181 break;
182 case 0:
183 pr_cont("primary space ");
184 break;
186 pr_cont("mode while using ");
187 switch (get_fault_type(regs)) {
188 case USER_FAULT:
189 asce = S390_lowcore.user_asce;
190 pr_cont("user ");
191 break;
192 case VDSO_FAULT:
193 asce = S390_lowcore.vdso_asce;
194 pr_cont("vdso ");
195 break;
196 case GMAP_FAULT:
197 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
198 pr_cont("gmap ");
199 break;
200 case KERNEL_FAULT:
201 asce = S390_lowcore.kernel_asce;
202 pr_cont("kernel ");
203 break;
204 default:
205 unreachable();
207 pr_cont("ASCE.\n");
208 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
211 int show_unhandled_signals = 1;
213 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
215 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
216 return;
217 if (!unhandled_signal(current, signr))
218 return;
219 if (!printk_ratelimit())
220 return;
221 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
222 regs->int_code & 0xffff, regs->int_code >> 17);
223 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
224 printk(KERN_CONT "\n");
225 if (is_mm_fault)
226 dump_fault_info(regs);
227 show_regs(regs);
231 * Send SIGSEGV to task. This is an external routine
232 * to keep the stack usage of do_page_fault small.
234 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
236 report_user_fault(regs, SIGSEGV, 1);
237 force_sig_fault(SIGSEGV, si_code,
238 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
241 const struct exception_table_entry *s390_search_extables(unsigned long addr)
243 const struct exception_table_entry *fixup;
245 fixup = search_extable(__start_dma_ex_table,
246 __stop_dma_ex_table - __start_dma_ex_table,
247 addr);
248 if (!fixup)
249 fixup = search_exception_tables(addr);
250 return fixup;
253 static noinline void do_no_context(struct pt_regs *regs)
255 const struct exception_table_entry *fixup;
257 /* Are we prepared to handle this kernel fault? */
258 fixup = s390_search_extables(regs->psw.addr);
259 if (fixup) {
260 regs->psw.addr = extable_fixup(fixup);
261 return;
265 * Oops. The kernel tried to access some bad page. We'll have to
266 * terminate things with extreme prejudice.
268 if (get_fault_type(regs) == KERNEL_FAULT)
269 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
270 " in virtual kernel address space\n");
271 else
272 printk(KERN_ALERT "Unable to handle kernel paging request"
273 " in virtual user address space\n");
274 dump_fault_info(regs);
275 die(regs, "Oops");
276 do_exit(SIGKILL);
279 static noinline void do_low_address(struct pt_regs *regs)
281 /* Low-address protection hit in kernel mode means
282 NULL pointer write access in kernel mode. */
283 if (regs->psw.mask & PSW_MASK_PSTATE) {
284 /* Low-address protection hit in user mode 'cannot happen'. */
285 die (regs, "Low-address protection");
286 do_exit(SIGKILL);
289 do_no_context(regs);
292 static noinline void do_sigbus(struct pt_regs *regs)
295 * Send a sigbus, regardless of whether we were in kernel
296 * or user mode.
298 force_sig_fault(SIGBUS, BUS_ADRERR,
299 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK));
302 static noinline int signal_return(struct pt_regs *regs)
304 u16 instruction;
305 int rc;
307 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
308 if (rc)
309 return rc;
310 if (instruction == 0x0a77) {
311 set_pt_regs_flag(regs, PIF_SYSCALL);
312 regs->int_code = 0x00040077;
313 return 0;
314 } else if (instruction == 0x0aad) {
315 set_pt_regs_flag(regs, PIF_SYSCALL);
316 regs->int_code = 0x000400ad;
317 return 0;
319 return -EACCES;
322 static noinline void do_fault_error(struct pt_regs *regs, int access,
323 vm_fault_t fault)
325 int si_code;
327 switch (fault) {
328 case VM_FAULT_BADACCESS:
329 if (access == VM_EXEC && signal_return(regs) == 0)
330 break;
331 fallthrough;
332 case VM_FAULT_BADMAP:
333 /* Bad memory access. Check if it is kernel or user space. */
334 if (user_mode(regs)) {
335 /* User mode accesses just cause a SIGSEGV */
336 si_code = (fault == VM_FAULT_BADMAP) ?
337 SEGV_MAPERR : SEGV_ACCERR;
338 do_sigsegv(regs, si_code);
339 break;
341 fallthrough;
342 case VM_FAULT_BADCONTEXT:
343 case VM_FAULT_PFAULT:
344 do_no_context(regs);
345 break;
346 case VM_FAULT_SIGNAL:
347 if (!user_mode(regs))
348 do_no_context(regs);
349 break;
350 default: /* fault & VM_FAULT_ERROR */
351 if (fault & VM_FAULT_OOM) {
352 if (!user_mode(regs))
353 do_no_context(regs);
354 else
355 pagefault_out_of_memory();
356 } else if (fault & VM_FAULT_SIGSEGV) {
357 /* Kernel mode? Handle exceptions or die */
358 if (!user_mode(regs))
359 do_no_context(regs);
360 else
361 do_sigsegv(regs, SEGV_MAPERR);
362 } else if (fault & VM_FAULT_SIGBUS) {
363 /* Kernel mode? Handle exceptions or die */
364 if (!user_mode(regs))
365 do_no_context(regs);
366 else
367 do_sigbus(regs);
368 } else
369 BUG();
370 break;
375 * This routine handles page faults. It determines the address,
376 * and the problem, and then passes it off to one of the appropriate
377 * routines.
379 * interruption code (int_code):
380 * 04 Protection -> Write-Protection (suprression)
381 * 10 Segment translation -> Not present (nullification)
382 * 11 Page translation -> Not present (nullification)
383 * 3b Region third trans. -> Not present (nullification)
385 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
387 struct gmap *gmap;
388 struct task_struct *tsk;
389 struct mm_struct *mm;
390 struct vm_area_struct *vma;
391 enum fault_type type;
392 unsigned long trans_exc_code;
393 unsigned long address;
394 unsigned int flags;
395 vm_fault_t fault;
397 tsk = current;
399 * The instruction that caused the program check has
400 * been nullified. Don't signal single step via SIGTRAP.
402 clear_pt_regs_flag(regs, PIF_PER_TRAP);
404 if (kprobe_page_fault(regs, 14))
405 return 0;
407 mm = tsk->mm;
408 trans_exc_code = regs->int_parm_long;
411 * Verify that the fault happened in user space, that
412 * we are not in an interrupt and that there is a
413 * user context.
415 fault = VM_FAULT_BADCONTEXT;
416 type = get_fault_type(regs);
417 switch (type) {
418 case KERNEL_FAULT:
419 goto out;
420 case VDSO_FAULT:
421 fault = VM_FAULT_BADMAP;
422 goto out;
423 case USER_FAULT:
424 case GMAP_FAULT:
425 if (faulthandler_disabled() || !mm)
426 goto out;
427 break;
430 address = trans_exc_code & __FAIL_ADDR_MASK;
431 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
432 flags = FAULT_FLAG_DEFAULT;
433 if (user_mode(regs))
434 flags |= FAULT_FLAG_USER;
435 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
436 flags |= FAULT_FLAG_WRITE;
437 down_read(&mm->mmap_sem);
439 gmap = NULL;
440 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
441 gmap = (struct gmap *) S390_lowcore.gmap;
442 current->thread.gmap_addr = address;
443 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
444 current->thread.gmap_int_code = regs->int_code & 0xffff;
445 address = __gmap_translate(gmap, address);
446 if (address == -EFAULT) {
447 fault = VM_FAULT_BADMAP;
448 goto out_up;
450 if (gmap->pfault_enabled)
451 flags |= FAULT_FLAG_RETRY_NOWAIT;
454 retry:
455 fault = VM_FAULT_BADMAP;
456 vma = find_vma(mm, address);
457 if (!vma)
458 goto out_up;
460 if (unlikely(vma->vm_start > address)) {
461 if (!(vma->vm_flags & VM_GROWSDOWN))
462 goto out_up;
463 if (expand_stack(vma, address))
464 goto out_up;
468 * Ok, we have a good vm_area for this memory access, so
469 * we can handle it..
471 fault = VM_FAULT_BADACCESS;
472 if (unlikely(!(vma->vm_flags & access)))
473 goto out_up;
475 if (is_vm_hugetlb_page(vma))
476 address &= HPAGE_MASK;
478 * If for any reason at all we couldn't handle the fault,
479 * make sure we exit gracefully rather than endlessly redo
480 * the fault.
482 fault = handle_mm_fault(vma, address, flags);
483 if (fault_signal_pending(fault, regs)) {
484 fault = VM_FAULT_SIGNAL;
485 if (flags & FAULT_FLAG_RETRY_NOWAIT)
486 goto out_up;
487 goto out;
489 if (unlikely(fault & VM_FAULT_ERROR))
490 goto out_up;
493 * Major/minor page fault accounting is only done on the
494 * initial attempt. If we go through a retry, it is extremely
495 * likely that the page will be found in page cache at that point.
497 if (flags & FAULT_FLAG_ALLOW_RETRY) {
498 if (fault & VM_FAULT_MAJOR) {
499 tsk->maj_flt++;
500 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
501 regs, address);
502 } else {
503 tsk->min_flt++;
504 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
505 regs, address);
507 if (fault & VM_FAULT_RETRY) {
508 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
509 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
510 /* FAULT_FLAG_RETRY_NOWAIT has been set,
511 * mmap_sem has not been released */
512 current->thread.gmap_pfault = 1;
513 fault = VM_FAULT_PFAULT;
514 goto out_up;
516 flags &= ~FAULT_FLAG_RETRY_NOWAIT;
517 flags |= FAULT_FLAG_TRIED;
518 down_read(&mm->mmap_sem);
519 goto retry;
522 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
523 address = __gmap_link(gmap, current->thread.gmap_addr,
524 address);
525 if (address == -EFAULT) {
526 fault = VM_FAULT_BADMAP;
527 goto out_up;
529 if (address == -ENOMEM) {
530 fault = VM_FAULT_OOM;
531 goto out_up;
534 fault = 0;
535 out_up:
536 up_read(&mm->mmap_sem);
537 out:
538 return fault;
541 void do_protection_exception(struct pt_regs *regs)
543 unsigned long trans_exc_code;
544 int access;
545 vm_fault_t fault;
547 trans_exc_code = regs->int_parm_long;
549 * Protection exceptions are suppressing, decrement psw address.
550 * The exception to this rule are aborted transactions, for these
551 * the PSW already points to the correct location.
553 if (!(regs->int_code & 0x200))
554 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
556 * Check for low-address protection. This needs to be treated
557 * as a special case because the translation exception code
558 * field is not guaranteed to contain valid data in this case.
560 if (unlikely(!(trans_exc_code & 4))) {
561 do_low_address(regs);
562 return;
564 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
565 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
566 (regs->psw.addr & PAGE_MASK);
567 access = VM_EXEC;
568 fault = VM_FAULT_BADACCESS;
569 } else {
570 access = VM_WRITE;
571 fault = do_exception(regs, access);
573 if (unlikely(fault))
574 do_fault_error(regs, access, fault);
576 NOKPROBE_SYMBOL(do_protection_exception);
578 void do_dat_exception(struct pt_regs *regs)
580 int access;
581 vm_fault_t fault;
583 access = VM_ACCESS_FLAGS;
584 fault = do_exception(regs, access);
585 if (unlikely(fault))
586 do_fault_error(regs, access, fault);
588 NOKPROBE_SYMBOL(do_dat_exception);
590 #ifdef CONFIG_PFAULT
592 * 'pfault' pseudo page faults routines.
594 static int pfault_disable;
596 static int __init nopfault(char *str)
598 pfault_disable = 1;
599 return 1;
602 __setup("nopfault", nopfault);
604 struct pfault_refbk {
605 u16 refdiagc;
606 u16 reffcode;
607 u16 refdwlen;
608 u16 refversn;
609 u64 refgaddr;
610 u64 refselmk;
611 u64 refcmpmk;
612 u64 reserved;
613 } __attribute__ ((packed, aligned(8)));
615 static struct pfault_refbk pfault_init_refbk = {
616 .refdiagc = 0x258,
617 .reffcode = 0,
618 .refdwlen = 5,
619 .refversn = 2,
620 .refgaddr = __LC_LPP,
621 .refselmk = 1ULL << 48,
622 .refcmpmk = 1ULL << 48,
623 .reserved = __PF_RES_FIELD
626 int pfault_init(void)
628 int rc;
630 if (pfault_disable)
631 return -1;
632 diag_stat_inc(DIAG_STAT_X258);
633 asm volatile(
634 " diag %1,%0,0x258\n"
635 "0: j 2f\n"
636 "1: la %0,8\n"
637 "2:\n"
638 EX_TABLE(0b,1b)
639 : "=d" (rc)
640 : "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
641 return rc;
644 static struct pfault_refbk pfault_fini_refbk = {
645 .refdiagc = 0x258,
646 .reffcode = 1,
647 .refdwlen = 5,
648 .refversn = 2,
651 void pfault_fini(void)
654 if (pfault_disable)
655 return;
656 diag_stat_inc(DIAG_STAT_X258);
657 asm volatile(
658 " diag %0,0,0x258\n"
659 "0: nopr %%r7\n"
660 EX_TABLE(0b,0b)
661 : : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
664 static DEFINE_SPINLOCK(pfault_lock);
665 static LIST_HEAD(pfault_list);
667 #define PF_COMPLETE 0x0080
670 * The mechanism of our pfault code: if Linux is running as guest, runs a user
671 * space process and the user space process accesses a page that the host has
672 * paged out we get a pfault interrupt.
674 * This allows us, within the guest, to schedule a different process. Without
675 * this mechanism the host would have to suspend the whole virtual cpu until
676 * the page has been paged in.
678 * So when we get such an interrupt then we set the state of the current task
679 * to uninterruptible and also set the need_resched flag. Both happens within
680 * interrupt context(!). If we later on want to return to user space we
681 * recognize the need_resched flag and then call schedule(). It's not very
682 * obvious how this works...
684 * Of course we have a lot of additional fun with the completion interrupt (->
685 * host signals that a page of a process has been paged in and the process can
686 * continue to run). This interrupt can arrive on any cpu and, since we have
687 * virtual cpus, actually appear before the interrupt that signals that a page
688 * is missing.
690 static void pfault_interrupt(struct ext_code ext_code,
691 unsigned int param32, unsigned long param64)
693 struct task_struct *tsk;
694 __u16 subcode;
695 pid_t pid;
698 * Get the external interruption subcode & pfault initial/completion
699 * signal bit. VM stores this in the 'cpu address' field associated
700 * with the external interrupt.
702 subcode = ext_code.subcode;
703 if ((subcode & 0xff00) != __SUBCODE_MASK)
704 return;
705 inc_irq_stat(IRQEXT_PFL);
706 /* Get the token (= pid of the affected task). */
707 pid = param64 & LPP_PID_MASK;
708 rcu_read_lock();
709 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
710 if (tsk)
711 get_task_struct(tsk);
712 rcu_read_unlock();
713 if (!tsk)
714 return;
715 spin_lock(&pfault_lock);
716 if (subcode & PF_COMPLETE) {
717 /* signal bit is set -> a page has been swapped in by VM */
718 if (tsk->thread.pfault_wait == 1) {
719 /* Initial interrupt was faster than the completion
720 * interrupt. pfault_wait is valid. Set pfault_wait
721 * back to zero and wake up the process. This can
722 * safely be done because the task is still sleeping
723 * and can't produce new pfaults. */
724 tsk->thread.pfault_wait = 0;
725 list_del(&tsk->thread.list);
726 wake_up_process(tsk);
727 put_task_struct(tsk);
728 } else {
729 /* Completion interrupt was faster than initial
730 * interrupt. Set pfault_wait to -1 so the initial
731 * interrupt doesn't put the task to sleep.
732 * If the task is not running, ignore the completion
733 * interrupt since it must be a leftover of a PFAULT
734 * CANCEL operation which didn't remove all pending
735 * completion interrupts. */
736 if (tsk->state == TASK_RUNNING)
737 tsk->thread.pfault_wait = -1;
739 } else {
740 /* signal bit not set -> a real page is missing. */
741 if (WARN_ON_ONCE(tsk != current))
742 goto out;
743 if (tsk->thread.pfault_wait == 1) {
744 /* Already on the list with a reference: put to sleep */
745 goto block;
746 } else if (tsk->thread.pfault_wait == -1) {
747 /* Completion interrupt was faster than the initial
748 * interrupt (pfault_wait == -1). Set pfault_wait
749 * back to zero and exit. */
750 tsk->thread.pfault_wait = 0;
751 } else {
752 /* Initial interrupt arrived before completion
753 * interrupt. Let the task sleep.
754 * An extra task reference is needed since a different
755 * cpu may set the task state to TASK_RUNNING again
756 * before the scheduler is reached. */
757 get_task_struct(tsk);
758 tsk->thread.pfault_wait = 1;
759 list_add(&tsk->thread.list, &pfault_list);
760 block:
761 /* Since this must be a userspace fault, there
762 * is no kernel task state to trample. Rely on the
763 * return to userspace schedule() to block. */
764 __set_current_state(TASK_UNINTERRUPTIBLE);
765 set_tsk_need_resched(tsk);
766 set_preempt_need_resched();
769 out:
770 spin_unlock(&pfault_lock);
771 put_task_struct(tsk);
774 static int pfault_cpu_dead(unsigned int cpu)
776 struct thread_struct *thread, *next;
777 struct task_struct *tsk;
779 spin_lock_irq(&pfault_lock);
780 list_for_each_entry_safe(thread, next, &pfault_list, list) {
781 thread->pfault_wait = 0;
782 list_del(&thread->list);
783 tsk = container_of(thread, struct task_struct, thread);
784 wake_up_process(tsk);
785 put_task_struct(tsk);
787 spin_unlock_irq(&pfault_lock);
788 return 0;
791 static int __init pfault_irq_init(void)
793 int rc;
795 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
796 if (rc)
797 goto out_extint;
798 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
799 if (rc)
800 goto out_pfault;
801 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
802 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
803 NULL, pfault_cpu_dead);
804 return 0;
806 out_pfault:
807 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
808 out_extint:
809 pfault_disable = 1;
810 return rc;
812 early_initcall(pfault_irq_init);
814 #endif /* CONFIG_PFAULT */
816 #if IS_ENABLED(CONFIG_PGSTE)
817 void do_secure_storage_access(struct pt_regs *regs)
819 unsigned long addr = regs->int_parm_long & __FAIL_ADDR_MASK;
820 struct vm_area_struct *vma;
821 struct mm_struct *mm;
822 struct page *page;
823 int rc;
825 switch (get_fault_type(regs)) {
826 case USER_FAULT:
827 mm = current->mm;
828 down_read(&mm->mmap_sem);
829 vma = find_vma(mm, addr);
830 if (!vma) {
831 up_read(&mm->mmap_sem);
832 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
833 break;
835 page = follow_page(vma, addr, FOLL_WRITE | FOLL_GET);
836 if (IS_ERR_OR_NULL(page)) {
837 up_read(&mm->mmap_sem);
838 break;
840 if (arch_make_page_accessible(page))
841 send_sig(SIGSEGV, current, 0);
842 put_page(page);
843 up_read(&mm->mmap_sem);
844 break;
845 case KERNEL_FAULT:
846 page = phys_to_page(addr);
847 if (unlikely(!try_get_page(page)))
848 break;
849 rc = arch_make_page_accessible(page);
850 put_page(page);
851 if (rc)
852 BUG();
853 break;
854 case VDSO_FAULT:
855 case GMAP_FAULT:
856 default:
857 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
858 WARN_ON_ONCE(1);
861 NOKPROBE_SYMBOL(do_secure_storage_access);
863 void do_non_secure_storage_access(struct pt_regs *regs)
865 unsigned long gaddr = regs->int_parm_long & __FAIL_ADDR_MASK;
866 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
868 if (get_fault_type(regs) != GMAP_FAULT) {
869 do_fault_error(regs, VM_READ | VM_WRITE, VM_FAULT_BADMAP);
870 WARN_ON_ONCE(1);
871 return;
874 if (gmap_convert_to_secure(gmap, gaddr) == -EINVAL)
875 send_sig(SIGSEGV, current, 0);
877 NOKPROBE_SYMBOL(do_non_secure_storage_access);
879 #else
880 void do_secure_storage_access(struct pt_regs *regs)
882 default_trap_handler(regs);
885 void do_non_secure_storage_access(struct pt_regs *regs)
887 default_trap_handler(regs);
889 #endif